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Abstract

In this paper we show how implicit parallelism in Java programs can be made
explicit by a restructuring compiler using the multi-threading mechanism of the
language. In particular, we focus on automatically exploiting implicit parallelism in
loops and multi-way recursive methods. Expressing parallelism in Java itself clearly
has the advantage that the transformed program remains portable. After compilation
of the transformed Java program into bytecode, speedup can be obtained on any
platform on which the implementation of the JVM (Java Virtual Machine) supports
the true parallel execution of threads. Moreover, we will see that the transformations
presented in this paper only induce a slight overhead on uni-processors.

1 Introduction

To obtain true portability, a program written in the Java programming language [13] is
compiled into the architectural neutral instructions (bytecode) of an abstract machine, the
JVM (Java Virtual Machine) [21], rather than into native machine code. In this manner,
a compiled Java program can run on any platform on which an implementation of the
JVM is available. Although the interpretation of bytecode is substantially faster than the
interpretation of most high level languages, still a performance penalty must be paid for
portability. For many interactive applications, this is not a major drawback. In other
situations, however, performance may be more essential. In these cases, so-called `just-in-
time compilation' can be useful, where at run-time the bytecode is compiled into native
machine code. With this approach, performance close to the performance of compiled
languages can be obtained. However, because the demand for more computing power is
likely to remain, other means to speedup Java programs have to be found.

In this paper, we show how some forms of implicit parallelism in Java programs can
be made explicit by a restructuring compiler using the multi-threading mechanism of the
language. In particular, we focus on automatically exploiting implicit parallelism in loops
and multi-way recursive methods. Obviously, letting a compiler deal with the transfor-
mations that make implicit parallelism explicit simpli�es the task of the programmer and
makes the parallelization less error-prone. Moreover, because parallelism is expressed in
Java itself, the transformed program remains portable and speedup can be obtained on
any platform on which the Java bytecode interpreter supports the true parallel execution
of threads (typically a shared-address-space architecture [17]), whereas we will see that the
transformations presented in this paper only induce a slight overhead on uni-processors.

In �gure 1, we illustrate our approach to automatically exploiting implicit parallelism
in Java programs. A Java program MyClass.java is used as input of our source to source
Java restructuring compiler javar.

�This project is supported by DARPA under contract ARPA F19628-94-C-0057 through a subcontract
from Syracuse University. This paper has been published as journal paper in [6].
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Figure 1: Restructuring, compiling, and interpreting

First, the compiler identi�es the loops and the multi-way recursive methods that can
exploit implicit parallelism. Parallel loops are either detected automatically by means
of data dependence analysis, or are identi�ed explicitly by the programmer by means of
annotations. Because automatically detecting implicit parallelism in multi-way recursive
methods can be very hard, in this paper we simply assume that such parallelism is always
identi�ed explicitly by means of annotations. Thereafter, the compiler transforms the
input program into a form that uses the multi-threading mechanism of Java to make all
implicit parallelism explicit. Because parallelism is expressed in Java itself, the trans-
formed program can still be compiled into bytecode by any Java compiler (javac in the
�gure), and subsequently interpreted by any bytecode interpreter (java in the �gure, or,
alternatively, an interpreter that is embedded in a browser or appletviewer). Since �le-
names are essential in Java, the transformed program is stored in the �le MyClass.java
after a copy of the original program has been saved in a �le MyClass.orig. In case changes
to the original program are required, this latter �le must be renamed into MyClass.java

again before javar can be re-applied to the program.
The rest of this paper is organized as follows. First, in section 2, we give some prelim-

inaries on the threading mechanism of the Java programming language. In section 3, we
show how a restructuring compiler can exploit implicit loop parallelism in stride-1 loops.
Thereafter, in section 4 we discuss how implicit parallelism in multi-way recursive meth-
ods can be made explicit. In section 5, we presents the results of a series of experiments
that show the potential of the transformations presented in this paper. Finally, we state
conclusions in section 6.

2 Multi-Threading in Java

The Java programming language supports so-called multi-threading (see e.g. [2, 10, 12,
13, 18, 21, 22, 26, 27, 28, 29, 38] for a more detailed presentation), where several threads
that share a single address space may run concurrently. The most straightforward way
to obtain a new thread in Java is by calling the method start() on an instance of a
subclass of java.lang.Thread that overrides the run()-method of this latter class with
appropriate code. This causes a new thread to execute this run()-method, while the
original thread continues asynchronously with the code that follows the invocation of
start(). A thread can wait for completion of another thread by calling the method
join() on this thread. The following fragment, for instance, e�ectively implements the
FORK/JOIN-construct illustrated in �gure 2:
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Figure 2: A FORK/JOIN-construct

code1;
MyThread t = new MyThread();
t.start();
code2;
t.join(); // may throw InterruptedException
code3;

class MyThread extends Thread {
public void run() {

...
}

}

The Java programming language supports a synchronization mechanism that is based
on the concept of monitors [15]. Mutual exclusion amongst di�erent threads that call
methods with the quali�er `synchronized' on the same object is guaranteed. Once a
lock of a particular object has been acquired, a thread can suspends itself by calling the
wait()-method on this object. This will release the lock of this object, allowing other
threads to obtain the lock. If a thread that has acquired the lock of a particular object
calls the notify()-method, an arbitrary thread that has formerly been suspended by
calling the wait()-method on this object will awake again, although it must re-acquire
the lock of the object before it may continue. Likewise, calling the notifyAll()-method
will awake all suspended threads, each of which must re-acquire the lock before it may
continue.

An implementation of the JVM generally uses pre-emptive, priority based scheduling
for threads, where the currently running thread always has highest priority among all
runnable threads, and as soon as a thread with higher priority becomes runnable, the
running thread is pre-empted in favor of the latter. However, the speci�cation does
not guarantee fairness amongst runnable threads with equal priority. Furthermore, the
speci�cation requires that any variable that is read or written to synchronously is explicitly
loaded and stored back at acquiring and releasing locks, so that changes to shared data
become visible to other threads that access these variables by means of synchronized
methods. Asynchronously accessed variables, on the other hand, must be declared volatile
to prevent the compiler from performing optimizations that disable the visibility of such
changes (e.g. by keeping a variable that is only read in a register).

3 Loop Parallelization

In this section, we �rst brie
y review some issues related to parallel loops. Thereafter, we
discuss how a restructuring compiler can exploit implicit DOALL- and DOACROSS-like
parallelism in Java by means of multi-threading. Because data dependence theory and
analysis are discussed extensively in the literature (see e.g. [3, 4, 5, 7, 16, 20, 25, 30,
31, 33, 34, 39, 40, 41]), we do not further elaborate on these issues. Instead, we simply
assume that the restructuring compiler has some mechanism to identify parallel loops in
a program.
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Figure 3: Pre-Scheduling Policies

3.1 Parallel Loops

If all iterations of a loop are independent, i.e. if no data dependence is carried by the

loop, then this loop can be converted into a DOALL-loop. Even if data dependences are
carried by a loop, however, some parallelism may result from executing the loop as a
DOACROSS-loop, where a partial execution of some (parts) of the iterations is enforced
to satisfy the loop-carried data dependences.

Although there are several methods to enforce synchronization in a DOACROSS-loop
(see e.g. [8, 9, 23][24, 25, 40]), in this paper we focus on random synchronization [39,
p75-83][41, p289-295], where synchronization variables are implemented as bit-arrays that
provide one bit for each iteration. Synchronization is enforced using non-blocking post-
statements to set particular bits of synchronization variables andwait-statements to block
until certain bits of these synchronization variables become set.

On shared-address space architectures, parallel loops can be executed using fork/join-
like parallelism to start a number of threads that will execute the di�erent iterations of
the loop in parallel [40, 385-387]. The way in which iterations are assigned to the threads
is dependent on the scheduling policy [33, ch4][39, p73-74][40, p387-392][41, 296-298].
In a pre-scheduling policy, iterations are assigned statically to threads, for instance,
in a block-wise or cyclic fashion (viz. �gure 3). In a self-scheduling policy, threads
enter a critical section to obtain a next chunk of iterations dynamically. Here, there is
a clear trade-o� between using small chunks to reduce the potential of load imbalancing,
and using large chunks to limit synchronization overhead. A good comprise is to vary
the chunk size dynamically. In guided self-scheduling, for example, 1=t of the remaining
iterations are assigned to each next thread, where t denotes the total number of threads
that are used to execute the parallel loop.

3.2 Class Hierarchy for Parallel Loops

In �gure 4, we present a class hierarchy for implementing parallel loops in Java. Class
Thread is provided in package java.lang of the Java API. The second layer of this hierar-
chy is also independent of the source program, and can be provided in another immutable
package. For each particular parallel loop in a program, a new class LoopWorker x is con-
structed explicitly by the restructuring compiler and added to the transformed program.

3.2.1 Schedules

The interface Schedules is used to provide the class LoopPool with symbolic constants
that represent di�erent scheduling policies:
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interface Schedules {
static final int SCHED_BLOCK = 0;
static final int SCHED_CYCLIC = 1;
static final int SCHED_GUIDED = 2;

}

In the remaining of this paper, we focus on the implementation of three scheduling
policies: block scheduling, cyclic scheduling, and guided-self scheduling. Other scheduling
policies, however, can be easily incorporated in the framework.

3.2.2 LoopWorker

The abstract class LoopWorker provides an abstraction of a loop-worker that can be
used to execute several iterations of a parallel loop. The instance variables low, high,
and stride represent an execution set [low,high) and stride. Instance variables pool
and sync provide a hook to a pool of iterations and a set of synchronization variables,
respectively, shared amongst all loop-workers that are executing iterations of the same
parallel loop:

abstract class LoopWorker extends Thread {
int low, high, stride;
LoopPool pool;
RandomSync[] sync;
...

}

Because the class for loop-workers of a particular parallel loop must always be ob-
tained by sub-classing this class to provide an appropriate run() method, instantiation
of LoopWorker itself is prevented by making the class abstract.

Class LoopWorker also provides a class method parloop() that can be used to start
the parallel execution of a loop. This method expects the lower and upper bound of a
parallel stride-1 loop in two integer parameters l and h, some loop-workers in an array
w (in fact, these loop-workers will always be workers of a speci�c LoopWorker x class),
the number of synchronization variables required in parameter numS, and, �nally, the
representation of a scheduling policy in parameter sched. First, new instantiations of a
pool and the appropriate number of synchronization variables are obtained. Thereafter,
these objects are made available to all loop-workers and a fork is performed. Finally, the
method performs a join by waiting for all threads to �nish:
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static void parloop(int l, int h, LoopWorker[] w, int numS, int sched) {
LoopPool p = new LoopPool(l, h, w.length, sched);
RandomSync[] s = new RandomSync[numS];

for (int i = 0; i < numS; i++)
s[i] = new RandomSync(l, h);

// FORK
for (int i = 0; i < w.length; i++) {

w[i].pool = p;
w[i].sync = s;
w[i].start();

}
// JOIN
for (int i = 0; i < w.length; i++) {

try { w[i].join(); }
catch (InterruptedException e) {}

}
}

3.2.3 LoopPool

During execution of a parallel loop, loop-workers compete for work by accessing a shared
pool of iterations, as is illustrated in �gure 5. This structure of such a pool is de�ned
by the class LoopPool. Two instance variables low and high are used to represent the
execution set [low; high) of the parallel stride-1 loop, while the instance variables numW
and sched are used to record the number of loop-workers and a kind of scheduling policy.
Furthermore, the class provides two administration variables blocksize and count:

class LoopPool implements Schedules {
int low, high, sched, numW, blocksize, count;
...

}

In the only constructor of this class, initial values are assigned to all instance variables:

LoopPool(int l, int h, int n, int s) {
low = l;
high = h;
numW = n;
sched = s;

blocksize = (int) Math.ceil(((double) (high-low)) / numW);
count = numW;

}

The next amount of work is obtained by calling instance method nextWork() on
the pool. Depending on the kind of scheduling policy used, new values are assigned to

[low,high)

LoopPool

synchronized

FORK

JOIN

loop-workers

Figure 5: Execution of a Parallel Loop
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the instance variables low, high, and stride of a loop-worker that is supplied in the
parameter worker. If the pool has been exhausted, the method returns the value `false'.
Because a pool is shared amongst all loop-workers of a particular parallel loop, mutual
exclusion while updating shared data is enforced by making the method synchronized:

synchronized boolean nextWork(LoopWorker worker) {
boolean more = false;

switch (sched) {

case SCHED_CYCLIC:
more = (count-- > 0);
worker.low = low++;
worker.high = high;
worker.stride = numW;
break;

case SCHED_GUIDED:
blocksize = (int) Math.ceil(((double) (high-low)) / numW);

case SCHED_BLOCK: // FALL THROUGH
more = (low < high);
worker.low = low;
worker.high = Math.min(low + blocksize, high);
worker.stride = 1;
low += blocksize;
break;

}
return more;

}

To obtain a uniform interface between loop-workers and a pool, in our framework the
pre-scheduled policies are implemented as special versions of a self-scheduled policy, where
each loop-worker directly obtains all work in the �rst call to nextWork() and terminates
after the second call.

3.2.4 RandomSync

The class RandomSync de�nes an implementation of synchronization variables for random
synchronization in DOACROSS-loops. A boolean arrays bits is used to implement the
bit-array, while an integer low is used to record the lower bound of the execution set of
the parallel loop:

class RandomSync {
boolean[] bits;
int low;
...

}

The following constructor can be used to obtain a synchronization variable for a par-
allel stride-1 loop with execution set [l; h). In this constructor, a new bit-array that has
one bit for each iteration is obtained (viz. bit (i-low) belongs to iteration i), and the
lower bound l is recorded:

RandomSync(int l, int h) {
low = l;
if (l < h)
bits = new boolean[h-l];

}

Setting the bit of iteration i of a synchronization variable is done by calling the
following synchronized instance method doPost() on this variable. Likewise, calling the
synchronized instance method doWait() shown below on a synchronization variable blocks
until the bit of iteration j of this variable becomes set. The test low <= j, however, makes
this method non-blocking for out-of-bounds tests (which only may go backwards in the
iteration space of the DOACROSS-loop):
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synchronized void doPost(int i) {
bits[i-low] = true;
notifyAll();

}

synchronized void doWait(int j) {
if (low <= j)

while (! bits[j-low])
try { wait(); }
catch(InterruptedException e) {}

}

The call to notifyAll() will eventually wake up all threads that are blocked on some
synchronization variable (although, of course, they only re-acquire the lock of the monitor
one at the time). Because being noti�ed does not necessarily mean that the appropriate
bit actually has been set, however, the wait()-statement appears in a while-statement
(rather than in an if-statement).

Although in the implementation shown above, waiting threads do not compete for
processor time, the overhead of frequently accessing synchronized methods may be sub-
stantial. In this particular case, mutual exclusion while accessing the bit-array is not really
required, and we can also implement the methods shown above using busy-waiting by
eliminating the quali�ers synchronized and and replacing the wait()-statement by the
call `Thread.currentThread().yield()'. In section 5.3 we will see that this approach
can substantially improve the performance of a DOACROSS-loop. However, because the
Java language speci�cation does not guarantee fairness between runnable threads with
equal priority, and in Java there is no way to declare the elements of an array as volatile
(and since the elements of bits are accessed asynchronously, other processors may fail to
see changes [13, ch.17]), this approach may be unsuited for particular implementations of
the Java Virtual Machine.

3.3 Actual Loop Parallelization

Now, we are ready to discuss the steps that can be taken by a compiler to exploit implicit
loop parallelism in a stride-1 loop of the following form, where we assume that low and
high denote two arbitrary loop-invariant expressions of type int:

class MyClass {
...
[qualifiers] type myMethod(...) {

...
Li: for (int i = low; i < high; i++)

body(i);
...

}
}

Furthermore, we assume that the compiler has ascertained that loop Li can be ex-
ecuted in either a DOALL- or DOACROSS-like manner, possibly after standard com-
piler optimizations, loop normalization, and possibly other loop transformations (see
e.g. [1, 11, 32, 33, 39, 40, 41] are used to enhance the opportunities of loop parallelization.
The parallelization itself proceeds as follows, where, for simplicity, new identi�ers that
may con
ict with other identi�ers are denoted with a su�x ` x'. In reality, however, an
appropriate su�x must be generated by the compiler.

3.3.1 Construction of run x()

First, depending on whether myMethod() is a class method or an instance method, the
restructuring compiler adds the following class or instance method run x() to MyClass,
where body(i) denotes a literal copy of the original loop-body. The l1...lp (with cor-
responding types typei) denotes the set of local variables and parameters of myMethod()
that are referred to within body(i), but that are declared outside the loop Li:

[static] void run_x(int l_x, int h_x, int s_x, RandomSync[] sync_x, type1 l1, ..., typep lp) {
for (int i = l_x; i < h_x; i += s_x)

body(i);
}

8



Class and instance variables, the loop index i, and all other variables declared within
the loop remain visible in run x(). Hence, if the value of every li remains unaltered in
the loop-body, the original loop can be executed in parallel by letting di�erent threads
invoke this method for di�erent subsets of iterations and providing the appropriate value
of each li as argument.

If, on the other hand, the value of any li itself may change (not counting changes to
elements or �elds of an array or object reference li), there is not likely much parallelism
in the loop and the compiler simply resorts to disabling the loop parallelization to prevent
the requirement to propagate such changes back to the main thread.

For DOACROSS-like execution, the compiler adds the appropriate synchronization
primitives to the loop-body according to methods described in the literature [20, 23, 24, 25,
41]). Setting the bit of iteration i of a synchronization with number k is implemented as
`sync x[k].doPost(i)'. Likewise, waiting for the bit of iteration j of the synchronization
variable with number k to become set is implemented as `sync x[k].doWait(j)'.

3.3.2 Construction of LoopWorker x

Subsequently, the restructuring compiler constructs the following class LoopWorker x, and
adds this new sub-class of LoopWorker to the transformed program:

class LoopWorker_x extends LoopWorker {
MyClass target;
type1 l1_x;
...
typek lp_x;

LoopWorker_x(MyClass target, type1 l1_x, ..., typep lp_x) {
this.target = target;
this.l1_x = l1_x;
...
this.lp_x = lp_x;

}
public void run() {
while ( pool.nextWork() )

target.run_x(low, high, stride, sync, l1_x, ..., lp_x);
}

}

Since target is only required if myMethod() is an instance method, all constructs
involving this instance variable are omitted if myMethod() is a class method. In this case,
`MyClass' is used in the invocation of run x() instead.

3.3.3 Loop Replacement

In the third and �nal step, the original loop Li is replaced by the following block of code,
where low and high denote the lower and upper bound expression that are used in the
original loop, and each li denotes a local variable or parameter that is declared outside
this loop, and referred to (but unaltered) within the loop-body. If myMethod() is a class
method, construct this is omitted from the constructor invocation:

{ LoopWorker_x[] worker_x = new LoopWorker_x[NUM];
for (int i_x = 0; i_x < NUM; i_x++)

worker_x[i_x] = new LoopWorker_x(this, l1, ..., lp);
LoopWorker.parloop(low, high, worker_x, SVARS, SCHED);

}

Here, NUM, SVARS, and SCHED denote compiler selected literal constants that represent
the number of loop-workers, the number of synchronization variables, and the kind of
scheduling policy for this parallel loop, respectively.
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3.3.4 Exception Handling

In principle, any exception that may be thrown during execution of the parallel loop and
that is explicitly handled thereafter can be dealt with by catching such an exception in
the run()-method of a loop-worker, storing this exception in an additional �eld e x of
the loop-worker, and re-throwing a caught exception after the invocation of parloop()
generated in the third step (see section 3.3.3) as follows:

for (int i_x = 0; i_x < NUM; i_x++)
if (worker_x[i_x].e_x != null)
throw worker_x[i_x].e_x;

A single �eld of type java.lang.Exception can be used if all kinds of exceptions are
handled explicitly after the loop, or some di�erent �elds in the loop-worker can be used
to deal speci�cally with various types of exceptions. In any case, however, because the
order in which iterations of a parallel loop are executed is completely unpredictable, the
programmer must be aware that after loop parallelization, no assumptions about which
iterations have or have not been executed successfully can be made in any subsequent
explicit exception handling. In particular, several exceptions may occur in the di�er-
ent threads of a parallel loop, whereas only one of these exceptions will be re-thrown.
Consequently, if the order in which exceptions may be thrown in a loop is essential, paral-
lelization of this loop should be disabled. Otherwise, the mechanism sketched above can
be used to transfer an exception that is thrown by a look-worker back to the main thread.

4 Multi-way Recursive Method Parallelization

In this section, we introduce the concept of a parallel multi-way recursive method and show
how a restructuring compiler can exploit implicit parallelism in such methods in Java by
means of multi-threading. Because automatically detecting parallel multi-way recursive
methods can be very hard, we simply assume that the programmer uses annotations to
identify all parallel multi-way recursive methods in a program.

4.1 Parallel Multi-way Recursive Methods

We refer to a non-private, un-synchronized, and �nal method (i.e. overriding or hiding
is not possible) of the following form, where the di�erent recursive method invocations
in between executing pre code and post code can be done in parallel as a parallel
multi-way recursive method:

class MyClass {
...
[qualifiers] type myMethod(type1 f1, ..., typek fk) {

if (cond)
alt_code

else {
pre_code
r1 = target1.myMethod(a11, ..., a1k)
...
rn = targetn.myMethod(an1, ..., ank)
post_code

}
}

}

(1)

Here, each targeti either denotes `MyClass' if myMethod() is a class method, or an
arbitrary variable of type MyClass (including this) otherwise. If myMethod() is a void-
method, there are no assignments to the di�erent ri. Algorithms that traverse an explicit
tree-like data structure or divide-and-conquer algorithms can usually be expressed in this
form. Because in both cases, a virtual tree of method invocations is traversed, we will
visualize the parallelization of such methods using trees.
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The most straightforward way to exploit implicit parallelism in a parallel n-way re-
cursive method is to let a running thread assign all but one of the recursive method
invocations to other threads [17, 19, 35, 36]. Although our method is based on this simple
approach, the analysis shown below reveals the limitation on the corresponding speed-
up, and better ways of parallelizing an algorithm may exist. If n = 2, for example, and
each invocation divides the input into two sets of (roughly) the same size in time pro-
portional to the remaining input size, then this approach changes the serial execution
time Ts(N) = �(N � logN) into the parallel execution time Tp(N) = �(N) using p = N
processors, as implied by the following recurrence relations (with Ts(1) = Tp(1) = �(1)
for handling the base-case):

�
Ts(N) = �(N) + 2 � Ts(N=2)
Tp(N) = �(N) + Tp(N=2)

Hence, in this case the best possible speedup is S = Ts(N)=Tp(N) = �(logN). Simi-
lar analysis reveals that for 2-way recursive methods in which executing pre code and
post code takes constant time, the best possible speedup using the simple parallelization
method sketched above is S = �(N= logN).

The easiest way to assign work to a limited number of processors is to let running
threads assign method invocations to other threads only in the top levels of the method
invocation tree. Forking and eventually joining new threads in only the top two levels
of the method invocation tree, for example, assigns the method invocations of a 2-way
recursive to four processors, as illustrated in �gure 6.

Although such a static allocation scheme may yield poor performance if the sub-
trees assigned to the di�erent processors substantially vary in size, in this paper we simply
rely on the fact that most multi-way recursive methods try to keep the method invocation
tree reasonably balanced. Moreover, we will show that some load imbalancing can be
alleviated by starting additional threads.

4.2 Actual Parallelization

In this section, we describe the steps that can be taken by a restructuring compiler to
make implicit parallelism in a parallel multi-way recursive method of the form (1) explicit
by means of multi-threading. Again, for simplicity, all new identi�ers that may con
ict
with other identi�ers are denoted with a su�x ` x'.
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4.2.1 Construction of the Tree-Worker Class

In the �rst step, a sub-class TreeWorker x of java.lang.Thread is constructed that
provides an implementation of a tree-worker that can be used speci�cally to execute
invocations of the �nal method myMethod() in parallel. Consequently, if a Java program
contains m parallel multi-way methods, then m classes are constructed and added to the
transformed Java program, as is illustrated in �gure 7.

An instance variable result can be used to transfer the result of a method invocation.
Instance variable depth will be used to record the current depth in the method invocation
tree.

For each formal argument fi of myMethod(), there is an instance variable fi x of the
appropriate type. An instance variable target is possibly used to store a target. Finally,
a constructor that initializes a new tree-worker and a run()-method that calls a new
method myMethod par x() with the appropriate parameters are provided:

class TreeWorker_x extends Thread {
type result;
int depth;
MyClass target;
type1 f1_x;
...
typek fk_x;

TreeWorker_x(int depth, MyClass target, type1 f1_x, ..., typek fk_x) {
this.depth = depth;
this.target = target;
this.f1_x = f1_x;
...
this.fk_x = fk_x;
start();

}
public void run() {
result = target.myMethod_par_x(depth, f1_x, ..., fk_x);

}
}

Constructs involving target are only required if myMethod() is an instance method.
For a class method, these constructs are omitted and `MyClass' is used in the call to
myMethod par x() instead. If myMethod() is a void-method, all constructs involving
result are omitted.

4.2.2 Modi�cation of the Method

Subsequently, myMethod() is converted into another method myMethod par x() that takes
an additional integer parameter d x:

[qualifiers] type myMethod_par_x(int d_x, type1 f1, ..., typek fk) {
...

}

...........TreeWorker_1 TreeWorker_m

classclass

class

Thread

Figure 7: Class Hierarchy
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The method-body is modi�ed as follows. First, all invocations that appear in the
method-body are renamed accordingly, and the expression `d x+1' is added as an initial
parameter. Moreover, the �rst n-1 recursive method invocations of the n subsequent
invocations that can be executed in parallel are rewritten into the following form, where
CUT DEPTH denotes some literal integer constant selected by the compiler:

TreeWorker_x wi_x = null;
if (d_x <= CUT_DEPTH)

wi_x = new TreeWorker_x(d_x+1, targeti, ai1, ..., aik);
else

ri = targeti.myMethod_par_x(d_x+1, ai1, ..., aik);

Here, the actual parameter targeti is omitted in case myMethod() is a class method, and
`ri =' is omitted in the else-branch if myMethod() is a void-method.

For each such rewriting, the following construct is generated before the post code

fragment to implement the appropriate synchronization. The assignment statement is
omitted for a void-method:

if (wi_x != null) {
try { wi_x.join(); }

catch(InterruptedException e_x) {}
ri = wi_x.result;

}

If ri is a local variable, it may be necessary to add a dummy assignment to the
declaration of this variable to preserve the de�nite assignment property of Java [13],
because the original assignment has been moved into two conditional statements.

After these transformations have been applied to an n-way recursive method, n-way
forks will be performed in the top levels 0 : : : c of the method invocation tree in case
CUT DEPTH= c. In the other levels, each separate thread continues to execute method
invocations in a serial fashion (at this stage, the overhead of passing d x can be reduced
by executing an unaltered copy of the original method). Hence, if p processors are available
to execute a parallel n-way recursive method, then c should be at least dnlog pe to obtain
su�cient threads. Using a slightly larger cut-depth, however, may be useful to alleviate
load imbalancing problems. Threads eventually join with their originating threads, until
the single thread that invoked the parallel recursive method remains. Note that the join
is also required in case the code fragment post code is empty to enforce the appropriate
synchronization before the method as a whole terminates.

4.2.3 Construction of a new Method

In the last step, a new method myMethod()with the same quali�ers as the original method
and of the form shown below is added to the class in which the original method appears,
where the return is omitted for a void-method:

[qualifiers] type myMethod(type1 f1, ..., typek fk) {
return myMethod_par_x(0, f1, ..., fk);

}

After these transformations, all method invocations of myMethod par x() have access to
the appropriate depth within the method invocation tree.

Because the interface of myMethod() itself remains una�ected, all calls to the original
method remain completely unaware of the transformations. Hence, the parallelization of
myMethod() only involves some local transformations of the class MyClass. However, this
also implies that the method is less suited to deal with mutual recursion, i.e. situations
in which myMethod() calls another method that, in turn, invokes myMethod() again. In
such cases a parallel execution will be re-initiated for each invocation of myMethod() in
the other method.
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4.2.4 Exception Handling

In principle, any exception that may be thrown during execution of the method and that
is explicitly handled thereafter can be dealt with by catching such an exception in the
run()-method of a tree-worker, storing this exception in an additional �eld e x of the
tree-worker, and re-throwing a caught exception in the join-construct generated during
the second step (see section 4.2.2) as follows:

if (wi_x != null) {
...
if (wi_x.e_x != null)
throw wi_x.e_x

}

In this manner, the exception is caught and re-thrown by tree-workers until eventually
the exception is explicitly handled in the body of the method or the exception reaches the
main thread that initiated the parallel executed and is handled thereafter. A single �eld
of type java.lang.Exception can be used if explicit handling for all kinds of exceptions
is provided, or some di�erent �elds in the loop-worker can be used to deal speci�cally
with various types of exceptions. In any case, however, because invocations of a parallel
multi-way recursive method are executed in an unpredictable order, the programmer
must be aware that after parallelization, no assumptions about which invocations have
or have not been executed successfully can be made in any subsequent explicit exception
handling. Hence, if the order in which exceptions in the method may be thrown is essential,
parallelization should be disabled.

5 Experiments

In this section, we discuss the results of a number of experiments that have been conducted
on an IBM RS/6000 G30 with four PowerPC 604 processors using the AIX4.2 JDK1.0.2b
programming environment. Unless stated otherwise, programs are compiled into bytecode
using the 
ag `-O', and subsequently interpreted using the 
ag `-noasyncgc' and with both
just-in-time compilation and the parallel execution of threads enabled.

5.1 Some Loop Examples

We �rst discuss loop parallelization in full detail using some simple examples of single and
double loops. In the examples, we assume that exceptions do not have to be dealt with.

5.1.1 Single Loops

Consider, for example, the following class SimpleLoop1 in which an instance method
instanceMethod() is used to assign the inverse of the �rst N elements in a 
oating-point
array b to corresponding elements in another 
oating-point array a:

class SimpleLoop1 {
double[] a;
double[] b;
void instanceMethod(int N) {

L1: for (int i = 0; i < N; i++)
a[i] = 1.0D / b[i];

}
}

Obviously, because no data dependences are carried by loop L1, the loop can be
executed in a DOALL-like manner. Moreover, because the parameter N is only used as
upper bound, the compiler does not have to deal with any variables that are declared
outside the loop, but that are refered to within the loop-body. Exploiting implicit loop
parallelism proceeds as follows.
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First, the following instance method run 1() is constructed and added to the class
SimpleLoop1 (see section 3.3.1):

void run_1(int l_1, int h_1, int s_1, RandomSync[] sync_1) {
for (int i = l_1; i < h_1; i += s_1)

a[i] = 1.0D / b[i];
}

Thereafter, the restructuring compiler constructs the following class LoopWorker 1

and adds this class to the transformed Java program (see section 3.3.2):

class LoopWorker_1 extends LoopWorker {
SimpleLoop1 target;
LoopWorker_1(SimpleLoop1 target) {
this.target = target;

}
public void run() {
while ( pool.nextWork(this) ) {

target.run_1(low, high, stride, sync);
}

}
}

Finally, loop L1 in instanceMethod() is replaced by the following construct, where
NUM=4 and SVARS=0. Because the same amount of work is done in each iteration, block-
scheduling has been selected (see section 3.3.3, where adding `implements Schedules'
to the transformed class enables the compiler to use the symbolic representation of a
scheduling policy):

void instanceMethod(int N) {
LoopWorker_1[] worker_1 = new LoopWorker_1[4];
for (int i_1 = 0; i_1 < 4; i_1++)
worker_1[i_1] = new LoopWorker_1(this);

LoopWorker.parloop(0, N, worker_1, 0, SCHED_BLOCK);
}

Now, suppose that a similar loop that operates on class variables appears in a class
method classMethod() of a class SimpleLoop2:

class SimpleLoop2 {
static double[] a;
static double[] b;
static void classMethod(int N) {

L2: for (int i = 0; i < N; i++)
a[i] = 1.0D / b[i];

}
}

In this case, a class method run 2() similar to the one shown above (but with a
quali�er static) is added to the class SimpleLoop2, and the whole loop is replaced by
a construct that is similar to the construct shown above (but without an argument this
in the constructor invocation of LoopWorker 2). The loop-worker for the parallel loop L2

merely consists of a run()-method:

class LoopWorker_2 extends LoopWorker {
public void run() {
while ( pool.nextWork(this) )

SimpleLoop2.run_2(low, high, stride, sync);
}

}

In �gures 8 and 9, we show the serial execution time Ts and the parallel execution
time Tp of the methods instanceMethod() and classMethod() for varying values of N.
The execution time of the parallel versions run with the true parallel execution of threads
disabled is also shown. These experiments indicate that on a uni-processor, the overhead
introduced by the loop parallelization method presented in this paper is very small. In
�gure 10, we show the speedup of the true parallel versions. Here we see that on the four
processor IBM RS/6000 G30, parallelization of this particular single loop becomes useful
if N exceeds 20; 000. An e�ciency ranging from 75% up to over 90% is obtained once N

exceeds 220; 000.
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Figure 8: Single Loop in Instance Method
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Figure 9: Single Loop in Class Method
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5.1.2 Double Loops

The following double loop is based on an applet example found in [27]:

class DoubleLoop {
void computePixels(int N) {
int[] pixels = new int[N * N];
for (int y = 0; y < N; y++)

for (int x = 0; x < N; x++) {
int r = (x^y) & 0xff;
int g = (x*2^y*2) & 0xff;
int b = (x*4^y*4) & 0xff;
pixels[y*N + x] = (255 << 24) | (r << 16) | (g << 8) | b;

}
... more operations ...

}
}

Data dependence analysis reveals that neither the y- nor the x-loop carries any data
dependence. Parallelization of the outermost loop is more desirable to amortize startup
overhead over more iterations. In contrast with the previous examples, however, in this
case the loop-body of the y-loop refers to the parameter N of computePixels() (used as
upper bound in the x-loop) as well as the local array pixels that is declared outside this
loop. Because the value of N and pixels itself is not altered in the loop, however, the
loop can still be parallelized by supplying the value of these variables to the method that
is constructed in the �rst step (see section 3.3.1):

void run_3(int l_3, int h_3, int s_3, RandomSync[] sync_3, int N, int[] pixels) {
for (int y = l_3; y < h_3; y += s_3)
for (int x = 0; x < N; x++) {

int r = (x^y) & 0xff;
int g = (x*2^y*2) & 0xff;
int b = (x*4^y*4) & 0xff;
pixels[y*N + x] = (255 << 24) | (r << 16) | (g << 8) | b;

}
}

Loop-workers for this loop are described by the following class, having two additional
�elds to store the value of the integer N and the integer array pixels (see section 3.3.2):

class LoopWorker_3 extends LoopWorker {
DoubleLoop target;
int N_3;
int[] pixels_3;

LoopWorker_3(DoubleLoop target, int N_3, int[] pixels_3) {
this.target = target;
this.N_3 = N_3;
this.pixels_3 = pixels_3;

}
public void run() {
while ( pool.nextWork(this) ) {

target.run_3(low, high, stride, sync, N_3, pixels_3);
}

}
}

Finally, the original loop is replaced by the construct shown below, in which the value
of N and pixels is supplied to every loop-worker (see section 3.3.3):

void computePixels(int N) {
int[] pixels = new int[N * N];
{ LoopWorker_3[] worker_3 = new LoopWorker_3[4];

for (int i_3 = 0; i_3 < 4; i_3++)
worker_3[i_3] = new LoopWorker_3(this, N, pixels);

LoopWorker.parloop(0, N, worker_3, 0, SCHED_BLOCK);
}
... more operations ...

}
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In �gure 11, we show the execution time of the serial and parallel version of the
previous loop (excluding the time required for explicit memory allocation) for varying
values of N. For this particular double loop, parallelization becomes useful if N exceeds
180, and an e�ciency ranging from 75% up to more than 90% is obtained once N exceeds
500.

5.2 Matrix Multiplication

To demonstrate the usefulness of the di�erent scheduling policies, we have conducted some
experiments with loop parallelization in the following class Matmat:

class Matmat {

final static int M = 120, N = 120, K = 100;

static double a[][] = new double[M][N];
static double b[][] = new double[N][K];
static double c[][] = new double[M][K];

public static void main(String args[]) {
...

L1: for (int i = 0; i < M; i++)
for (int j = 0; j < K; j++)

for (int k = 0; k < N; k++)
c[i][j] += a[i][k] * b[k][j];

...
}

}

The most straightforward way to parallelize this implementation on a shared-address-
space architecture is to convert the outermost i-loop into a parallel loop. In �gure 12,
we show the execution time of the original serial loop and the parallel loop for a varying
number of threads and the three di�erent scheduling policies discussed in this paper.
Because work is spread evenly over the iterations, the scheduling policies have similar
performance.

Now, suppose that the array a is used to store a lower triangular matrix, so that the
the whole loop can be expressed as follows:

L1: for (int i = 0; i < M; i++)
for (int j = 0; j < K; j++)

for (int k = 0; k < i; k++)
c[i][j] += a[i][k] * b[k][j];

Because in this loop the amount of work is not spread evenly over the iterations, block
scheduling su�ers from some load imbalancing, as can be seen in �gure 13, This load
imbalancing, however, can be alleviated by allocating a few additional loop-workers.

Now, suppose that only a few rows of the matrix stored c have to be computed. As
illustrated below, this can be accomplished by means of a boolean array filter:

L1: for (int i = 0; i < M; i++)
if (filter[i])
for (int j = 0; j < K; j++)
for (int k = 0; k < N; k++)

c[i][j] += a[i][k] * b[k][j];

If, for example, only the even rows of c have to be computed, a severe load imbalancing
may result using cyclic scheduling, as illustrated in �gure 14. If, as another example,
only the �rst M=2 elements are set, guided self-scheduling su�ers from a similar load
imbalancing, as can be seen in �gure 15. These experiments indicate that, in general, no
decisive statement about which scheduling policy is the best can be made.
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Figure 12: Matrix Multiplication
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Figure 13: Triangular Matrix Multiplication
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Figure 14: Filtered Matrix Multiplication (even rows)
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5.3 Random Synchronization

Consider the following imperfectly nested loop, in which a static loop-carried 
ow depen-
dence S1�<S2 with distance 8 holds (i.e. for i � 8, statement instance S2(i) depends on
statement instance S1(i� 8)):

class SingleDependence {
static final int N = ...;

static double[] a = new double[N];
static double[][] b = new double[N][N];

static void compute() {
for (int i = 0; i < N-8; i++) {

S1: a[i+8] /= 3.0D;
for (int j = 0; j < N; j++)

S2: b[i][j] = 20.0D * a[i];
}

}
...

}

Straightforward parallelization of the i-loop is only valid if the loop is converted
into a DOACROSS-loop and one synchronization variable is used to enforce all data
dependences, i.e. SVARS = 1. Parallelization of the i-loop proceeds as explained earlier,
where the class method run x() that is added to class SingleDependence is shown below:

static void run_x(int l_x, int h_x, int s_x, RandomSync[] sync_x) {
for (int i = l_x; i < h_x; i += s_x) {

S1: a[i+8] /= 3.0D;
sync_x[0].doPost(i); // post(ASYNC, i)
sync_x[0].doWait(i-8); // wait(ASYNC, i-8)
for (int j = 0; j < N; j++)

S2: b[i][j] = 20.0D * a[i];
}

}

However, another way to obtain parallelism in the loop shown above is to �rst apply
loop-distribution [33, 39, 40, 41] to the i-loop, which is valid because all data dependences
are lexically forward. Thereafter, the second resulting i-loop can be converted into a
DOALL-loop. For small values of N, parallelization of the other i-loop or the j-loop is
not likely to be useful:

static void compute() {
for (int i = 0; i < N-8; i++)

S1: a[i+8] /= 3.0D;
for (int i = 0; i < N-8; i++) {

for (int j = 0; j < N; j++)
S2: b[i][j] = 20.0D * a[i];

}
}

In �gure 16, we show the execution time of the DOACROSS- and the DOALL-loop for
varying values of N. For the former loop, we present the execution time for block-scheduling
and cyclic-scheduling in case the wait()/notifyAll()-implementation of random syn-
chronization described in section 3.2.4 is used. Here we see that the overhead of random
synchronization is substantial, and that the loop becomes e�ectively serialized if block-
scheduling is used. In this case, it is more e�cient to use loop distribution to enable
operations on array b to be executed in a DOALL-like manner.

Unfortunately, data dependences cannot always be dealt with so easily. For example,
in the example shown above, there is a data dependence cycle, caused by the static 
ow
dependences S1�<S2 and S3�<S2 having distance 8 and 9 respectively:
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class DependenceCycle {
static final int N = ...;

static double[] a = new double[N];
static double[][] b = new double[N][N];
static double[] c = new double[N];

static void compute() {
for (int i = 9; i < N-8; i++) {

S1: a[i+8] /= 3.0D;
for (int j = 0; j < N; j++)

S2: b[i][j] = (20.0D * c[i-9]) / a[i];
S3: c[i] /= 8.0D;

}
}
...

}

In this case, the only way to exploit parallelism in the outermost loop is to execute
the i-loop in a DOACROSS-like manner using two synchronization variables, i.e. SVARS
= 2. The run y() method that can be used for this purpose is shown below:

static void run_y(int l_y, int h_y, int s_y, RandomSync[] sync_y) {
for (int i = l_y; i < h_y; i += s_y) {

S1: a[i+8] /= 3.0D;
sync_y[0].doPost(i); // post(ASYNC, i)
sync_y[0].doWait(i-8); // wait(ASYNC, i-8)
sync_y[1].doWait(i-9); // wait(CSYNC, i-9)
for (int j = 0; j < N; j++)

S2: b[i][j] = (20.0D * c[i-9]) / a[i];
S3: c[i] /= 8.0D;

sync_y[1].doPost(i); // post(CSYNC, i)
}

}

In �gure 17, we show the execution time of the serial and parallel version of the previ-
ous i-loop using a wait()/notifyAll()- and a busy-waiting-implementation of random
synchronization. Here we see that the latter is clearly superior. Starting two additional
threads (viz. t = 6) for the former implementation in an attempt to exploit available
processors time while threads are waiting fails due to the overhead involved.

5.4 Tree Traversals

In this section, we illustrate the parallelization of multi-way recursive methods in full
detail with two very simple tree traversal methods for trees containing integer data items
that are implemented as follows (see e.g. [10] for discussion of how some typical data
structures can be implemented in Java):

class Tree {
int val;
Tree left, right
...

}

In the examples, we assume that exceptions do not have to be dealt with.

5.4.1 Straightforward Parallelization

The number of levels in a tree, for example, can be computed by passing the root of this
tree to the following class method compLevel1():

final static int compLevel1(Tree t) {
if (t == null)
return 0;

else {
int l, r;
l = compLevel1(t.left);
r = compLevel1(t.right);
return (l > r) ? (l+1) : (r+1);

}
}

23



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n 
T

im
e 

(s
ec

s)

N

Ts
(DO-ACROSS,  BLOCK) Tp
(DO-ACROSS, CYCLIC) Tp

(DO-ALL, CYCLIC) Tp

Figure 16: Random Synchronization
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Obviously, the number of levels in the two sub-trees rooted at t can be computed
in parallel and compLevel1() has the form (1) given in section 4.1, where target1 and
target2 are implicitly de�ned as Tree. Hence, the programmer can use annotations to
identify compLevel1() as a parallel 2-way recursive method.

In the �rst step, the compiler constructs the following class (see section 4.2.1):

class TreeWorker_a extends Thread {
int result;
int depth;
Tree t_a;
TreeWorker_a(int depth, Tree t_a) {
this.depth = depth;
this.t_a = t_a;

}
public void run() {
result = Tree.compLevel1_par_a(depth, t_a);

}
}

Subsequently, the original method compLevel1() is rewritten into the method shown
below, where a dummy assignment to l has been added to preserve the de�nite assignment
property (see section 4.2.2):

final static int compLevel1_par_a(int d_a, Tree t) {
if (t == null)
return 0;

else {
int l = 0, r;
TreeWorker_a w1_a = null;
if (d_a <= CUT_DEPTH)

w1_a = new TreeWorker_a(d_a+1, t.left);
else

l = compLevel1_par_a(d_a+1, t.left);
r = compLevel1_par_a(d_a+1, t.right);
if (w1_a != null) {

try { w1_a.join(); }
catch(InterruptedException e_a) {}

l = w1_a.result;
}
return (l > r) ? (l+1) : (r+1);

}
}

Finally, the following method that invokes the static method compLevel1 par a() is
added to the class Tree (see section 4.2.3):

final static int compLevel1(Tree t) {
return compLevel1_par_a(0, t);

}

In �gure 18, we show the serial execution time Ts and the parallel execution time Tp for
two cut-depths c = 1 (4 threads) and c = 3 (16 threads). All versions are applied to full

binary trees with a varying number of nodes N , letting the number of levels range from 14
to 19. Since only a constant amount of work is done for each node, a reasonable speedup
may be expected for p = 4, since the serial execution time Ts = �(N) can be changed into
Tp(N) = �(1)+�(1)+T1(N=4). In �gure 19, we present the obtained speedup. Because
the trees are well-balanced, increasing the number of threads only decreases performance
due to the contention between running threads.

Alternatively, the previous computation can be done by calling the following instance
method compLevel2(), expressed speci�cally in the form (1), on the root of the tree (since
compLevel2() is �nal, we avoid the situation where another method is called in case left
or right contains an instance of a sub-class of Tree that overrides compLevel2()):
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0

1

2

3

4

100000 200000 300000

S
 =

 T
s 

/ T
p

N

C=1
C=3

Figure 19: Speedup of Tree Traversal (class method)

26



final int compLevel2() {
if ( (left == null) || (right == null) )
return (left != null)
? (1 + left.compLevel2())
: ((right != null) ? (1 + right.compLevel2()) : 1);

else {
int l, r;
l = left.compLevel2();
r = right.compLevel2();
return (l > r) ? (l+1) : (r+1);

}
}

Because compLevel2() is an instance method, the corresponding class TreeWorker b

has an additional target �eld of type Tree on which the parallel method is called in the
run()-method:

class TreeWorker_b extends Thread {
int result;
int depth;
Tree target;
TreeWorker_b(int depth, Tree target) {
this.depth = depth;
this.target = target;

}
public void run() {
result = target.compLevel2_par_b(depth);

}
}

The transformations applied to the parallel method compLevel2 par b() are similar
to the transformations presented in the previous section. However, now an additional
parameter is passed to the constructor of TreeWorker b to record the target on which
the method must be called. Moreover, note that the recursive method invocations in the
alt code fragment also have been replaced by invocations of compLevel2 par b():

final int compLevel2_par_b(int d_b) {
if ( (left == null) || (right == null) )
return (left != null)

? (1+left.compLevel2_par_b(d_b+1))
: ((right != null) ? (1+right.compLevel2_par_b(d_b+1)) : 1);

else {
int l = 0, r;
TreeWorker_b w1_b = null;
if (d_b <= CUT_DEPTH)

w1_b = new TreeWorker_b(d_b+1, left);
else

l = left.compLevel2_par_b(d_b+1);
r = right.compLevel2_par_b(d_b+1);
if (w1_b != null) {

try { w1_b.join(); }
catch(InterruptedException e_b) {}

l = w1_b.result;
}
return (l > r) ? (l+1) : (r+1);

}
}

Finally, the following method that implicitly calls compLevel2 par b() on this, i.e.
the object on which method compLevel2() itself was called, is added to the class Tree:

final int compLevel2(Tree t) {
return compLevel2_par_b(0);

}

In �gure 20, we show the results of applying this method to the trees of the previous
section with two extra top nodes to introduce some load imbalancing, as illustrated in
�gure 21. Since for cut-depth c = 1, all work is done by only one thread, in this case
the parallel execution time is equal to the serial execution time with some slight overhead
that is mainly due to passing the additional parameter d x. For cut-depth c = 3, however,
speedup is obtained again. Moreover, because threads that have completed their work no
longer compete for processor time, in this case less overhead due to contention arises (cf.
the parallel execution time for c = 3 in �gures 18 and 20).
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Figure 20: Unbalanced Tree Traversal (instance method)

Figure 21: Unbalanced Tree

5.4.2 Overhead Reduction

As alluded to in section 4.2.2, the overhead of passing an additional parameter during
serial execution in the bottom levels of the method invocation tree can be eliminated at
the expense of some code duplication by using an unaltered copy of the original method at
this stage. For example, if we denote this copy by compLevel2 ser b() and all recursive
method invocations in this copy are renamed accordingly, then compLevel2 par b() can
be expressed, for instance, as follows:
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final int compLevel2_par_b(int d_b) {
if (d_b > CUT_DEPTH)

return compLevel2_ser_b();
else {

if ((left == null) || (right == null))
return (left != null)
? (1+left.compLevel2_par_b(d_b+1))
: ((right != null) ? (1+right.compLevel2_par_b(d_b+1)) : 1);

else {
int l = 0, r;
TreeWorker_b w1_b = new TreeWorker_b(d_b+1, left);
r = right.compLevel2_par_b(d_b+1);
try { w1_b.join(); }

catch(InterruptedException e_b) {}
l = w1_b.result;
return (l > r) ? (l+1) : (r+1);

}
}

}

In �gure 22, we present the parallel execution time for cut-depths c = 1 and c = 3.
The execution time for cut-depth c = 1 reveals that after this improvement, the overhead
of the parallelization method is almost negligible. As expected, speedup is obtained again
for cut-depth c = 3. In the next section we will see that starting some additional threads
can also be useful to overcome less trivial load imbalancing.

5.5 Quick Sorting

As an example of a typical divide-and-conquer algorithm, consider the following imple-
mentation of quick-sorting [14] in which, as advocated in [37], small sub-arrays are sorted
by insertion sorting to prevent further recursive method invocations for small sub-arrays:

public class Sort {
...
final static void quicksort(int[] a, int q, int r) {
if ((r - q) <= 20) {

// Insertion Sorting of a[q..r]
int i, j;
for (i = q+1; i <= r; i++) {

int v = a[i];
for (j = i; q < j; j--)
if (a[j-1] > v)

a[j] = a[j-1];
else

break;
a[j] = v;

}
}
else {

// Quick Sorting
int t, s = q;
t = a[q]; a[q] = a[(q+r)/2]; a[(q+r)/2] = t;
for (int i = q+1; i <= r; i++)

if (a[i] <= a[q]) {
t = a[++s]; a[s] = a[i]; a[i] = t;

}
t = a[q]; a[q] = a[s]; a[s] = t;
quicksort(a, q, s-1);
quicksort(a, s+1, r );

}
}

}

After the programmer has indicated that the recursive method invocations can be done
in parallel, parallelization of this method proceeds as explained in the previous sections.
In �gure 23, we show the serial execution time Ts and parallel execution time Tp with
cut-depths c = 1 and c = 3 for integer arrays of varying length N . In each array of
length N , value N � i+1 is assigned to every element i, so that with the pivoting method
shown above, the method invocation trees are well-balanced. In �gure 24, we show the
corresponding speedup.
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Figure 22: Improved Unbalanced Tree Traversal (instance method)
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Figure 23: Quick/Insertion Sorting of Reversed Integer Arrays
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The reason that even for well-balanced method invocation trees the speedup is never
optimal becomes immediately apparent from the discussion in section 4.1. The initial
linear terms in Tp(N) = �(N) + �(N=2) + T1(N=4) contribute substantially to the best
possible parallel execution time for p = 4. For N = 200; 000, for instance, the time
required to partition an array of size N and N=2 takes 0:08 sec. and 0:04 sec., respec-
tively, which is about the distance between the measured parallel execution time and the
ideal parallel execution time (i.e. simply the serial execution time divided by four). In �g-
ure 25, we present the execution time for random integer arrays (the same pseudo-random
sequence of a particular length was used in the serial and parallel experiments). Here we
see that some of the load imbalancing due to imbalanced invocation trees can be resolved
by starting additional threads.

5.6 Radix-Exchange Sorting

An alternative divide-and-conquer sorting algorithm that can better adapt to integers with
truly random bits is so-called radix-exchange sorting (see e.g. [37]). An implementation
that handles small sub-arrays di�erently to improve performance is shown below, where
we assume that BIT[i] = 2i.

class Sort {
...
final static void radixsort(int a[], int l, int r, int b) {
if (b >= 0) {

if ((r-l) <= 20) {
// Insertion Sorting of a[l..r]
...

}
else {

int i = l, j = r, t;

do {
while (((a[i] & BIT[b]) == 0) && (i < j)) i++;
while (((a[j] & BIT[b]) != 0) && (i < j)) j--;
t = a[i]; a[i] = a[j]; a[j] = t;

} while (j != i);

if ((a[r] & BIT[b]) == 0) j++;
radixsort(a,l,j-1,b-1);
radixsort(a,j,r, b-1);

}
}

}
}

The static initializer show below can be used to initialize array BIT:

static int [] BIT = new int[32];
static {

int k = 1;
for (int i = 0; i < 32; i++) {

BIT[i] = k;
k *= 2;

}
}

An array of positive 32-bit integers (with a zero most signi�cant bit), for example,
can be sorted by calling radixsort() with b = 30. Because the two recursive method
invocations can be done in parallel, radixsort() is a parallel 2-way recursive method,
and implicit parallelism can be made explicit using the method discussed in this paper.

In �gure 26, we show the serial and parallel execution time of radix-exchange/insertion
sorting when applied to the absolute values of the same random integer arrays used for
quick/insertion sorting. Although serial radix-exchange/insertion sorting is more expen-
sive than serial quick/insertion sorting, the parallel versions perform better for these
random integer arrays, because the method invocation trees are more balanced.
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Figure 25: Quick/Insertion Sorting of Random Integer Arrays
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Figure 26: Radix-Exchange/Insertion Sorting of Random Integer Arrays

5.7 Merge Sorting

In this section, we discuss the results of some experiments that have been conducted with
array version and linked-lists version of merge-sorting.

5.7.1 Merge Sorting of Arrays

An implementation of merge-sorting for arrays that uses insertion sorting for small sub-
arrays is shown below (see e.g. [37]). Here, we assume that a su�ciently large temporary
integer array tmp is is available to support the merge step:
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Figure 27: Merge/Insertion Sorting of Random Integer Arrays

class Sort {
...
static int[] tmp = new int[SIZE];

final static void arrayMergesort(int[] a, int l, int r) {
if ((r - l) <= 20) {
// Insertion Sorting of a[l..r]
...

}
else {

int m = (r+l) / 2;

arrayMergesort(a, l,m);
arrayMergesort(a, m+1,r);

for (int i = m; i >= l; i--)
tmp[i] = a[i];

for (int j = m+1; j <= r; j++)
tmp[r+m+1-j] = a[j];

int i = l, j = r;
for (int k = l; k <= r; k++)

if (tmp[i] < tmp[j])
a[k] = tmp[i++];

else
a[k] = tmp[j--];

}
}

}

Again, because the recursive method invocations can be done in parallel, the method of
this paper can be used to exploit implicit parallelism in arrayMergesort(). In �gure 27,
we show execution time of the serial and parallel version applied to the same random
integer arrays used earlier. Although, in contrast with the previous sorting method, the
method invocation trees are always well-balanced (independent of the actual values of the
elements), the overhead of data movement has a clear impact on the performance of this
sorting method.
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5.7.2 Merge Sorting of Linked Lists

Consider a linked-list of integers that is implemented using the following class List:

class List {
int val;
List next;

List(int val, next) {
this.val = val;
this.next = next;

}
...

}

Under the assumption that each list is terminated with a special node SENTINEL that
points to itself and with a data item larger than all elements in the list, merge-sorting
can be implemented as follows (see e.g. [37]):

final static List listMergesort(List l) {
if (l.next == SENTINEL)
return l;

else {
List a = l, b = l.next.next.next;
while (b != SENTINEL) {

l = l.next;
b = b.next.next;

}
b = l.next;
l.next = SENTINEL;

a = listMergesort(a);
b = listMergesort(b);

return merge(a, b);
}

}

Obviously, listMergesort() is a parallel 2-way recursive class method and can be
parallelized using the method of this paper. In this case, however, the performance
can depend substantially on the implementation of the method merge(). This method
must merge two sorted linked lists into one completely sorted linked list, as illustrated
in �gure 28. Consider, for example, the following simple implementation of merge(), in
which an auxiliary node l is explicitly allocated to obtain a hook to the new list:

3

9

8 9

2 7

8

2 73

MERGE

Figure 28: Merging two Linked Lists

static List merge(List l1, List l2) {
List l = new List(0,null), prev = l;
while (prev != SENTINEL)
if (l1.key <= l2.key) {

prev = prev.next = l1;
l1 = l1.next;

}
else {

prev = prev.next = l2;
l2 = l2.next;

}
return l.next;

}
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In �gure 29, we show the execution time of serial and parallel merge-sorting on integer
lists varying in length up to N = 100; 000. Rather surprisingly, parallelizing the previous
implementation of merge-sorting dramatically decreases the performance. This perfor-
mance decrease is due to the explicit memory allocation in merge(). If we implement
merge() without the need for an auxiliary node, an example of which is shown below,
then the execution time shown in �gure 30 result:

static List merge(List l1, List l2) {
List l;
if (l1.key <= l2.key) {
l = l1;
l1 = l1.next;

}
else {
l = l2;
l2 = l2.next;

}
List prev = l;
while (prev != SENTINEL)
if (l1.key <= l2.key) {
prev = prev.next = l1;
l1 = l1.next;

}
else {
prev = prev.next = l2;
l2 = l2.next;

}
return l;

}

This experiment clearly reveals that the parallelization method of this paper should
only be applied to parallel multi-way recursive methods in which no explicit memory
allocation is performed.

5.8 State Space Searching

Finally, we discuss some possible future extensions of our method by means of the following
simple implementation of a min-max search algorithm for the game tic-tac-toe. In this
implementation, we assume that the method evalBoard() yields one of the values �1, 0,
or +1 if `O' wins, the game is a draw, or `X' wins, respectively, or the value UNDECIDED

otherwise:

class TicTacToe {
...
final static int minMax(int[][] board, boolean b) {

int e = evalBoard(board); // -1/0/+1 or UNDECIDED

if (e == UNDECIDED) {

e = (b) ? -1 : +1;

for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
if (board[i][j] == EMPTY) {

board[i][j] = (b) ? X_SYMBOL : O_SYMBOL; // PLAY
int e1 = minMax(board, ! b);
board[i][j] = EMPTY; // UNPLAY

if ( (b) && (e1 >= e) )
e = e1;

else if ((! b) && (e1 <= e) )
e = e1;

}
}

return e;
}

}
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Figure 29: Linked List Merge Sorting (memory allocation)
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Figure 30: Linked List Merge Sorting (no memory allocation)
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DRAW

‘O’ WINS

Figure 31: Tic-Tac-Toe

The method minMax() can be called with an arbitrary board position and a boolean
value that indicates whose turn it is (if b holds, then player `X' must place the next
symbol). Clearly, this method can be easily modi�ed to yield the best move as side-
e�ect of the evaluation. For example, given the board positions shown in �gure 31, this
algorithm evaluates to the value -1 and 0, respectively, yielding the moves shown in the
same �gure.

Although searching di�erent part of the state space can clearly be performed in paral-
lel, for several reasons our method is not directly applicable. First, the di�erent recursive
method invocations are controlled by a for-loop, rather than having some �xed recursive
method invocations that appear statically in the program text. Second, although the
di�erent method invocations could operate on di�erent copies of the board, for e�ciency
purposes, the state space searching is implemented by doing and undoing moves on a sin-
gle board. Finally, to avoid the need for additional storage, the best evaluation seen so far
is updated immediately after each recursive method invocations, rather than computing
the best evaluation after all recursive method invocations are done.

Fortunately, these problems can be easily dealt with. The �rst problem can be solved
using an array of appropriate tree-workers, rather than a �xed number of scalar tree-
worker. In such cases, it is more convenient to start a thread for each method invocations
that can be done in parallel, rather than treating the last invocation di�erently. Further-
more, the second problem can be resolved by implementing by-value parameter passing
for board. However, because in the previous section we have seen that explicit memory
allocation may have a dramatic impact on the performance, this copying is only done
in the top levels of the method invocation tree. The last problem is solved by simply
distributing the for-loops around the recursive method invocations and the computation
of the best evaluation, which is possibly because the intermediate result of each method
invocation is stored in �eld result x of the corresponding thread.

The class TreeWorker x for the parallel version has the following form:

class TreeWorker_x extends Thread {
int result;
int depth;
int[][] board;
boolean b;
TreeWorker_x(int d_x, int[][] board, boolean b) {
this.d_x = d_x;
this.board = board;
this.b = b;
start();

}
public void run() {
result = TicTacToe.minMax_par_x(depth, board, b, set);

}
}

The previous observations give rise to the following method minMax par x(), where
minMax ser x() is an unaltered copy of the original method, and copyBoard() is an
auxiliary method that yields a new copy of a board:
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final static int minMax_par_x(int d_x, int[][] board, boolean b) {
if (d_x > CUT_DEPTH)
return minMax_ser_x(board, b);

else {
int e = evalBoard(board);
if (e == UNDECIDED) {

e = (! b) ? +1 : -1;

TreeWorker_x[][] worker_x = new TreeWorker_x[3][3];
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
if (board[i][j] == EMPTY) {
int[][] newboard = copyBoard(board);
newboard[i][j] = (b) ? X_SYMBOL : O_SYMBOL; // MOVE
worker_x[i][j] = new TreeWorker_x(d_x + 1, newboard, ! b);

}
else
worker_x[i][j] = null;

for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
if (worker_x[i][j] != null) {
try { worker_x[i][j].join(); }
catch (Exception ex) {}

int e1 = worker_x[i][j].result;
if ((b) && (e1 >= e))

e = e1;
else if ((! b) && (e1 <= e) )

e = e1;
}

}
return e;
}

}

For an empty board, for example, the serial and parallel version using cut-depth c = 0
evaluate to a draw in about 3.32 and 0.93 seconds respectively, yielding a speedup of
about 3.6.
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6 Conclusions

In this paper, we have presented a number of transformations that can be used by a
restructuring compiler to exploit some forms of implicit parallelism in Java programs.
In particular, we have shown how implicit parallelism in loops and multi-way recursive
methods can be made explicit by means of the multi-threading mechanism of the language.
Automatically exploiting implicit parallelism simpli�es the task of the programmer and
makes the parallelization less error-prone. Moreover, because parallelism is expressed
in Java itself, the transformed program remains portable. Speedup can be obtained on
any platform that supports the true parallel execution of threads, whereas only a slight
overhead is induced on uni-processors.

A series of experiments have been conducted on an IBM RS/6000 G30 to show the
potential of this approach. We have illustrated the loop parallelization method in detail
with some simple loop examples, and we have shown that speedups with an e�ciency
over 90% can be obtained. Di�erent scheduling policies and a wait()/notifyAll()-
and busy-waiting-implementation of random synchronization were explored. Moreover,
the parallelization of multi-way recursive methods has been illustrated in detail. Good
speedup can be obtained for problems in which the method invocation trees are well-
balanced, provided that no explicit memory allocation is performed. For methods in which
each invocation requires time proportional to the remain input size (e.g. quick-sorting),
speedup is limited by the initial linear terms that appear in the best parallel execution
time that can be obtained using the simple parallelization method of this paper. Some
load imbalancing that is inherent to using a static allocation scheme can be alleviated by
increasing the cut-depth to start a few additional threads.

A prototype Java restructuring compiler javar that implements the transformations of
this paper (and a prototype bytecode parallelization tool javab) are made available at the
HP-Java page at the Indiana University: http://www.extreme.indiana.edu/hpjava/
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