
Fast and E�ective Procedure Inlining�

Indiana University

Computer Science Department

Technical Report No. 484

Oscar Waddell and R. Kent Dybvig

Indiana University Computer Science Department

Lindley Hall 215

Bloomington, Indiana 47405

fowaddell,dybg@cs.indiana.edu, 812-855-3608

June 11, 1997

Abstract

Inlining is an important optimization for programs that use procedural abstraction. Because inlining

trades code size for execution speed, the e�ectiveness of an inlining algorithm is determined not only

by its ability to recognize inlining opportunities but also by its discretion in exercising those opportu-

nities. This paper presents a new inlining algorithm for higher-order languages that combines simple

analysis techniques with demand-driven online transformation to achieve consistent and often dramatic

performance gains in fast linear time. Benchmark results reported here demonstrate that this inlining

algorithm is as e�ective as and signi�cantly faster than o�ine, analysis-intensive algorithms recently

described in the literature.

Keywords: procedure inlining, procedure integration, compiler optimization

1 Introduction

Inlining is an important optimization for programs that use procedural abstraction. By replacing a call with
an inline expansion of the procedure body, inlining eliminates procedure linkage overhead and may uncover
opportunities for further optimization. Unrestrained inlining, however, can lead to excessive code growth
and excessive compile time. The e�ectiveness of an inlining algorithm is therefore determined not only by
its ability to recognize inlining opportunities but also by its discretion in exercising those opportunities.

Recent research on procedure inlining for higher-order languages has focused on the use of o�ine poly-
variant
ow analyses to identify appropriate inlining opportunities [14, 3]. Although reported performance
gains are impressive, the cost and volatility of such analyses renders the method impractical for use in pro-
duction compilers. This paper presents a new inlining algorithm for higher-order languages that combines
simple analysis techniques with online transformation to achieve comparable or better performance gains in
fast linear time.

Several factors contribute to the speed and e�ectiveness of our algorithm.

� It is polyvariant. Information about the arguments at a call site is used to decide whether inlining that
call is cost-e�ective.

� It is online. Inlining decisions are based, in part, on the e�ects of other optimizations performed by
the algorithm: constant folding, copy propagation, and elimination of useless or unreachable code.

�This material is based on work supported in part by the National Science Foundation under grant number CDA-9312614.

This report is an expanded version of a paper to be presented at the 1997 International Static Analysis Symposium.

1

� It is context-sensitive. The context in which an expression occurs is used to identify legal transforma-
tions.

� It is demand-driven. The operands of binding constructs and calls are not processed until the context
in which they are used has been determined.

Polyvariance permits aggressive inlining without excessive code growth. Code growth is usually limited
by inlining only procedures whose size is less than a given threshold. Our polyvariant algorithm instead
considers the size of the procedure when optimized for the arguments at the call site. For example, given
the de�nition of f below, the algorithm may choose to inline e2 in place of the call (f 'key2) even if the
size of f as a whole exceeds the threshold.

(define f
(lambda (x)
(case x [(key1) e1] [(key2) e2] ... [(keyn) en])))

Online transformation provides our algorithm with more accurate information on which to base its inlining
decisions. O�ine algorithms, which separate inlining from subsequent optimization, must estimate the e�ects
of these optimizations. When their estimate is too conservative, inlining opportunities are missed; when their
estimate is too generous, code size increases. Our algorithm inlines aggressively while maintaining tighter
control over code growth because it uses the actual optimized code to decide when inlining a call is cost-
e�ective. In some cases online transformation also provides more accurate control-
ow information which
helps to identify additional inlining opportunities.

Contextual information allows the algorithm to determine when an expression can be discarded or pro-
cessed in a more restricted mode. For example, in the expression (seq e1 e2), e1 is processed only for its
e�ects. When processed for e�ect, certain provably terminating e�ect-free expressions are discarded. In the
expression (if e1 e2 e3), e1 is processed for its boolean value. This is useful in languages such as C and
Scheme where it may be possible to determine the boolean value of an expression even when its actual value
cannot be determined.

Demand-driven processing of call operands allows our algorithm to defer processing until more contextual
information is available. For example, suppose f is (lambda (x y) (if (< x 5) x y)). When attempting
to inline the call (f e1 e2), e1 is not processed until it is needed to evaluate the test (< x 5). If e1 reduces
to 3, the reference to y is unreachable and the useless expression e2 is processed for e�ect only. Eliminating
useless or unreachable code saves processing time and also improves the accuracy of the information collected
by the algorithm. For example, if variables originally referenced only within e2 no longer appear referenced,
their bindings can be processed for e�ect only.

The inlining algorithm is a source-to-source transformation that operates by a mostly depth-�rst traversal
of the source program. The algorithm collects information about the size of the residual program and the
use of variables in the residual program as it is produced. This information supports inlining decisions and
elimination of useless code. Termination is achieved by detecting cycles in the call graph as it is computed
and by bounding the amount of e�ort expended on inlining at each call site in the input program. Code
growth is limited by aborting an inlining attempt as soon as the size of the residual code produced in that
attempt exceeds a given threshold. Polyvariance is obtained by attempting to inline all calls, while relying
on the e�ort bound and the size threshold to abort an attempt when it becomes too costly. Applicative
order and sequencing of e�ects are preserved by optimizing inlined calls as if they were equivalent let
expressions. For example, suppose f is (lambda (x y) e1). When inlining, the call (f e2 e3) is treated
as the semantic equivalent of (let ((x e2) (y e3)) e1). Values obtained by processing e2 and e3 are
used when specializing e1, but e�ects in e2 and e3 are residualized at the point of call.

Inlining is copy propagation extended to lambda expressions. Just as copy propagation often enables
constant folding, inlining enables �-reduction. The next section formally describes an inlining algorithm
that exploits this observation. This algorithm is simpli�ed in that it concentrates on recognizing inlining
opportunities without attempting to select appropriately among them. Section 3 shows how the simpli�ed
algorithm is restrained to obtain the actual inlining algorithm. Section 4 presents re�nements of the inlining
algorithm. Section 5 provides detailed measurements of the e�ect of the algorithm on execution time, code
size, and compile time in a production compiler. Section 6 describes related work and compares our results

2

e ::= (const c) j (ref x) j (primref p)
j (if e1 e2 e3) j (seq e1 e2) j (assign x e)
j (lambda (x) e) j (letrec ((x1 e1) : : : (xn en)) e)
j (call e0 e1)

c 2 Const ; p 2 Prim ; x 2 Var ; e 2 Exp

Figure 1: The core language.

� 2 Env = Var ! Var

� 2 Store = (Locx ! VarFlags)� (Loc
 ! ContextFlags)� (Loce ! Exp [funvisitedg)
� 2 Continuation = Exp ! Store ! Exp

s; r 2 VarFlags � fref; assigng
ContextFlags � finlinedg

op 2 Operand ::= Opnd(Exp;Env ;Loce)
Var ::= Var(Identi�er ;Operand [fnullg;VarFlags ;Locx)

 2 Context ::= Test j E�ect j Value j App(Operand ;Context ;Loc
)

le 2 Loce; lx 2 Locx; l
 2 Loc
 Locations

Figure 2: Domain equations.

with those obtained by o�ine,
ow-analysis-based inlining algorithms. Section 7 summarizes our work and
suggests directions for future work.

2 Unrestrained Inlining Algorithm

The inlining algorithm is described as a continuation-passing style (CPS) interpreter with explicit store. The
actual implementation is in direct style but otherwise follows the structure of the algorithm described here
with the restraints and extensions described in Sections 3 and 4.

The inlining algorithm, I , takes an input expression e, a context
, an environment �, a continuation
�, and a store �. The input expression is in the core language language shown in Figure 1. The algorithm
returns a residual expression in the same core language. Domain equations are given in Figure 2. Figure 3
presents the algorithm driver. Figure 4 shows the functions that implement the core of the algorithm. To
simplify the presentation, lambda abstractions are restricted to a single formal parameter and applications
(call) are restricted to a single operand. Generalization to multiple-argument and variable-arity procedures
is straightforward.

Contextual information (
) is used to identify situations in which certain transformations are legal. Four
contexts are distinguished: test , used when processing an expression for its boolean value, e�ect , used when
processing an expression for side e�ects only, value, used when the actual value is needed, and call , used when
processing an expression in the operator position of an application. Naturally, side e�ects are conserved in all
contexts. Test, e�ect, and value contexts are represented by the nullary constructors Test, E�ect, and Value.
A call context
 is represented by the constructor App(op;
1; l
) where op is an Opnd structure (described
below) for the actual parameter at the call site,
1 is the context of the call itself, and �(l
) contains a
ag
that is set if this call is inlined. This
ag is used when residualizing a call.

The environment � maps source-program variables to residual-program variables and is used to rename
(�-convert) bound variables to prevent inadvertent capture when code is duplicated by inlining. The initial
environment �0 is the identity function on variables. The store � is a triple of functions that respectively

3

I : Exp ! Context ! Env ! Continuation ! Store ! Exp

I(const c)
�� =

8<
:

�(const void) if
 = E�ect

�(const true) if
 = Test and c 6= false
�(const c) otherwise

I(seq e1 e2)
�� = Ie1 E�ect ��e
0

1
: Ie2
��e

0

2
: � seq(e0

1
; e0

2
)

I(if e1 e2 e3)
�� = Ie1 Test ��1

where �1e
0

1
=

8>>>><
>>>>:

Ie2
1��e
0

2
: � seq(e0

1
; e0

2
) if result(e0

1
) = (const true)

Ie3
1��e
0

3: � seq(e0

1; e
0

3) if result(e0

1) = (const false)
Ie2
1��e

0

2
: Ie3
1��2 otherwise, where

�2e
0

3
=

�
� seq(e0

1; e
0

2) if e0

2 = e0

3 = (const c)
�(if e0

1
e0

2
e0

3
) otherwise

1 =

�
Value if
 = App(op;
1; l
)

 otherwise

I(assign x e)
��� =

8>>>><
>>>>:

Ie E�ect
��� if �(x) = Var(x0; op; s; lx0) and ref 62 s

Ie Value
��1� if �(x) = Var(x0; op; s; lx0) and ref 2 s, where
�1e

0�1 = � seq((assign x0 e0); (const c)) �2
�2 = �1[lx0 7! fassigng [�1(lx0)]
c = true if
 = Test else c = void

I(call e1 e2)
��� = Ie1
1��1�1, where
op = Opnd(e2; �; le2) le2 fresh

1 = App(op;
; l
1) l
1 fresh
�1 = �[le2 7! unvisited; l
1 7! ;]

�1e
0

1�2 =

8<
:

�e0

1
�2 if inlined 2 �2(l
1)

visit(op;Value; �2; �2) otherwise, where
�2 = �e0

2: �(call e0

1 e0

2)

I(primref p)
�� =

8>><
>>:

�(const true) if
 = Test

�(const void) if
 = E�ect

�(primref p) if
 = Value

fold(primref p)
�� if
 = App(op;
1; l
)

I(lambda x e)
��� =

8>>>>>>>>>><
>>>>>>>>>>:

�(const true)� if
 = Test

�(const void)� if
 = E�ect

Ie Value �1�1�1 if
 = Value, where x abbreviates Var(x; null; s; lx)
x0 abbreviates Var(x0; null; �(lx); lx0) x0, lx0 fresh
�1 = �[x 7! x0]
�1 = �[lx0 7! ;]
�1 = �e0: �(lambda x0 e0)

fold(lambda x e)
��� if
 = App(op;
1; l
)

I(ref x)
��� =

8>>>>>><
>>>>>>:

�(const void)� if
 = E�ect, else
�(ref x0)�1 if op = null or assign 2 s

where Var(x0; op; s; lx0) = �(x)
�1 = �[lx0 7! frefg [�(lx0)]

visit(op;Value; �1; �) otherwise, where �(x) = Var(x0; op; s; lx0)
and �1 = �e�2: copy(�(x); result (e);
; �; �2)

Figure 3: The inlining algorithm.

4

fold(primref p)App(op;
1; l
)��� = visit(op;Value; �1; �)

where �1e
0

1
�1 =

8<
:

�(const c0)�2 if result(e0

1) = (const c) and p(c) = c0

where �2 = �1[l
 7! finlinedg [�1(l
)]
�(primref p)�1 otherwise

fold(lambda x e)App(op;
1; l
)��� = Ie
1�1�1�1
where x abbreviates Var(x; null; s; lx)

x0 abbreviates Var(x0; op; �(lx); lx0) x0; lx0 fresh
�1 = �[x 7! x0]
�1 = �[lx0 7! ;]

�1e
0�2 =

8<
:

visit(op;E�ect; �2; �2) if ref 62 �2(lx0) and assign 62 �2(lx0)
visit(op;E�ect; �3; �2) if ref 62 �2(lx0) and assign 2 �2(lx0)
visit(op;Value; �3; �2) otherwise

�2 = �e0

1
�3: � seq(e0

1
; e0) �3[l
 7! finlinedg [�3(l
)]

�3 = �e0

1�3: � (call (lambda x0 e0) e0

1) �3[l
 7! finlinedg [�3(l
)]

copy(Var(x0; op; s; lx0); e;
; �; �) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

I(const c)
�0�� if e = (const c)
�(ref x1)� if e = (ref x1) and assign 62 s1

where x1 abbreviates Var(x1; op1; s1; lx1)
fold e
�0�� if
 = App(op1;
1; l
)

and e = (primref p)
or e = (lambda x1 e1)

�(primref p)� if
 = Value and e = (primref p)
�(const true)� if
 = Test and e = (primref p)

or e = (assign x1 e1)
or e = (lambda x1 e1)

�(ref x0)�1 otherwise, where �1 = �[x0 7! frefg [�(lx0)]

visit(Opnd(e; �; le);
; �; �) =

8<
:

Ie
��1� if �(le) = unvisited

where �1 = �e0�1: �e
0�1[le 7! e0]

�e0� otherwise, where e0 = �(le)

seq(e1; e2) =

8<
:

e2 if e1 = (const void) else
(seq (seq e1 e3) e4) if e2 = (seq e3 e4)
(seq e1 e2) otherwise

result(e) =

�
e2 if e = (seq e1 e2)
e otherwise

Figure 4: The inlining algorithm (continued).

5

map locations lx to subsets of VarFlags , locations l
 to subsets of ContextFlags , and locations le to residual
expressions in the core language or to the
ag unvisited. As a notational convenience, we use subscripts on
location labels to select the appropriate component of the store. Thus �(lx) abbreviates (� # 1)(lx) and
�[l
 7! ;] abbreviates h� # 1; (� # 2)[l
 7! ;]; � # 3i.

Source- and residual-program variables are represented using the constructor Var(x; op; s; lx), where x is
the lexical identi�er corresponding to the variable, op is an operand structure, and s and �(lx) are subsets
of VarFlags that describe uses of the variable in the source and residual program, respectively. The ref
ag
supports elimination of useless assignments and useless bindings, as described in Section 2.4 and Section 2.7.
The assign
ag is used to prevent copy propagation and inlining through assigned variables. The parser
introduces Var structures for variables and initializes the
ags yielding an initial store, �0. The �nal store
contains
ags for the residual program variables and may be used in place of �0 in a subsequent application
of I . Where unambiguous we use x as a notational convenience for Var(x; op; s; lx).

When a variable x is bound as the formal parameter of an inlined procedure or bound by a letrec
expression, the op �eld of Var(x; op; s; lx) contains an operand structure Opnd(e; �; le), where e is the source
expression corresponding to the actual parameter or bound value, � is an environment binding free variables
of e, and le contains the residual code for e or unvisited if the operand has not yet been processed.

The remainder of this section explains how the algorithm handles the core forms of the language.

2.1 Constants

Handling constants is straightforward. When processed for boolean value or side e�ects, constant values are
reduced to true, false, or void. This simpli�es processing of conditional expressions and simpli�es the
construction of residual sequence expressions.

2.2 Sequences

The expression (seq e1 e2) discards the value of e1 and returns the value of e2. Therefore e1 is processed
in an E�ect context, and e2 is processed in the current context,
. When processed for e�ect, constants,
primitive references, lambda expressions, variable references, and e�ect-free primitive calls reduce to the
constant void. Residual sequences (constructed by seq , Figure 4) are nested only in the �rst position. This
permits constant-time access (via result) to the result expression of a residual sequencing form.

2.3 Conditionals

The guard of a conditional expression is processed for its boolean value using a Test context. When processed
for boolean value, non-false constants, primitive references, lambda expressions, and certain e�ect-free prim-
itive calls reduce to the constant true. If the result of the residual guard expression is a constant, the
ow
of control is known at compile time so a sequence of the guard (which may contain e�ects) and the selected
branch is residualized. Folding conditional tests eliminates unreachable code.

When the
ow of control through a conditional expression cannot be determined, and the residual ex-
pressions for the two branches are equivalent in the current context, the algorithm residualizes a sequence
of the test and one of the branches. For our purposes, two residual expressions are equivalent only if they
are identical constants.

It may appear that this transformation is seldom useful. Indeed, a programmer is not likely to write
(if e1 false false). The
attening of values in Test and E�ect contexts can produce such cases, however.
Consider the following example.

(let ((x 3))
(if (and (read) (= x 0))

e1
e2))

Copy propagation and constant folding reduce the test (= x 0) to false. With (and (read) (= x 0))
treated as (if (read) (= x 0) false), the preceding transformations reduce the entire expression to
(seq (read) e2).

6

2.4 Variable assignments

If a local variable x is unreferenced, then an assignment (assign x e1) is useless and e1 can be processed for
e�ect. Because the algorithm may still be in the process of computing referenced
ags for residual-program
variables (�(lx0)) when it encounters the assignment, it bases this decision on the conservative source-program
referenced
ags (s). If x is referenced in the source program, the expression e1 is processed in Value context,
the assign
ag is set in �(lx0), and an assignment to the �-converted variable x0 is residualized.

2.5 Procedure calls

The treatment of call illustrates the demand-driven nature of our algorithm. The argument at a call site
is not processed before the body of the called procedure. Rather, when the algorithm encounters a call, it
constructs an App context that contains the current context (the context of the call itself) and an operand
structure for the argument at the call site. The expression in operator position is then processed using the
newly constructed call context.

The operand structure captures the current environment so that the argument can be processed on
demand. Operand structures also play a role in cycle detection described in Section 3. The residual code is
cached within the operand so that an argument is processed at most once. The visit procedure returns the
cached residual code if present. Otherwise it processes the argument in the given context, caching the result.
Operands are visited in Value context unless they are associated with unreferenced variables, in which case
they are visited for e�ect.

Processing of arguments is deferred until the algorithm encounters references to the corresponding formal
parameters or decides to residualize the call. If a call is inlined, the residual code returned is a version of
the integrated procedure's body specialized, via recursive application of the inliner, to its argument. If the
call has not been inlined, the operand is processed for value using visit , and the call is residualized.

Processing on demand allows arguments bound to unreferenced formal parameters of an inlined procedure
to be processed for e�ect rather than value. This often reduces the size and execution time of the residual
program and may improve the accuracy of the referenced and assigned information collected for variables in
the residual program. For example, if f is (lambda (x y z) (if (> z 0) (+ z y) x)), the inlined call
(f e1 e2 3) reduces to (seq e1 ((lambda (y) (+ 3 y)) e2)). Because e1 is processed for e�ect, the
residual code for the call may actually be smaller when inlined. If variable references in the source of e1 no
longer appear in the residual code, expressions bound to those variables may be processed for e�ect as well.

2.6 Primitive references

The current context determines how the algorithm treats primitive references. In Test or E�ect contexts it
residualizes true or void because a primitive reference cannot signal an error and always has a non-false
value. In a Value context it simply residualizes the primitive reference. In a call context, the algorithm
processes the operand for its value and attempts constant folding when the result is a constant. If successful,
the call is marked inlined and the new constant is residualized; otherwise the primitive reference is residualized.

2.7 Lambda expressions

The algorithm handles lambda expressions much like primitive references. In Test and E�ect contexts lambda
expressions reduce to the constants true and void, respectively. In a Value context the body is processed
in an environment extended with a fresh variable for the formal parameter, and the lambda expression is
reconstructed with the fresh variable and the optimized body.

In a call context App(op;
; l
) the body is processed using the outer context of the call,
, in an environ-
ment mapping the formal parameter x to a fresh residual-program variable x0 bound to the operand op from
the call site. The s �eld of x0 is initialized with the contents of �(lx) for the corresponding source-program
variable x. That is, the source
ags of x0 inherit the residual
ags of x.

If no reference to x0 is residualized while processing the body, then ref 62 �2(lx0) and the operand can be
processed for e�ect. If x0 is also unassigned, then a sequence is constructed from the residualized operand
and the specialized body to ensure applicative-order sequencing of e�ects. Otherwise, a let binding (direct
lambda call) is constructed for variables referenced or assigned in the residual code of the body. These

7

(letrec ((f (lambda (x) (if (zero? x) 1 (* x (f (- x 1))))))
(g (lambda () (display "hello")))
(h (assign x (lambda () g)))
(a (lambda (x) (b x)))
(b (lambda (x) (a x))))

(f 5))

Figure 5: Sample letrec expression.

transformations e�ectively inline a version of the procedure specialized to the call site for which the call
context was originally constructed.

2.8 Letrec expressions

Handling a letrec expression is similar to handling a lambda expression in a call context: the body is
processed in an extended (circular) environment and useless bindings are pruned. A binding can be pruned
only after all expressions in its scope have been processed. Therefore, after processing the body of a letrec
expression, the algorithm must process operands of as-yet unreferenced variables, such as g, h, a, and b in
Figure 5. Operands of variables not referenced in the source program are visited for e�ect. Processing of
trivially e�ect-free operands, such as the lambda expression bound to g, or operands of already referenced
variables such as f, is left for the pruning phase. Other operands are conservatively processed for value.
The binding for an unassigned and unreferenced variable can then be eliminated provided its operand is
e�ect-free, that is, it does not diverge, perform side e�ects, or capture a continuation. The binding for g is
retained because a reference to g is residualized when the operand of h is conservatively processed for value
and the binding for h is retained because its operand performs a side e�ect. The bindings for a and b are
discarded.

2.9 Variable references

Variable references are the focal points for copy propagation and inlining. In E�ect context, a variable
reference reduces to the constant void. In Value, Test and call contexts, the variable is renamed, and the
operand bound to that variable, if any, is processed for value as a prelude to copy propagation and inlining.
The initial processing of the operand conveniently biases the algorithm in favor of inlining at leaves of the
call graph.

Copy propagation and inlining are performed by copy , de�ned in Figure 4, which takes the Var structure
for the renamed variable, the result e of the processed operand, and the current context, continuation and
store. Constants are propagated in cases one, four, and �ve of the de�nition. Inlining is attempted in the
third case when e is a lambda expression processed in a call context.

3 Restraining the Algorithm

To simplify the presentation, we have not yet described the mechanisms that bound the run time of the
algorithm, limit code growth due to inlining, and detect cycles. There are three mechanisms of interest.

A linear bound is enforced on the run time of the algorithm by maintaining an e�ort counter whenever
an expression is processed more than once, i.e., for each attempt to inline an operand (see Section 2.9). The
e�ort counter advances each time I is called. If the e�ort bound is exceeded, the inlining attempt is aborted
and the call is residualized instead. Because the inlining attempt may be aborted, fold does not set the
inlined
ag until processing is complete. The e�ort counter is not reset for nested integrations, as this could
lead to nonlinear processing time. Because the number of call sites in the original source program is �xed
and because we bound the amount of e�ort expended processing each of these sites, the run time of the
algorithm is linear in the size of the input program.

8

The e�ort counter is an intuitive, no-nonsense mechanism that permits very general optimization and
which allows the linear-time constant of proportionality to be scaled. Other methods for bounding the run
time of the algorithm may abandon entire classes of useful optimizations. For example, if only calls to leaf
routines are inlined, then programs containing �-expansions are not fully optimized.

Code growth is limited via a size counter that tracks the size of the residual code as it is produced.
This counter is incremented whenever a form is residualized in the output. If the size threshold is exceeded
while attempting to integrate a procedure, the inlining attempt is abandoned and the call is residualized
instead. When inlining an operand bound to a variable referenced only once in the source program, no limit
is imposed on the size of the residual code. Inlining procedures called only once does not directly increase the
size of the residual program and, through specialization, may decrease code size.1 While the e�ort counter
alone prevents inde�nite inline expansion, the size counter prevents excessive growth in any one part of the
program.

The e�ort and size counters are passed as additional arguments to I . When constructing a call context,
the current e�ort counter is stored in each operand structure so that the cost of processing the operand
may be charged to the original call site. In particular, this allows source-program operands to be processed
without an e�ort counter. The size counter is not stored in the operand structure. Rather, a new counter
with no limit is used when the operand is �rst processed for value. The resulting size count is cached along
with the residual code in the operand structure. The cached size is added to the current size counter if a
binding to this operand is residualized.

Cycles are detected by consulting additional
ags within operand structures to recognize when the value of
an operand is requested during the initial processing of that operand. An \outer-pending"
ag, tested and set
by copy , is used to detect recursive references encountered while inlining a procedural operand, as in the ex-
pression ((lambda (x) (x x)) (lambda (x) (x x))). An \inner-pending"
ag, tested and set by visit ,
is used to detect recursive references within an operand as in (letrec ((f (lambda () (f)))) (f)).
These
ags can be extended to govern loop unrolling within a recursive procedure and unfolding at the
call site. When a cycle is discovered while processing the operand for a variable, a variable reference is
residualized.

The cycle-detection mechanism generally interrupts recursive inlining long before the e�ort counter is
exceeded. This is important because it prevents the algorithm from wasting e�ort that could otherwise be
applied to inlining. To illustrate, suppose that while inlining a call to f, the algorithm encounters a call to
g, where g is bound to a recursive procedure. If cycle-detection were disabled, then recursively visiting the
operand of g would eventually exceed the e�ort limit and the entire inlining attempt for f would be aborted.
By detecting the cycle involving g early, the algorithm residualizes the call to g and resumes its e�ort to
inline f.

Polyvariance is achieved by attempting to integrate a procedure at each of its call sites and relying on
the size counter to abort any attempts for which the residual code produced would exceed the size limit.
Thus, the algorithm bases the inlining decision at each call site on the size of the procedure when specialized
to its arguments. In contrast, a monovariant approach bases the decision solely on the size of the procedure
without taking into account the arguments. Polyvariance thus permits more aggressive inlining without an
increase in the size threshold, resulting in better performance with tighter control over code growth.

4 Extensions

4.1 Primitive handlers

The algorithm in Section 2 folds primitive calls only when all of the operands at the call site residualize with
constant result expressions. In fact, by exploiting algebraic properties of primitives, constant folding may be
possible even when some operands are not constants. For example, (member e1 '()) is processed as if it
were the equivalent expression (seq e1 false). This provides member with the same polyvariant inlining
bene�ts that would automatically result had it been de�ned as a user procedure.

Our implementation currently performs only a few such transformations. We consider adding a new
primitive handler only if: (1) it eliminates the need to process an operand for value, or (2) the transformation

1Code size increases only if procedural arguments passed to a called-once procedure are inlined.

9

exposes opportunities for further folding.2 The member example above satis�es both conditions: e1 can be
processed for e�ect, and exposing the constant false may allow folding of a conditional test.

4.2 Pruning letrec bindings

After processing the body of a letrec expression, the algorithmmust process operands of as-yet unreferenced
variables, such as g, h, a, and b in Figure 5. In the simpli�ed algorithm, these operands are conservatively
visited for value unless trivially e�ect-free. Using an e�ort counter, the algorithm can instead visit operands
of as-yet unreferenced variables for e�ect. To support this, operand structures are extended so that cached
residual code produced in e�ect context can be distinguished from that produced in value context. An
operand is processed for e�ect, and the resulting code cached, only if the operand has not already been
processed. If the e�ort counter is exceeded, the operand is visited conservatively for value. When an operand
is visited for value, cached residual code is returned only if it was obtained in value context. Caching ensures
that operands of as-yet unreferenced variables are processed at most twice: once for e�ect using an e�ort
counter, and if necessary, once for value.

4.3 Improving accuracy

In Figure 3, the third case of the rule for variable references visits the operand in value context as a prelude
to copy propagation or inlining. When a reference is processed in test context, immediately processing
its operand for value may reduce accuracy. Consider the di�erence between (if (cons e1 e2) 1 2) and
(let ((x (cons e1 e2))) (if x 1 2)). In the �rst expression, the call to cons is processed in test
context. Because cons cannot return false, e1 and e2 can be processed for e�ect, and the conditional
test folds. In the second expression, processing the operand of x for value causes the call to cons to be
residualized with e1 and e2 processed for value. This prevents the conditional expression from folding and
may cause otherwise useless bindings referenced within e1 and e2 to be retained.

To solve this problem, the rule for variable references is modi�ed so that when processing a reference in
test context, its operand is visited in test context using an e�ort counter. An e�ort counter must be used
because it may be necessary to revisit the operand in value context if the variable is referenced elsewhere
in the program. If the e�ort limit is exceeded, the operand is processed conservatively in value context.
Operand structures are extended to distinguish residual code produced in test context from that produced
in value context. When an operand is visited for value, cached residual code is returned only if it was
produced in a value context. With these changes in place, the second example above folds to 1 just as the
�rst did.

In the de�nition of fold in Figure 4, the continuation �3 constructs the equivalent of a let binding
when the formal parameter of a called lambda expression appears to be referenced or assigned. Where the
referenced or assigned information is conservative, this can be improved upon by two simple transformations.
First, when the residual code for e2 is (const c), (let ((x e1)) e2) can be treated instead as the
equivalent expression (seq e1 (const c)) because x is clearly not used even if it appeared to be while
processing e2. Similarly, when the residual code for e3 is (const c), (let ((x e1)) (seq e2 e3)) can
be treated instead as (seq (let ((x e1)) e2) (const c)). With these two transformations in place,
the following example reduces to 12 instead of a let binding with 12 as its body. This allows the constant
to be propagated into other contexts where it may lead to constant folding.

(let ((f (lambda (g) (g g))))
(let ((z (lambda (n) (if (< n 10) (lambda (x) 5) (lambda (x) 15)))))
(let ((y (lambda (m) (m 4))))
(let ((x (y z)))

(+ 7 (f x))))))

4.4 Inlining recursive procedures

A procedure is inlined by setting a size counter and an e�ort counter (if not already set) then processing
the procedure body in an environment mapping the formal parameters to fresh variables containing operand

2For example, strength reductions that simply replace one call with another are left for a later pass of the compiler.

10

structures for the actual parameters at the call site. Calls to non-recursive procedures are inlined when the
size of the resulting residual code does not exceed the size limit and the e�ort limit is not exceeded. Calls
to recursive procedures are inlined only if the above conditions hold and (1) no recursive calls appear in the
residual code, or (2) the procedure body can be specialized to the actual parameters at the call site. Many
calls satisfying condition (1) are already inlined as a natural consequence of the algorithm already presented.
In this section we describe extensions which allow the algorithm to discover additional cases in which calls
satisfy condition (1) and which allow the algorithm to inline calls satisfying condition (2).

To illustrate the �rst condition, consider the factorial function de�ned below.

(define f
(lambda (x)
(if (zero? x)

1
(* x (f (- x 1))))))

Using the cycle detection mechanisms described in Section 3, the algorithm can recognize that a variable
is bound to a recursive operand when that operand is initially processed for value. When attempting to
inline a call to the recursive procedure bound to f, we �rst extend the environment so that f maps to a
fresh variable, f0, with no operand, then process the procedure body in the call context. Because f0 has
no operand, recursive calls within the body are forced to residualize (see the last line in de�nition of copy ,
Figure 4). If, after processing the body, f0 is unreferenced, then no recursive calls were residualized. That
is, the call folded completely, as happens for (f 0), satisfying condition (1) above.

If, after processing the body, f0 is referenced but the fresh formal parameters are not referenced, then
copy propagation or inlining successfully replaced references to the formals within the body. This often
means the operands of recursive calls to f are known. For example, processing the call (f 5) in this manner
yields (* 5 (f0 4)). If some of the operands at the original call site have constant residual expressions, a
size counter is set along with modest e�ort and unfolding counters and we attempt to completely unfold the
call. If these limits are not exceeded and no recursive calls remain in the resulting residual code, condition
(1) is satis�ed. For example, the call (f 5) reduces to 120.

If condition (1) cannot be met, a call to a recursive procedure may still be inlined if the procedure body
can be specialized to the arguments at the call site. For example, consider the de�nition of fold below.

(define fold
(lambda (f x b null? car cdr)

(if (null? x)
b
(f (car x) (fold f (cdr x) b null? car cdr)))))

When the operand bound to fold is initially processed, we record the residual code for the operands at
each recursive call. When attempting to specialize fold we collect the set of formal parameters that are
invariant with respect to copy propagation and inlining. For our purposes, a formal parameter is invariant if
it is unassigned and if for all recursive calls the corresponding actual parameter is merely a reference to that
formal parameter. In the case of fold, all formal parameters except x are invariant in this sense. The set of
invariant formals can be computed in linear time because the residual code for each of the arguments at the
recursive call sites is tested at most once. Once computed, this set is cached within the operand structure.

Specialization is attempted if some formals are invariant and the residual expressions for their operands
at the original call site are not variable references. This prevents trivial specialization. To specialize the
procedure, we extend the environment with formal parameters mapped to fresh variables, set e�ort and size
counters and process the body. The fresh formal parameters contain operands only if the corresponding
formal parameters are marked invariant. This ensures that the resulting optimized code is valid for all
iterations. If the size and e�ort limits are not exceeded, the original call is replaced by a call to a local
letrec binding for the specialized procedure body.

Eliminating unused invariant bindings is analogous to pruning unused letrec bindings. Processing of
recursive call operands is deferred until the rest of the body has been processed. The operands of variables
marked referenced or assigned at this point are visited for value. Operands for as-yet unreferenced variables
are visited as described in Section 4.2. Bindings for unused formals are then eliminated from the specialized

11

Benchmark Lines Description
boyer 528 Logic programming benchmark originally by Bob Boyer

dynamic 1,503 Henglein's dynamic type inferencer [13]
graphs 558 Counts directed graphs with distinguished root

and k vertices, each having out-degree at most 2
lattice 214 Enumerates the lattice of maps between two lattices
matrix 585 Tests whether matrix is maximal among all matrices

obtained by reordering rows and columns
maze 787 Hexagonal maze generator by Olin Shivers
nbody 1,534 Implementation [17] of Greengard multipole algorithm [12]
splay 971 Implementation of splay trees

conform 395 Type checker by Jim Miller
earley 455 Earley's parser by Marc Feeley
em-fun 416 Je�rey Siskind's functional implementation of an EM clustering algorithm
em-imp 404 Siskind's imperative implementation of an EM clustering algorithm
interpret 842 Marc Feeley's Scheme interpreter evaluating takl

peval 496 Feeley's simple Scheme partial evaluator
simplex 182 Simplex algorithm

Table 1: Description of benchmarks. Size excludes blank lines and comments.

procedure body, and each recursive call is rewritten as a sequence that evaluates operands of unused formals
for e�ect, then makes the recursive call passing operands only for used formals.

Specializing (fold * x 1 zero? (lambda (x) x) (lambda (x) (- x 1))) in this manner yields the
same code as the earlier de�nition of factorial, modulo renaming. Although we do not explicitly perform
specialization for mutually recursive functions, inlining often converts mutual recursion into direct recur-
sion [15]. The resulting direct recursion can then be specialized as described above.

5 Performance

We have implemented the inlining algorithm as an additional pass within Chez Scheme, a commercial
optimizing compiler for Scheme. Although described in Section 2 as an interpreter written in continuation-
passing style (CPS), the inlining algorithm is implemented in direct style, relying on the applicative-order
semantics of Scheme to sequence e�ects. When a size or e�ort counter exceeds its bound, the inlining
attempt is abandoned via non-local exit to the point at which the counter was set, and a call is residualized
instead. Because the continuations which provide these non-local exits are never reinstated, simple one-shot
continuations su�ce [8]. Operations on sets of
ags are implemented e�ciently as operations on bit-vectors.
When creating a fresh variable, for example, residual-variable
ags are copied to source-variable
ags by a
single logical shift operation. We do not CPS-convert input programs; doing so would not materially simplify
the algorithm and could exaggerate the bene�ts obtained by inlining [1].

Table 1 describes the benchmarks used to evaluate the inlining algorithm. The benchmarks in the
�rst part of the table were provided by Jagannathan and Wright [14] and have already been processed by
their local simpli�cation pass, which performs many of the same optimizations as our inliner. To facilitate
comparison with their results, performance data was collected on a 150 MHz SGI MIPS R4400 workstation.

Table 2 shows the performance increase obtained when the benchmarks are optimized using di�erent
size and e�ort bounds. With the exception of nbody, all programs show consistent and signi�cant speedups.
Pro�ling reveals that nbody spends most of its time indexing three levels deep into a structure of nested
arrays. Thus the variability we observe is likely due to cache e�ects. When run on the Intel Pentium Pro,
which better tolerates cache e�ects, nbody shows consistent speedups ranging from 1.06 to 1.11. As is to
be expected, increasing the e�ort limit generally improves performance somewhat. Both graphs and peval

improve substantially at higher e�ort limits.
Inlining more than doubles the performance of lattice, graphs, and conform. A large percentage of runtime

12

E�ort limit 100 E�ort limit 1000
Size limit: 10 20 30 40 50 60 10 20 30 40 50 60
boyer 1.03 1.04 1.04 1.04 1.04 1.04 1.03 1.04 1.06 1.06 1.07 1.06
dynamic 1.05 1.07 1.07 1.08 1.06 1.05 1.08 1.10 1.05 1.05 1.10 1.07
graphs 1.79 1.78 1.78 1.78 1.78 1.77 1.76 2.25 2.24 2.25 2.25 1.59
lattice 4.30 4.37 4.39 4.40 4.39 4.39 4.30 4.57 4.48 4.57 4.56 4.57
matrix 1.29 1.27 1.27 1.29 1.30 1.29 1.31 1.28 1.30 1.31 1.32 1.30
maze 1.45 1.38 1.40 1.35 1.40 1.42 1.46 1.39 1.40 1.42 1.41 1.39
nbody .95 .97 .98 1.04 1.04 1.05 .92 1.00 .98 .93 1.04 1.03
splay 1.26 1.29 1.30 1.29 1.28 1.28 1.32 1.20 1.33 1.31 1.38 1.35
conform 2.41 2.50 2.62 2.70 2.69 2.66 2.44 2.52 2.47 2.68 2.67 2.69
earley 1.10 1.10 1.08 1.09 1.09 1.10 1.09 1.11 1.12 1.12 1.12 1.12
em-fun 1.15 1.18 1.05 1.02 1.09 1.02 1.20 1.15 1.07 1.15 1.15 1.14
em-imp 1.16 1.10 1.06 1.11 1.15 1.06 1.16 1.09 1.06 1.13 1.05 1.06
interpret 1.07 1.03 1.09 1.09 1.10 1.10 1.08 .99 1.10 1.07 1.07 1.07
peval 1.22 1.07 1.05 1.07 1.07 1.06 1.07 1.21 1.23 1.22 1.23 1.24
simplex 1.32 1.32 1.30 1.32 1.32 1.32 1.31 1.32 1.31 1.32 1.30 1.30

Table 2: Performance increase from inlining with di�erent size and e�ort bounds.

E�ort limit 100 E�ort limit 1000
Size limit: 10 20 30 40 50 60 10 20 30 40 50 60
boyer .97 .97 .99 1.00 1.00 1.00 .97 .99 .99 1.01 1.01 1.01
dynamic .87 1.18 1.20 1.20 1.31 1.31 .86 1.26 1.30 1.37 1.55 1.57
graphs .72 .71 .71 .71 .71 .71 .80 .85 .85 .85 .85 .90
lattice 1.13 .91 .91 .91 .91 .91 1.13 .89 .89 .89 .89 .89
matrix .96 1.01 1.03 1.03 1.03 1.03 .94 .99 1.01 1.00 1.00 1.00
maze .74 .74 .78 .78 .78 .78 .74 .74 .78 .78 .78 .78
nbody 1.20 1.22 1.25 1.25 1.25 1.25 1.24 1.27 1.33 1.34 1.40 1.46
splay 1.00 1.00 1.02 1.06 1.06 1.06 .99 1.01 1.12 1.12 1.10 1.12
conform .73 .80 .82 .86 .86 .86 .72 .75 .76 .80 .80 .80
earley .91 .92 .96 .96 .96 .96 .82 .85 .89 .89 .91 .94
em-fun .88 .92 1.07 1.09 1.09 1.09 .88 .91 1.15 1.17 1.13 1.12
em-imp .87 .89 .89 .92 .92 .92 .85 .89 .88 .90 .90 .90
interpret 1.19 1.26 1.31 1.31 1.31 1.31 1.17 1.23 1.28 1.29 1.29 1.35
peval 1.01 1.04 1.04 1.04 1.04 1.04 1.00 1.03 1.03 1.03 1.03 1.03
simplex .86 .86 .86 .86 .86 .86 .86 .86 .86 .86 .90 .90

Table 3: Ratio of code size to original code size with di�erent size and e�ort bounds. Numbers less than 1
indicate a decrease in code size.

13

E�ort limit 100 E�ort limit 1000
Size limit: 10 20 30 40 50 60 10 20 30 40 50 60
boyer .03 .04 .03 .04 .04 .04 .02 .08 .07 .08 .09 .09
dynamic .33 .48 .52 .50 .54 .53 .34 .56 .57 .68 .81 1.06
graphs .08 .08 .09 .09 .08 .07 .11 .13 .14 .13 .15 .14
lattice .08 .08 .09 .08 .07 .08 .09 .11 .12 .10 .11 .12
matrix .11 .11 .11 .11 .13 .11 .14 .18 .20 .21 .21 .21
maze .11 .11 .13 .12 .13 .12 .11 .12 .13 .13 .14 .13
nbody .20 .20 .20 .22 .20 .22 .29 .47 .48 .51 .57 .57
splay .10 .10 .10 .09 .10 .11 .13 .15 .13 .13 .14 .16
conform .08 .12 .13 .14 .14 .15 .24 .27 .28 .32 .34 .31
earley .13 .15 .15 .15 .15 .17 .26 .31 .40 .41 .44 .45
em-fun .17 .19 .20 .21 .21 .22 .40 .45 .66 .70 .68 .64
em-imp .16 .18 .18 .18 .19 .18 .34 .45 .46 .50 .54 .51
interpret .28 .29 .33 .34 .34 .34 .29 .31 .47 .51 .56 .55
peval .08 .08 .09 .12 .13 .13 .17 .19 .19 .19 .22 .19
simplex .05 .06 .06 .06 .05 .05 .09 .10 .10 .14 .14 .13

Table 4: Run time of the algorithm (in seconds) with di�erent size and e�ort bounds.

calls made by lattice (73%) and graphs (43%) are to a user-de�ned memv procedure that searches a list for a
given key. With a size limit of 4 our algorithm completely unfolds calls to memv in both programs because
the target list happens to be a short constant at each call site for memv. The speedup of 4.57 for lattice at
size limit 20 represents an additional speedup of 1.15 beyond the speedup of 3.97 due to unfolding calls to
memv at size limit 4. The speedup of 2.25 for graphs at size limit 20 represents an additional speedup of
1.43 beyond the speedup of 1.57 due to unfolding calls to memv at size limit 4. The algorithm cannot unfold
any of the recursive calls within conform. The large speedup is due simply to the fact that conform contains
many small procedures that can be inlined.

Table 3 shows the e�ect of di�erent size and e�ort bounds on the size of the resulting object code. The
table reports the ratio of code size after optimization to the original code size. For many programs, inlining
actually decreases code size. For most programs, code size increases gradually as the size limit increases.
This con�rms the that the intuitive size counter is an e�ective mechanism for regulating code growth.

Table 4 shows the run time of the algorithm for di�erent size and e�ort bounds. The algorithm completes
both analysis and transformation of each program (except dynamic) in less than one second. At the highest
settings for size and e�ort limits, dynamic is processed in just over one second. Increasing the e�ort limit by
an order of magnitude typically only doubles the run time of the algorithm. When the size limit is varied,
the run time of the algorithm increases roughly in proportion to the increase in code size.

6 Related work

Jagannathan and Wright [14] use a polyvariant
ow analysis to identify inlining opportunities and to esti-
mate the size of a procedure when specialized for a particular call site. Their approach is o�ine: all inlining
decisions are made prior to any transformation. Our algorithm combines a less accurate analysis (e�ec-
tively sub-0CFA [4]) with online transformation and polyvariant specialization. The time required by their

ow analysis varies widely and can be excessive|110 seconds to analyze dynamic|rendering their method
impractical for use in a production compiler.

Ashley [3] evaluated the e�ectiveness of four di�erent
ow analyses for inlining. The analyses range from
a fast analysis less accurate than 0CFA to a polyvariant analysis similar to 1CFA. His inlining algorithm is
based on that of Jagannathan and Wright but exposes more opportunities for inlining.

Table 5 provides a rough comparison of the best speedups obtained by the
ow-directed inlining algorithm
of Jagannathan and Wright with the best speedups obtained by our algorithm (labeled POLI, for polyvariant
online linear inliner). The table also compares processing time and the ranges of object code size for the

14

Performance Increase Processing Time Code Size Ratios
(seconds)

Baseline block non-block
Algorithm POLI POLI PCFA
boyer 1.07 1.34 1.72
dynamic 1.10 1.20 1.20
graphs 2.25 2.45 1.30
lattice 4.57 6.40 1.27
matrix 1.32 1.35 1.11
maze 1.46 1.88 1.67
nbody 1.04 1.38 1.11
splay 1.38 1.35 1.20

POLI PCFA
.09 1.4
.56 110.3
.13 .3
.11 .2
.21 .4
.11 .5
.22 2.6
.14 4.0

block non-block
POLI POLI PCFA

.97 { 1.01 .82 { .86 .95 { 1.10

.86 { 1.57 .78 { 1.43 1.52 { 2.48

.71 { .90 .65 { .82 .79 { .87

.89 { 1.13 .72 { .92 1.02 { 3.09

.94 { 1.03 .86 { .94 .93 { 1.21

.74 { .78 .48 { .51 .89 { .98
1.20 { 1.46 1.08 { 1.31 1.25 { 2.62
.99 { 1.12 .94 { 1.06 .94 { .95

Table 5: Performance increase, processing time and range of code size ratios for our algorithm (POLI) and
the polyvariant
ow-directed inlining of Jagannathan and Wright (PCFA). The columns labelled \non-block"
indicate results relative to a baseline that is not block compiled. All programs were compiled and run using
Chez Scheme. All data was collected on the 150 MHz SGI MIPS R4400.

two methods. The comparison is complicated by the fact that their optimizer e�ectively block compiles the
benchmarks, yet their baseline for comparison is not block-compiled. Enabling block compilation reduces
baseline object-code size and improves baseline performance considerably. To compensate for the di�erence
in benchmarking methodology we present both our absolute results and the results we obtain relative to
a baseline that is not block compiled. It appears that we achieve equivalent or better speedups for all
benchmarks except boyer and better code size ratios for all benchmarks except splay, yet our algorithm
completes both analysis and transformation in far less time than their analysis alone.

Table 6 compares the performance increase, processing time, and code size ratios for Ashley's inlining
algorithm justi�ed by sub-0CFA and 1CFA analyses with the results obtained by our algorithm with e�ort
limits of 100 and 1000. All data was generated using the same compiler and benchmarking methodology. In
particular, the baseline and optimized programs were block-compiled in all cases. The data was collected on
virtually identical hardware (our machine has half the physical memory and second-level cache). All results
in the table re
ect a size threshold of 30. Our algorithm achieves better or equivalent speedups for virtually
all of the benchmarks and typically completes both analysis and transformation in less time than is required
for
ow analysis alone. The volatility of
ow analysis is highlighted by the fact that the 1CFA analysis
exhausted virtual memory (128Mb core, 100Mb swap) while attempting to analyze interpret. Our code size
ratios are consistently better than those obtained using either
ow analysis. This supports our claim that
online transformation provides more accurate size information on which to base inlining decisions.

The intuitive appeal of an o�ine
ow-directed approach is that the results of
ow analysis might be used
to justify other optimizations in addition to inlining. In fact, Ashley found that inlining violates the soundness
of
ow information about procedures which could otherwise be used by procedure call optimizations in later
passes of the compiler. This means that
ow analysis must be repeated after inlining.

Our one-pass algorithm di�ers signi�cantly from the iterated multi-pass algorithm used by Appel in
the SML/NJ compiler [1]. Appel uses an o�ine method in which a data gathering pass is run alternately
with a transformation pass that performs several optimizations including constant folding, �-contraction,
uncurrying, and inlining of functions called only once. This transformation phase is iterated until the number
of contractions found is below some threshold. Next, inline expansion is performed using several heuristics
to estimate the cost and bene�t of inlining. To improve these estimates, this \round" of optimization is
iterated beginning with the contraction phase. Although our algorithm can be iterated, we have found that
few programs actually bene�t from additional passes.

Appel and Jim recently described a linear-time algorithm that performs constant folding, dead-variable
elimination, and inlining of functions called only once [2]. They have implemented an O(n2) variant of the
algorithm to replace the contraction phase of the SML/NJ compiler described above. The new algorithm
is online in that usage counts for variables are updated as the optimizations are performed. The algorithm

15

Performance Increase Processing Time (seconds) Code Size Ratio

<0cfa 1cfa 100 1000
boyer 1.01 1.03 1.01 1.02

dynamic 1.11 1.05 1.10 1.10
graphs 1.20 1.27 1.70 2.18
lattice 1.03 1.33 3.92 4.06
matrix 1.05 1.09 1.22 1.21
maze 1.27 1.27 1.28 1.29
nbody 1.06 1.10 1.09 1.06
splay 1.09 1.11 1.23 1.26

conform 1.72 1.75 1.94 1.95
earley 1.10 1.11 1.07 1.10

interpret 1.12 | 1.14 1.15
peval 1.15 1.15 1.14 1.15

simplex 1.39 1.39 1.43 1.43

<0cfa 1cfa 100 1000
.01 .07 .02 .03
.32 2.09 .20 .23
.05 .20 .03 .05
.01 .19 .03 .04
.05 3.02 .06 .09
.05 .19 .03 .04
.13 1.98 .08 .19
.06 .95 .02 .05
.04 .31 .05 .12
.07 .45 .06 .15
.39 | .13 .19
.07 .41 .04 .07
.03 .19 .03 .04

<0cfa 1cfa 100 1000
1.47 2.33 .98 1.01
3.56 4.72 1.46 1.61
.73 .82 .68 .72
1.20 1.51 .94 .92
1.11 1.23 1.04 1.02
.88 .89 .75 .75
1.29 1.37 1.19 1.25
1.42 1.46 1.07 1.18
1.06 1.19 .86 .81
1.06 1.13 1.00 .94
2.06 | 1.47 1.45
1.20 1.31 1.04 1.03
.89 .92 .81 .81

Table 6: Comparison of performance increase, processing time, and ratio of code size to original code size for
two
ow-directed algorithms and our algorithm run with e�ort limits of 100 and 1000. All data was gathered
on the 200 MHz Intel Pentium Pro. All programs were compiled and run using Chez Scheme. Processing
time for <0cfa and 1cfa cases includes analysis time only, i.e., it does not re
ect the cost of inlining or
subsequent simpli�cation. A size threshold of 30 was used in all cases.

is demand-driven in that bodies of binding forms are processed before processing the bindings. The new
algorithm typically performs as many contractions in one pass as their earlier o�ine algorithm performs in
three. They do not consider the more di�cult problem of inlining functions called more than once.

Bondorf uses an abstract interpreter written in continuation-passing style (CPS) to improve the accuracy
of binding-time analysis in an o�-line partial evaluator [7]. The CPS structure of the interpreter enables
him to move static contexts into binding forms, thereby reducing the need to CPS-convert source programs
as part of binding-time improvement. We achieve a similar e�ect in direct style via our contexts, which
abstract the relevant information about the continuation in which expression values are used.

Biswas [6] describes a demand-driven set-based analysis and uses this to obtain a polynomial-time (O(n3))
algorithm for dead-code elimination in a purely functional higher-order language. No empirical evidence is
given to support the e�ectiveness of the optimization.

Dean and Chambers [11] describe an online approach in which the cost and bene�t of inlining at a call
site are estimated by examining the code produced when the routine is tentatively inlined and optimized for
the call site. To amortize the high cost of these inlining trials, they cache the results in a persistent database
indexed by a description of the static information at the call site that justi�ed optimizations that made
inlining acceptable. By using inlining trials instead of o�ine scoring estimates, they were able to reduce
overall compile time and code size with minimal loss of run-time performance. Our algorithm can be viewed
as incorporating a lightweight form of inlining trials.

Wegman and Zadeck [16] present a fast global constant propagation algorithm and show how it can
be extended to perform many of the specializations needed when procedures are inlined. Their algorithm
propagates constants through the static single-assignment (SSA) graph [10] using a demand-driven traversal
of the control-
ow graph that facilitates elimination of unreachable code which, in turn, improves the accuracy
of the information collected. The inlining algorithm they describe does not address key issues such as
identifying inlining candidates, limiting code growth, and achieving termination in the presence of recursion.
Their algorithm is not online, polyvariant, or context-sensitive in the sense we have described.

Ball describes an analysis that determines which parameters contribute to the value of the expressions in a
procedure body [5]. When constant parameters are available at a call site he uses the parameter dependency
information to guide inlining decisions with an estimate of code savings and performance gain that is based
on predictions about the impact of subsequent optimizations. We suspect the speed of our algorithm could be
improved by using the type-group analysis of Dean and Chambers, or the more direct parameter dependency

16

analysis of Ball, to exploit polyvariance only where it is likely to be useful.

7 Conclusion

We have presented a procedure inlining algorithm that is both fast and e�ective. The algorithm improves
performance dramatically for several benchmark programs without sacri�cing performance on any. Moreover
our algorithm is fast enough to process programs of several thousand lines in under one second on available
hardware. The run time of our algorithm is linear in the size of the input program, which is important
for scalable optimizations. Because it is both fast and e�ective, the algorithm is well-suited for use in a
production compiler. The algorithm also provides a competent basis for comparison that can be used to
isolate the additional bene�t, if any, obtained through more involved analysis techniques. Finally, we have
presented evidence that online techniques are faster than o�ine, analysis-intensive techniques, yet are equally
e�ective for inlining.

There are several directions we intend to pursue as future work. Inlining decisions might be improved
by investing more e�ort in frequently executed parts of the program. Burger [9] has developed a framework
in which pro�ling data can be collected and used to dynamically recompile programs as they run. When
recompiling, his implementation currently performs only low-level optimizations such as block reordering.
We plan to extend the scope of recompilation to include front-end optimizations such as inlining.

Because inlining can simplify control
ow and eliminate polymorphism, we intend to see whether the run
time of a polyvariant
ow analysis can be improved by running our algorithm as a pre-pass. We also want
to determine what additional bene�t can be obtained by extending our algorithm to exploit the results of

ow analysis. We plan to study these e�ects using the polyvariant
ow analysis of Ashley [4].

Our implementation inlines procedures with free variables only when those variables can be eliminated
during optimization or when the scope of the variables includes the call site. In the second case, inlining may
add new free variables to closures. Although inlining often decreases and never increases the total amount
of allocation for the benchmarks we tried, we believe there are cases where increasing closure size can impair
performance. We plan to see whether performance can be improved by investigating the interaction between
inlining, closure conversion, and lambda-lifting.

Acknowledgements: Mike Ashley and Bob Burger contributed to the development of the inlining algo-
rithm. Mike Ashley, Carl Bruggeman, Bob Burger, and Mark Leone provided helpful comments on drafts of
this paper. We thank Suresh Jagannathan and Andrew Wright for providing us with details on their inlining
algorithm and the benchmark code they used to test it, and Andy Hanson for allowing us to run benchmarks
on his SGI workstation.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] Andrew W. Appel and Trevor Jim. Shrinking lambda expressions in linear time. To appear in Journal

of Functional Programming.

[3] J. Michael Ashley. The e�ectiveness of
ow analysis for inlining. To appear in Proceedings of the 1997

ACM SIGPLAN International Conference on Functional Programming.

[4] J. Michael Ashley. A practical and
exible
ow analysis for higher-order languages. In Proceedings of

the ACM Symposium on Principles of Programming Languages, pages 184{194, 1996.

[5] J. Eugene Ball. Predicting the e�ects of optimization on a procedure body. SIGPLAN Notices,
14(8):214{220, August 1979. Proceedings of the ACM SIGPLAN '79 Symposium on Compiler Con-

struction.

[6] Sandip K. Biswas. A demand-driven set-based analysis. In Proceedings of the ACM Symposium on

Principles of Programming Languages, pages 372{385, 1997.

17

[7] Anders Bondorf. Improving binding times without explicit CPS-conversion. In Proceedings of the 1992

ACM Conference on LISP and Functional Programming, pages 1{10, 1992.

[8] Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. Representing control in the presence of one-shot
continuations. In Proceedings of the ACM SIGPLAN '96 Conference on Programming Language Design

and Implementation, pages 99{107, 1996.

[9] Robert G. Burger. E�cient Compilation and Pro�le-Driven Recompilation in Scheme. PhD thesis,
Indiana University, 1997.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K Zadeck. E�ciently computing static
single assignment form and the control dependence graph. Technical Report RC 14756, IBM, 1991.

[11] Je�rey Dean and Craig Chambers. Towards better inlining decisions using inlining trials. In Proceedings
of the 1994 ACM Conference on LISP and Functional Programming, pages 273{282, 1994.

[12] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. ACM Press, 1987.

[13] Fritz Henglein. Global tagging optimization by type inference. In Proceedings of the 1992 ACM Con-

ference on LISP and Functional Programming, pages 205{215, 1992.

[14] Suresh Jagannathan and Andrew Wright. Flow-directed inlining. In Proceedings of the ACM SIGPLAN

'96 Conference on Programming Language Design and Implementation, pages 193{205, 1996.

[15] Owen Kaser, C. R. Ramakrishnan, and Shaunak Pawagi. On the conversion of indirect to direct
recursion. ACM Letters on Programming Languages and Systems, 2(4):151{164, mar 1993.

[16] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM Transactions

on Programming Languages and Systems, 3(2):181{210, 1991.

[17] F. Zhao. An O(n) algorithm for three-dimensional n-body simulations. Master's thesis, Massachusetts
Institute of Technology, 1987.

18

