
Detecting Global Predicates in Distributed Systems

with Clocks�

Scott D. Stollery

January 13, 1999

Abstract

This paper proposes a framework for detecting global state predicates in systems of

processes with approximately-synchronized real-time clocks. Timestamps from these

clocks are used to de�ne two orderings on events: \de�nitely occurred before" and

\possibly occurred before". These orderings lead naturally to de�nitions of 3 distinct

detection modalities, i.e., 3 meanings of \predicate � held during a computation",

namely: Poss
db
!� (\� possibly held"), Def

db
!� (\� de�nitely held"), and Inst�

(\� de�nitely held in a speci�c global state"). This paper de�nes these modalities

and gives e�cient algorithms for detecting them. The algorithms are based on al-

gorithms of Garg and Waldecker, Alagar and Venkatesan, Cooper and Marzullo, and

Fromentin and Raynal. Complexity analysis shows that under reasonable assumptions,

these real-time-clock-based detection algorithms are less expensive than detection al-

gorithms based on Lamport's happened-before ordering. Sample applications are given

to illustrate the bene�ts of this approach.

Index terms: global predicate detection, consistent global states, partially-synchronous

systems, distributed debugging, real-time monitoring

1 Introduction

A history of a distributed system can be modeled as a sequence of events. Since execution

of a particular sequence of events leaves the system in a well-de�ned global state, a history

uniquely determines the sequence of global states through which the system has passed. Un-

fortunately, in a distributed system without perfect clock synchronization, it is, in general,

�A preliminary description of this work appeared in [30].
yScott D. Stoller (stoller@cs.indiana.edu, www.cs.indiana.edu/~stoller/) is with the Department of Com-

puter Science, Indiana University, Bloomington, IN.

1



impossible for a process to determine the order in which events on di�erent processors ac-

tually occurred. Therefore, no process can determine the sequence of global states through

which the system passed. This leads to an obvious di�culty for detecting whether a global

state predicate (hereafter simply called a \predicate") held.

Cooper and Marzullo proposed a solution for asynchronous distributed systems [6]. Their

solution involves two modalities, which we denote by Poss
hb
! (\possibly") and Def

hb
! (\def-

initely"). These modalities are based on logical time [18] as embodied in the happened-

before relation
hb!, a partial ordering1 of events that re
ects potential causal dependencies.

Happened-before is not a total order, so it does not uniquely determine the history, but

it does restrict the possibilities. Given a predicate �, a computation satis�es Poss
hb
!� i�

there is some interleaving of events that is consistent with happened-before and in which

the system passes through a global state satisfying �. A computation satis�es Def
hb
!� i�

for every interleaving of events that is consistent with happened-before, the system passes

through a global state satisfying �.

Cooper and Marzullo's de�nitions of these modalities established an important concep-

tual framework for predicate detection in asynchronous systems, which has been the basis

for considerable research [8, 13, 4, 17, 32, 14, 5, 12]. In practice, though, Poss
hb
!, Def

hb
!, and

other modalities based on happened-before have signi�cant drawbacks in many cases. First,

in many systems, it is di�cult to determine the happened-before relation. Happened-before

can be determined if each process maintains a vector clock. This requires that a vector

timestamp with O(N) components be attached to every message, where N is the number

of processes in the system, and imposes computational overhead of O(N) operations per

message received (to update the vector clock). Generating code that inserts and removes

the vector timestamps without changing the existing types in the programs (which would

open a can of worms) or copying entire messages (which is ine�cient) can be di�cult. If

the programs use a stream-oriented communication protocol that does not provide message

boundaries, such as TCP, the di�culty is signi�cantly compounded, since a receiver might

receive a fragment of a \message" or several \messages" in a single receive event. Further-

more, piggybacking vector timestamps requires changing all communication statements in

the application, even if the predicate of interest involves the state of only one module. If

source code is not available for part of the system, this might be impossible. Happened-

before can be determined without vector clocks, if all processes inform the monitor of all

send events and receive events and provide the monitor with enough information to deter-

mine the correspondence between send and receive events (i.e., for each receive event, the

monitor can determine which send event sent the received message). However, this method

1In this paper, all partial orderings are irre
exive unless speci�ed otherwise.
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often has signi�cant drawbacks, too. In general, determining the correspondence between

send and receive events requires piggybacking an identi�er (e.g., a sequence number) on each

message; this involves the same di�culties as piggybacking a vector timestamp.2 An addi-

tional drawback of this method is that the monitor must be informed of all send events and

receive events. With vector timestamps (or if the happened-before relation is not needed),

it su�ces to inform the monitor only of events that might change the truth value of the

predicate of interest;3 this can signi�cantly reduce the amount of information sent to the

monitor.

A second drawback of detecting Poss
hb
! � or Def

hb
!� is the computational cost: the

worst-case time complexity is 
(EN), where E is the maximum number of events executed

by any process. The worst case occurs when there is little or no communication and hence

few causal dependencies, so that many interleavings must be explored. For example, this

exponential cost was seen in two sample applications considered in [31], namely, a coherence

protocol and a spanning-tree algorithm. A third drawback is that, in systems with hidden

channels [2] (i.e., means of communication other than messages), happened-before does not

accurately capture causal relationships, so Poss
hb
! � and Def

hb
!� do not accurately capture

the meanings of \possibly held" and \de�nitely held".

This paper proposes a framework for predicate detection in systems with approximately-

synchronized real-time clocks. Timestamps from these clocks can be used to de�ne two

orderings on events:
db! (\de�nitely occurred before") and

pb! (\possibly occurred before").

By (roughly speaking) substituting each of these orderings for happened-before in the de�ni-

tions of Poss
hb
! and Def

hb
!, we obtain de�nitions of four new modalities. The two modalities

based on
db! are closely analogous to Poss

hb
! and Def

hb
!, so we denote them by Poss

db
! and

Def
db
!. We obtain algorithms for detecting Poss

db
! andDef

db
! by adapting algorithms of Garg

and Waldecker [13, 14], Alagar and Venkatesan [1], and Cooper and Marzullo [6]. Modalities

based on
pb! are quite di�erent, because

pb! (unlike
hb! and

db!) is not a partial ordering. In

fact,
pb! yields a degenerate case, in which the analogues of Poss

hb
! and Def

hb
! are equivalent.

We show that this single modality, which we denote by Inst, is closely related to Fromentin

and Raynal's concept of Properly
hb
! [9, 10], and we adapt for detecting Inst an algorithm

of theirs for detecting Properly
hb
!.

Our detection framework is applicable to a wide range of systems, since it does not

require that clocks be synchronized to within a �xed bound. However, the quality of clock

synchronization does a�ect the two event orderings just described and therefore the results

2Even if the underlying communication protocol uses sequence numbers, operating-system protection
mechanisms may prevent the monitoring system from accessing them.

3This optimization is not explicitly incorporated in our algorithms, but that is easily done.
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of detection. For example, consider Inst�. Informally, a computation satis�es Inst� i�

the timestamps imply that there was an instant during the computation when predicate �

held, i.e., i� there is some collection of local states that form a global state satisfying �

and that, based on the timestamps, de�nitely overlapped in time. Suppose � actually holds

in a global state g that persists for time �. Whether Inst� holds depends on the quality

of synchronization. Roughly, if the maximum di�erence between clocks is known to be less

than �, then Inst� holds; otherwise, there is in some cases no way to determine whether

the local states in g actually overlapped in time, so Inst� might not hold.

The quality of clock synchronization a�ects also the cost of detection. For example,

consider Poss
db
!�. Informally, a computation satis�es Poss

db
!� i� there is some collection of

local states that form a global state satisfying � and that, based on the timestamps, possibly

overlapped in time. The larger the error in clock synchronization, the more combinations of

local states possibly overlap. In general, � must be evaluated in each such combination of

local states. Thus, the larger this error, the more expensive the detection. If this error is

bounded relative to the mean interval between relevant events (i.e., events that potentially

truthify or falsify �), then the number of global states that must be checked is linear in E.

In the asynchronous case, the number of global states that must be checked is O(EN).

The above condition on the error in clock synchronization holds in many systems. In most

local-area distributed systems, protocols like NTP can e�ciently maintain synchronization

of clocks to within a few milliseconds [26]. Even in extremely wide-area distributed systems

like the Internet, clock synchronization can usually be maintained to within a few tens of

milliseconds [24, 26]. The detection framework and algorithms proposed here are designed

to provide a basis for monitoring and debugging applications in such systems. Some sample

applications are described in Section 7, including applications in which timers provide a

hidden channel, causing detection based on happened-before to be less appropriate.

Directions for future work include: implementing the detection algorithms described

above; developing e�cient algorithms for detecting global properties that depend explicitly

on time; and investigating clock-based detection of sequences of global states, perhaps along

the lines of temporal modalities based on happened-before [16, 3, 11].

2 Related Work

Marzullo and Neiger [23] discuss global property detection in partially-synchronous systems

in which a �xed bound � on the error between clocks is known. In the notation of this paper,

they de�ne modalities Poss
hd
! and Def

hd
!, where

hd! �

=
db! [ hb!, and give detection algorithms

for these two modalities. Combining happened-before and real-time ordering exploits more
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information about the computation and hence is certainly desirable whenever it is feasible.

Modifying the algorithms in this paper to take happened-before into account is a straight-

forward exercise, and the resulting algorithms would be appropriate for monitoring some

systems. This paper presents algorithms that do not use happened-before for three reasons.

First and most important, as discussed in Section 1, it is often di�cult in practice to mod-

ify a system so that the monitor can determine the happened-before relation; consequently,

detection algorithms that depend on happened-before have limited applicability.4 Second,

not using happened-before enables some optimizations (speci�cally, those involving priority

queues) that are impossible if causal ordering is also used. Third, incorporating happened-

before would have obscured the presentation and complexity analysis of the real-time-based

parts of the algorithms, which are the novel parts.

Contributions of this paper relative to [23] include: detection algorithms based purely

on real-time clocks; more e�cient detection algorithms; and de�nition of and algorithm for

Inst. [23] does not consider any modality analogous to Inst. Also, [23] assumes a �xed

bound on the error in clock synchronization. Our framework allows that bound to vary over

time; this supports tighter bounds hence more accurate monitoring results.

An attractive feature of Properly
hb
! [9, 10] and Inst is that the monitor can report a

single global state g satisfying � that the system actually passed through. Def does not have

this feature. However, Properly
hb
! gives useful information only about systems that perform

global (i.e., system-wide) barrier synchronization. Such synchronization is expensive and

rarely used. In contrast, assuming reasonably good clock synchronization, Inst is informative

even in the absence of barrier synchronization. Since Inst, like Properly
hb
!, can be detected

e�ciently for arbitrary predicates, it appears to be a useful modality.

The \possibly occurred before" relation
pb! is reminiscent of Lamport's \can a�ect" rela-

tion for concurrent systems [20, 21]. Both relations may contain cycles because of overlap:

for
pb!, overlap of interval timestamps; for \can a�ect", overlap of non-atomic events. Our

framework assumes events are atomic; this is appropriate for systems with message-based

communication.

Ver��ssimo [33] discusses the uncertainty in event orderings caused by the granularity5 and

imperfect synchronization of digital real-time clocks, analyzes the conditions under which

this uncertainty is signi�cant for an application, and describes a synchronization technique,

suitable for certain applications, that masks this uncertainty. However, [33] does not aim for

a general approach to detecting global properties in the presence of this uncertainty.

4Our algorithms apply directly even to programs that use high-level communication libraries (e.g., a
distributed shared memory (DSM) library) for which source code is not available; detecting happened-before
in such cases would be di�cult.

5Our framework accommodates the granularity of digital clocks by using � instead of < in TS1 and TS2.
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3 Background

A computation of a single process is called a local computation and is represented as a �nite

or in�nite sequence of local states and events. Thus, a local computation has the form

e1; s1; e2; s2; e3; s3; : : : (1)

where the e� are events, and the s� are local states. By convention, e1 corresponds to

creation of the process. If the sequence is �nite, it ends with an event that corresponds (by

convention) to the termination of the process.

A computation of a distributed system is a collection of local computations, one per pro-

cess. A computation is represented as a function from process names to local computations.

We use integers 1; 2; : : : ; N as process names; thus, for a computation c, the local computa-

tion of process i is c(i). Variables i and j always range over process names. We use Ev(c)

and St(c) to denote the sets of all events and all local states, respectively, in a computation

c. For convenience, we assume that all events and local states in a computation are distinct.

The following functions are implicitly parameterized by a computation; the computation

being considered should be evident from the context. For an event e, pr(e) denotes the

process on which e occurs. For a local state s, pr(s) denotes the process that passes through

s, and S(s) and T (s) denote the start event and terminal event, respectively, of s. For

example, for a computation containing local computation (1), S(s2) is e2, and T (s2) is e3.
A global state of a distributed system is a collection of local states, one per process,

represented as a function from process names to local states. The set of global states of a

computation c is denoted GS (c); thus, g is in GS (c) i� for each process i, g(i) is a local state

in c(i). We de�ne a re
exive partial ordering � on global states by:

g � g0
�

= (8i : g(i) = g0(i) _ g(i) occurs before g0(i)): (2)

All of the orderings de�ned in this paper, including �, are implicitly parameterized by a

computation; the computation being considered should be evident from the context.

Each event e has an interval timestamp C(e), which is an interval with lower endpoint

C1(e) and upper endpoint C2(e). We model events as being atomic and instantaneous;

the width of the interval timestamp depends only on the quality of clock synchronization

when the event occurs. We assume that the interval timestamps are non-decreasing and are

consistent with the order of events; more precisely, we assume:

TS1. For every event e, C1(e) � C2(e).

TS2. For every event e1 with an immediately succeeding event e2 on the same process,
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C1(e1) � C1(e2) and C2(e1) � C2(e2).

TS3. For every event e1 and every event e2, if e1 occurred before e2, then C1(e1) � C2(e2).

There are various ways of satisfying these assumptions, depending on the underlying clock

synchronization mechanism. As a simple (yet realistic) example, if the clock synchronization

algorithm never decreases the value of a clock, and if all of the machines (more precisely, all

of the machines relevant to the predicate being detected) synchronize to a single time server,

then TS1{TS3 hold if timestamps are chosen such that the value of the time server's clock

was in the interval C(e) when event e occurred. Thus, a machine can take C1(e) = t � "

and C2(e) = t + ", where t is the value of its local clock when e occurred, and " is a bound

on the di�erence between its clock and the time server's clock when e occurred. In systems

in which time servers are organized in peer groups or in a client-server hierarchy, C(e) can

be determined from an appropriate combination of the bounds on the errors between the

relevant clocks. In either case, the information needed to construct interval timestamps can

be obtained from standard clock synchronization subsystems, such as NTP [25, 26] or the

Distributed Time Service in OSF DCE [27].

4 Generic Theory of Consistent Global States

Predicate detection in asynchronous systems is based on the theory of consistent global

states (CGSs) [2]. Informally, a global state is consistent if it could have occurred during

the computation. It is convenient to de�ne \consistent" in terms of ideals. Recall that an

ideal of a partial order hS;�i is a set I � S such that (8x 2 I : 8y 2 S : y � x ) y 2 I).

Ideals of hEv(c); hb!i are called consistent cuts [2]. Recall that for any partial order, the

set of its ideals ordered by inclusion (�) forms a lattice [8]. Furthermore, the set of CGSs

ordered by � forms a lattice that is isomorphic to the lattice of consistent cuts [28, 2].

This isomorphism has an important consequence for detection algorithms: it implies that

a minimal increase with respect to � corresponds to advancing one process by one event

(because adjacent ideals of hEv(c); hb!i di�er by exactly one event) and hence that the lattice

of CGSs can be explored by repeatedly advancing one process by one event. This principle

underlies detection algorithms of Cooper and Marzullo [6], Garg and Waldecker [13, 14], and

Alagar and Venkatesan [1].

In this section, we show that the above theory is not speci�c to the happened-before

relation but rather applies to any partial ordering ,! on events, provided ,! is process-wise-

total, i.e., for any two events e1 and e2 on the same process, if e1 occurred before e2, then

e1 ,! e2. This generalized theory underlies the detection algorithms in Sections 5 and 6.
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De�nition of CGSs. Let c be a computation, and let ,! be a relation on Ev(c). We

de�ne a relation ,! on St(c), with the informal interpretation: s ,! s0 if s ends before s0

starts. Formally,

s ,! s0
�

=

8<
:
S(s) ,! S(s0) if pr(s) = pr(s0)

T (s) ,! S(s0) if pr(s) 6= pr(s0).
(3)

Two local states are concurrent with respect to ,! if they are not related by  ,!. A global

state is consistent with respect to ,! if its constituent local states are pairwise concurrent:

consis,!(g)
�

= (8i; j : i 6= j ) :(g(i) ,! g(j))): (4)

Thus, the set of CGSs of computation c with respect to ,! is

CGS ,!(c) = fg 2 GS (c) j consis,!(g)g: (5)

Note that CGS
hb
! is the usual notion of CGSs.

De�nitions of Poss and Def. The modalities Poss
hb
! and Def

hb
! for asynchronous sys-

tems are de�ned in terms of the lattice hCGS hb
!(c);�i. We generalize them as follows.

A computation c satis�es Poss,!� i� CGS ,!(c) contains a global state satisfying

�.

Def ,! is de�ned in terms of paths. A path through a partial order hS;�i is a �nite or in�nite
sequence6 � of distinct elements of S such that: (i) �[1] is minimal with respect to �; (ii)
for all � 2 [1::j�j � 1], �[� + 1] is an immediate successor7 of �[�]; and (iii) if � is �nite,

then �[j�j] is maximal with respect to �. Informally, each path through hCGS ,!(c);�i
corresponds to an order in which the events in the computation could have occurred.

A computation c satis�es Def ,!� i� every path through hCGS ,!(c);�i contains
a global state satisfying �.

CGSs and Ideals. When ,! is a process-wise-total partial ordering, there is a natural

correspondence between CGS ,!(c) and ideals of hEv(c); ,!i. One can think of an ideal I as

the set of events that have occurred. Executing a set I of events leaves each process i in the

local state immediately following the last event of process i in I. Thus, ideal I corresponds

6We use 1-based indexing for sequences.
7For a re
exive or irre
exive partial order hS;�i and elements x 2 S and y 2 S, y is an immediate

successor of x i� x 6= y ^ x � y ^ :(9 z 2 S n fx; yg : x � z ^ z � y).
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to the global state g such that for all i, S(g(i)) is the maximal element of fe 2 I j pr(e) = ig.
This correspondence is an isomorphism.

Theorem 1. For every process-wise-total partial ordering ,! on Ev(c), the partial order

hCGS ,!(c);�i is a lattice and is isomorphic to the lattice of ideals of hEv(c); ,!i.
Proof. This is true for the same reasons as in the standard theory based on happened-before

[28, 2, 8]. The proof is straightforward.

The following corollary underlies the detection algorithms in Sections 5 and 6.

Corollary 2. For any process-wise-total partial ordering ,!, if global state g0 is an immedi-

ate successor of g in hCGS ,!(c);�i, then the ideal corresponding to g0 contains exactly one

more event than the ideal corresponding to g.

Proof. This follows from Theorem 1 and the fact that for any partial order S, if one ideal

of S is an immediate successor of another ideal of S, then those two ideals di�er by exactly

one element.

5 Detection Based on a Strong Event Ordering: Poss
db!

and Def
db!

We instantiate the generic theory in Section 4 with the partial ordering
db! (\de�nitely

occurred before"), de�ned by:

e1
db! e2

�

=

8<
:
e1 occurs before e2 if pr(e1) = pr(e2)

C2(e1) < C1(e2) if pr(e1) 6= pr(e2).
(6)

This ordering cannot be de�ned solely in terms of the timestamps C(e1) and C(e2), because

TS1 and TS2 allow consecutive events on a process to have identical timestamps. Therefore,

we assume that a process records a local sequence number as well as an interval timestamp

for each event.

Theorem 3. For every computation c,
db! is a process-wise-total partial ordering on Ev(c).

Proof. See Appendix.

By the discussion in Section 4,
db! induces a notion CGS

db
! of CGSs. If g 2 CGS

db
!(c), then

the local states in g possibly overlapped in time. For example, Figure 1 shows a computation

c1 and the lattice hCGS db
!(c1));�i. The pair of arcs enclosing each event show the endpoints

of the interval timestamp. In the lattice, a node labeled i; j represents the global state in

which process 1 is local state s1i and process 2 is in local state s2j .
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Figure 1: Left: A computation c1. Right: The lattice hCGS
db
!(c1);�i.

We consider in this paper only detection algorithms with a passive monitor. Each process

in the original system sends its timestamped local states to a new process, called themonitor.

More speci�cally, when a process executes an event, thereby terminating its current local

state s, the process sends to the monitor a message containing s and the timestamps C(S(s))
and C(T (s)).8

We consider only on-line detection, in which the monitor detects the property as soon as

possible. Algorithms for o�-line detection, in which the monitor waits until the computation

has terminated before checking whether a property holds, can be obtained as special cases.

We consider �rst algorithms for detecting Poss
db
! for a restricted class of predicates and then

consider general algorithms for detecting Poss
db
! and Def

db
!.

5.1 Algorithms for Poss
db
! and Def

db
! for Conjunctive Predicates

Garg and Waldecker [13, 14] have developed e�cient algorithms for detecting Poss
hb
!� and

Def
hb
! � for conjunctive predicates �. A predicate is conjunctive if it is a conjunction of

predicates that each depend on the local state of one process. For example, if xi is a local

variable of process i, then the predicate x1 > 0 ^ x2 < 0 is conjunctive, and the predicate

x1 > x2 is not conjunctive. Their algorithms can be adapted in a straightforward way to

detect Poss
db
! andDef

db
!, by (roughly) replacing comparisons based on happened-before with

comparisons based on
db!. This yields detection algorithms with worst-case time complexity

O(N2E), where E is the maximum number of events executed by any process. The worst-

case time complexity of both algorithms can be reduced to O((N logN)E) by exploiting the

total ordering on numbers.

We start by reviewing Garg and Waldecker's algorithm for detecting Poss
hb
!� for con-

junctive predicates. Suppose the predicate of interest is � =
VN
i=1 �i, where �i depends on

8Several straightforward optimizations are possible. For example, each message might describe only the
di�erences between consecutive reported local states, rather than repeating the entire local state. Also,
except for the initial local state, it su�ces to include with local state s only the timestamp C(T (s)), since
C(S(s)) was sent in the previous message to the monitor. Also, for a given predicate �, events that cannot
possibly truthify or falsify � can be ignored.
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the local state of process i. Each process i sends to the monitor timestamped local states

satisfying �i; local states not satisfying �i are not reported. For each process i, the moni-

tor maintains a queue qi and adds each timestamped local state received from process i to

the end of qi. Let head(q) denote the head of a non-empty queue q. If for some i and j,

head(qi)
hb! head(qj), then head(qi) is removed from qi. The heads of the queues are repeat-

edly compared and sometimes removed in this way, until the heads of the non-empty queues

are pairwise concurrent. At that point, if all the queues are non-empty, then the heads of the

queues form a CGS satisfying �, so the algorithm returns that CGS (thereby indicating that

Poss
hb
!� holds); if some queue is empty, then the monitor waits to receive more local states

and then repeats the procedure just described. The worst-case time complexity is O(N2E),

because there are O(NE) local states, and each time a local state is removed from qi, the

new head of qi is compared with the heads of the other O(N) queues.

For detection of Poss
db
!
VN
i=1 �i, the number of comparisons can be reduced as follows.

Expanding the de�nition of CGS
db
!(c), a global state g is consistent i�

(8i; j : i 6= j ) C2(T (g(i))) � C1(S(g(j)))): (7)

Using the fact that for all i, C2(T (head(g(i)))) � C1(S(head(g(i)))), which follows from TS1

and TS2, one can show that (7) is equivalent to

min
i
(C2(T (head(g(i))))) � max

i
(C1(S(head(g(i))))): (8)

To evaluate (8) e�ciently, we maintain two priority queues p1 and p2, whose contents are

determined by the invariants:

I1: For each process i such that qi is non-empty, p1 contains a record with key C1(S(head(qi)))
and satellite data i. p1 contains no other records.

I2: For each process i such that qi is non-empty, p2 contains a record with key C2(T (head(qi)))
and satellite data hi; ptri, where ptr is a pointer to the record with satellite data i in

p1. p2 contains no other records.

Recall that the operations on a priority queue p include getMin(p), which returns a record

hk; di with key k and satellite data d such that k is minimal, and extractMin(p), which

removes and returns such a record. We also use priority queues with analogous operations

based on maximal key values. Thus, (8) is equivalent to

key(getMin(p2)) � key(getMax(p1)); (9)
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where key(hk; di) = k. The negation of (9) is used in the while loop in Figure 2 to check

the heads of the non-empty queues are concurrent. Let PossConjAlg denote the algorithm

in Figure 2. If a computation satis�es Poss
db
! �, PossConjAlg(�) returns a CGS satisfying

�.

To analyze the time complexity, recall that an operation on a priority queue containing

n records takes O(logn) time. A constant number of such operations are performed for each

local state, so the worst-case time complexity of the algorithm in Figure 2 is O(EN logN).

Note that the time complexity is independent of the quality of clock synchronization.

The algorithm in [14] for detecting Def
hb
!� for conjunctive � can be adapted in a similar

way to detect Def
db
!� for such predicates.

On receiving x from process i:
append(qi; x);
if head(qi) = x then

add records for i to p1 and p2, to maintain invariants I1 and I2;
while :empty(p1) ^ key(getMin(p2))< key(getMax(p1))
hk; hi; ptrii := extractMin(p2);
remove record for i (i.e., record �ptr) from p1;
removeHead(qi);
if :empty(qi) then
add records for i to p1 and p2, to maintain invariants I1 and I2;

endif

endwhile

if (8i : :empty(qi)) then
return the CGS hhead(q1); : : : ; head(qN)i

endif

endif

Figure 2: Algorithm PossConjAlg(�) for detecting Poss
db
! � for conjunctive predicates. Pro-

cess i sends to the monitor only local states satisfying its local predicate.

5.2 General Algorithm for Poss
db
!

We develop an on-line detection algorithm forPoss
db
! � by adapting Alagar and Venkatesan's

algorithm for detecting Poss
hb
!� in non-terminating (i.e., in�nite) computations [1]. Their

algorithm is based on their procedure for depth-�rst search of a lattice of CGSs. A depth-�rst

exploration of the lattice of CGSs for an in�nite computation would never backtrack and

thus would never visit some CGSs near the beginning of the lattice. So, in their algorithm,
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the lattice is divided into a sequence of sublattices L0; L1; L2; : : :, corresponding to increasing

pre�xes of the computation, and depth-�rst search is used to explore each sublattice Li+1�Li.

The following paragraphs describe how to adapt their algorithm to on-line detection of

Poss
db
!�.

Finding the initial CGS. In the asynchronous setting, the initial CGS simply contains

the initial local state of each process. In the timed setting, that global state might not be

consistent, since the processes might have been started at di�erent times.

Theorem 4. For every computation c, if CGS ,!(c) is not empty, then hCGS ,!(c);�i con-
tains a unique minimal element, i.e., c has a unique initial CGS.

Proof. The existence of minimal elements in the lattice of CGSs follows immediately from

non-emptiness and the absence of in�nite descending chains in � [7, chapter 2]. We prove

by contradiction that the lattice of CGSs has a unique minimal element. Suppose CGSs g1

and g2 are minimal and g1 6= g2. Let ^G denote the meet operation of the lattice of CGSs.

Note that g1 6� g2 (by the assumptions that g2 is minimal and g1 6= g2) and (g1 ^G g2) � g2

(by the de�nition of ^G), so (g1 ^G g2) 6= g1. By de�nition of ^G, (g1 ^G g2) � g1, which

together with (g1 ^G g2) 6= g1 contradicts the assumed minimality of g1.

To �nd the initial CGS, we exploit the fact that for every conjunctive predicate �, if a

computation satis�es Poss
db
!�, then PossConjAlg(�) �nds and returns the unique minimal

CGS satisfying �; the proof of this is closely analogous to the proof of the corresponding

property of Garg and Waldecker's algorithm [14]. A corollary is: if CGS
db
!(c) is not empty,

then PossConjAlg(true) returns the initial CGS (otherwise, PossConjAlg(true) never calls

return).

Choosing the sequence of sublattices. To avoid delays in detection, when the monitor

receives a timestamped local state, it constructs the largest CGS g2 that can be constructed

from the local states it has received so far; this is done by the while loop in Figure 4. This

CGS implicitly de�nes the next sublattice Li+1: Li+1 contains exactly the CGSs g such that

g � g2. Let g1 denote the CGS constructed when the previous local state was received,

i.e., the CGS corresponding to sublattice Li. After constructing g2, the monitor does a

depth-�rst search of the sublattice Li+1 � Li, which (by de�nition) contains CGSs g such

that g1 � g � g2.

Exploration of a sublattice. There are two main steps in the exploration of the sublattice

of CGSs between a CGS g1 and a larger CGS g2:
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� Use a procedure initStates(g1; g2) to compute the set S of minimal (with respect to �)
CGSs in that sublattice.

� For each CGS g in S, use a procedure depthFirstSearch(g; g1; g2) to do a depth-�rst

search starting from g of a fragment of that sublattice. These searches together explore

the entire sublattice.

Alagar and Venkatesan observed that initStates can be computed e�ciently as follows. For

a local state s, let minstate(s) be the unique minimal CGS containing s, and let succ(s) be

the local state that occurs immediately after s on the same process (if there is no such local

state, then succ(s) is unde�ned). Then initStates(g1; g2) is given by [1]:

procedure initStates(g1; g2)
var i; S;
S := ;
for i := 1 to N
if g1(i) 6= g2(i) ^ :(9g 2 S : g � minstate(succ(g1(i)))) then
insert(S;minstate(succ(g1(i))))

endif

rof ;
return S

(10)

Computing minstate. Our algorithm for computing minstate is similar to our algorithm

for computing the initial CGS. It relies on the following property of PossConjAlg: if PossConjAlg(�)

is started from a global state g (i.e., for all i, local states of process i that occur before g(i) are

ignored), and if the remainder of the computation satis�es Poss
db
!�, then PossConjAlg(�)

�nds the unique minimal CGS greater than g and satisfying �. For a global state g and a

local state s, let g[i 7! s] denote the global state that is the same as g except that the local

state of process i is s. A simple way to compute minstate(s) is to call PossConjAlg(true)

starting from the global state g0[pr(s) 7! s], where g0 is the initial CGS. An optimization

is sometimes possible. Consider a call minstate(s2). If minstate has not previously been

called with a local state of pr(s2) as argument, then the optimization does not apply, and

minstate is computed as described above. Otherwise, let s1 be the argument in the previous

call to minstate on a local state of pr(s2). Observe that s1 occurred before s2, because: (1)

minstate is called only from initStates, and initStates is called on a non-decreasing chain

of CGSs (this is a property of the algorithm in Figure 4 below), and (2) (assuming short-

circuiting evaluation of ^ in initStates) initStates(g1; g2) calls minstate(succ(g1(i))) only if

g1(i) 6= g2(i). Since s1 occurred before s2, minstate(s1) � minstate(s2). So, we can start

PossConjAlg(true) from global state minstate(s1)[pr(s) 7! s] instead of g0[pr(s) 7! s]. This
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leads to the following algorithm. For each i, old(i) contains the result of the previous call to

minstate on a local state of process i; initially, old(i) is set to g0.

procedure minstate(s)
old(pr(s)) := the CGS returned by PossConjAlg(true) started from old(pr(s))[pr(s) 7! s];
return old(pr(s))

Depth-�rst search of fragment of sublattice. Since a CGS may have multiple prede-

cessors in the lattice of CGSs, the search algorithm needs (for e�ciency) some mechanism to

ensure that each CGS is explored only once. A straightforward approach is to maintain a set

containing the CGSs that have been visited so far. However, this may be expensive in both

space and time. Alagar and Venkatesan [1] proposed the following clever alternative. Intro-

duce a total ordering <idx on CGSs, de�ned by: g1 <idx g2 if index(g1) is lexicographically

smaller than index(g2), where for a global state g, index(g) is the tuple hk1; : : : ; kni such
that g(i) is the ki'th local state of process i. During the depth-�rst search, explore a CGS g

only from the immediate predecessor (with respect to �) of g that is maximal (among the

immediate predecessors of g) with respect to <idx . This leads to the algorithm in Figure 3,

where for a CGS g, pred(g) is the set of immediate predecessors of g in the lattice of CGSs.

To compute pred(g): for each process i, check whether moving process i back by one local

state yields a CGS, and if so, include the resulting CGS in the set.

Putting these pieces together yields the on-line detection algorithm in Figure 4. All local

states \after" g0 (i.e., local states s such that g0(pr(s)) occurs before s) are handled by the

\On receiving s from process i" statement, even though some of these local states might

have been received before the initial CGS was found.

Recall that a process sends a local state to the monitor when that local state ends. This

is natural (because  
db
! depends on when local states end) but can delay detection. One

approach to bounding and reducing this delay is for a process that has not reported an event

to the monitor recently to send a message to the monitor to report that it is still in the same

local state (as if reporting execution of skip). Another approach, described in [23], requires

a bound on message latency: at each instant, the monitor can use its own local clock and

this bound to determine a lower bound on the ending time of the last local state it received

from a process.

5.2.1 Complexity

To analyze the time complexity, we consider separately the cost of all invocations of minstate

and the cost of all other operations. In e�ect, for each process, the calls to minstate cause

PossConjAlg algorithm to be executed N times (once for each process) on (at worst) the
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procedure depthFirstSearch(g; g1; g2)
if �(g) then
return(true)

else

for i := 1 to n
if g(i) 6= g2(i) then

g0 := g[i 7! succ(g(i))];

if consis
db
!(g0) then

S := fp 2 pred(g0) j g1 � pg;
if g is maximal in hS;<idx i then
if depthFirstSearch(g0; g1; g2) then
return(true)

endif

endif

rof

endif ;
return(false)

Figure 3: Algorithm for depth-�rst search.

entire computation. Thus, the total cost of calls to PossConjAlg from minstate, and hence

the total cost of calls to minstate, is O(EN2 logN). The total cost of all executions of

the while loop in Figure 4 is O(EN3), since: (1) evaluating the loop condition takes time

O(N2), and the condition is evaluated at most once for each of the O(NE) local states;

(2) the loop body is executed at most once for each of the O(NE) local states, and each

execution takes constant time. The total cost of all executions of the body of the for loop in

Figure 4 is O(jCGS db
!(c)jN2), since the depth-�rst search takes O(N2) time per CGS, since

evaluating pred takes O(N2) time. Each call to initStates takes O(N3) time (excluding the

cost of calls to minstate), because: (1) evaluating � takes O(N) time, and (2) � may be

evaluated O(N2) times, because of the for loop and the existential quanti�er. The total

cost of all calls to initStates is O(N4E), since initStates is called at most once per local

state. Summing these contributions, we conclude that the worst-case time complexity of the

algorithm is O(jCGS db
!(c)jN2 + EN4).

jCGS db
!(c)j depends on the rate at which events occur relative to the error between clocks.

To simplify the complexity analysis, suppose: (1) the interval between consecutive events

at a process is at least � , (2) the error between clocks is known to be at most ", and (3)

the interval timestamp on an event e is given by C1(e) = t � " and C2(e) = t + ", where

t is the value of the local clock of machine pr(e) when e occurred. Then, for every event
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Initialization Phase :
g0 := the CGS returned by PossConjAlg(true); (� g0 is the initial CGS �)
g2 := g0;

For all local states s such that g0(pr(s)) occurs before s:
On receiving s from process i:
append(qi; x);
g1 := g2;

while (9j : :empty(qj) ^ consis
db
!(g2[j 7! head(qj)])) (� construct largest CGS �)

g2(j) := head(qj);
removeHead(qj)

endwhile;
for s in initStates(g1; g2)
if depthFirstSearch(g; g1; g2) then

report Poss
db
!� and exit

endif

rof

Figure 4: Algorithm for detecting Poss
db
!�.

e, C2(e)�C1(e) = 2". If � > 2", then each local state is concurrent with at most 3 local

states of each other process, so each local state is in at most O(3N�1) CGSs, so there are

O(3NE) CGSs, so the worst-case time complexity of the algorithm is O(3NEN2). If � � 2",

then each local state is concurrent with at most d(4" + �)=�e + 1 local states of each other

process, so there are O((d4"=�e + 2)N�1E) CGSs, so the worst-case time complexity of the

algorithm is O((d4"=�e + 2)N�1EN2). In both cases, the worst-case time complexity of

detecting Poss
db
! is linear in E, which is normally much larger than N ; in contrast, the

worst-case time complexity of general algorithms for detecting Poss
hb
! and Def

hb
! is 
(EN ).

A more realistic complexity analysis requires considering distributions of inter-event

times, rather than simply �xing a minimum value. Speci�cally, we consider distributed

computations with inter-event times selected from a normal (i.e., Gaussian) distribution

with mean � and standard deviation
p
� (negative numbers selected from the distribution

were ignored). For simplicity, we continue to assume a �xed bound " on the error between

clocks. The number of CGSs then depends on N , E, and the ratio �=". As in the cases

analyzed above, the number of CGSs scales linearly with E; this is illustrated by the graph

in Figure 5. Figure 6 plots the number of CGSs vs. �=" and N . One can see that when �="

is large, the number of CGSs increases slowly (roughly linearly) with N ; when �=" is small,

the number of CGSs increases exponentially with N .
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Figure 5: Number of CGSs vs. E, for �=" = 10 and N = 4.
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Figure 6: Left: Number of CGSs vs. �=" and N , for E = 100, with �=" ranging from 6 to
50. Right: Number of CGSs vs. �=" and N , for E = 100, with �=" from 2 to 50. Note that
the vertical scales in these two graphs are very di�erent.

5.3 General Algorithm for Def
db
!

The detection algorithm forDef
hb
!� in [6, 23] can be adapted to detect Def

db
!� by (roughly)

replacing each condition of the form e1
hb! e2 with e1

db! e2. That algorithm divides the lattice
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into levels. The level of a local state in a local computation is the number of local states

preceding it in that computation. The level of a global state g is the sum of the levels of

the constituent local states. Level ` of the lattice of CGSs contains the CGSs with level

`. Following [6, 23], we give an algorithm in which the monitor constructs one level of the

lattice of CGSs at a time. Constructing one level of the lattice at a time is unnecessary

and sometimes delays detection of a property; this construction is used only to simplify the

presentation.

The algorithm used by the monitor to detectDef
db
!� is given in Figure 7. The lowest level

of the lattice contains only the initial CGS. The while loop maintains the following invariant:

last contains CGSs that are reachable from the initial CGS without passing through a CGS

satisfying �. In line (y) of the algorithm, the monitor considers each global state g in

last and each process i, and checks whether the local state succ(g(i)) is concurrent with

the local states in g of all the other processes. (The monitor waits for the local states

succ(g(1)); : : : ; succ(g(N)), if they have not already arrived.) If so, the monitor adds g[i 7!
succ(g(i))] to current if it is not already in current .

g := the CGS returned by PossConjAlg(true); (� �nd the initial CGS �)
last := fgg;
remove all CGSs in last that satisfy �;
while last 6= ;

current := CGSs that are immediate successors of CGSs in last ; (y)
remove all CGSs in current that satisfy �;
last := current ;

endwhile;

report Def
db
!�

Figure 7: Algorithm for detecting Def
db
!�.

Since � could be false in all CGSs, and because we assume that the cost of evaluating

� on each global state is a constant, the worst-case asymptotic time complexity of this

algorithm equals the worst-case asymptotic time complexity of constructing CGS
db
!. For

each CGS, the algorithm advances each of the N processes and, if the resulting global state

g is consistent, the algorithm checks whether g is already in current . Let Tm denote the total

cost of these membership checks; then constructing CGS
db
!(c) takes �(jCGS db

!(c)jN2 + Tm)

time. Tm depends on the data structure used to implement current . With a naive array-

based implementation, each check has constant cost, so Tm is �(EN), due to the cost of
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initializing the arrays, so the worst-case time complexity of the algorithm is �(ENN2).9

However, this implementation has a serious disadvantage: the time complexity remains


(EN ) even if the actual number of CGSs is much smaller than EN , which is typically the

case. Thus, generally preferable alternatives are to implement current as a dictionary, using

a hash table or balanced trees. Let W (c) be the width of the lattice CGS
db
!(c), i.e., the

maximum size of a level of that lattice. If balanced trees are used, each membership check

has cost O(logW (c)), so the worst-case time complexity is O(jCGS db
!(c)j(N2+N logW (c))).

Both jCGS db
!(c)j and W (c) depend on the rate at which events occur relative to the error

between clocks. To simplify the complexity analysis, we introduce � and ", with the same

meanings as in Section 5.2.1. If � > 2", then there are O(3NE) CGSs (as above), and W (c)

is O(3N), so the worst-case time complexity of the algorithm is O(3NEN2). If � � 2", then

there are O((d4"=�e + 2)N�1E) CGSs (as above), and W (c) is O((d4"=�e + 2)N�1), so the

worst-case time complexity is O((d4"=�e + 2)N�1EN2 log(d4"=�e + 2)). In both cases, the

worst-case time complexity of detecting Def
db
! is linear in E; in contrast, the worst-case time

complexity of general algorithms for detecting Def
hb
! is 
(EN ).

For a more realistic complexity analysis, we consider the same distribution of inter-event

times and the same bound on error between clocks as in the last paragraph of Section 5.2. Of

course, the number of CGSs is still characterized by Figures 5 and 6. It is easy to argue that

under these assumptions, the expected size of each level is independent of E and depends

in the same fashion as the number of CGSs on �=" and N . Thus, graphs showing the

dependence of W (c) on �=" and N would have the same shape as the graphs in Figure 6.

6 Detection Based on a Weak Event Ordering: Inst

The \possibly occurred before" ordering on events is de�ned by: e1
pb! e2 i� :(e2 db! e1).

Using (3), this induces a relation  
pb
! on local states, with the interpretation: s  

pb
! s0 if

s possibly ended before s0 started. Two local states are strongly concurrent if they are not

related by  
pb
!; such local states must overlap in time. We call elements of CGS

pb
! strongly

consistent global states (SCGSs).10 For example, Figure 8 shows hCGS pb
!(c1);�i; recall that

computation c1 is shown in Figure 1. Note that hCGS pb
!(c1);�i is a total order. More

generally, we can show:

Theorem 5. For all computations c, hCGS pb
!(c);�i is a total order and therefore a lattice.

9In on-line detection, E is not known in advance, so the arrays may need to be resized (e.g., doubled)
occasionally. This does not change the asymptotic time complexity.

10Fromentin and Raynal call elements of CGS
hb

! inevitable global states [9].
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Figure 8: The lattice hCGS pb
!(c1);�i.

Proof. Suppose not, i.e., suppose there exist a computation c, two global states g; g0 2
CGS

pb
!(c), and two processes i and j such that g(i) 

pb
! g0(i) and g0(j) 

pb
! g(j). By de�nition

of CGS
pb
!(c), :(g(i)  pb

! g(j)), so C2(S(g(j))) < C1(T (g(i))). By hypothesis, g(i)  
pb
!

g0(i), so C1(T (g(i))) � C2(S(g0(i))), so by transitivity, C2(S(g(j))) < C2(S(g0(i))). By

de�nition of CGS
pb
!(c), :(g0(j) pb

! g0(i)), so C2(S(g0(i))) < C1(T (g0(j))), so by transitivity,

C2(S(g(j))) < C1(T (g0(j))). By hypothesis, g0(j)  
pb
! g(j), so C1(T (g0(j))) � C2(S(g(j))),

so by transitivity, C2(S(g(j))) < C2(S(g(j))), which is a contradiction.

It follows thatPoss
pb
! andDef

pb
! are equivalent, i.e., for all computations c and predicates

�, c satis�es Poss
pb
!� i� c satis�es Def

pb
!�. We de�ne Inst (\instantaneously") to denote

this modality (i.e., Poss
pb
! and Def

pb
!). Informally, a computation satis�es Inst� if there

is a global state g satisfying � and such that the system de�nitely passes through g during

the computation.

Theorem 1 does not apply to
pb!, because:

Lemma 6.
pb! is not a partial ordering.

Proof. Consider the computation in Figure 9. The actual orderings between e22 and e12 and

between e22 and e13 cannot be determined from the interval timestamps, so e13
pb! e22 and

e22
pb! e12. Since also e12

pb! e13,
pb! contains a cycle.

In light of this, it is not surprising that a minimal increase in hCGS pb
!(c);�i does not necessar-

ily correspond to advancing one process by one event. For example, consider the computation

c1 in Figure 1. As shown in Figure 8, two processes advance between the the second and

third SCGSs of c1. In some computations, a minimal increase hCGS pb
!(c);�i corresponds

to an advance of multiple events per process. Such a computation c2 is shown in Figure 9.

There is no local state of process 2 with which s12 de�nitely overlaps, so s
1
2 is not part of any

SCGS, and process 1 advances by two events between consecutive SCGSs of c2. Computation

c2 has only two SCGSs: hs11; s21i and hs13; s22i.
Since a minimal increase in hCGS pb

!(c);�i does not necessarily correspond to advancing

one process by one event, the algorithms in Section 5 cannot be adapted easily to detect Inst.

Our algorithm for detecting Inst is based on Fromentin and Raynal's algorithm for detecting

Properly in asynchronous systems [9, 10]. The de�nition of Properly, generalized to an

arbitrary ordering on events, is:
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Figure 9: A computation c2.

Properly: A computation c satis�es Properly,!� i� there is a global state satisfying

� and contained in every path of hCGS ,!(c);�i.

Theorem 7. Properly
db
! is equivalent to Inst.

Proof. It su�ces to show that a global state g is in CGS
pb
!(c) i� it is contained in every

maximal path of CGS
db
!(c). The proof is based on Theorem IGS of [9], which states that

a global state g is contained in every maximal path of hCGS hb
!(c);�i i� (8i; j : S(g(i)) hb!

T (g(j))_g(i) = last(c(i))), where last returns the last element of a sequence. A closely anal-

ogous proof shows that a global state g is contained in every maximal path of hCGS db
!(c);�i

i� (8i; j : S(g(i)) db! T (g(j))), which by de�nition of
db! is equivalent to

(8i; j : i 6= j ) C2(S(g(i))) < C1(T (g(j)))): (11)

The only signi�cant di�erence involves the last local state of each process. Informally, the

disjunct g(i) = last(c(i)) is needed in Fromentin and Raynal's analysis because the global

state gf containing the last local state of each process appears in every maximal path of

hCGS hb
!(c);�i, even though the system might not pass through gf in real-time, since the

processes might terminate at di�erent times. This peculiarity does not arise when real-time

timestamps are used, so (11) does not need a disjunct dealing specially with the last local

state of each process. Expanding the de�nition of CGS
pb
!(c) and simplifying yields (11).

As an example of this equivalence, note that hCGS pb
!(c1);�i in Figure 8 contains exactly

the CGSs that are contained in every path of hCGS db
!(c1);�i in Figure 1.

A straightforward adaptation of Fromentin and Raynal's algorithm for detectingProperly
hb
!

yields an algorithm for detecting Inst with worst-case time complexity O(N3E) (the same

as Fromentin and Raynal's algorithm). Optimizations similar to those presented in Section

5.1 reduce this to O((N logN)E). Expanding the de�nition of CGS
pb
!(c), a global state g is

strongly consistent i� (8i; j : i 6= j ) C1(T (g(i))) > C2(S(g(j)))). To check this condition

e�ciently, we introduce priority queues p1 and p2, whose contents are determined by the

following invariants:
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J1: For each process i such that qi is non-empty, p1 contains a record with key C1(T (head(qi)))
and satellite data hi; ptri, where ptr is a pointer to the record with satellite data i in

p2. p1 contains no other records.

J2: For each process i such that qi is non-empty, p2 contains a record with key C2(S(head(qi)))
and satellite data i. p2 contains no other records.

We use p1 and p2 to de�ne a function SC(p1; p2) that e�ciently tests whether the heads of

the non-empty queues are pairwise strongly concurrent. Taking into account the possibility

that C1(T (g(i))) < C2(S(g(i))) for some i, we obtain

SC(p1; p2)
�

= empty(p1)

_ key(getMin(p1)) > key(getMax(p2))

_ (�1(data(getMin(p1))) = data(getMax(p2)) ^ countMax(p2)=1);

(12)

where countMax(p) is the number of records containing the maximal value of the key in

priority queue p, and data(hk; di) = d and �1(hi; ptri) = i. Thus, the following procedure

makeSC (\make Strongly Concurrent") loops until the heads of the non-empty queues are

strongly concurrent:

procedure makeSC ()
while :SC(p1; p2)
hk; hi; ptrii := extractMin(p1);
remove record for i (i.e., record �ptr) from p2;
removeHead(qi);
if :empty(qi) then
add records for i to p1 and p2 to maintain invariants J1 and J2;

endif

endwhile

where extractMin(p) is like getMin except that it removes the record it returns.

The optimized algorithm for detecting Inst appears in Figure 10, where head2(q) returns

the second element of a queue q. When a SCGS g is found, if g does not satisfy �, then

the monitor starts searching for the next SCGS by advancing some process j such that this

advance yields a CGS (i.e., an element of CGS
db
!). If at �rst no process can be so advanced

(e.g., if each queue qi contains only one element), then the monitor waits for more local states

to be reported. It follows from the de�nitions of CGS
db
! and CGS

pb
! that, if advancing some

process yields a CGS, then advancing some process j such that C1(S(head2(qj))) is minimal

yields a CGS. Thus, we reduce the time needed to �nd such a process j by maintaining a

priority queue p3 satisfying the invariant:
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J3: For each process i such that qi is non-empty, p3 contains a record with key C1(S(head2(qj)))
and satellite data i. p3 contains no other records.

Thus, in line (y), it su�ces to take j = head(p3). Testing whether g[j 7! head2(qj)] is

consistent can be done in O(logN) time by temporarily updating p1 and p2 as if process j

had been advanced and then using (9).

We analyze the worst-case time complexity by summing the times spent inside and outside

of makeSC. Each iteration of the while loop in makeSC takes O(logN) time (because each

operation on priority queues takes O(logN) time) and removes one local state. The computa-

tion contains O(NE) local states, so the total time spent inside makeSC is O((N logN)E).

The total time spent in the code outside makeSC is also O((N logN)E), since there are

O(NE) SCGSs (this is a corollary of Theorem 7), and each local state is considered at most

once and at O(logN) cost in the wait statement. Thus, the worst-case time complexity of

the algorithm is O((N logN)E).

On receiving x from process i:
append(qi; x);
if head(qi) = x then

add records for i to p1 and p2 to maintain invariants J1 and J2;
found := true;
while found

makeSC ();
if (9 i : empty(qi)) then

found := false
else (� found a SCGS �)

g := the global state (�i: head(qi)); (� g is a SCGS �)
if g satis�es � then

return g
else

wait until there exists j such that g[j 7! head2(qj)] is in CGS
db
!(c); (y)

remove records for j from p1 and p2;
removeHead(qj);
add records for j to p1 and p2 to maintain invariants J1 and J2

endif

endif

endwhile

endif

Figure 10: Algorithm for detecting Inst�.
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7 Sample Applications

7.1 Coherence Protocols

Coherence of shared data is a central issue in many distributed systems, including distributed

�le systems, distributed shared memory, and distributed databases. A typical invariant

maintained by a coherence protocol is:

cohrnt : if one machine has a copy of a data item in write mode, then no other machine

has a valid copy of that data item.

As part of testing and debugging a coherence protocol, a monitor might be used to issue

a warning if Poss
db
! :cohrnt is detected and report an error if Def

db
! :cohrnt is detected.

A computationally cheaper but sometimes less informative alternative is to monitor only

Inst:cohrnt and report an error if it is detected.

A detection algorithm based on happened-before could be used instead, if the system can

be modi�ed to maintain vector clocks (or for some reason maintains them already). However,

if the coherence protocol uses timers, then time acts as a hidden channel [2] (i.e., a means

of communication other than messages), so detection based on happened-before might yield

less accurate results. Timers can be used in coherence protocols to:

� obtain a lock, by broadcasting a request for a lock and, if no con
icting announcement

is received within an appropriate time interval, granting oneself the lock.

� release a lock, by associating a �nite lifetime with the lock; such a lock is called a lease

[15]. When the lifetime expires, all processes know (without further communication)

that the lock has been released.

For example, the resource allocation algorithm in [19, Section 5.1] uses timers in both of these

ways. These techniques use timers (instead of messages) for synchronization, so detection

based on happened-before is less appropriate. For example, release of a lock by one process

and acquisition of that lock by another process need not be related by happened-before, so

Poss
hb
! :cohrnt may be detected even when coherence was maintained and Poss

db
! :cohrnt

would not be detected.

Clock-based monitoring is useful even for coherence protocols that provide weaker guar-

antees than cohrnt . For example, in the Sun Network File System (NFS) [29, Section 17.6.2],

�le information is cached. Timers are used to limit staleness: if the cached information is

needed again after the timer expires, the client asks the server whether the cached informa-

tion is still valid. Since this lock-free approach does not enforce the one-copy �le-sharing

semantics that is traditional in UNIX, it is useful to monitor the system to detect how often
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violations of one-copy semantics are seen by applications. For example, the detection algo-

rithm for Inst can easily be adapted to count (instead of just detect) SCGSs satisfying the

predicate: some process is reading cached information and some other cache contains a more

recent version of that information. In NFS, the lifetime of cached data is typically tens of

seconds, which is three orders of magnitude larger than typical clock synchronization error

in a LAN, so this approach should detect most violations of one-copy semantics.

7.2 Concurrency Control for Distributed Transactions

Leases can also be used for concurrency control in distributed database systems, to reduce

the number of messages needed to commit read-only transactions, as described in [22, Section

7]. The idea is that a read-only transaction acquires leases as it uses data objects. If the

transaction completes before any of those leases expires, then the coordinator commits the

transaction, without further communication. As part of testing and debugging such a system,

one might use a monitor to detect violations of the invariant: when a transaction commits,

it holds locks on all of the objects it uses. Since commit events and expirations of leases may

be unrelated by happened-before, detection based on Poss
hb
! or Def

hb
! may report violations

even when no violation occurred and detection based on real-time clocks would not report a

violation.
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Appendix

Proof of Theorem 3. It follows immediately from the de�nitions that
db! is process-wise-

total. We need to show that
db! is irre
exive, acyclic, and transitive. Irre
exivity is obvious.

For transitivity, we suppose e1
db! e2 and e2

db! e3, and show e1
db! e3. First consider the case

pr(e1) = pr(e3). In this case, it su�ces to show that e1 occurred before e3. If pr(e2) = pr(e1),

then the desired result follows from transitivity of \occurred before". If pr(e2) 6= pr(e1), then

using TS1, the hypothesis e1
db! e2, TS1 again, and �nally the hypothesis e2

db! e3, we have

the chain of inequalities C1(e1) � C2(e1) < C1(e2) � C2(e2) < C1(e3), so C1(e1) < C1(e3), so

by TS2, e1 occurred before e3. Next consider the case pr(e1) 6= pr(e3). Note that :(pr(e1) =
pr(e2) ^ pr(e2) = pr(e3)). If pr(e2) 6= pr(e1), then it is easy to show (by case analysis on

whether pr(e2) = pr(e3)) that C2(e1) < C1(e2) � C1(e3), so C2(e1) < C1(e3), as desired. If

pr(e2) 6= pr(e3), then it is easy to show (by case analysis on whether pr(e2) = pr(e1)) that

C2(e1) � C2(e2) < C1(e3), so C2(e1) < C1(e3), as desired.

Given transitivity, to conclude acyclicity, it su�ces to show that there are no cycles of

size 2. We suppose e1
db! e2 and e2

db! e1, and derive a contradiction. If pr(e1) = pr(e2),

then the fact that \occurred before" is a total order on the events of each process yields the

desired contradiction. If pr(e1) 6= pr(e2), then using TS1, the hypothesis e1
db! e2, TS1 again,

and �nally the hypothesis e2
db! e1, we obtain the chain of inequalities C1(e1) � C2(e1) <

C1(e2) � C2(e2) < C1(e1), which implies C1(e1) < C1(e1), a contradiction.
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