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Abstract

Leader election is an important problem in distributed computing. Garcia-Molina's Bully Algo-

rithm is a classic solution to leader election in synchronous systems with crash failures. This paper

shows that the Bully Algorithm can be easily adapted for use in asynchronous systems. First, we

re-write the Bully Algorithm to use a failure detector, instead of explicit time-outs; this yields a mod-

ular solution to leader election in synchronous systems. Second, we show that minor modi�cations to

that algorithm yield a simple and e�cient solution to leader election in asynchronous systems with

crash failures. We point out a aw in Garcia-Molina's speci�cation of leader election in asynchronous

systems, propose a revised speci�cation, and show that the modi�ed Bully Algorithm satis�es this

speci�cation.
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1 Introduction

In a classic paper, Garcia-Molina speci�es the leader election problem for synchronous and asynchronous

distributed systems with crash failures and gives an elegant algorithm for each type of system; these

algorithms are called the Bully Algorithm and Invitation Algorithm, respectively [GM82]. Leader

election is an important problem in fault-tolerant distributed computing. It is closely related to the

primary-backup approach (since choosing a primary replica is like electing a leader), an e�cient form of

passive replication. It is also closely related to group communication [Pow96], which (among other uses)

provides a powerful basis for implementing active replication. For example, the group communication

system in Amoeba [KT91, KT92] uses Garcia-Molina's Invitation Algorithm [GM82] to recon�gure a

group after crashes. As another example, the group membership algorithms in Horus [FvR95, vRBM96]

and Ensemble [Hay97] can be seen as a combination of Garcia-Molina's Bully Algorithm (for handling

crashes) and Invitation Algorithm (for merging partitions of a group).

This paper shows that the Bully Algorithm can be easily adapted for use in asynchronous systems.

The resulting algorithm, which we call the Asynchronous Bully Algorithm, is simple and message-

e�cient: in common cases, it uses half as many messages as the Invitation Algorithm. We obtain the

Asynchronous Bully Algorithm in two steps. First, we re-write the Bully Algorithm to use a failure

detector [CT94], instead of explicit time-outs. A failure detector is a module that reports crashes of

other nodes. Re-writing the Bully Algorithm in this way has three bene�ts. First, the modularity
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facilitates use of di�erent failure detection mechanisms in di�erent systems. Second, it helps clarify the

ways in which synchrony assumptions are used, since only the implementation of the failure detector

depends on them. Third, although the re-written algorithm is still intended for synchronous systems,

it is easily adapted for use in asynchronous systems.

The speci�cation of leader election in synchronous systems says (roughly) that the system always

reaches a state in which all operational nodes agree on the leader. In asynchronous systems (with

crash failures), agreement problems of this kind are unsolvable [FLP85], so a weaker speci�cation must

be used. Garcia-Molina gives such a speci�cation, by incorporating the idea of groups: a group is a

collection of nodes that agree on a leader. However, Garcia-Molina's speci�cation is unintentionally

strong, since contrary to his claim, the Invitation Algorithm does not satisfy it. Furthermore, Garcia-

Molina's speci�cation is undesirably strong for some systems, since it sometimes forces nodes that

cannot directly communicate to be in the same group. We propose a new speci�cation for leader

election in asynchronous systems, which requires that the number of groups not exceed the number of

fully-connected components needed to cover the reachability graph. This speci�cation allows nodes that

cannot directly communicate to be in the same group, but never forces this.

Finally, we adapt the Bully Algorithm for use in asynchronous systems. The e�ect of asynchrony

is reected by considering failure detectors that sometimes raise \false alarms" (i.e., report failure of

an operational node). Only minor modi�cations are needed in the other parts of the algorithm to deal

with these false alarms. We show that the modi�ed algorithm, which we call the Asynchronous Bully

Algorithm, satis�es our speci�cation.

2 Failure Detectors

The failure detector (FD) module detects and reports crashes. When the FD detects that node i is

down, it raises a signal hDownSig; ii. These signals are the only outputs of the FD; the FD does not

report recoveries, since those are easily detected by the application when it receives a message from a

recovering node.

The FD has inputs StartFD(i) and StopFD(i), which start and stop, respectively, monitoring of node

i. If node i is already being monitored, StartFD(i) \resets" the monitoring of node i. We illustrate

the meaning and usefulness of this with an example. Suppose node i crashes, and the FD on node j

reports this by raising hDownSig; ii. Suppose node i then recovers and sends a message to node j. Node

j receives that message and \believes" that node j has recovered. Suppose node i crashes again. The

FD on node j, having already reported that node i is down, would not normally be required to raise

hDownSig; ii again. If the client (of the FD) on node j wants to receive updated information about

the status of node i, it can call StartFD(i) to \reset" monitoring of node i. More precisely, after an

invocation of StartFD(i), if node i is down, then the FD is required to raise hDownSig; ii, regardless of

whether it raised hDownSig; ii before the most recent invocation of StartFD(i). Furthermore, to ensure

that the FD reports up-to-date information, we require that the client receives hDownSig; ii only if node

i is down after the most recent invocation of StartFD(i).
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We formally specify the behavior of the FD using linear-time temporal logic [MP92] with the fol-

lowing predicate symbols:

upi holds when node i is operational.

start(i) holds when the client calls StartFD(i).

stop(i) holds when the client calls StopFD(i).

downSig(i) holds when the client receives signal hDownSig; ii.

In synchronous systems with reliable communication, complete and accurate failure detection is

possible. Completeness means that if node i is being monitored and is down, then eventually node i

recovers, or failure of node i is reported, or the client calls StartFD(i) or StopFD(i). Formally, for all

nodes i:1

2(start(i) ) 2(:upi ) 3(upi _ downSig(i) _ start(i) _ stop(i)))): (1)

The disjunct upi in (1) means that the FD is not required to report that a node is down if the node

eventually recovers; this simpli�es the implementation of the FD, especially if rapid sequences of failures

and recoveries are possible.

Accuracy means that hDownSig; ii is received only if node i was actually down after the most recent

invocation of StartFD(i). This can be expressed concisely in temporal logic using the temporal operator

W (read \unless") [MP92]; informally, pW q means that either p holds henceforth, or q eventually holds

and p holds continuously until q holds. Formally, the accuracy requirement is, for all nodes i:

2(start(i) ) :downSig(i)W :upi) ^ 2(stop(i) ) :downSig(i)W start(i)): (2)

The second conjunct just says that hDownSig; ii is not received when node i is not being monitored.

The latency of a FD is the maximum time from when a node crashes and is being monitored until

hDownSig; ii is received by the FD's client, provided the crashed node does not recover within that

time. For example, suppose the FD has a latency of 3 time units. If node i crashes at time 45, and

node j calls StartFD(i) at time 50, and node i remains down until at least time 53, then node j receives

hDownSig; ii by time 53.

One motivation for encapsulating the failure detection mechanism in a module with a well-de�ned

interface and semantics is to facilitate use of di�erent failure detectors in di�erent situations. For

example, the simplest implementation of a FD is for each node to periodically send \Are you alive?"

messages to each node being monitored, and to raise hDownSig; ii if a reply is not received in the

expected time. A slightly more complicated approach is for each node i, when it starts monitoring node

j, to tell node j to periodically send \I'm alive" messages to node i. This uses fewer messages and

reduces the latency of the FD. A more complicated approach, based on an attendance list [Cri91, CS95],

1The temporal operator 2 means \henceforth" or \always", and the temporal operator 3 means \eventually". See
[MP92] for details.
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is to construct a logical ring and periodically circulate a token around it. If a node does not see the

token within the expected time, then one or more failures have occurred; \Are you alive?" messages

can be used to pinpoint the failures. This approach uses fewer messages if multiple nodes are being

monitored by multiple nodes, though at the expense of increased detection latency.

3 Speci�cation of Leader Election for Synchronous Systems

The speci�cation has two parts, corresponding roughly to safety and liveness. The safety requirement

asserts that nodes never disagree on the leader. We assume each node has a local variable ldr indicating

its leader. Since it is impossible to make all nodes change ldr at the same instant, we introduce another

variable, status . When status equals Norm, the node is in the normal mode of operation, and the

value of ldr is signi�cant; when status has any other value, a new leader is being elected. We require

agreement only among nodes whose status is Norm. We use subscripts to distinguish local variables of

di�erent nodes; for example, status i and ldr i are local variables of node i. Thus, we require:

SLE1: At all times, for all operational nodes i and j, if status i = Norm and statusj = Norm, then

ldr i = ldr j .

Liveness requires that the system eventually enter a state in which the leader is operational and all

operational nodes have status Norm; such states are characterized by the predicate ldrElected , de�ned

by

ldrElected = (8i : status i = Norm ^ upldr i
): (3)

When must such a state be reached? Repeated crashes and recoveries can prevent any protocol from

making progress. Thus, we require:

SLE2: For a given system, there exists a constant c such that if no failures or recoveries occur for a

period of at least c, then by the end of that period, the system reaches a state satisfying ldrElected .

Furthermore, the system remains in that state as long as no failures or recoveries occur.

SLE1 and SLE2 are equivalent to Garcia-Molina's speci�cation (Assertions 1 and 2 in [GM82]), except

that we have simpli�ed the problem slightly by omitting discussion of the re-distribution application-

level tasks that might be needed following election of a new leader. Restoring this aspect of the problem

is straightforward.

4 The Bully Algorithm for Synchronous Systems

The Bully Algorithm is designed for systems with the following properties. The system comprises a

�xed set of nodes and a communication network. Nodes may crash and recover; other types of failure

are assumed not to occur. Each node has access to a small amount of stable storage (i.e., storage whose

contents survives crashes). Nodes communicate by sending messages. Communication is FIFO. For

synchronous systems, we assume also that communication is reliable.
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We use integers to identify nodes: the set of node identi�ers is

ID = f1; 2; : : : ; Ng; (4)

where N is the number of nodes. The basic idea in the Bully Algorithm is that the operational node

with the highest priority becomes the leader. For simplicity, we use node identi�ers as priorities: lower

numbers correspond to higher priorities, as in UNIX.2

Each node i has a status, initially Norm. If node i detects failure of its leader, then it sets its status

to Elec1, indicating that it is in stage 1 of organizing an election. In stage 1, node i checks whether nodes

in lesser(i) are operational. If some of them are operational, node i waits, giving those higher-priority

nodes a chance to become leader. If none of them are operational (i.e., if node i receives hDownSig; ji

for all j 2 lesser(i)), then node i sets its status to Elec2, indicating that it is in stage 2 of organizing an

election. In stage 2, node i prepares nodes in greater(i) for a new leader by sending them Halt messages.

When a node receives a Halt message, it sends an Ack message and sets its status to Wait, indicating

that it is waiting for the outcome of an election. If a node with status Wait detects failure of the node

that halted it, then it starts an election itself.

When a node i organizing stage 2 of an election has received an acknowledgment from or failure

noti�cation for each node in greater(i), then it becomes the leader, setting its status to Norm and

sending a Ldr message to each node in greater(i) from which it received an acknowledgment. When

those nodes receive Ldr messages from node i, they accept node i as the new leader and set their status

to Norm.

Each of the messages described above is tagged with an election identi�er, indicating which election

the message is part of. An election identi�er is a tuple containing the identi�er of the node that started

the election, that node's incarnation number (which is kept on stable storage and incremented on each

recovery), and a sequence number (which is incremented for each election). If an Ack or Ldr message

arrives that doesn't contain the expected election identi�er, the message is ignored.

The Bully Algorithm, re-written to use failure detectors, appears in Figure 1. We call this the

BullyFD Algorithm. It is written in reactive style, using the On statement to specify code to be

executed when a message or signal is received. The Periodically(�) statement speci�es code to be

executed periodically, with period � . Each node starts by executing the On recovery statement.

We use the following notation. The modi�er stable indicates that a variable is stored on stable

storage. The statement send m to j sends a message m to node j. For a set S of nodes, send m to S

abbreviates a loop that sends m to each node in S. Atomicity is not implied: the sender might send m

to a subset of S and then crash. Similarly, for a set S of nodes, StartFD(S) and StopFD(S) abbreviate

the obvious loops.

The expressions S � x and S 	 x denote set S with element x inserted or removed, respectively.

The C-style assignment statements S�=x and S	=x update the value of S by adding or removing

2In [GM82], higher numbers correspond to higher priorities. Our convention has the (potential) bene�t of allowing new
nodes to be integrated without changing the leader or the priority of other nodes.
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element x, respectively. The operator �1 returns the �rst component of a tuple.

The signi�cant di�erences between our BullyFD Algorithm and the original Bully Algorithm [GM82]

are:

1. We use a failure detector, instead of explicit time-outs. To see that StartFD and StopFD are

used correctly, note that whenever node i would be waiting for a reply from node j in the Bully

Algorithm, node j is being monitored by node i's FD in the BullyFD Algorithm. Note that

procedure Timeout in the Bully Algorithm is, in e�ect, incorporated into the code for handling

hDownSig; ji in the BullyFD Algorithm.

2. In stage 1 of an election, we check concurrently (rather than sequentially) whether the nodes in

lesser(i) are operational. This optimization is independent of the use of a failure detector but

would be awkward to express using Garcia-Molina's RPC-style communication primitive.

3. We include an election identi�er in each message, to avoid confusion caused by messages that get

delayed in the network. Outside of the FD, we do not assume a bound on message latency.

4. We omit the additional round of communication used in [GM82] to re-distribute application-level

tasks. Restoring this additional round of communication is straightforward.

Correctness of the algorithm is independent of the value of � and the values of the volative variables

when a node recovers. The proofs that the BullyFD Algorithm satis�es SLE1 and SLE2 are very similar

to the proofs of Theorems A1 and A2 in [GM82] and are therefore omitted. Only item 2 above has a

non-trivial impact on the proof, and it is easy to see from Garcia-Molina's proof that the status of the

nodes in lesser(i) can be checked in any order. For the BullyFD Algorithm, the constant c in SLE2 is

cS = max(� + 2�; �FD) + (n� 1)max(2�; �FD) + �; (5)

where � is the maximum message latency, �FD is the latency of the failure detector, and (as shown in

the pseudo-code) � is the period with which Norm? messages are sent.

5 Speci�cation of Leader Election in Asynchronous Systems

In an asynchronous system, it is impossible to satisfy SLE1 and SLE2; this follows from the FLP

impossibility result [FLP85]. Following Garcia-Molina [GM82], we weaken the safety requirement by

introducing the notion of groups. Since it is impossible to ensure that all nodes agree on the leader,

we consider algorithms that organize the system into disjoint groups such that all members of a group

agree on the group's leader. We assume each node has a local variable grp identifying the group it is

currently in. Thus, the analogue of SLE1 is:

ALE1: At all times, for all operational nodes i and j, if status i = Norm and status j = Norm and

grpi = grpj , then ldr i = ldr j.
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var status : fNorm;Elec1;Elec2;Waitg
ldr : ID
elid : ID�Nat �Nat
down : Set(lesser(i))
acks : Set(greater(i))
nextel ; pendack : Nat

stable var incarn : Nat

procedure StartStage1()
status :=Elec1
elid :=hi; incarn ;nexteli
nextel :=nextel + 1
down := ;
if i = 1 then StartStage2()
else StartFD(lesser(i)) �

On hHalt; ti from j :
Halting(t; j)

procedure Halting(t; j) :
down 	= j
StartFD(j)
elid := t
status :=Wait
send hAck; ti to j

On hDownSig; ji :
if j 2 lesser(i) then

down �= j
if (status = Norm ^ j = ldr )
_(status = Wait ^ j = �1(elid)) then
StartStage1()

else if status = Elec1 ^ down � lesser(i) then
StartStage2()

�

�

else (� j 2 greater(i) �)
if status = Elec2 ^ j = pendack then

ContinStage2()
�

�

procedure StartStage2()
status :=Elec2
acks := ;
pendack := i
ContinStage2()

procedure ContinStage2()
if pendack < N then

pendack := pendack + 1
StartFD(pendack )
send hHalt; elidi to pendack

else (� I'm the leader �)
ldr := i
status :=Norm
send hLdr; ti to acks

�

On hAck; ti from j :
if status = Elec2 ^ t = elid ^ j = pendack then

acks �= j
ContinStage2()

�

On hLdr; ti from j :
if status = Wait ^ t = elid then

ldr := j
status :=Norm
StopFD(ID	 i)
StartFD(ldr )

�

Periodically(�) :
if status = Norm ^ ldr = i then

send hNorm?; elid i to greater(i)
�

On hNorm?; ti from j :
if status 6= Norm then

send hNotNorm; ti to j
�

On hNotNorm; ti from j :
if status = Norm ^ ldr = i ^ t = elid then

StartStage1()
�

On recovery :
incarn := incarn + 1
StartStage1()

Figure 1: BullyFD Algorithm. Code executed by node i.
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ALE1 corresponds to Assertion 3 in [GM82].

If we added the requirement that there always be at most one group, then ALE1 would be equivalent

to SLE1. We allow multiple groups but require that the number of groups be as small as is reasonable.

Formalizing this requirement is slightly tricky. Garcia-Molina attempts to formalize it by requiring

(roughly) that if a set of nodes can all communicate with each other, then they end up in the same

group. To express this more precisely, we introduce some terminology, based on [CS95, Cri96]. Two

nodes are connected in a given time interval if all messages sent between them during that time interval

are delivered within � time units, where � is a known constant. Two nodes are disconnected in a given

time interval if all messages sent between them during that time interval are lost. Two nodes are

partially connected in a given time interval if they are neither connected nor disconnected during that

time interval. Garcia-Molina's Assertion 4 can be paraphrased as follows:

Assertion 4. Suppose there is a set R of nodes which are operational and pairwise connected

for the duration of an election. Suppose also that there is no superset of R with this

property. Then the election leaves the system in a state in which: (a) there is a node i in R

with status i = Norm and ldr i = i, and (b) for every other node j in R, status j = Norm and

ldr j = i and grpj = grpi.

At �rst glance, this assertion seems to require that two nodes end up in the same group only if they

are connected|in other words, this requirement seems not to specify whether nodes that are partially

connected or disconnected must end up in the same group. Surprisingly, this is not always true. To

see why, consider the system shown in Figure 2. The edge between nodes 1 and 2 indicates that those

nodes are connected. Similarly, nodes 2 and 3 are connected, but nodes 1 and 3 are disconnected.3 The

dotted lines indicate two sets R1 = f1; 2g and R2 = f2; 3g that meet the preconditions of Assertion 4.

Thus, Assertion 4 requires that nodes 1 and 2 end up in the same group, and that nodes 2 and 3 end

up in the same group, and hence that all three nodes end up in the same group, even though nodes 1

and 3 are not connected.

1 2

3

Figure 2: Example showing that Assertion 4 sometimes requires disconnected (or partially-connected)
nodes to be in the same group.

For some applications, it is desirable for a group to contain only nodes that are pairwise connected.

Thus, in some cases, Assertion 4 is an undesirably strong requirement. Furthermore, as we show in

3Garcia-Molina explicitly considers non-transitive connectivity [GM82, page 52].
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Appendix A, the Invitation Algorithm does not satisfy Assertion 4, despite Theorem A4 in [GM82].

We propose the following weaker requirement, to formalize the idea that there should be as few

groups as possible without forcing disconnected nodes to be in the same group. We say that the system

is stable in a time interval if, during that interval, no crashes or recoveries occur and every pair of nodes

is either connected or disconnected (i.e., none are partially connected). When a system is stable, we

de�ne its connectivity graph to be the undirected graph hID; Ei, where (i; j) 2 E i� nodes i and j are

connected. We require that the number of groups be at most the minimum number of fully-connected

components needed to cover the connectivity graph.4 Thus:

ALE2: For a given system, there exists a constant c such that if the system is stable for a period

of at least c, then by the end of that period, the system reaches a state satisfying ldrsElected and

such that the number of groups is at most the minimum number of fully connected components

needed to cover the system's connectivity graph. Furthermore, the system remains in that state

as long as the system remains stable.

where

ldrsElected = (8i : status i = Norm ^ up ldr i
^ grp ldr i

= grpi): (6)

Note that two fully-connected components are needed to cover the graph in Figure 2, so ALE2 is satis�ed

even if nodes 1 and 3 are in di�erent groups.

A weaker requirement, which does not constrain the number of groups in the stable con�guration,

is:

ALE20: For a given system, there exists a constant c such that if the system is stable for a period

of at least c, then by the end of that period, the system reaches a state satisfying ldrsElected .

Furthermore, the system remains in that state as long as the system remains stable.

6 Failure Detectors in Asynchronous Systems

In an asynchronous system, complete and accurate failure detection is impossible; this, too, follows from

the FLP impossibility result [FLP85]. Thus, a FD for an asynchronous system is required to satisfy

completeness requirement (1) but not accuracy requirement (2). However, we do require that when

the system is stable, failure detection is accurate, with maximum latency �FD. More precisely, if the

system is stable during the interval [t1; t2], and if hDownSig; ji is received at some time t in the interval

[t1 + �FD; t2], then j was down at some time in the interval [t� �FD; t].

In asynchronous systems, exibility in choosing an appropriate FD is important, since the uncer-

tainty of failure detection in asynchronous systems leaves many reasonable options. The FD implemen-

tations sketched in Section 2 can still be used, with time-out periods based the latency within which

most messages are delivered. The choice of time-out period depends on the cost to the application of

4A set of fully-connected components cover a graph if they contain every node in it.
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inaccurate failure detections. In systems where this cost is particularly high, cooperative failure detec-

tion, in which (roughly speaking) a node is declared faulty only if a certain number of nodes are unable

to communicate with it, may be desirable.

7 The Asynchronous Bully Algorithm

Modifying the BullyFD Algorithm to work in an asynchronous system is straightforward. As long as a

node believes its leader is alive, it rejects participating in elections that would give it a lower-priority

leader. Also, when a leader i is halted in stage 2 of an election organized by a higher-priority leader j,

node i informs its followers (i.e., nodes with status = Norm ^ ldr = i) that it is no longer a leader; this

is necessary because communication failures might cause its followers not to learn about j's election. A

convenient way for node i to inform its followers that it is no longer their leader is by \playing dead".

We assume the failure detector has additional inputs PlayDeadFD(j), which causes the calling node to

appear dead to the FD of node j, and PlayAliveFD(j), which cancels the e�ect of PlayDeadFD(j). Thus,

if a node i calls PlayDeadFD(k), and node k's FD is monitoring node i, then within time �FD, node k

receives hDownSig; ii. For a set S of nodes, PlayDeadFD(S) and PlayAliveFD(S) abbreviate the obvious

loops.

Election identi�ers play the role of group identi�ers, i.e., the variable grp is identi�ed with the

variable elid . The modi�ed algorithm, which we call the Asynchronous Bully Algorithm, appears in

Figure 3. Much of the code is the same as in Figure 1, but we have:

1. Modi�ed the action for Halt messages to reject participating in elections that would give the node

a lower-priority leader. Modi�ed procedure Halting to call PlayDeadFD.

2. Added an action to handle Rej messages.

3. Modi�ed the action for Norm? messages received from j, so that NotNorm is sent even if status =

Norm, if an election by j would give node i a higher-priority leader. Added the conjunct j <

�1(elid) in the �rst disjunct of the conditional to prevent node i from causing j to start an

election that node i would reject.

4. Modi�ed procedure StartStage1 and the action for hDownSig; ji to omit stage 1 of elections. This

is possible because of the weaker safety requirement. Procedure StartStage2 is modi�ed to keep

track of the election identi�er and to call PlayAliveFD. Variable down was needed only for stage

1, so it has been eliminated.

Theorem 1. The Asynchronous Bully Algorithm satis�es ALE1 and ALE20.

Proof. See Appendix B.

Neither the Asynchronous Bully Algorithm nor the Invitation Algorithm satis�es ALE2. To see that

the Asynchronous Bully Algorithm does not, consider the following scenario in a system with 6 nodes.

Three nodes|say, 1, 2 and 3|are pairwise connected. Each of these nodes is connected to exactly one
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var status : fNorm;Elec1;Elec2;Waitg
ldr : ID
elid : ID�Nat�Nat
acks : Set(greater(i))
nextel ; pendack : Nat

stable var incarn : Nat

On hHalt; ti from j :
if (status = Norm ^ ldr < j)
_(status = Wait ^ �1(elid ) < j) then
send hRej; ti to j

else Halting(t; j)
�

procedure Halting(t; j) :
PlayDeadFD(greater(i))
StartFD(j)
elid := t
status :=Wait
send hAck; ti to j

On hDownSig; ji :
if (status = Norm ^ j = ldr)
_(status = Wait ^ j = �1(elid)) then
StartStage2()

else if status = Elec2 ^ j = pendack then

ContinStage2()
�

�

procedure StartStage2()
PlayAliveFD(greater(i))
elid :=hi; incarn ;nexteli
nextel :=nextel + 1
status :=Elec2
acks := ;
pendack := i
ContinStage2()

On hRej; ti from j :
if status = Elec2 ^ j = pendack then

ContinStage2()
�

procedure ContinStage2()
if pendack < N then

pendack := pendack + 1
StartFD(pendack )
send hHalt; elid i to pendack

else (� I'm the leader �)
ldr := i
status :=Norm
send hLdr; ti to acks

�

On hAck; ti from j :
if status = Elec2 ^ t = elid ^ j = pendack then

acks �= j
ContinStage2()

�

On hLdr; ti from j :
if status = Wait ^ t = elid then

ldr := j
status :=Norm
StopFD(ID	 i)
StartFD(ldr )

�

Periodically(�) :
if status = Norm ^ ldr = i then

send hNorm?; elidi to greater(i)
�

On hNorm?; ti from j :
if (status 6= Norm ^ j < �1(elid))
_(status = Norm ^ j < ldr ) then
send hNotNorm; ti to j

�

On hNotNorm; ti from j :
if status = Norm ^ ldr = i ^ t = elid then

StartStage2()
�

On recovery :
incarn := incarn + 1
StartStage2()

Figure 3: Asynchronous Bully Algorithm. Code executed by node i.
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of the premaining three nodes vertices 4, 5 and 6|say, i is connected to i+3, for i = 1; 2; 3. The unique

minimum clique cover in this case comprises f1; 4g, f2; 5g, and f3; 6g. However, the Asynchronous Bully

Algorithm would lead to a con�guration in which nodes 1, 4, 5, and 6 are leaders. Finding an appropriate

liveness requirement for these and similar leader election algorithms is still an open problem. ALE20 is

undesirably weak, because it is satis�ed by trivial algorithms that put each node in a separate group.

ALE2 is undesirably strong, because algorithms satisfying it must compute (in some way) a minimum

clique cover, and the problem of �nding a minimum clique cover is NP-complete [GJ79]. Note that

the speci�cations in [CS95] assume a stronger notion of stability, namely, that connectivity is transitive

when the system is stable; as a result, they avoid these di�culties.

The Invitation Algorithm also satis�es ALE1 and ALE20, so it is interesting to compare the e�-

ciency of the Asynchronous Bully Algorithm and the Invitation Algorithm. We compare the message

complexities in two scenarios, both of which assume the system initially contains a single group.

The �rst scenario we consider is the steady-state, i.e., the system is stable. We compare the num-

bers of messages used to monitor the status of other nodes. In the Invitation Algorithm, the leader

periodically, with period � , sends AreYouNormal to each other node, and those nodes reply Yes. So,

the Invitation Algorithm sends 2(N � 1) messages per time � . In the Asynchronous Bully Algorithm,

the leader periodically sends Norm? messages. Also, each node other than the leader monitors the

leader for failures. Assuming the failure detector is implemented using \I'm alive" messages (as de-

scribed in Section 2), the Asynchronous Bully Algorithm also sends 2(N � 1) messages per time � . If

�FD � � + �, then the \I'm alive" messages can be piggybacked on the Norm? messages, in which case

the Asynchronous Bully Algorithm sends only N � 1 messages per time � .

In the second scenario, the leader crashes, but no other failures occur. Presumably this scenario is

more likely than scenarios involving multiple failures. Note that scenarios in which a node other than

a leader crashes are not interesting here, since neither the Invitation Algorithm nor the Asynchronous

Bully Algorithm recon�gures the system after failure of a non-leader. We show below that in this

scenario, in the average case, the Invitation Algorithm usesN2+O(N) messages, while the Asynchronous

Bully Algorithm uses only 1

2
N2 + O(N) messages. In the worst case, these numbers double: the

Invitation Algorithm uses 2N2 + O(N) messages, while the Asynchronous Bully Algorithm uses only

N2 +O(N) messages.

To simplify the analysis of the Invitation Algorithm, we assume that the interval between calls to

procedure Check is greater than or equal to NT , where T is the time-out period; this assumption

typically holds in systems with moderate numbers of nodes. In the average case, half of the nodes call

procedure Check before node n�1 calls it, and each of those nodes sends N � 1 AreYouCoordinator

messages, for a total of (N�1)2=2 AreYouCoordinator messages, plus a comparable number of responses.

For the Asynchronous Bully Algorithm, in the average case, half of the nodes call procedure StartStage2

before node 2 calls it, and each of those nodes sends on average (N � 1)=2 Halt messages, for a total of

(N � 1)2=4 Halt messages, plus a comparable number of responses. In the worst case, all of the other

nodes call procedure Check (or procedure StartStage2) before node n�1 (or node 2), so relative to the

average case, twice as many messages are sent.
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8 Related Work

The most closely related work is [GM82], which has been discussed above. There is considerable work

on self-stabilizing algorithms for leader election (e.g., [DIM91, ILS95]). Those algorithms operate under

weaker assumptions about failures (essentially, a failure can cause an arbitrary state transition) and

provide weaker guarantees. The weaker assumptions about failures force a weakening of the guarantees:

if arbitrary state transitions can occur, then it is impossible to ensure that an invariant (such as SLE1

or ALE1) is preserved. Comparing synchrony assumptions, the situation is reversed: the self-stabilizing

algorithms in [DIM91, ILS95] are based on synchronous communication, while we consider also unreliable

asynchronous communication.

We assume (cf. Section 4) that each node has a unique identi�er (e.g., a network address). This

assumption is appropriate for algorithms running above a network layer, such as IP. In particular, it is

appropriate for the types of applications described in Section 1. In contrast, there is considerable work

on algorithms for leader election in uniform systems (e.g., [DIM91, ILS95]), in which all nodes with the

same number of neighbors are identical (and therefore do not have unique identi�ers).
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Appendix A

We describe a scenario in which the Invitation Algorithm violates Assertion 4 of [GM82]. The system

contains 3 nodes. Initially, all nodes are operating, and all pairs of nodes can communicate. All nodes

are in the same group, and node 1 is the leader. The following events occur:

1. Node 1 crashes.

2. Nodes 2 and 3 each call Timeout and then Recovery; each forms a singleton group.

3. Node 1 recovers, but communication between nodes 1 and 3 has been lost. In other words,

Assumptions 8 and 9 hold for the nodes in the set f1; 2g and for the nodes in the set f2; 3g, but

not for the nodes in the set f1; 2; 3g.

4. Node 1 calls Recovery and then Check. Since nodes 1 and 2 can communicate, node 1 calls Merge

with CoordinatorSet = f2g.

The outcome is that nodes 1 and 2 are in one group, and node 3 remains in a singleton group. Note

that this con�guration is \stable", i.e., assuming no more failures occur, these groups will not change.

Now consider whether Assertion 4 is satis�ed. The set f2; 3g satis�es the hypotheses about R in

Assertion 4, so we have the requirements: (a) some node i in f2; 3g is a coordinator, and (b) every other

node j in f2; 3g has node i as its coordinator. Requirement (b) is not satis�ed, since node 2 has node

1 as its coordinator.

Appendix B

Proof-sketch of Theorem 1. Satisfaction of ALE1 follows easily from the observation that status = Norm

implies ldr = �1(elid). (Recall that grp and elid are the same.)
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For satisfaction of ALE20, note �rst that if the system is stable, the algorithm changes state only

a �nite number of times, i.e., it eventually reaches and thereafter remains in some state g. It is

straightforward to show that g is reached within time cA, where cA is O((N � 1)max(� + 2�; �FD)).

We argue that g satis�es ldrsElected . First we show that for each node i, status i = norm in state

g. Suppose a node i has status i 6= Norm at some time at least �FD into the interval of stability. Then

status i is Elec2 or Wait. If status i = Elec2, then within total time cA, either: (1) node i �nishes its

election (since each node j in greater(i) is either up and connected to node i, in which case node j replies

to node i with an Ack or Rej message, or down or disconnected from node i, in which case the FD on

node i raises hDownSig; ji) and sets its status to Norm, or (2) node i gets halted by a higher-priority

node and sets its status to Wait, in which case the following argument applies. If status i = Wait, then

either: (1) node i receives a Ldr message and sets its status to Norm, or (2) node �1(elid i) gets halted

by a higher-priority node and plays dead, in which case the FD on node i raises hDownSig; �1(elid i)i,

and node i sets its status to Elec2, so the argument for status i = Elec2 applies, or (3) the Ldr message

from node �1(elid i) to node i gets lost, in which case those two nodes must be disconnected (since

we are assuming the system is stable), so the FD on node i raises hDownSig; �1(elid i)i, and node i

sets its status to Elec2, so the argument for status i = Elec2 applies. Alternation between the cases

for status i = Elec2 and status i = Wait can occur only O(N) times, since a node participates only in

elections that would give it a leader of strictly higher priority. Thus, eventually a \base case" is reached

and node i sets its status to Norm.

Next we show that upldri holds. This follows immediately from the completeness requirement (1) for

the FD and the code for handling hDownSig; ji. To see that the requirement grp ldr i
= ldr i is satis�ed,

note that a (temporary) violation of this requirement arises only if node ldr i is halted and obtains a

new leader j, but node i is disconnected from node j and therefore does not participate in the election

of j. When node ldr i is halted by node j, it calls PlayDeadFD(greater(ldr i)), so the FD on node i

raises hDownSig; ldr ii, and node i gets a new leader, thus correcting the temporary violation of this

requirement.
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