
Pict: A Programming Language

Based on the Pi-Calculus

Benjamin C. Pierce David N. Turner

Indiana University

CSCI Technical Report #476

March 19, 1997

Abstract

The �-calculus o�ers an attractive basis for concurrent programming. It is small, elegant, and well stud-
ied, and supports (via simple encodings) a wide range of high-level constructs including data structures,
higher-order functional programming, concurrent control structures, and objects. Moreover, familiar
type systems for the �-calculus have direct counterparts in the �-calculus, yielding strong, static typing
for a high-level language using the �-calculus as its core. This paper describes Pict, a strongly-typed
concurrent programming language constructed in terms of an explicitly-typed �-calculus core language.

Dedicated to Robin Milner on the occasion of his 60th birthday.

1 Introduction

Milner, Parrow, and Walker's �-calculus [MPW92, Mil91] generalizes the channel-based communication of
CCS and its relatives by allowing channels to be passed as data along other channels. This extension
introduces an element of mobility, enabling the speci�cation and veri�cation of concurrent systems with
dynamically evolving communication topologies. Channel mobility leads to a surprising increase in expressive
power, yielding a calculus capable of describing a wide variety of high-level concurrent features while retaining
a simple semantics and tractable algebraic theory.

A similar combination of simplicity and expressiveness has made the �-calculus both a popular object of
theoretical investigation and an attractive basis for sequential programming language design. By analogy,
then, one may wonder what kind of high-level programming language can be constructed from the �-calculus.

ML, Haskell, . . .

�-calculus
=

?

�-calculus

A number of programming language designs have combined �-calculus-like communication with a functional
core language, but none have gone so far as to take communication as the sole mechanism of computation.
The primary motivation of the Pict project, begun at the University of Edinburgh in 1992, was to design
and implement a high-level concurrent language purely in terms of the �-calculus primitives [PT97, Pie97].

Compiling a language based solely on communicating processes raises challenging code generation prob-
lems. To achieve acceptable performance for realistic applications, a �-calculus compiler must implement
process creation, context switching, and communication on channels extremely e�ciently, since these oper-
ations are the fundamental computational mechanism used in the �-calculus and, for example, are at least
as pervasive as function calls in a functional language.

Another goal of the Pict project was to explore the practical applicability of our earlier theoretical work
on type systems for the �-calculus [PS93, Tur96] and on �-calculus type systems with subtyping [PT94,
HP95, PS97]. In particular, in [PT94] we proposed a powerful combination of subtyping and polymorphism
as a basis for statically typed object-oriented programming in functional languages; equipping Pict with

1

a similar type system provides a testbed for experiments with statically typed concurrent objects. Using
such a powerful type system raises other important issues such as typechecking algorithms, e�ciency of
typechecking, and type inference.

The questions motivating the Pict project, then, can be summarized as follows: (1) What is it like to
program in the �-calculus? What kind of high-level language can be built on it? (2) What kinds of concurrent
objects arise in this setting? (3) Can the �-calculus be implemented e�ciently? (4) Can we design a practical
type system for the �-calculus combining subtyping and higher-order polymorphism?

In this paper, we o�er our responses to these questions (concentrating on (1) and (4), since (2) has been
addressed in detail in [PT95] and (3) in [Tur96]), and survey the current state of the Pict language. Section 2
de�nes the syntax and operational semantics of the core language and discusses some points where it di�ers
from the theoretical �-calculus of Milner, Parrow, and Walker. Section 3 presents a type system for the
core language, incorporating channel types, subtyping, record types, higher-order polymorphism, and simple
recursive types. Section 4 constructs the full Pict language by means of translations into the core. Section 5
o�ers concluding remarks and directions for further research.

Please note that we do not attempt to give a de�nitive description of Pict here, since Pict is an ex-
perimental language and is therefore subject to relatively frequent changes in design. Instead, we give an
overview of the main decisions we have made in the design of Pict. For a complete description of the current
version of Pict, please consult the formal de�nition [PT97], which is kept up to date with the current version
of the compiler.

2 The Core Language

We now proceed to a rigorous de�nition of the syntax and semantics of the core language: an asynchronous,
choice-free fragment of the �-calculus enriched with records and pattern matching.

2.1 The Pi-Calculus

To aid comparison, we begin with a brief review of the pure �-calculus of Milner, Parrow, and Walker. More
details can be found in the original �-calculus papers [MPW92] and in Milner's tutorial [Mil91].

The computational world modeled by the �-calculus contains just two kinds of entities: processes and
channels. Processes, sometimes called agents, are the active components of a system; they interact by
synchronous rendezvous on channels, also called names or ports. When two processes synchronize, they
exchange a single data value, which is itself a channel. The output process �xy:e1 sends y along x and then,
after the output has completed, continues as e1. Conversely, the input process x(z):e2 waits until a value is
received along x, substitutes it for the bound variable z, and continues as e2. The parallel composition of
these processes, written �xy:e1 j x(z):e2, may thus synchronize on x, yielding the derivative e1 j fz 7! yge2.

Fresh channels are introduced by the restriction operator �. The expression (�x)e creates a fresh channel
x with lexical scope e. For example, writing (�x) (�xy:e1 j x(z):e2) localizes the channel x, ensuring that no
other process can interfere with the communication on x.

The expression e1 + e2 denotes an external choice between e1 and e2: either e1 is allowed to proceed
and e2 is discarded, or vice versa. For example, the process �xy:e1 j (x(z):e2 + x(w):e3) can reduce either to
e1 j fz 7! yge2 or to e1 j fw 7! yge3. The nullary choice, written 0, is inert.

In�nite behavior in �-calculus is introduced by the replication operator !e, which informally denotes an
arbitrary number of copies of e running in parallel. This operator replaces the equivalent, but more complex,
mechanism of mutually-recursive process de�nitions.

Some variants of the �-calculus include a matching operator [x = y]e, which allows e to proceed if x and
y are the same channel.

2.2 Core Language Design Issues

The core language of Pict di�ers from the �-calculus by some trivial extensions and some more important
restrictions.

2

2.3 Primitive Values

Like most high-level programming languages, Pict provides special syntax for a few built-in types: booleans,
characters, strings, and integers. Adding such syntax does not change the fundamental character of the
language at all, since all these types of data can easily be encoded as processes [Mil91]. To give the compiler
maximum freedom to implement primitive values e�ciently, the types Bool, Char, String, and Int are
abstract: they reveal nothing about how values of these types are represented. Instead, built-in channels are
provided for performing common operations. For example, 12 is a built-in value of type Int and the addition
operation is represented as a built-in channel +. To add two numbers, we send them along the channel +
together with a result channel r, and then listen on r for the result of the calculation. Built-in channels are
also provided for interacting with the environment; for example, the channel print is used to send strings
to the standard output stream.

2.3.1 Records and Pattern Matching

A key choice in the design of Pict has been to de�ne as much of the language as possible in terms of encodings.
Section 4 describes many such derived forms, including, for example, function abstraction and application.
This style of de�nition means that we need only give operational semantics and typing rules for the core
language; the rules for functions arise from the translation.

The pure �-calculus can easily encode \polyadic" communication, in which several channels are exchanged
during a single communication [Mil91]. Similar encodings can be used for data structures such as records.
However, such encodings do not always give rise to useful derived typing rules. In particular, when we started
the Pict design, there were no type systems for the pure, monadic �-calculus (although more recent work on
linear types [KPT96] may lead to such type systems). Therefore, we begin from a slightly more structured
core language, which admits a simple, structural type system | just as typed functional languages such as
ML and Haskell are typically based on a �-calculus extended with basic data constructors.

2.3.2 Asynchrony

The fundamental communication primitive in �-calculus and most of its relatives is synchronous rendezvous,
in which both sender and receiver are blocked until the communication occurs. For example, in the �-calculus
expression �xy:e1 j x(z):e2, the expression e1 cannot proceed until the output on x has completed; similarly,
the expression e2 cannot proceed until a value z has been received along x.

The fact that output is synchronous enables a sending process to tell when its message has been received
by another process. Unfortunately, depending on this information precludes a number of useful programming
idioms involving bu�ering, delegation, and reordering of requests. For example, if a client and a server are
sometimes run on separate machines, we may need to add a surrogate server process on the client's machine
that forwards requests to the server's machine. Now a synchronization on the client's request channel
indicates only that the surrogate, not the server, has received the request.

We allow only asynchronous output in Pict; this amounts to restricting the \continuation" of each output
expression to the null process. The programmer must send an explicit acknowledgement or result to inform
the client that its request has been processed, thereby eliminating any possible sensitivity to bu�ering or
reordering of requests.

The investigation of asynchronous process calculi was initiated by Honda, Tokoro, and Yoshida [HT91,
HY94] and Boudol [Bou92]. Amadio, Castellani and Sangiorgi [ACS96] have more recently shown how several
technical aspects of observational equivalence are simpli�ed in the asynchronous case.

2.3.3 No Choice

Early versions of the �-calculus used a completely unrestricted choice operator: in the expression e1+e2, the
branches e1 and e2 could be arbitrary processes. More recent presentations, for example [Mil91], use a more
constrained operator called guarded choice, where e1 and e2 must be input expressions, output expressions, or
choice expressions. Guarded choice is easier to formalize (especially in the context of a reduction semantics,
such as the one presented in Sections 2.6 to 2.8) and appears to capture all cases of practical interest.

3

In an asynchronous language, guarded choice should be restricted still further, since an asynchronous
output in a choice is sensitive to bu�ering: (�wy + e) can only discard e if a process reads from w, while
(�xy + e) j x(z): �wz can reduce spontaneously to �wy.

In Pict we go a step further, dropping the choice operator altogether. This simpli�es both formal
semantics and implementation, and has little e�ect on the expressiveness of the language, since input-only
choice is easy to implement as a library module [PT95, NP96]. (This has some cost in syntactic convenience,
and some bene�t in exibility. Our library actually implements a subset of Reppy's events [Rep91], allowing
the branches of a choice to be manipulated as data.) In fact, most Pict programs use simpler mechanisms
such as locks and semaphores (cf. Section 4.6) for basic synchronisation tasks. For controlling concurrent
execution of methods in objects, one can use a di�erent library implementing a more specialized operator
called replicated choice [PT95].

2.3.4 Replicated Input, No Matching

The Pict core language makes two further simpli�cations of the pure �-calculus. First, we restrict replication
to replicated input expressions. This variant has the same formal power as full replication, but has a simpler
semantics and is closer to a realistic implementation. Second, we omit the matching operator, since its main
functions (encoding conditional expressions and tracking side-conditions in axiomatizations of behavioral
equivalences) are either subsumed by other features in Pict or irrelevant in the context of programming.

2.3.5 Ascii Notation

Besides the more substantive changes discussed above, Pict substitutes a slightly heavier ascii concrete syntax
for the more mathematical �-calculus notation:

�-calculus Pict
�xy:0 x!y asynchronous output
x(y):e x?y = e input pre�x
e1 j e2 (e1 | e2) parallel composition
(�x)e (new x e) channel creation
!x(y):e x?*y = e replicated input

2.4 Core Language Syntax

We now de�ne the Pict core language syntax. Further details, such as lexical analysis rules, can be found
in the Pict language de�nition [PT97]. The possible forms of each production are listed on successive lines.
Keywords are set in typewriter font. An expression of the form X : : : X denotes a list of zero or more
occurrences of X. The expression hemptyi denotes an empty production.

The entities that can be communicated on channels are called values. They include variables, records of
values, package values, rectype values, and constants.

Val = Id Variable
[Label Val ... Label Val] Record
{ Type } Val Polymorphic package
(rec : T Val) Rectype value
String String constant
Char Character constant
Int Integer constant
Bool Boolean constant

Label = hemptyi Anonymous label
Id = Explicit label

There are no channel constants, only variables ranging over channels (note, however, that variables can range
over any kind of value, not just channels). Record values generalise tuple values (since the labels in a record
are optional).

4

Rectype values help the typechecker determine the types of recursive data structures; package values
are part of the mechanism used to implement polymorphism in Pict. We defer the description of these to
Sections 3.2 and 3.5.

Values can be decomposed by means of patterns. A variable pattern x:T binds the variable x. A package
pattern {X<T}p binds the type variable X plus whatever variables are bound in p. A layered pattern x:T@p

binds the variable x plus whatever variables are bound in p. All the variables bound by a pattern must be
pairwise distinct.

Pat = Id : Type Variable pattern
_ : Type Wildcard pattern
Id : Type @ Pat Layered pattern
[Label Pat ... Label Pat] Record pattern
{ Id < Type } Pat Package pattern
(rec : T Pat) Rectype pattern

Note that all bound variables (and wildcards) are explicitly typed. In practice, many of these type annota-
tions can be inferred automatically by the Pict compiler. A layered pattern can be used to bind a variable
to a value at the same time as decomposing the value. For example, matching the pattern x@[y z] against
the value [33 true] binds x to [33 true], y to 33, and z to true. We defer the description of rectype and
package patterns to Sections 3.2 and 3.5.

A process pre�xed by a pattern is called an abstraction. Introducing a separate syntactic class of ab-
stractions leaves room for later expansion. We make use of this in the full language to allow higher-order
functions to appear wherever process abstractions are allowed (cf. Section 4.5).

Abs = Pat = Proc Process abstraction

In an abstraction p = e, variable occurrences in p are binders with scope e.
The basic forms of processes are output atoms, input pre�xes, parallel compositions, processes pre�xed

by declarations, and conditional processes.

Proc = Val ! Val Output atom
Val ? Abs Input pre�x
Val ?* Abs Replicated input pre�x
(Proc | Proc) Parallel composition
(Dec Proc) Local declaration
if Val then Proc else Proc Conditional

Arbitrary values must be allowed to the left of ! and ? so that substitution is a total operation (cf. Section 2.7).
Our type system guarantees that these values can only evaluate to channel names.

Finally, a new declaration introduces a new channel. Again, we make declarations a separate syntactic
category to leave room for growth.

Dec = new Id : Type Channel creation

The expression (new x:T e) binds x with scope e. Note that new channels are always annotated with
explicit types.

2.5 Example

We now present some simple examples of Pict core language programs. In Section 3.2 we show how to
annotate the examples with appropriate explicit type information. (Section 4.6 uses the additional features
of the full language to express these examples much more concisely!)

The following process implements a \cons-cell server" which, when sent a triple [hd tl r], constructs
a process encoding a cons cell (with head hd and tail tl), and returns the address of the cons cell along the
result channel r.

cons?*[hd tl r] = (new l (r!l | l?*[n c] = c![hd tl]))

5

Upon receiving a triple [hd tl r], we �rst create a new channel l (l can be thought of as the loca-
tion of the cons cell). Then, in parallel, we return l along the result channel r and run the process
l?*[n c] = c![hd tl]. This process responds to messages sent along l by sending hd and tl along c.

The following process behaves similarly, except that it constructs a nil, or empty, list. Upon receiving a
tuple [r] containing just a result channel r, we create a new channel l. Then, in parallel, we return l along
the result channel r and run the process l?*[n c] = n![]. This process responds to messages sent along l
by sending the trivial value [] back along n.

nil?*[r] = (new l (r!l | l?*[n c] = n![]))

The following program fragment illustrates how we can interact with nil and cons to build a list contain-
ing the number 33. We �rst create a fresh result channel r1 and send it along the nil channel. In parallel,
we wait for nil's reply to be sent along r1, binding the resulting value to e. We then create a second result
channel r2 and send the tuple [33 e r2] to cons. This has the e�ect of building a cons cell whose head is
33 and tail is e. The location of the new cell is returned along r2.

(new r1 (nil![r1] |

r1?e = (new r2 (cons![33 e r2] |

r2?l = ...))))

We can interrogate our list by sending a pair of channels [n c] along the channel l. By convention, an
empty list will reply on n (by sending the trivial value []), while a cons cell will reply on c (by sending a
pair of the head and tail of the list). The following process therefore executes the expression e if l is the
empty list, and f if l is a cons cell (in which case hd and tl will become bound to the head and tail of l):

(new n (new c (l![n c] | n?[] = e | c?[hd tl] = f)))

2.6 Structural Congruence

In discussing these examples, we have appealed to an informal understanding of how Pict expressions behave.
It is now time to make this understanding precise. Following [Mil91], the operational semantics of Pict
programs is presented in two steps. First, we de�ne a structural congruence relation e1 � e2; this relation
captures the fact that, for example, the order of the branches in a parallel composition has no e�ect on its
behavior. Next, we de�ne a reduction relation e1 ! e2, specifying how processes evolve by communication.

Structural congruence plays an important technical role as a device for simplifying the statement of the
reduction relation. For example, we intend that the processes (x!v | x?y = e) and (x?y = e | x!v) both
reduce to fy 7! vge. Since these two are structurally congruent, it su�ces to write the reduction rule only
for the �rst case and to stipulate, in general, that if e contains some possibility of communication then any
expression structurally congruent to e has the same possible behavior.

The �rst two structural congruence rules state that parallel composition is commutative and associative.

(e1 | e2) � (e2 | e1) (Str-Comm)

((e1 | e2) | e3) � (e1 | (e2 | e3)) (Str-Assoc)

The third rule, called scope extrusion in the �-calculus literature, plays a crucial role in communication.

x =2 FV(e2)

((new x:T e1) | e2) � (new x:T (e1 | e2))
(Str-Extrude)

Informally, it says that the scope of the channel x, which starts out private to the process e1, can be extended
to include e2. The side-condition x =2 FV(e2) ensures that e2 does not already have a free channel named x.
(This condition can always be satisifed by �-converting the bound name x in the expression (new x:T e1)

before applying the scope extrusion rule.) For example, the process expression ((new x:T c!x) | e) may
be transformed to (new x:T (c!x | e)), if e does not have x as a free variable. It is this rule that allows
the new channel x to be communicated outside of its original scope to a process in e.

6

2.7 Substitution and Matching

To de�ne reduction, we need some notation for matching values against patterns.
A substitution is a �nite map associating variables with values and type variables with types. If �1 and

�2 are substitutions with disjoint domains, then �1 [�2 is a substitution that combines the e�ects of �1 and
�2. A substitution is extended to a function from values to values by applying it to variables that fall in its
domain and leaving the rest unchanged. For example, applying the substitution � = fx 7! ag [fy 7! []g
to the value [z [x] x y], written �([z [x] x y]), yields [z [a] a []]. Substitution is extended in the
usual way to an operation on processes, renaming bound variables as necessary to avoid capture.

When a value v is successfully matched by a pattern p, the result is a substitution fp 7! vg, de�ned as
below. (If v and p do not have the same structure, then fp 7! vg is unde�ned. The typing rules ensure that
this cannot happen in well-typed programs.)

fx:T 7! vg = fx 7! vg
f_:T 7! vg = f g

f(x:T@p) 7! vg = fx 7! vg [fp 7! vg
f(rec:T p) 7! (rec:S v)g = fp 7! vg

f{X<S}p 7! {T}vg = fX 7! Tg [fp 7! vg
f[l1p1...lnpn] 7! [l1v1...lnvn...]g = fp1 7! v1g [� � � [fpn 7! vng

The match function traverses the structure of the pattern and the value in parallel, yielding bindings
when variables are encountered in the pattern. (Note that the variables bound in a pattern are always
distinct, so the [operations in the de�nition of match are always well de�ned.)

The match rule for records allows a record pattern to be matched by a record value with extra �elds (at
the end of the record). For example, the record pattern [l=y] matches the record value [l=33 m=true].
This gives rise to simple form of record subtyping which is particularly easy to implement (it is common to
allow extra �elds to be added anywhere in a record, but this signi�cantly complicates the implementation of
records, especially in the presence of separate compilation).

2.8 Reduction

The reduction relation e1 ! e2 may be read as \The process e1 can evolve to the process e2." That is, the
semantics is nondeterministic, specifying only what can happen as the evaluation of a program proceeds, not
what must happen. Any particular execution of a Pict program will follow just one of the possible paths.

The most basic rule of reduction is the one specifying what happens when an input pre�x meets an
output atom:

fp 7! vg de�ned

(x!v | x?p = e) ! fp 7! vg(e)
(Red-Comm)

In the case when the input expression is replicated, the communication rule is similar, except that the input
expression is not consumed by the act of communication.

fp 7! vg de�ned

(x!v | x?*p = e) ! (fp 7! vg(e) | x?*p = e)
(Red-RComm)

The next two rules allow reduction to proceed under declarations and parallel composition:

e1 ! e2

(d e1) ! (d e2)
(Red-Dec)

e1 ! e3

(e1 | e2) ! (e3 | e2)
(Red-Prl)

The body of an input expression, on the other hand, cannot participate in reductions until after the input
has been discharged. Reduction of conditional processes is straightforward. The typing rules ensure that
the guard in a closed, well-typed conditional is either true or false.

if true then e1 else e2 ! e1 (Red-If-T)

if false then e1 else e2 ! e2 (Red-If-F)

7

The structural congruence relation captures the distributed nature of reduction. Any two subprocesses at
the \top level" of a process expression (i.e. not guarded by any input pre�xes) may be brought into proximity
by structural manipulations and allowed to interact.

e1 � e2 ! e3 � e4

e1 ! e4
(Red-Str)

Note that the reduction rules do not maintain any particular ordering among messages sent along the same
channel. For example, in the process (x!y | x!z | x?w = e) either the value y or the value z may be
communicated to the process x?w = e.

Strictly speaking, the semantics we have given is de�ned only for closed programs | we have been
intentionally informal about the built in channels (such as print) which connect a Pict program to its
environment. Work is underway on a more re�ned semantic framework explicitly incorporating interactions
with the environment [Sew96].

2.9 Fairness

Even on closed programs, the reduction semantics of the previous section leaves one important issue unad-
dressed: it characterizes the set of possible behaviors of a process expression, but makes no commitment as
to which of these behaviors will actually be observed when the expression is compiled and executed. For ex-
ample, there is a valid execution of the process (new x (x![] | x?*[] = x![] | x?[] = a![])) in which
the output a![] is never executed. But a compiler that produced this behavior would be unsatisfactory,
since it would fail to capture the programmer's intuitive expectation that the actions of subprocesses running
in parallel will be interleaved fairly, so that the second input on x will eventually succeed.

We are unaware of any work formalising fairness for �-calculus, but Costa and Stirling's work on fairness
for CCS [CS87] seems likely to be generalisable to the case of �-calculus. Costa and Stirling consider
two kinds of fairness: weak fairness stipulates that if a process is continuously able to communicate on a
channel then it must eventually be allowed to proceed; strong fairness insists that any process which is
able to communicate on a channel in�nitely often, even if not continuously, must eventually proceed. A
weak fairness guarantee is su�cient to ensure that the output a![] in the above example will eventually
be executed, since the input x?[] = a![] is continuously enabled. If, however, the process x?*[] = x![]

is replaced by a process which does some other communication before sending [] along x, then a strong
fairness guarantee would be required to ensure that the output a![] is eventually executed, since the input
x?[] = a![] is not continuously able to communicate.

In practice, it is relatively easy to achieve a fair execution strategy by using FIFO channel queues and
a round-robin policy for process scheduling. This guarantees that a process waiting to communicate on a
channel will eventually succeed, assuming that enough partners become available. Our experience of writing
applications in Pict has been that this execution strategy works well. For example, the FIFO queueing of the
lock channel l in the reference cell of Section 4.6 ensures that competing set and get requests are handled
fairly; the replicated choice construct of [PT95] exhibits similar good behavior.

3 Type System

The Pict type system has its roots in the theoretical literature on type systems for the �-calculus [Mil91,
Gay93, VH93, PS93, Tur96] and for functional languages, among which its most immediate predecessors are
Quest [Car91] and Amber [Car86]. The treatment of subtyping and higher-order polymorphism is based
on recent work on static type systems for object-oriented languages [Car84, Bru94, CHC90, PT94, HP95,
FM94, AC96, etc.] and the �-calculus F!

� [Car90, Mit90, PS97]. The rules for channel types are taken from
Pierce and Sangiorgi's type system for the pure �-calculus [PS93]. An early version of the Pict type system
was presented in [PRT93].

Typed process calculi with related goals have been proposed by Nierstrasz [Nie95] and Vasconce-
los [Vas94]. Further re�nements to the channel typing discipline incorporating notions of linear channel usage
have been studied by Honda [Hon93, HY94, Hon96], and more recently by Kobayashi and Yonezawa [KY94]
and the present authors in collaboration with Kobayashi [KPT96].

8

3.1 Channel Types

Most type systems for process calculi and concurrent languages impose the constraint that each channel
must be used throughout its lifetime to carry values of a single type. This restriction greatly simpli�es the
task of type analysis, since the well-typedness of a parallel composition (e1 | e2) is independent of the
ordering of interactions between e1 and e2.

Since computation in Pict is based purely on communication over channels, the basic elements of its type
system are the types of channels and of the values that they carry. For example, a process that outputs a
value v along a channel c is well typed if c has type ^T (read \channel carrying T") and v has type T.

3.2 Recursive Types

Like most programming languages, Pict o�ers the capability to build and manipulate recursive data structures
like lists and trees. Such recursive types have received considerable attention in the literature [MPS86, CC91,
AC93, etc.], and many di�erent technical treatments have been proposed. Because the rest of the Pict type
system is already somewhat complex and recursive types tend to be used only in small sections of code, we
have chosen one of the simplest alternatives, where the \folding" and \unfolding" of the recursion must be
managed explicitly by the programmer.

For example, suppose R is the recursive type (rec X = ^X). A value of type R can be coerced (by means
of a rec pattern) to a value of type ^R (where the recursion in the type R has been unfolded once). Dually,
a rec value construct can be used to coerce a value of type ^R into a value of R.

We can use the recursive type (rec L = ^[^[] ^[Int L]]) to represent the type of integer lists in our
\cons cell server" from Section 2.5:

type IntList = (rec L = ^[^[] ^[Int L]])

cons?*[hd:Int tl:IntList r:^IntList] =

(new l:^[^[] ^[Int IntList]]

(r!(rec:IntList l) | l?*[n:^[] c:^[Int IntList]] = c![hd tl]))

The type annotations on hd, tl and r indicate that cons takes as arguments an integer and an integer list,
and returns an integer list along the channel r. The type of the new channel l is an unfolding of the type
IntList. The unfolded IntList type exposes the fact that a list is represented as a channel, and enables us
to use l in a replicated input operation. However, when we return l along the result channel r, we coerce
the type of l to IntList (using a rec value construct).

Values of recursive type are \unfolded" during communication by patterns of the form (rec:T p).
For example, if c is a channel of type ^IntList, then the bound variable l in the body of the process
c?(rec:IntList l) = ... has type ^[^[] ^[Int IntList]], the unfolding of IntList.

3.3 Subtyping

Channel types serve a useful role in ensuring that all parts of a program use a given channel in a consistent
way, eliminating the possibility of pattern matching failure (cf. Section 2.7) at run time. Of course, pat-
tern matching failure is just one kind of bad behavior that programs may exhibit; especially in concurrent
programs, the range of possible programming mistakes is vast: there may be unintended deadlocks, race con-
ditions, and protocol violations of all kinds. Ultimately, one might hope to see static analysis tools capable
of detecting many of these errors, but the technology required to do this is still far o�. Fortunately, there
are some simple ways in which channel types can be enriched so as to capture useful properties of programs
while remaining within the bounds of current typechecking technology.

In Pict, it is relatively rare for a channel to be used for both input and output in the same region of the
program; typically, some parts of a program use a given channel only for reading while in others it is used
only for writing. For example, the \cons cell server" in the example above only reads from the channel cons,
while clients only write to cons. Similarly, given a request [hd tl r], the server only writes to the result
channel r, while the client only reads from it.

9

Pict exploits this observation by providing two re�nements of the channel type ^T: a type !T giving only
the capability to write values of type T and, symmetrically, a type ?T giving only the capability to read
values of type T. For example, we can re�ne our type annotations for cons as follows:

type IntList = (rec L = ![![] ![Int L]])

cons?*[hd:Int tl:IntList r:!IntList] =

(new l:^[![] ![Int IntList]]

(r!(rec:IntList l) | l?*[n:![] c:![Int IntList]] = c![hd tl]))

The re�ned type annotations make it clear that cons only requires write capability on the channels r, n,
and c. Note that the channel l is created with both read and write capabilities. The cons cell server uses
l's read capability locally and gives the client the write capability.

The types ^T, ?T, and !T fall naturally into a subtype relation [PS93], since a channel of type ^T may
always be used in a context where one of type ?T or !T is expected (for example, in an input or output
expression).

3.4 Record Subtyping

One objective of the Pict project was to explore the applicability of our earlier theoretical work on type
systems for object-oriented programming. In [PT94], we proposed a powerful combination of subtyping and
polymorphism as a basis for statically-typed object-oriented programming in functional languages; equipping
Pict with a similar type system makes it a useful testbed for experiments with statically typed concurrent
objects.

We implement a simple form of record subtyping which allows record �elds to be added to the end of a
record. For example, the record type [l=Int m=Bool] is a subtype of [l=Int]. Unlike some record type
systems, the order of the �elds in a Pict record is signi�cant. For example, [m=Bool l=Int] is not a subtype
of [l=Int m=Bool]. Pict's simple record subtyping, in combination with the fact that the order of record
�elds is signi�cant, simpli�es the compilation of record values, since the position of a �eld in a record can be
determined from its type at compile time (this is especially useful when separately compiling Pict programs).

3.5 Polymorphism

Our type system may readily be extended to include polymorphism, just as simply typed �-calculus can be
extended with polymorphism [Gir72, Rey74]. We support polymorphic communications by adding two new
syntactic forms: package values {T}v and package patterns {X}p. For example, if c is a channel of type ^Int,
the output expression z!{Int}[5 c] sends along the channel z the type Int and the pair of values 5 and
c. The type of z itself is ^{X}[X ^X], pronounced \channel carrying a type X, a value belonging to type X,
and a channel carrying elements of X." In more familiar notation, this type might be written ^(9X.[X !X]).
A process receiving from z has the form z?{X}[v:X x:^X] = ..., which binds the type variable X to the
received type. The bound variables v and x have types X and ^X. This e�ectively means that the only legal
operation on v is to send it along x.

We can now generalise our cons cell server so that it is polymorphic in the list element type:

cons ?* {X}[hd:X tl:(List X) r:!(List X)] =

(new l:^[![] ![X (List X)]]

(r!(rec:(List X) l) | l?*[n:![] c:![X (List X)]] = c![hd tl]))

Clients of the polymorphic cons must now send an additional type argument along the cons channel. For
example, the following process uses the polymorphic cons to build an integer cons cell (we assume the tail
of the list, tl, has already been built and has type (List Int)):

(new r:^(List Int) (cons!{Int}[33 tl r] | r?l:(List Int) = ...))

Polymorphism and subtyping are combined by giving each bound type variable in a package value an
upper bound, as in the polymorphic �-calculus with bounded quanti�cation, System F� [CW85, CMMS94].

10

For example, the type ^{X<T}[X ^X] describes a channel that can be used to transmit a type X and two
values of types X and ^X, but also stipulates that the only legal values of X are subtypes of T.

Just as functions in Pict have no special status | being regarded as output channels on which clients can
send tuples of arguments and a continuation channel where the function is to send the result | polymorphic
functions are represented as output channels carrying package values. This \pun" entails that the primitive
form of polymorphism in Pict is existential types, not universal types as in most typed �-calculi.

3.6 Type Operators

Strictly speaking, the type (List Int) is formed by applying the type constructor List to the type Int.
That is, List is a function from types to types. To avoid nonsensical applications like (List List) or
(Int Int), we classify types and type operators according to their kinds, as in typed �-calculi such as
System F! [Gir72, Bar92] and F!

� [Car90, Mit90, HP95, PS97]. Thus, the type system recognizes three
distinct levels of expressions: values, types, and kinds. The level of values contains familiar entities like 5,
true, the tuple [5 true], and channels. The level of types contains proper types like Int, Bool, (List Int),
[Int Bool], and ^Int, as well as type operators like List. The proper types classify values, in the sense that
entities at the level of values may inhabit proper types: 5 inhabits Int, etc. In the same sense, kinds classify
types: all the proper types inhabit the kind Type; type operators accepting one proper type parameter and
yielding a proper type (like List) inhabit the kind (Type->Type); type operators taking two proper type
arguments and yielding a proper type inhabit the kind (Type->(Type->Type)); and so on.

3.7 Type Inference

Although Pict's core language is explicitly typed, it is very convenient to allow some type annotations to
be omitted from user programs. Some languages, such a ML and Haskell, which are based on the Hindley-
Milner type system, can automatically infer all necessary type annotations. Pict's type system, however, is
signi�cantly more powerful than the Hindley-Milner type system (since, in particular, it allows higher-order
polymorphism and subtyping). This unfortunately means that we don't have an algorithm which can infer all
the necessary type annotations in a Pict program. Instead, we use a simple partial type inference algorithm
(the algorithm is partial, in the sense that it may sometimes have to ask the user to add more explicit type
information rather than determine the types itself).

Pict's partial type inference algorithm exploits the fact that there are a number of common cases where
the type assigned to a bound variable is completely determined by the surrounding program context. For
example, the variable x in the input expression c?x=e has type Int if the channel c is known to have type
^Int. Pict's type inference algorithm is local, in the sense that it only uses the immediately surrounding
program context to try and �ll in a missing type annotation. This might at �rst seem rather restrictive,
but our experience so far has been very favorable. (Our largest Pict program is approximately 6000 lines
long, and there are very few cases where one feels that the type inference algorithm isn't inferring enough
type annotations automatically.) One of the reasons partial type inference works well in Pict is that many
programs already contain explicit type annotations (for the purposes of documentation). It turns out that
in many cases these explicit type annotations are su�cient to uniquely determine the types which should be
assigned to all other bound variables.

A simple type inference algorithm has two important bene�ts. Firstly, it makes it easy for Pict pro-
grammers to understand the process of type inference (and thereby understand where type annotations are
required and what type errors mean). Secondly, a simple type inference algorithm is easier to formalise:
Pict's type inference algorithm forms part of the speci�cation of the Pict language. Type systems for lan-
guages such as ML and Haskell can be speci�ed by means of a set of typing rules which non-deterministically
pick the `correct' types for all bound variables. No details of the actual process of type inference are required
(though it is necessary to prove that a sound and complete type inference algorithm does exist). Since we
cannot infer all missing type annotations in Pict programs, it is necessary to specify exactly which type
annotations can be inferred automatically. Because of the local nature of partial type inference in Pict, it is
possible to describe the algorithm using rules which look much like Pict's typing rules, but which formalise
how type information propagates into and out of an expression.

11

In this paper, we concentrate on the explicitly typed language, and omit details about type inference.
See the Pict de�nition [PT97] for a formal description of type inference.

3.8 Notation

The syntax of type expressions is as follows:

Type = ^ Type Input/output channel
! Type Output-only channel
? Type Input-only channel
{ Id < Type } Type Package type
[Label Type ... Label Type] Record type
Id Type identi�er
\ Id : Kind = Type Type operator
(Type Type) Type application
(rec Id : Kind = Type) Recursive type
Top : Kind Maximal type
Int Integer type
Char Character type
Bool Boolean type
String String type

Kind = (Kind -> Kind) Kind of type operators
Type Kind of types

A typing context � is a list of bindings associating variables with their types and type variables with their
upper bounds. The metavariables � and � range over contexts. The concatenation of � and � is written
�;�.

The type system of Pict comprises axioms and inferences rules de�ning sets of derivable statements of
the following forms:

� ` S < T S is a subtype of T
� ` v 2 T value v has type T under assumptions �
� ` d . � declaration d is well formed and yields bindings �
� ` p 2 T . � pattern p requires type T and yields bindings �
� ` a 2 T abstraction a is well formed and accepts type T
� ` e ok process expression e is well formed
� ` T 2 K type T has kind K

` � ok context � is well formed

The �rst two kinds of statement are familiar from type systems for functional languages. The third is used
for checking Pict declarations. Since a declaration cannot be sent over a channel, it does not itself have a
type; however, it may give rise to a collection of variable bindings for some following scope, and we need
to keep track of the types of these variables. The \type" of a declaration is therefore a typing context.
Similarly, a pattern binds some variables and thus gives rise to a context; however, a pattern also has a type,
since it can only match values of a certain form. An abstraction requires an argument of a certain form. A
process expression yields neither bindings nor a value; it is simply either well formed or not. (A process is
well formed in a given context if all its input- and output-subexpressions respect the typings of the channels
over which communication occurs.) The last two forms of statements give standard rules for well-formedness
of types and typing contexts.

The rules for well-kinded types and well-formed contexts are familiar from the literature on higher-order
typed �-calculi (e.g. [HP95, PS97]), and we do not discuss them here. The rest of this section presents a
selection of the rules which de�ne the remaining forms of typing statements. (A full description of the typing
and kinding rules can be found in the Pict language de�nition [PT97].)

12

3.9 Subtyping

The subtype relation consists of two structural rules plus one or more rules for each type constructor or
constant. The structural rules state that subtyping is reexive and transitive and includes �-conversion on
types so that, if F is the type operator \X:Type = [X X], then (F Int) is equivalent to [Int Int]:

S =�T T

� ` S < T
(S-Conv)

� ` S 2 K � ` U 2 K � ` T 2 K � ` S < U � ` U < T

� ` S < T
(S-Trans)

Formally, the conversion relation =�T contains both ordinary �-conversion ((\X:K=T) S =�T fX 7! SgT)
and a rule of \top-conversion" (cf. [PS97]) that makes Top at operator kinds behave like a type operator
(Top:(K1->K2) S =�T Top:K2).

Each type variable is a subtype of the upper bound declared for it in the context:

�1; X<T;�2 ` X < T (S-TVar)

Top:K is a maximal type for each kind K. In particular, Top:Type, which may be written just Top, is the
largest type.

� ` S < Top:K (S-Top)

A record type S is a subtype of another record type T whenever S contains more �elds than T (and
where the types of the corresponding �eld values are also subtypes). For example, if Char < Int then
[l=Char m=Bool] < [l=Int].

� ` T1 < T01 ... � ` Tn < T0n

� ` [l1T1...lnTn...] < [l1T
0
1...lnT

0
n]

(S-Record)

The package type {X<S1}S2 is a subtype of {X<T1}T2 if the bounds S1 and T1 have the same kind, S1 is
a subtype of T1, and S2 is a subtype of T2 under the assumption that X is a subtype of S1:

� ` S1 2 K � ` T1 2 K � ` S1 < T1 �; X<S1 ` S2 < T2

� ` {X<S1}S2 < {X<T1}T2
(S-Package)

The channel constructor ? is covariant in its argument and ! is contravariant. Operationally, this captures
the observation that, for example, if a given channel x is being used in a given context only to read elements
of type T, then it is safe to replace x by another channel y carrying elements of type S, as long as any element
that is read from y may safely be regarded as an element of T | that is, as long as S is a subtype of T.

� ` S < T

� ` ?S < ?T
(S-IChan)

� ` T < S

� ` !S < !T
(S-OChan)

Notice that the contravariance of ! gives rise to the usual rule of subtyping between types of functions. A
function f 2 S1 ! S2 is implemented in Pict as a server process reading requests of type [S1 !S2] from a
channel f, performing the appropriate calculation, and returning its result on the channel provided as its
second argument. From the point of view of a caller, the request channel f has type ![S1 !S2]; this type is
contravariant in S1 and covariant in S2, as expected:

� ` T1 < S1 � ` S2 < T2

� ` ![S1 !S2] < ![T1 !T2]

The constructor ^ is invariant in the subtype relation (i.e. ^S is a subtype of ^T only when S and T

are equivalent). The type ^T is a subtype of both ?T and !T. That is, we are allowed to forget either the
capability to write or the capability to read on a channel: a channel that can be used for both input and
output may be used in a context where just one capability is needed.

� ` ^T < ?T (S-ChanIChan)

� ` ^T < !T (S-ChanOChan)

13

The subtype relation is extended pointwise from proper types to other kinds: if F and G are type operators,
then we say F < G if (F T) < (G T) for all appropriately kinded argument types T.

�; X<Top:K ` S < T

� ` \X:K=S < \X:K=T
(S-Abs)

� ` S < T

� ` (S U) < (T U)
(S-App)

For subtyping of recursive types, we use the familiar \Amber rule" [Car86, AC93], which states that
(rec X=S) is a subtype of (rec Y=T) if we can show S < T under the assumption X < Y.

�; Y<Top:K; X<Y ` S < T

� ` (rec X:K=S) < (rec Y:K=T)
(S-Rec)

3.10 Values

If the current context contains the binding x:T for the variable x, then the type of x is T in this context (all
bound variables are assumed to be unique, so there is no ambiguity in this rule):

�1; x:T;�2 ` x 2 T (V-Var)

If the values v1 through vn have the types T1 through Tn, then the record value [l1v1...lnvn] has the
record type [l1T1...lnTn].

� ` v1 2 T1 ... � ` vn 2 Tn

� ` [l1v1...lnvn] 2 [l1T1...lnTn]
(V-Record)

A value v can be incorporated into an existential package of type {X<U}T if the \witness type" S is a
subtype of U. The actual type of the value v must match the type T after the substitution of S for X.

� ` S 2 K � ` U 2 K � ` S < U � ` v 2 fX 7! SgT

� ` {S}v 2 {X<U}T
(V-Package)

For example, if res has type ^Bool, then the value {Bool}[false res] has type {X}[X ^X], since false

has type fX 7! BoolgX = Bool and res has type fX 7! Boolg^X = ^Bool. Readers familiar with typed
�-calculi will recognize the similarity of this rule to the standard introduction rule for existential types
(e.g. [CW85, MP88]). The pattern typing rule P-Package in Section 3.12 plays the role of the standard
elimination rule for existentials.

A value of a recursive type T can be formed from a value of whose type matches the \unrolling" of T:

� ` T 2 Type T; U � ` v 2 U

� ` (rec:T v) 2 T
(V-Rec)

where T; U means that T is a recursive type and U is obtained from T by unrolling the recursion one step.
For example, if R is the type (rec X:Type = ^X) and c is a channel of type ^R, then (rec:R c) has type R,
since R; ^R.

S =�T (rec X:K = T)

S; fX 7! (rec X:K = T)gT
(Unroll-Rec)

In general, the unrolling operator ; must take into account the fact that the unrolling operation may
be applied to a type expression formed by applying a recursively de�ned type operator to some arguments;
in this case, the arguments are carried along unchanged to the result and the recursive type is unrolled
\in-place":

S =�T (T1 T2) T1 ; U

S; (U T2)
(Unroll-App)

Finally, we allow types of values to be promoted in the subtype relation: if v is a value of type S and S

is a subtype of T, then v also has type T.

� ` v 2 S � ` S < T

� ` v 2 T
(V-Sub)

This rule embodies the principle of \safe substitutability" that underlies the subtype relation: the statement
S < T means that an element of S can always be used in a context where an element of T is required.

14

3.11 Declarations

A new declaration returns a binding for the new channel using the declared type (we check that the declared
type is well-kinded and equivalent to a channel type).

� ` T 2 Type � ` T =�T ^U

� ` new x:T . x:T
(D-New)

3.12 Patterns

Pattern typing statements have the form � ` p 2 T . �. That is, each pattern has a type, describing the
shape of the values that it can match, and moreover gives rise to a set of type- and term-variable bindings.

A variable pattern x:T matches any value of type T and gives rise to a binding for the variable x.

� ` T 2 Type

� ` x:T 2 T . x:T
(P-Var)

A wildcard pattern _:T matches any value of type T but does not give rise to any variable bindings.

� ` T 2 Type

� ` _:T 2 T . �
(P-Wild)

A layered pattern x:T@p matches a value of type T. We return whatever variables are bound in p, plus a
binding for x.

� ` T 2 Type � ` p 2 T . �

� ` x:T@p 2 T . x:T;�
(P-Layered)

A rec pattern accepts a value of type T, but the subpattern p is matched against a value with the unfolded
recursive type U.

� ` T 2 Type T; U � ` p 2 U . �

� ` (rec:T p) 2 T . �
(P-Rec)

A record pattern [l1p1...lnpn] has the type [l1T1...lnTn], where the Ti's are the types of its elements,
and gives rise to a set of bindings including all the bindings from its subpatterns.

� ` p1 2 T1 . �1 ... � ` pn 2 Tn . �n

� ` [l1p1...lnpn] 2 [l1T1...lnTn] . �1; : : : ;�n

(P-Record)

A package pattern {X<U}p matches any value of type {X<U}T, where T is the type of the pattern p (under
the assumption that X is a subtype of U). The pattern {X<U}p yields not only the bindings produced by p,
but also the type binding X<U.

� ` U 2 K �; X<U ` p 2 T . �

� ` {X<U}p 2 {X<U}T . X<U;�
(P-Package)

3.13 Process Abstractions

A process abstraction p=e requires an argument of type T, where T is the type of the pattern p. The process
e is typechecked in a context extended with the bindings � introduced by p.

� ` p 2 T . � �;� ` e ok

� ` p=e 2 T
(A-Abs)

3.14 Processes

The typing rules for processes are the simplest of all. The parallel composition of two processes is well formed
in a given context if both parts are.

� ` e1 ok � ` e2 ok

� ` (e1 | e2) ok
(E-Prl)

An input expression v?a is well formed if v is a channel for which we have input permission, i.e., it has type
?T for some T, and a is a well formed abstraction which accepts a value of type T.

15

� ` v 2 ?T � ` a 2 T

� ` v?a ok
(E-In)

Symmetrically, an output expression v1!v2 is well formed if v1 has an output channel type !T, for some T,
and v2 has type T.

� ` v1 2 !T � ` v2 2 T

� ` v1!v2 ok
(E-Out)

Finally, a local declaration provides a set of bindings � in which the process body is checked.

� ` d . � �;� ` e ok

� ` (d e) ok
(E-Dec)

A conditional expression is well formed if the guard expression has boolean type, and the two branches of
the conditional are well formed.

� ` b 2 Bool � ` e1 ok � ` e2 ok

� ` if b then e1 else e2 ok
(E-If)

3.15 Type Safety

The relation between the type system and the operational semantics can be expressed in the form of two
slogans: evaluation cannot fail in well-typed processes, and reduction preserves typing. We de�ne runtime
failure by means of a set of inference rule similar in form to Pict's reduction rules (for the sake of brevity,
we only present the most important rules).

The most important type of failure we hope to prevent is pattern-matching failure during communication
(this type of failure can also occur in a communication with a replicated input, but we omit that rule here):

fp 7! vg unde�ned

(x!v | x?p = e) fails
(Fail-Comm)

In addition, a process fails if it attempts to use any value other than a channel as the subject of a com-
munication (recall that we do not have any syntax for channel constants, only variables which range over
channels). For example, []!23 fails, since it attempts to use the record value [] as a channel. (We omit the
rules for similar failures in input and replicated input pre�xes.)

v1 is not a variable

v1!v2 fails
(Fail-Out)

Failures may also occur inside local declarations and parallel compositions of processes (the Fail-Str rule, in
combination with Fail-Prl, captures the case when a failure occurs in the right-hand subterm of a parallel
composition):

e fails

(d e) fails
(Fail-Dec)

e1 fails

(e1 | e2) fails
(Fail-Prl)

We reuse the structural congruence relation (from Section 2.6) to capture the distributed nature of failures.
A process is considered to have failed if any two subprocesses at the \top level" (i.e. not guarded by any
input pre�xes) may be brought into proximity by structural manipulations so that they fail.

e1 � e2 e2 fails

e1 fails
(Fail-Str)

3.15.1 Conjecture [Type safety]: If � ` e then e does not fail.

3.15.2 Conjecture [Subject reduction]: If � ` e1 and e1 ! e2 then � ` e2.

The metatheoretic foundations needed to prove these two properties have already been established for the
major components of the Pict type system| for channel types and subtyping by Pierce and Sangiorgi [PS93],

16

for polymorphic channels by Turner [Tur96], for higher-order polymorphism with subtyping by Pierce and
Ste�en [PS97] and Compagnoni [Com94]. However, the above properties remain conjectures, since we have
not checked the type system as a whole.

4 Derived Forms

The statically-typed core language of Pict is a powerful, safe, and unacceptably verbose programming nota-
tion. In this section, we show how more convenient high-level constructs are built up from the core by means
of source-to-source translations | following in the tradition of numerous papers showing how various high-
level features can be encoded in the �-calculus [San92, San94, San93, Mil90, Jon93, Wal95, Ama94, AP94,
etc.]. We discuss only the more interesting translation rules; the complete list can be found in the Pict
language de�nition [PT97].

4.1 Simple Translations

Large programs often contain long sequences of declarations like (new x1 ... (new xn e)). To avoid
proliferation of parentheses, we introduce the more compact syntactic form (new x1 ... new xn e) in the
high-level language. Formally, we extend the syntactic category of processes with n-ary declarations of the
form (d1 ... dn e) and introduce a translation rule

(d1...dn e)) (d1 ... (dn e)) (Tr-DecSeq)

that shows how n-ary declarations may be interpreted as expressions in the core language.
In sequences of declarations, it is often convenient to start some process running in parallel with the

evaluation of the remainder of the declaration. We introduce the declaration keyword run for this purpose.
After a declaration sequence has been translated into a nested collection of individual declarations, run
declarations may be translated into simple parallel compositions:

(run e1 e2)) (e1 | e2) (Tr-Run)

For example, the process

(run print!"twittering"

run print!"rising"

print!"overhead passing")

is transformed by Tr-DecSeq followed by two applications of Tr-Run into:

(print!"twittering" | (print!"rising" | print!"overhead passing"))

Many variants of the �-calculus allow process abstractions like F (x; y) = �xy j �xy. In Pict, such abstractions
are introduced via the declaration keyword def, as in def f [x y] = (x!y | x!y), and instances are cre-
ated using the same syntax as output expressions, as in f![a b]. The coincidence between the notations for
sending on a channel and instantiating a process abstraction is not accidental: we translate a process abstrac-
tion like the one above into a channel declaration new f and a replicated receiver f?*[x y] = (x!y | x!y),
so that instantiating an abstraction actually is just an output. Formally, this translation is captured by the
following rule:

(def x p = e1 e2)) (new x (x?*p = e1 | e2))

Recursive and mutually recursive de�nitions are also allowed. The �rst de�nition in a recursive group is
introduced by def, the others with and.

def f [x y] = ... g![a b] ...

and g [z w] = ... f![a b] ...

The general translation rule, then, is:

(def x1a1 ... and xnan e))
(new x1 ... (new xn (x1?*a1 | ... | xn?*an | e)) ...)

(Tr-Def)

Note that Tr-Def is a transformation on typed expressions. However, since the actual type of the channel
xi is determined by the type of the pattern pi, we omit the type annotation.

17

4.2 Complex Values

So far, all the value expressions we have encountered have been built up in an extremely simple way, using just
variables, channels, basic values, tuples of values, and records of values. These simple values are important
because they are exactly the entities that can be passed along channels and participate in pattern matching.

In real programs, it is very common to write an expression that computes a simple value and immediately
sends it along some channel. For example, the process (new n c!n) creates a fresh channel n and sends it o�
along c. An alternative syntax for such expressions, which can often make them easier to understand, puts
the whole value-expression inside the output: c!(new n n). In general, it is useful to allow such expressions
in any position where a simple value is expected. Formally, we extend the syntactic category of values with
declaration values of the form (d v). We use the term complex value for an expression in the extended
syntax that does not fall within the core language.

When we write c!(new n n), we do not mean to send the expression (new n n) along c. A complex
value is always evaluated \strictly" to yield a simple value, which is substituted for the complex expression.

In introducing complex values, we have taken a fairly serious step: we must now de�ne the meaning of a
complex value occurring in any position where simple values were formerly allowed. For example, the nested
expression c![23 (new x x) (new y y)] must be interpreted as a core language expression that creates
two new channels, packages them into a simple tuple along with the integer 23 and sends the result along c.

We interpret arbitrary complex values using a general \continuation-passing" translation. Given a com-
plex value v and a continuation channel c, [[v ! c]] will denote a process that evaluates v and sends the
resulting simple value along c. We then introduce translation rules for process expressions containing complex
values. For example, the rule

v1!v2) (new c ([[v1 ! c]] | c?x = [[v2 ! x]])) (Tr-Out)

translates an output v1!v2 into a process expression that �rst allocates a fresh continuation channel c,
evaluates v1, waits for its result to be sent along c, and then evaluates v2, sending the result directly
along the channel x that resulted from the evaluation of v1. Input processes containing complex values are
translated similarly:

v?a) (new c ([[v! c]] | c?x = x?a)) (Tr-In)

v?*a) (new c ([[v! c]] | c?x = x?*a)) (Tr-RIn)

The continuation-passing translation itself is de�ned by induction on the syntax of value expressions:

[[x! c]] = c!x

[[k! c]] = c!k

[[(d v)! c]] = (d [[v! c]])
[[(rec:T v)! c]] = (new c0 ([[v! c0]] | c0?x = c!(rec:T x)))

[[{T}v! c]] = (new c0 ([[v! c0]] | c0?x = c!{T}x))

Record values are evaluated left-to-right:

[[[l1v1...lnvn]! c]] = (new c1 ([[v1 ! c1]] | c1?x1 = ...

(new cn ([[vn ! cn]] | cn?xn =

c![l1x1...lnxn])) ...))

4.3 Value Declarations

Since complex value expressions may become long or involve expensive computations, it is convenient to
introduce a new declaration form that evaluates a complex value and names its result. For example,
(val x = v e) binds x to the result of evaluating v and then executes e. Formally, val declarations
are translated using the continuation-passing translation:

(val p=v e)) (new c ([[v! c]] | c?p = e)) (Tr-Val)

Note that when a val declaration (val p=v e) is translated into the core language, the body e appears
inside an input pre�x. This fact implies that val declarations are strict or blocking: the body cannot proceed
until the bindings introduced by the val have actually been established.

18

4.4 Application

Of course, allowing declarations inside values represents only a minor convenience; the usefulness of this
extension by itself would not justify all of the foregoing machinery. But having established the basic pattern
of simplifying complex value expressions by means of a continuation-passing transformation, we can apply
it to a much more useful extension. In value expressions, we allow the application syntax (v v1 ... vn).
For example, if we de�ne a double function by

def double [s:String r:!String] = concat![s s r]

(where concat is string concatenation), then, in the scope of the declaration, we can write (double s)

as a value, dropping the explicit result channel r. For example, print!(double "soothe") causes
"soothesoothe" to be sent along the built-in channel print.

In fact, we allow a slightly more general syntax for application which enables argument values to be
labelled and witness types to be provided (in case the operation is polymorphic). We de�ne the meaning of
application by adding a clause to the de�nition of the continuation-passing translation:

[[(v |T1...Tn| l1v1...lnvn)! c]] = (new c0 ([[v! c0]] | c0?x = ...

(new c1 ([[v1 ! c1]] | c1?x1 = ...

(new cn ([[vn ! cn]] | cn?xn =

x!{T1}...{Tn}[l1x1...lnxn c]))...))))

The `function' value v is evaluated �rst, followed by the argument values v1 to vn. Finally, the function is
called and instructed to return its result along the application expression's continuation channel c.

4.5 Abstractions

Although Pict's core language and type system do not distinguish between \real functions" and processes
that act like functions, it is nevertheless often useful to write parts of programs in a functional style.
This is supported by a small extension to the syntactic class of abstractions, mirroring the ability to omit
the names of result parameters in applications. For example, we replace a process de�nition of the form
def f [a1 a2 a3 r] = r!v, where the whole body of the de�nition consists of just an output of some (com-
plex) value on the result channel r, by a \function de�nition" def f (a1 a2 a3) = v that avoids explicitly
giving a name to r. Formally, this is captured by the following translation rule for abstractions:

(|X1<T1...Xn<Tn| l1p1...lnpn):T = v)
{X1<T1}...{Xn<Tn}[l1p1...lnpn r:!T] = r!v

(Tr-VAbs)

The derived form also allows for type arguments in a function de�nition, which are translated to package
patterns. Note that the explicit result type annotation T becomes a type annotation !T on the result channel.

Since anonymous process declarations like (def x [] = e x) or (def x () = v x) are frequently
useful for higher-order programming, we provide anonymous abstractions as a special form of value. We do
not need an extra case in our continuation-passing translation to describe the meaning of this special form:
we just add a local transformation on values:

\a) (def x a x) (Tr-AnonAbs)

For example,

def applyTwice (f x) = (f (f x))

val y = (applyTwice \(x) = (+ x 1) 3)

de�nes a function applyTwice and passes it an anonymous function that adds one to its argument.

4.6 Examples

To illustrate some of the high-level forms we have introduced, here is the list example from Section 2.5
rewritten using the full syntax:

19

type (List X) = (rec L = ![![] ![X L]])

def nil (|X|) : (List X) = (rec \[n c] = n![])

def cons (|X| hd:X tl:(List X)) : (List X) = (rec \[n c] = c![hd tl])

Uses of nil and cons can also be streamlined by using application syntax:

val l = (cons 22 (cons 33 (cons 44 (nil))))

The next example illustrates how we can build a simple reference cell object in Pict.

def newRef (|X| init:X) =

(new l:^X

run l!init

[set = \[v:X c:![]] = l?x = (l!v | c![])

get = \[r:!X] = l?x = (l!x | r!x)])

Each message sent along newRef consists of a pair of values: init, the initial value of the reference cell that is
to be created, and an implicit result channel that the server uses to return the newly created reference cell to
the requesting client. After reading a request, the server creates a new channel l which acts as a \container"
for the current value of the reference cell. Sending a value along l represents the action of placing a value in
the container. Receiving a value from l empties the container; it is then the receiver's responsibility to re�ll
the container by transmitting a new value along l. The container is initialized by sending init along l.

In parallel with initializing the container l, newRef returns a record containing set and get methods
(process abstractions). Each method waits for a request on its service port; having received one, it reads l to
obtain the current value of the cell, re�lls l as appropriate, and sends a result (or acknowledgement) to the
client. It is possible that multiple copies of each method may be running in parallel at any given moment.
But since there is never any more than one sender on l, all but one of them will be blocked waiting for an
input on l.

5 Discussion

We now return to the motivating questions from the introduction and summarize what we have learned.

What is it like to program in the �-calculus? What kind of high-level language can be built on it?

The �-calculus is best thought of as a kind of concurrent machine code: it is simple, exible, and e�ciently
implementable, and it o�ers a suitable target for compilation of higher-level language features. Indeed, the
variety of features whose semantics can be expressed in terms of message passing is so wide that many quite
di�erent language designs could have arisen from our experiment.

It is worth bearing in mind that choosing �-calculus as a semantic framework strongly discourages the use
of some potentially useful language features, such as process priorities and exceptions, which cannot be easily
formalized in this setting. A particularly important feature that is not addressed by �-calculus is physical
distribution, since the semantic framework of the �-calculus lacks necessary concepts such as process location
and failure. Work is currently underway on the design of a new language, tentatively named Distributed
Pict, based on a variant of the �-calculus [FG96] extended with distribution primitives [FGL+96]. Cardelli's
Obliq [Car95] achieves related aims by building on a primitive notion of network objects.

Pict belongs to a sizeable family of concurrent programming language designs inspired by theoreti-
cal calculi, including Vasconcelos's TyCo [Vas94], Kobayashi's HACL [Kob96], and numerous actor lan-
guages [Hew77, Agh86, etc.]. A particularly close relative is the language Oz [Smo95], which integrates
functional, object-oriented, and concurrent constraint programming by translation into a common core cal-
culus [Smo94]. Although this calculus uses concurrent constraints as its basic communication mechanism,
the encoding of high-level features is strongly reminiscent of Pict.

Our choice of high-level language features leads to a programming style similar to that found in functional
languages with channel-based concurrency such as PFL [Hol83], Amber [Car86], CML [Rep91, BMT92],
Facile [GMP89], Poly/ML [Mat91], and Concurrent Haskell [JGF96]. The most signi�cant di�erence lies in
the type system: the impredicative polymorphism of Pict permits the encoding of polymorphic functions

20

using polymorphic communication. This pun is not possible in languages whose type systems are based on
ML polymorphism, where channels cannot carry messages of varying types. Also, the re�ned channel types
provided by Pict (such as input-only and output-only channels) give the programmer useful extra control
over channel usage in programs. Languages such as CML, Poly/ML, or Concurrent Haskell do not distinguish
di�erent modes of channel usage (and therefore also miss the opportunity to optimise the implementation of
communication by exploiting explicit type information).

What kinds of concurrent objects arise in this setting?

We have found that a simple style of objects arises almost necessarily in message-based concurrent
programming: an object is just a group of agents that cooperate to provide some collection of services to
the \outside world," jointly maintaining the consistency of some shared data. It is convenient to group these
services together as a record of named channels, allowing access to the whole collection of services to be
passed around between clients as a single unit.

Unfortunately, the more subtle mechanisms found in many concurrent object-oriented languages, such as
dynamic method lookup and inheritance of synchronization policies, do not arise in the same \inevitable" way.
Rather than commit to a particular high-level object model in Pict, we have chosen to provide a framework
for experimenting with a variety of designs. Pict's type system incorporates a number of powerful constructs,
such as higher-order subtyping, especially for this purpose. Preliminary experiments with concurrent objects
in Pict are described in [PT95]. Some more sophisticated proposals are described in [NSL96].

Can the �-calculus be implemented e�ciently?

Pict's high-level language is de�ned by means of a translation into a �-calculus core language. This
is a very useful style of de�nition as far as the compilation of Pict is concerned, since it identi�es a very
small calculus which is su�cient to implement the whole of Pict. The operational semantics of �-calculus,
plus a number well-known program equivalences, give rise a number of easy to implement (and provably
correct) program optimisations, many of which generalise optimisations already commonly used in compilers
for functional languages. Our Pict compiler does all of its static analysis of programs, optimisation, and
code generation using a �-calculus core language.

However, encoding a high-level language into a low-level language such as �-calculus does run the risk of
losing useful information about a program. Fortunately, we have so far been able to regain the information
we need by exploiting explicit type information (in particular, we make heavy use of type information to
optimise the implementation of communication).

Functional code, when compiled by our Pict compiler comes out looking very like the code generating
by a continuation-passing compiler. We compile to C for portability and easy inter-operability with existing
program libraries, though this does have a signi�cant cost in e�ciency for the compiled code (Tarditi,
Archarya, and Lee [TAL90] report that when they modi�ed the New Jersey SML compiler so that it generated
C code, it produced code which ran approximately twice as slow as code produced by the native code
generator).

Very simple comparisons of the code produced by Pict and New Jersey SML [Tur96] indicate that func-
tional code compiled by Pict runs approximately six times slower than that produced by New Jersey SML.
We �nd this quite encouraging, since the Pict compiler has had very little tuning and lacks a number of
important optimisations (in particular, the representation of closures in Pict is not yet optimised in any
way). Moreover, New Jersey SML has the advantage of compiling to native code (the code we generate is
very similar to the code generated by Tarditi, Archarya, and Lee's sml2c compiler, so we might reasonably
expect to gain a factor of two if we produced native code instead of C code, which would leave us within a
factor of three of the performance of New Jersey SML).

To give an idea of how fast our channel-based communication primitives are, we compared the performance
of the Pict nqueens program with an equivalent CML program which uses CML's channel primitives to
implement the result channels used in Pict [Tur96]. The CML program ran almost four times slower than
Pict. This is not to say that CML programs in general run four times slower than Pict, since CML programs
typically consist of large amounts of SML code, which runs faster than Pict. However, the comparison does
give an idea of the raw performance of Pict's communication primitives. (Especially since the CML program
had the advantage of being compiled to native code.)

21

Can we design a practical type system for the �-calculus combining subtyping and
higher-order polymorphism?

The Pict type system integrates a number of well-studied ideas: Milner's simple sorting discipline for
channels [Mil91], polymorphic channels [Tur96], higher-order polymorphism [Gir72], input/output modali-
ties [PS93], higher-order subtyping [Car90, Mit90, PT94, HP95, PS97], and recursive types [MPS86, AC93].
However, the key to obtaining a workable type system for Pict was the development of a practical type in-
ference algorithm. Pict's partial type inference algorithm is surprisingly simple and easy to understand, but
yet our experience has been that it gives very acceptable results. One of the reasons partial type inference
works well in Pict is that many programs already contain explicit type annotations (for the purposes of
documentation). It turns out that in many cases these explicit type annotations are su�cient to uniquely
determine the types which should be assigned to all other bound variables.

In the design of Pict's type system we gave up the goal of complete type inference in preference for more
powerful type-theoretic constructs. For example, Pict's impredicative polymorphism directly supports useful
features such as �rst-class existential types, which are not expressible in simpler, predictive, polymorphic type
systems. Thus, without any further extensions to the language, Pict programmers can structure programs
using abstract datatypes (this facility is used extensively throughout Pict's standard libraries). We are
working on modest extensions to Pict's type system which will enable better `programming in the large' but,
unlike Standard ML, will not require a separate module-level language. For instance, we hope to extend
Pict's treatment of existential types to account for type sharing (using techniques similar to those proposed
by Leroy [Ler95] and Harper and Lillibridge [HL94]).

Acknowledgements

Robin Milner's past and present work on programming languages, concurrency, and the �-calculus in par-
ticular is very strongly in the background of this project, and conversations with Robin have contributed
many speci�c insights. The idea of basing a programming language design on the �-calculus was planted by
Bob Harper and developed into a research project in the summer of 1992 in discussions of concurrent object-
oriented programming languages with the Edinburgh ML Club. From Davide Sangiorgi, we learned about
the higher-order �-calculus and the many ways of encoding �-calculi in the �-calculus. Didier R�emy helped
build the original PIC compiler (on which the �rst version of the present Pict compiler was based [PRT93])
and joined in many discussions about the integration of processes and functions. Uwe Nestmann's research
on proof techniques for compilations between concurrent calculi sharpened our ideas about the formal foun-
dations of Pict. Martin Ste�en helped study the formal foundations of the subtyping algorithm. Dilip
Sequeira contributed both code and ideas to the implementation of type inference and record type checking.
Kohei Honda, Nobuko Yoshida, and Peter Sewell helped us think about fairness in process calculi. Conver-
sations with Luca Cardelli, Georges Gonthier, Sigbjorn Finne, Cli� Jones, Naoki Kobayashi, Martin M�uller,
Joachim Niehren, Oscar Nierstrasz, Simon Peyton Jones, John Reppy, Gert Smolka, and David Walker have
deepened our understanding of the �-calculus and concurrent programming languages.

Pierce has been supported by fellowships from the U.K. Science and Engineering Research Council and
Engineering and Physical Sciences Research Council and by the ESPRIT Basic Research Actions TYPES
and CONFER. Turner has been supported by Harlequin Ltd. and a fellowship from the U.K. Engineering
and Physical Sciences Research Council.

References

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on Programming
Languages and Systems, 15(4):575{631, 1993. A preliminary version appeared in POPL '91 (pp. 104{118)
and as DEC Systems Research Center Research Report number 62, August 1990.

[AC96] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[ACS96] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the asynchronous
pi-calculus. Technical report, INRIA-Sophia Antipolis, 1996.

22

[Agh86] Gul A. Agha. Actors: a Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
MA, 1986.

[Ama94] Roberto M. Amadio. Translating core Facile. Technical Report ECRC-TR-3-94, European Computer-
Industry Research Center, GmbH, Munich, 1994. Also available as a technical report from CRIN(CNRS)-
Inria (Nancy).

[AP94] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. Technical Report ECRC-M2-R10,
European Computer-Industry Research Center, GmbH, Munich, 1994.

[Bar92] Henk Barendregt. Lambda calculi with types. In Gabbay Abramsky and Maibaum, editors, Handbook of
Logic in Computer Science, volume II. Oxford University Press, 1992.

[BMT92] Dave Berry, Robin Milner, and David N. Turner. A semantics for ML concurrency primitives. In ACM
Principles of Programming Languages, January 1992.

[Bou92] G�erard Boudol. Asynchrony and the �-calculus (note). Rapporte de Recherche 1702, INRIA So�a-
Antipolis, May 1992.

[Bru94] Kim B. Bruce. A paradigmatic object-oriented programming language: Design, static typing and seman-
tics. Journal of Functional Programming, 4(2), April 1994. A preliminary version appeared in POPL 1993
under the title \Safe Type Checking in a Statically Typed Object-Oriented Programming Language".

[Car84] Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and G. Plotkin, editors,
Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages 51{67. Springer-Verlag,
1984. Full version in Information and Computation 76(2/3):138{164, 1988.

[Car86] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors, Combi-
nators and Functional Programming Languages, pages 21{47. Springer-Verlag, 1986. Lecture Notes in
Computer Science No. 242.

[Car90] Luca Cardelli. Notes about F!<:. Unpublished manuscript, October 1990.

[Car91] Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal Description of
Programming Concepts. Springer-Verlag, 1991. An earlier version appeared as DEC Systems Research
Center Research Report #45, February 1989.

[Car95] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27{59, 1995. Short version
in Principles of Programming Languages (POPL), January 1995.

[CC91] Felice Cardone and Mario Coppo. Type inference with recursive types. Syntax and semantics. Information
and Computation, 92(1):48{80, 1991.

[CHC90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In Seventeenth
Annual ACM Symposium on Principles of Programming Languages, pages 125{135, San Francisco, CA,
January 1990. Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design (MIT Press, 1994).

[CMMS94] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of system F with
subtyping. Information and Computation, 109(1{2):4{56, 1994. A preliminary version appeared in TACS
'91 (Sendai, Japan, pp. 750{770).

[Com94] Adriana B. Compagnoni. Decidability of higher-order subtyping with intersection types. In Computer
Science Logic, September 1994. Kazimierz, Poland. Springer Lecture Notes in Computer Science 933,
June 1995. Also available as University of Edinburgh, LFCS technical report ECS-LFCS-94-281, titled
\Subtyping in F

!

^ is decidable".

[CS87] G. Costa and C. Stirling. Weak and strong fairness in CCS. Information and Computation, 73(3):207{244,
1987.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism. Com-
puting Surveys, 17(4), December 1985.

[FG96] C�edric Fournet and Georges Gonthier. The reexive chemical abstract machine and the join-calculus. In
Principles of Programming Languages, January 1996.

[FGL+96] C�edric Fournet, Georges Gonthier, Jean-Jacques L�evy, Luc Maranget, and Didier R�emy. A calculus of
mobile agents. In 7th International Conference on Concurrency Theory (CONCUR'96), pages 406{421,
Pisa, Italy, August 1996. Springer-Verlag. LNCS 1119.

[FM94] Kathleen Fisher and John Mitchell. Notes on typed object-oriented programming. In Proceedings of
Theoretical Aspects of Computer Software, Sendai, Japan, pages 844{885. Springer-Verlag, April 1994.
LNCS 789.

23

[Gay93] Simon J. Gay. A sort inference algorithm for the polyadic �-calculus. In Proceedings of the Twentieth
ACM Symposium on Principles of Programming Languages, January 1993.

[Gir72] Jean-Yves Girard. Interpr�etation fonctionelle et �elimination des coupures de l'arithm�etique d'ordre
sup�erieur. PhD thesis, Universit�e Paris VII, 1972.

[GMP89] Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. Facile: A Symmetric Integration of Con-
current and Functional Programming. International Journal of Parallel Programming, 18(2):121{160,
1989.

[Hew77] C. Hewitt. Viewing control structures as patterns of passing messages. Arti�cial Intelligence, 8:323{364,
1977.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing.
In Proceedings of the Twenty-First ACM Symposium on Principles of Programming Languages (POPL),
Portland, Oregon, pages 123{137, Portland, OR, January 1994.

[Hol83] S�oren Holmstr�om. PFL: A functional language for parallel programming, and its implementation. Pro-
gramming Methodology Group, Report 7, University of Goteborg and Chalmers University of Technology,
September 1983.

[Hon93] Kohei Honda. Types for dyadic interaction. In CONCUR'93, volume 715 of Lecture Notes in Computer
Science, pages 509{523, 1993.

[Hon96] Kohei Honda. Composing processes. In Principles of Programming Languages (POPL), pages 344{357,
January 1996.

[HP95] Martin Hofmann and Benjamin Pierce. A unifying type-theoretic framework for objects. Journal of
Functional Programming, 5(4):593{635, October 1995. Previous versions appeared in the Symposium on
Theoretical Aspects of Computer Science, 1994, (pages 251{262) and, under the title \An Abstract View
of Objects and Subtyping (Preliminary Report)," as University of Edinburgh, LFCS technical report
ECS-LFCS-92-226, 1992.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In Pierre America,
editor, Proceedings of the European Conference on Object-Oriented Programming (ECOOP), volume 512
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1991.

[HY94] Kohei Honda and Nobuko Yoshida. Combinatory representation of mobile processes. In Principles of
Programming Languages (POPL), pages 348{360, January 1994.

[JGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In Conference Record
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'96),
pages 295{308, St. Petersburg, Florida, January 21{24, 1996. ACM Press.

[Jon93] Cli� B. Jones. A pi-calculus semantics for an object-based design notation. In E. Best, editor, Proceedings
of CONCUR'93, LNCS 715, pages 158{172. Springer-Verlag, 1993.

[Kob96] Naoki Kobayashi. Concurrent Linear Logic Programming. PhD thesis, Department of Information Science,
University of Tokyo, April 1996.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. In Principles
of Programming Languages, 1996.

[KY94] Naoki Kobayashi and Akinori Yonezawa. Type-theoretic foundations for concurrent object-oriented pro-
gramming. In Proceedings of ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA'94), pages 31{45, 1994.

[Ler95] Xavier Leroy. Applicative functors and fully transparent higher-order modules. In Proceedings of the
Twenty-Second ACM Symposium on Principles of Programming Languages (POPL), Portland, Oregon,
pages 142{153, San Francisco, California, January 1995.

[Mat91] David Matthews. A distributed concurrent implementation of Standard ML. Technical Report ECS-
LFCS-91-174, University of Edinburgh, August 1991.

[Mil90] Robin Milner. Functions as processes. Research Report 1154, INRIA, So�a Antipolis, 1990. Final version
in Journal of Mathematical Structures in Computer Science 2(2):119{141, 1992.

[Mil91] Robin Milner. The polyadic �-calculus: a tutorial. Technical Report ECS{LFCS{91{180, Laboratory
for Foundations of Computer Science, Department of Computer Science, University of Edinburgh, UK,
October 1991. Appeared in Proceedings of the International Summer School on Logic and Algebra of
Speci�cation, Marktoberdorf, August 1991. Reprinted in Logic and Algebra of Speci�cation, ed. F. L.
Bauer, W. Brauer, and H. Schwichtenberg, Springer-Verlag, 1993.

24

[Mit90] John C. Mitchell. Toward a typed foundation for method specialization and inheritance. In Proceedings of
the 17th ACM Symposium on Principles of Programming Languages, pages 109{124, January 1990. Also
in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design (MIT Press, 1994).

[MP88] John Mitchell and Gordon Plotkin. Abstract types have existential type. ACM Transactions on Pro-
gramming Languages and Systems, 10(3), July 1988.

[MPS86] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive polymorphic types.
Information and Control, 71:95{130, 1986.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and II). Information and
Computation, 100:1{77, 1992.

[Nie95] Oscar Nierstrasz. Regular types for active objects. In O. Nierstrasz and D. Tsichritzis, editors, Object-
Oriented Software Composition, pages 99{121. Prentice Hall, 1995. Earlier version in proceedings of
OOPSLA '93, published in ACM Sigplan Notices, 28(10), October 1993, pp. 1{15.

[NP96] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. In Proceedings of CONCUR '96,
August 1996.

[NSL96] Oscar Nierstrasz, Jean-Guy Schneider, and Markus Lumpe. Formalizing composable software systems |
a research agenda. In Formal Methods in Open, Object-Based Distributed Systems (FMOODS '96),
February 1996.

[Pie97] Benjamin C. Pierce. Programming in the pi-calculus: A tutorial introduction to Pict. Available electron-
ically, 1997.

[PRT93] Benjamin C. Pierce, Didier R�emy, and David N. Turner. A typed higher-order programming language
based on the pi-calculus. In Workshop on Type Theory and its Application to Computer Systems, Kyoto
University, July 1993.

[PS93] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. In Logic in Computer
Science, 1993. Full version in Mathematical Structures in Computer Science, Vol. 6, No. 5, 1996.

[PS97] Benjamin Pierce and Martin Ste�en. Higher-order subtyping. Theoretical Computer Science, 1997. To
appear. A preliminary version appeared in IFIP Working Conference on Programming Concepts, Methods
and Calculi (PROCOMET), June 1994, and as University of Edinburgh technical report ECS-LFCS-94-
280 and Universit�at Erlangen-N�urnberg Interner Bericht IMMD7-01/94, January 1994.

[PT94] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-oriented program-
ming. Journal of Functional Programming, 4(2):207{247, April 1994. A preliminary version appeared
in Principles of Programming Languages, 1993, and as University of Edinburgh technical report ECS-
LFCS-92-225, under the title \Object-Oriented Programming Without Recursive Types".

[PT95] Benjamin C. Pierce and David N. Turner. Concurrent objects in a process calculus. In Takayasu Ito and
Akinori Yonezawa, editors, Theory and Practice of Parallel Programming (TPPP), Sendai, Japan (Nov.
1994), number 907 in Lecture Notes in Computer Science, pages 187{215. Springer-Verlag, April 1995.

[PT97] Benjamin C. Pierce and David N. Turner. Pict language de�nition. Draft report; available electronically
as part of the Pict distribution, 1997.

[Rep91] John Reppy. CML: A higher-order concurrent language. In Programming Language Design and Imple-
mentation, pages 293{259. SIGPLAN, ACM, June 1991.

[Rey74] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Programmation, pages
408{425, New York, 1974. Springer-Verlag LNCS 19.

[San92] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms.
PhD thesis, Department of Computer Science, University of Edinburgh, 1992.

[San93] Davide Sangiorgi. An investigation into functions as processes. In Proc. Ninth International Conference
on the Mathematical Foundations of Programming Semantics (MFPS'93), volume 802 of Lecture Notes
in Computer Science, pages 143{159. Springer Verlag, 1993.

[San94] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information and Computation,
111(1):120{153, 1994.

[Sew96] Peter Sewell. Observations on Pict, a nondeterministic programming language. Manuscript, 1996.

[Smo94] Gert Smolka. A Foundation for Concurrent Constraint Programming. In Constraints in Computational
Logics, volume 845 of Lecture Notes in Computer Science, Munich, Germany, September 1994. Invited
Talk.

25

[Smo95] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Science Today, Lecture
Notes in Computer Science, vol. 1000, pages 324{343. Springer-Verlag, Berlin, 1995.

[TAL90] David Tarditi, Anurag Acharya, and Peter Lee. No assembly required: Compiling Standard ML to C.
Technical Report CMU-CS-90-187, School of Computer Science, Carnegie Mellon University, November
1990.

[Tur96] David N. Turner. The Polymorphic Pi-calulus: Theory and Implementation. PhD thesis, University of
Edinburgh, 1996.

[Vas94] Vasco T. Vasconcelos. Typed concurrent objects. In Proceedings of the Eighth European Conference
on Object-Oriented Programming (ECOOP), volume 821 of Lecture Notes in Computer Science, pages
100{117. Springer-Verlag, July 1994.

[VH93] Vasco T. Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic pi-calculus. In Proceedings
of CONCUR '93, July 1993. Also available as Keio University Report CS-92-004.

[Wal95] David Walker. Objects in the �-calculus. Information and Computation, 116:253{271, 1995.

26

