A LOGIC FOR SEMANTIC NETWORKS

by

Robert Bechtel
Stuart C. Shapiro
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNIcAL ReporT No. 47
A LOGIC FOR SEMANTIC NETWORKS

ROBERT BECHTEL
STuarRT C. SHAPIRO

MarcH, 1976

Presented at the 1976 Computer Science Conference

Anaheim, California, February 10-12, 1976.



A LOGIC FOR SEMANTIC NETWORKS

Robert Bechtel
Stuart C. Shapiro
Computer Science Department
Indiana University

Bloomington, Indiana 47401

Abstract

Attempts to use classical logic in natural language under-
standing systems have met with varying degrees of success, none
of them total. This paper describes a non-standard logic developed
for use in a semantic network based system, and the associated
network representations of logical constructs. The starting
point is a four-valued logic proposed by Belnap as a method of
dealing with incomplete and contradictory information. The primary
changes are the introduction of non-standard connectives and quan-
tifiers. The connectives introduced, X (AND-OR) and © (THRESH),
are generalizations of the familiar symmetric binary connectives.
Negation and a form of implication are also defined. Finally,
representations of constructions of the logic are developed for

a semantic network.



Introduction

Question-answering systems, if at all sophisticated, require
a method of obtaining information that is not explicitly stored
in their data base. Generally, such methods are based on the
application of rules which govern the extraction of implicit in-

formation from explicit. Such rules may be termed deduction rules.

A desirable feature of such rules is an ability to express them
independent of the representation in which they may be written
(e.g. LISP code). One such possible independent representation is
as a logic system. If such an independent, uniform representation
is possible, comparisons and contrasts between various sets of
deduction rules are easier to make and formulate. Such an approach
is followed here.

In practice, deduction rules may be represented separately
from the information they apply to, or uniformly with it. The
second choice, which is comparable to the uniform representation
of data and instructions at the machine language level, seems more
desirable, as the rules may then be treated as information by other

rules. Again, this approach is followed here.

Network Representations and Connectives

The internal representation of interest here is a semantic
network (Shapiro, 1975). The network consists of nodes connected
by edges called relations. The nodes may be constants or variables,
with constants representing anything about which information may
be given - in short, "conceptual entities". Variables act as

"empty slots" that range, in general, over any node. Nodes are



-3~

generally labelled, solely for convenience in referring to them.
Relations may not represent variable data. When relations

are defined, their converses are also defined, and represented

in the network whenever their corresponding relation is. Usually

(again for convenience), converse relations are not shown in

graphic representations of network structures. Conventionally, a

relation is an arc between a node and another node which represents

less information. Such relations are termed descending, while

their converses are ascending. If this convention is followed, it
may be said that one node dominates a second if there is a path
made up exclusively of descending relations between the first and
second nodes.

Nodes may be classified by their dominance over other nodes.
Nodes which dominate no others (but which may be dominated) are

termed atomic constants or variables, depending on thelr nature.

Variable nodes are indicated by the special relation :VAR, which
has no converse, and which relates variable nodes to the special
node T. Nodes which dominate other nodes are termed molecular.
Molecular nodes which dominate only constants (atomic or molecular)

are termed assertions, while those which dominate variables are

termed patterns. Examples of network structures are given in
figure 1.

Assertions represent constant propositions, while patterns
represent propositions with free variables. Unfortunately, not

all propositions are simple, but rather are compounded out of a number



goanaondas MJIomasN T 2an3Td

€000 — UOT3JI98SY
G000 “H000W — SuI933®'g
2000 “TOOOW - S®TAeBTJBA
FAOT ‘MYHEH ‘dAS “AMVW NHOL
€000 - €3UBASUOYD

000N L

S0¢

TOOON

000N



of other propositions. Traditionally, such compounding has
been accomplished by use of standard connectives from classical
two-valued (TV) logic, & (AND) and v (OR). Such compounds can
be represented in the network by introducing more relations, as
shown in figure 2.

This approach has drawbacks, one of which is due to the
binary nature of the connectives. Each connectives can take only
two arguments at once. We may write A&B&C, but the expression
is meaningful only through adopted conventions regarding associa-
tion (to the left or to the right). To be strictly correct, the
expression should be written either A&(B&C) or (A&B)&C. This
seems like a minor problem, but does in fact cause trouble by
expanding network structures enormously, as shown by the network
structure required for the conjunction of five arguments in
figure 3. However inconvenient though, this problem by itself
does not seem to be sufficient grounds for replacing & and v with
something else.

Another problem also concerns the network size required for
a correct representation, and may best be demonstrated by use of
an example. Imagine a species of creature which may be uniquely
identified by checking for five physical characteristics. Every
member of the species possesses at least two and no more than
three of these five characteristics. Representing "at least two
and no more than three of five" using TV connectives is not simple,
as shown below.

((01&02)V(Cl&CB)V(Ci&CM)V(Ci&CS)V(C2&03)V(C2&CH)V
(C,&C )v(c &C))v(Ca8C)V(Cy&C, ))&~ ((C &C,&C

g3

(C &CB&CH&C )V(C &C &03 )V(C &C &CH&C yvi(C &03

&CM)V

&CH&C ))



CONNECTIVE

MOOOT 30 AND

ARGUMENT

EAT JOHN SLEEP

CONNECTIVE

M0010 —o0 OR

ARGUMENT

WATER WHALE LIVE LAND

Figure 2. Compound Propositions using & and v.



CONNECTIVE

Conjunction of Five Arguments.

Figure 3.



Not only is this long and involved in standard TV notation, but
would require a large amount of network to reproduce. In addition,
the standard TV formalism requires the use of negation (~ or NOT),
a problem yet to be dealt with.

A third problem also arises from the binary nature of the
primitive connectives. This problem appears with the use of
"derived" connectives such as exclusive or (XOR or ®) and equiva-
lence (EQUIV or =). Not only can their use expand the network,
either in the ways already discussed, or by requiring expansion to
primitives, but they may also trip the unwary who expect them to
follow the user's intuition. For the simple binary case, they are
harmless enough, but an attempt to use them for more than two argu-
ments can result in disaster even though they are assoclative.
Consider XOR. Using it in the two argument case, one develops an
intuition which runs something like "it's true if and only if only
one of its arguments is". This appears to work for the three argu-
ment case, until all the arguments are true, when A®B®C is true too.
Intuition strikes out. A similar situation holds for A=B=C as

shown in the truth table below.

=
o
Q

AeB@C A
F

111

H H 3 3 =4 = 49 &4
H 3 524 =25 3 3 = =
H 53 A 53 3 9 =3 49
H = = 3 =5 3 4



We expect A=B=C to be true when all its arguments are the same,
and it Jjust isn't so. Representing the intuitive understanding
of A@B®C and A=B=C by properly assoclated binary connections is
no easy task. The seemingly innocent statement heading many
theorems, "the following are all equivalent" looks like this when
seven things follow:
(A=B)&(B=C)&(C=D)&(D=E)& (E=F)& (F=G),

when it seems that
conjunction has nothing to do with it. This is a somewhat bigger
problem, as we would like to represent as simply as possible in-
tuitive relationships and rules used by people in making sense
of natural language.

To resolve these problems, we introduce two non-standard
connectives: X (AND-OR) and O (THRESH). These will replace AND,
OR, EQUIV, and, to a certain extent, NOT.

w is the connective that will do most of the work, and is the
same as a connective which was independently developed by George
Epstein for a different purpose (Epstein, 1958). ﬁ%i takes a set
of n arguments (propositions) and is true if at least i and no
more than j of its arguments are true. It is, by definition, an

n-ary connective, and can readily replace AND and OR as shown:

2
2K1(A,B) AvB

]

2
2x2(A,B) A&B
In addition,)¥ enables an easy
formulation of the species membership example discussed earlier.

In this formalism, the conditions for membership may be stated



] P

3
5x2(01 3029033014 305)-
The intuilitive understanding

of an n-ary XOR is also very simple:

1
ﬁ%l(Al,...,An).

Possibly the most unexpected benefit of X is its ability to re-
place negation in most, if not all, cases. By setting the minimum
and maximum parameters both to 0, it functions as NOR, but without
any associative difficulties that might occur, as with XOR. Also,
since it accepts any number of arguments, direct negation is
possible.

Of course, we could replace EQUIV with appropriately nested

)('s, e.g.

I o W e 0
AsB = K (,X5(4,B),, % (A,B)),

but to avoid reintroducting the problems of proliferation we wish
to eliminate, we instead introduce © . This connective grew out
of discussions by the SNePS Users' Group during 1975 concerning
network representation of natural language constructions. ggi
takes n arguments and is true if less than i or all n are true.
The theorem with seven equivalent statements becomes

7@1(A,B,C,D,E,F,G).

Notice that EQUIV has been

generalized by © so that i becomes a sort of threshold, which,
when reached, requires the remaining arguments to be true. This

is useful in cases where the truth of some subset of conditions

guarantees the truth of the entire set.



. s .

The Failure of TV

Up to this point, the usefulness of classical logic has
been assumed, with the connectives merely replaced with ones
better suited to the purposes at hand. Now we will discuss some
of the problems inherent in TV logic. The first has faced logi-
cians since at least as far back as Aristotle, and has created
problems for others working in natural language understanding.

TV assumes that every proposition has a known truth value, that

it is either true or false. Aristotle tried to assign a truth
value to the proposition "There will be a sea-battle tomorrow at
noon," and finally decided it was impossible. Even without the
temporal element to add confusion, any natural language question
answering system is faced with the possibility of a reference to
something outside its carefully prepared domain of discourse. What
truth value should be assigned to a proposition never before en-
countered? Of course, answering that question is part of the
function of deduction rules, but even they may not be useful. The
same problem is more apparent if the system is asked to reply "true"
or "false" to some proposition, rather than only having to store
some truth value for each proposition.

The obvious answer is that the proper reply when faced with
insufficient information is "I don't know." "I don't know" is not,
however, a truth value. It is the indication of a total lack of
a truth value. In some sense, it is undetermined. Propositilons
which the system does not know about cannot be marked "true" or
"false" but must remain unmarked, giving a third possible truth

value to be dealt with, should it be introduced as such.



=

Another problem is probably Jjust as old. This is the
problem of contradiction. Most systems of logic exclude con-
tradictions by careful selection of postulates, but a number of
features of natural language systems make this a difficult method
for use in that application. Again, TV logic assumes every pro-
position has one, and only one, of the two possible truth values,
when in fact the "propositions"™ a natural language system has to
deal with may have more than one value. This is particularly
noticable when the system accepts without question any new infor-
mation it is given as "fact". The system may then be told, by
different informants, that a particular proposition is both true
and false. Contradictions which arise in this way we will call

explicit contradictions.

Contradictions may also arise by being introduced by the
postulates or deduction rules, a manner which 1s avoilded by most
formal logical systems. There is no guarantee that deduction
rules which are useful in understanding natural language are con-
sistent. Furthermore, observations of human information pro-
cessing and belief systems would indicate just the opposite. Con-
tradictions arising from deduction rules may be termed implicit.

Finally, contradictions may arise out of the amblguous nature
of natural language itself. This ambiguity makes explicit con-
tradiction more likely, if unnoticed, and may also create implicit
contradiction, if deduction rules are taken from natural language.

We are not yet prepared to launch a full scale attack on con-
tradiction, but rather wish to show that it can exist in a natural

language question answering system without straining. At present,



~1 3

we only wish to argue that, since it can exist, we should have
a way of representing it. Using the tag or label idea implicitly
advanced in the discussion of unknown truth value, it would be
possible to have two copies of every proposition, one labelled
"true" and the other labelled "false". This is the method used
in TV logic, with the prototypical statement of contradiction
being A&~A. There are two objections to this scheme. One is our
old friend, the problem of network size. Duplicating every con-
tradiction might be alright if there are just a few, but we have
no reason to believe that there will be just a few, or that they
will be small, simple propositions. The second is a sort of self-
protection agalinst errors. We would like to make any data base
check as simple as possible. If the contradictions are "stored"
on two separate propositions, finding a single labelled proposition
only means that the search is half complete. In the case that a
proposition is true, the entire data base must be searched to be
sure that an identical proposition is not false, signaling a con-
tradiction. Having established the legitimacy of an empty label
for the case of an unknown truth value, we now propose the label
"both" or "true,false" to signal a contradiction. Now there are
four truth values which a proposition may take, and we are faced
with the problem of devising ways of dealing with them outside
classical TV logic.

Is there some relation between these truth values, as there
is in TV? For an answer, we turn to Belnap, 1975a,b and the idea

of an approximation lattice. An approximation lattice is just a

complete lattice which also satisfies the intuitive condition that



] e

its partial ordering relation may be read "approximates" (e.g.
x<y is read "x approximates y"). Given our four truth values,

an intuitive understanding of "approximates" might be "gives no
more information than." With this understanding, the four values

form the following lattice (called A4 by Belnap):
BOTH

TRUE ALSE
NONE

This approximation lattice may then be manipulated with a desire

to preserve classical TV characteristics to produce L4,

TRUE

NONE OBOTH

FALSE

in which & is meet and v is Join, and negation is defined as
follows:

A NONE FALSE TRUE BOTH

= NONE TRUE FALSE BOTH.
For convenience in notation, we shall refer to these four truth
values by their first letters, N, F, T, B. So now we have four
truly glorious truth values, but are faced with the old connectives.
Fortunately, the replacement of &, v, and ~ will be quicker this
time. nﬂi(Al,...,An)'is marked at least T just in case at least i
and no more than j of its arguments are marked with at least T
(in Al). nK%(Ai,...An) is marked at least F just in case less than
n-j or more than n-i of its arguments are marked with at least F

(in AL4). nCE(A .,An) is marked at least T Just in case less

g8 2

than i or all n of its arguments are marked at least T, and is



-15-

marked at least F if more than 0 but less than or equal to n-i
of its arguments are marked at least F.

Finally, we must have a way of representing these connectives
in the network. Since the number of arguments may vary and order
is unimportant, a single type of descending relation could serve
to join arguments to a node representing a connective. We define
such a relation, called ARG. The parameters on a connective pro-
vide the information necessary to its evaluation, and so must be
included in the network. On X , the parameters indicate the total
number of arguments and both the minimum and maximum number that
may be true to satisfy the connectives. We define the three rela-
tions TOT, MIN, and MAX to represent these. © may also use TOT,
and additionally requires an indication of the threshold number of
arguments, for which we will use THRESH. Examples of network struc-
tures may be seen in figure 4.

Having established a useful set of truth values and more con-
venlent connectives, we still lack one of the most important parts
of a logic, the ability to use known information to infer new in-
formation. In TV, this ability is vested in material implication.
However, the suitability of material implication for such uses
has been attacked by logicians, and one of their objections is
particularly relevant to a question answering system. The objection,
simply stated, is that a false proposition implies anything, and a
true proposition is implied by anything. Do we wish to say that any
implication whose antecedent is false holds? Again, consider the
problem of contradiction. A contradiction (at least classically)

is always false, and so implies anything. Anderson and Belnap



-16-

T o<

4,5:.@

TOF

THRESH >0

1

4Rq

L

-

DYV

Figure 4. Network Representations of X and ©.



e

(1975) have made perhaps the broadest and most complete criti-
cism of material implication, in which they assert "Material
implication is no more a 'kind' of implication than a blunderbuss
is a 'kind' of buss." Along with the criticism, they propose
alternative relations, which are intended to more closely approx-
imate the intuilitive understanding of implication. One of these
surfaces again in Belnap, 1975a,b, and is simply defined on L4

as "going uphill". Moving from the antecedent to consequent (in
the lattice) must not involve taking a downward path, or the im-
plication (now an entailment, in Anderson and Belnap's terms) is
false. Rather than being always (at least) T, an entailment whose
antecedent is contradictory is now T only if its consequent con-
tains T. Truth tables for > (defined as ~AvB) and entailment (+)

show other interesting differences.

= % P 2 B * N E 1 B
N NN T T ¥y ™ B T ¥
B T M B T g T T T F
2B N B R OB T F EFE T P
B T B E B B B E T T

Notice in particular that every entailment has a singlé, well-
defined truth value (T or F) and is never undetermined or contra-
dictory. Consider the expression A+A. If we have a well behaved
logic, we would certainly hope that this implication would always
be true, regardless of the truth value assigned to A. As can be
seen, this is not the case for ». As Belnap has noted, *+ also pre-
serves truth and falsity, in the sense that it never leads from
truth to the absence of truth or from the absence of falsity to

its presence. o is guilty on both counts of non-preservation, as

can be seen from the truth table.



=] 8=

Having selected a suitable implication connective, we must
now find a way to represent it in the network. Entailment differs
from the simpler connectives & and v in that, while it is also
binary, it is not symmetric. B+A does not necessarily follow from
A>B. Generalizing to any number of arguments, as was done in X

and ©, we have (Ai,...,An)+(B ..,Bm) which is equivalent to the

TE
conjunction of the nm rules, Ai+Bj, 1<is<n, 1<j<m. As in X and

® , a use of » will be represented as a node, with descending
relations to the arguments. Since the two sets of arguments must
be distinguished, we use two different descending relations, called

ANT and CQ, intended to be suggestive of antecedent and consequent

respectively. An example is shown in figure 5.

HUNGRY JOHN EAT

Figure 5. Network Representation of ANT-CQ.



]G

Quantifiers

Now that connectives and truth values are settled, it would be
desirable to include more than constants in the deduction rules. 1In
classical logic, variables are included through the use of gquantifiers
and predicates; a similar path will be followed here. Assertions and
patterns, which have been funny looking propositions (being made up of
many parts, rather than a single entity) now may be viewed as predi-
cates. The variables in the patterns range (generally) over the uni-
verse of nodes in the network, being validly substituted for by other
nodes. Examples of valid substitutions are shown in figure 6.

The classical quantifiers, V (ALL) and 3 (EXISTS), are retained
with the following interpretations. V states that it is impossible
to make a substitution for the variables it binds which will invali-
date the expression within its scope. d states that there is at
least one substitution (whether known or unknown) which will make the
expression within its scope valid. It is possible, through the use
of these quantifiers and connectives, to express a wide range of
natural language constructions. However, certain of these construc-
tions create network representation difficulties analagous to those
of classical connectives; the size and complexity of the network
expands out of all proportion to the intuitive concepts expressed.
For this reason, three non-standard quantifiers are introduced.

The first of these non-standard quantifiers is NONE, which is
a direct implementation of ~3. NONE states that there is no substi-
tution which can validate the expression in its scope. As negation
is available so far only through an X construction with appropriate
parameters, the simplification this quantifier will allow in the

network is obvious.



-20-

SUOTANIT4SANS PTTBA 9 9Jn3Td

(X) 6K00W JO0J SUOT3IN3TISAnNS PITBA TT® 8JI8 GHOOW PUB ‘900K
“LHOOW “gHOOW “6HO00W “0GO0NW ‘HWOH ‘0H ‘WOL ‘HHS ‘NHOL ‘AIVNIDIY © XUV

LtQOW 9t 00N

HWOH 0D WO&L

dTVNIDHY

AYVNH ¢



i ]

Even greater simplification is made possible by use of the
second non-standard quantifier. ONE states that there is one and
only one substitution which will make the expression within its
scope valid. ONE(x)(P(x)) will replace the complex
J(x)(P(x)&VY(y)(P(y)>(x=y))), and additionally avoid the problem
of representing equality.

The last quantifier introduced is ALMOST-ALL. In spirit, this
quantifier replaces J~. ALMOST-ALL (ALA) states that there may be
some substitution which invalidates the expression within its scope.
Again the savings in the network is due primarily to the elimination
of negation. By adopting a heuristic which states "contradictions
to an ALA expression must be explicit," the ALA may be used as an \4
unless such an explicit contradiction is found.

All of these non-standard quantifiers, in addition to the
savings in network size they make possible, also ease the represen-
tation of natural language constructions. "No one in their right
mind would try that", "there is no escape", and similar constructions
are readily handled by use of NONE. ONE is useful in representing
unique constructions, such as "the present king of France" and
"automobiles have one engine". Perhaps the most useful new quanti-
fler 1s ALA.

Many statements are made that are treated as true, unless
specifically contradicted. Examples of this would be "mammals live
on land" and "if someone used to own something, he still does, unless
you know otherwise." ALA can be used to represent such cases. The
possible existence of an instantiation which would invalidate the

expression is guaranteed by the ALA. In the second example, "unless



— 22

you know otherwise" signals the possibility of a contradiction and
forces the use of an ALA. The fact that "ALL" does not preface
"mammals" in the first example signals possible contradiction
forcing the use of an ALA. Once again notice that in the absence
of an explicit contradiction, ALA and ¥V are treated identically.

The concept of likelihood of valid substitutions, as reflected
in the preceding interpretations of quantifiers, may be used to

reach a view of the applicability of rules. It would seem that the

more likely the possibility (or impossibility) of wvalid substitution,
the more generally applicable the rule is. We are concerned now only
with quantifiers over an entire deduction rule. Quantification over
portions of a deduction rule is covered elsewhere (Shapiro, et al,
forthcoming).

3 and ONE need not even be considered in such an explication
of applicability, as they may be replaced by constants which repre-
sent the variables they quantify, as in a Skolem function. This
leaves only V, ALA, and NONE. ALA seems to state, by its distinc-
tion from VY, that there may be cases in which it is not applicable.
Y and NONE show no such restrictions. With the idea of applicabi-
lity, quantifiers of deduction rules can be used to order proof
trees. If, for example; two rules are available for use to reach
a particular conclusion, it is possible that one will be more
generally applicable than the other. In terms of anticipated
effort required to check the applicability of a rule, it is possible
to order the quantifiers from least to greatest effort (left to
right) as shown below.

ALL
NONE

Rules can then be selected on



e

the basis of effort anticipated to use them, thus (hopefully)
reducing the amount of effort expended on a given proof or
derivation.

Now it is necessary to define a network representation for
these quantifiers. We define a relation, Q, which relates a
pattern which represents the expression to be quantified to a node
representing the quantifier. The node linked to the gquantifier
should be a pattern rather than an assertion, as there is no sense
in quantifying over constants. To indicate which variables are
bound by the quantifier, a relation named VB is inserted between
the pattern node and those variables bound by the quantifier related
to the pattern node. If a pattern node 1s related to a gquantifier
and all the variables it dominates are bound by VB relations from
that pattern node or other pattern nodes 1t dominates, the pattern
node represents a deduction rule with no free variables, and is
thus an assertion. An example of a network representation of a

quantified deduction rule is shown in figure 7.

Final Network Representations

The last construction needed for a useful logic system is a
method if indicating the truth value of assertions and patterns.
This is handled by introducing an edge, called TVAL, which relates
an assertion or pattern node to another node which represents the
truth value of the expression represented by the first node. This
method grows out of the earlier idea of labelling, and examples
are shown in figure 8. If a specific truth value is associated

with an antecedent in a deduction rule, an explicit construction



_2ol—

ANTONH

*,9UTIBUS UB SABY SOTTqowWoaNne TTB 3SOWTY,
2INnY uoTj3onpad 9Y3 JO uoTarjussoadoy HJIOMAON

HO0=LHVd-ST
P

* ) 2an3T4g

HTIGOWOLNY



JOE

MOO58 g TVAL S TRUE

SEE HOUSE

TOT

MOUNTAIN CLIMB

Figure 8.

» z
MARTHA LOSE

Netowrk Representation of TVAL.

-

FOOTING



—26-

with that truth value must be found or deduced in the network

for the rule to be used. One unusual feature needs to be pointed
out; expressions not found in the network either explicitly or
implicitly (deduced) are assumed to have a truth value of NONE,
that is, they are neither true nor false. This accords with the

motivation for the establishment of the NONE truth value.

A Logic

The most familiar representation of logical systems is
axiomatic, with a number of postulates given which allow derivation
of all expressions valid in the logic, and no others. These postu-
lates consist of axioms, or constructions which are defined as valid,
and which may therefore be used at any point, and rules, which
govern the insertion and deletion of connectives and expressions.
Most axiomatic systems consist of axiom schema, which provide a
general format for the axioms, which are formed by uniform substi-
fution for the variables used in the scheme. As axiom schema are
constructions Jjust as any other, with the exception that they are
guaranteed valid, they may be represented directly in the network
as deduction rules. The rules of a system are a bit more difficult.

A common rule is modus ponens, or detachment. Application of

this rule results in assertion of the consequent of an entailment
alone, when the antecedent is true. This process cannot be repre-
sented directly in the network, and so must be handled by a procedure
that creates (builds) a new assertion which is identical to the
consequent of the entailment, provided the appropriate conditions

for application of the rule hold. Similar procedures are required

for other rules, such as adjunction.



DT

The procedures which provide the power of rules are a part
of an interpreter whose purpose is to use explicit information
to derive implicit information. The interpreter is the facility
which utilizes quantifiers as indicators of effort, and which
needs an indication of truth value. It is essentially a theorem
prover, with the rules (which may be changed) as a subpart. Since
the axioms and rules are not fixed, but may be changed by providing
different network constructions and procedures, it is possible to
experiment with different logic systems.

The simple logic system presently being implemented was
developed along with the network representation now in use. For
the most part, it simply grew, with little or no thought given to
a formal, representation independent expression of postulates.
There are no axioms. The rules, imbedded in the interpreter, are
variations on the theme of detachment, designed so that one may,
given A+B, infer B directly from information sufficient to show A.

The rules which fall strictly into this category are:

wk . el
1. From iﬂj(Ai,...,Ai)+B and n#n(At P——

1 tn), where jsnsk,

1<t_<i and ty#tz, to infer B.

5 )
2. From ©.(A,,...,A;)»B and ;Xj(A;,...,A;) to infer B.

s S s Tl

,...,Ai) to infer B.

J-1
3. From iej(Al,...,Ai)+B and X957 (A,

4y, From (A+B)>C and A and B to infer C.
In addition, two rules permit X and © to be used as the main
connective of a deduction rule, allowing a single ARG to be

inferred when appropriate information is available about the other

ARGs. These rules are very useful, as they, in combination with



=B

the other four, permit a single predicate to be derived from an
arbitrarily complex deduction rule. The special rules for X

and © are:

k ” KXJ ¥
5. From in(Ai,...,Ai) and j>0 and Yok (Al,..., T t+1""’A )

to infer At.

=1
6. From fCh(Al,...,Ai) and i_g&? (Ai,.. A A

Y PR A ) to

t+12° "

infer At where i>j.

Experimentation with this logic continues. As the interpreter
is developed, alternate rule sets will be implemented to permit
investigation of other logics as well. In particular, we intend to
work with the system R, as proposed by Anderson and Belnap (1975),
as it seems particularly well suited to question answering systems

(Shapiro and Wand, 1976).



i G

Bibliography

Anderson, A.R., and Belnap, N.D. Jr. Entailment: The Logic of

Relevance and Necessity (vol. I), Princeton University

Press, 1975.

Belnap, N.D. Jr. How a Computer Should Think. Contemporary Aspects

of Philosophy. Proceedings of the Oxford International Symposium,

1975a, forthcoming, 1976.

—————— A Useful Four-valued Logic. Modern Uses of Multiple-valued

Logic, ed. G. Epstein and J.M. Dunn. Proceedings of the 1975
International Symposium on Multiple-valued Logic. 1975b,

Reidel, forthcoming, 1976.

Epstein, G. Synthesis of Electronic Circuits for Symmetric Functions.

IRE Transactions on Electronic Computers. May, 1958.

Shapiro, S.C. An Introduction to SNePS. Technical Report No. 31.
Computer Science Department, Indiana University, November, 1975.

Shapiro, S.C., Bechtel, R., McKew, J., and Eastridge, N. Implemen-

tation of Deduction Rules in a Semantic Network, forthcoming.

Shapiro, S.C., and Wand, M. The Relevance of Relevance. Technical
Report No. 46. Computer Science Department, Indiana University,

Bloomington, Indiana, 1976.



