
Behavioral Equivalence in the Polymorphic Pi-Calculus

Benjamin C. Pierce

Computer Science Department

Indiana University

Lindley Hall 215

Bloomington, IN 47405, USA

pierce@cs.indiana.edu

Davide Sangiorgi

INRIA-Sophia Antipolis

2004 Rue des Lucioles

B.P. 93

06902 Sophia Antipolis, France

davide.sangiorgi@sophia.inria.fr

Indiana University Computer Science

Technical Report TR 468

October 2, 1996

Abstract

We investigate parametric polymorphism in message-based concurrent programming, focusing

on behavioral equivalences in a typed process calculus analogous to the polymorphic lambda-

calculus of Girard and Reynolds.

Polymorphism constrains the power of observers by preventing them from directly manipu-

lating data values whose types are abstract, leading to notions of equivalence much coarser than

the standard untyped ones. We study the nature of these constraints through simple exam-

ples of concurrent abstract data types and develop basic theoretical machinery for establishing

bisimilarity of polymorphic processes.

We also observe some surprising interactions between polymorphism and aliasing, drawing

examples from both the polymorphic pi-calculus and ML.

1 Introduction

We study the e�ect of adding polymorphic typing (in the style of the polymorphic lambda-calculus
[Gir72, Rey74]) to the pi-calculus, a pure calculus of message-based concurrency [MPW92, Mil91].
This extension is syntactically quite straightforward | especially since a variety of type systems
based on existing typed lambda-calculi have already been given for the pi-calculus | and standard
metatheoretic properties such as subject reduction are easily proved [Tur96]. However, the e�ect
of polymorphism on behavioral properties of programs poses more challenging problems, and here
standard tools from the lambda-calculus are less useful; in particular, \the value of an expression"
loses its simple sense in a world of communicating agents. To our knowledge, the present study is
the �rst to consider the behavioral consequences of polymorphism in a concurrent setting.

Our primary interest is in the semantic concept of parametric polymorphism, a term coined by
Strachey [Str67] for polymorphic functions that behave uniformly in their type arguments. In the
polymorphic lambda-calculus, all polymorphic functions are parametric, since the calculus contains
no operations for testing the actual types passed as parameters. Similarly, in the polymorphic pi-
calculus, when a value communicated along a channel has a (partially or completely) abstract
type, the usage of the value by a well-typed receiver must be independent from the hidden part of

1

the type, about which no assumptions can be made. We develop proof techniques for behavioral
properties of polymorphic processes based on this intuition. (We have not established a formal
connection between our techniques and Reynolds's notion of relational parametricity [Rey83], but
the intent is similar.)

The Pi-Calculus

To de�ne the polymorphic pi-calculus, we begin from the simply typed pi-calculus, an explicitly
typed variant of Milner's polyadic pi-calculus with simple sorts [Mil91]. We brie
y review this
system and then show how polymorphic types are added.

The conceptual world of the pi-calculus comprises two sorts of entity: processes, which com-
pute in parallel and exchange information by communication, and the channels on which they
communicate. The power of the calculus arises in part from the fact that channels are not only a
communication medium but may also be communicated as data along other channels, thus allowing
dynamic recon�guration of communication topologies. In particular, the ability to send freshly cre-
ated channels to other processes can be used to model the passing of continuations in conventional
functional programming. The most important combinators for building processes are these (the
full syntax is de�ned formally in Section 2):

P ::= a[b1 : : : bn]: P send b1 : : : bn along a and then become P
a(x1 : : : xn): P receive x1 : : : xn along a and then become P
P j Q run P and Q in parallel
(� x:T)P create a fresh channel and call it x in P
0 do nothing.

For example, suppose b is a channel. The process

True
def
= b(t; f): t[]: 0

inputs a pair of channels, t and f , along b and then sends an empty tuple of channels along t.
Similarly,

False
def
= b(t; f): f []: 0

reads t and f from b and then signals along f . The type of b in both of these processes is b 2
l[l[]; l[]], read \b is a channel carrying pairs of channels, each of which carries empty tuples."
(Since we use the type l[l[]; l[]] often in what follows, we introduce the abbreviation Bool for it.)
Restricting our attention to channel types of this simple form, where a given channel always carries
tuples of the same shape, means that the typing rules for processes are completely straightforward
and static | very similar, in fact, to the simply typed lambda-calculus.

True and False can be thought of as representing the two boolean values, in the sense that we
can write a testing process that chooses between two alternative behaviors depending on whether
it is placed in parallel with True or with False:

Test
def
= (� x:l[])(� y:l[])

(b[x; y]: 0
j x(): R1

j y(): R2)

The �rst action of Test is to create two fresh channels x and y of appropriate type. It sends these
along b and, in parallel, waits for inputs along x and y. If Test is placed in parallel with True, the

2

composite process performs the following sequence of interactions: �rst Test creates x and y and
passes them to True along b; then b responds by sending an empty tuple along x, which is received
by the second subprocess in the parallel composition in Test, after which R1 is permitted to run.
Since no signal will ever be sent along y (which was created fresh at the beginning and has never
been told to anyone except True, which is never going to use it), the subprocess y(): R2 in Test is
garbage.

Polymorphism

Another simple example, illustrating how a functional programming style can be imitated in the
pi-calculus, is the process

Id
def
= i(x; r): r[x]: 0

which reads x and r from the channel i and then sends x along r. If we adopt the convention that
a \client" of Id always sends a fresh channel r and then waits for Id to send its result back along r

IdClient
def
= (� r:l[Bool])(i[x; r]: r(y): : : :)

then we may regard r as the continuation of the invocation of Id.
In order for IdClient to be well typed, the channel i must have type l[Bool; l[Bool]]. If we also

want to use an identity function to manipulate a di�erent type T , we must make up a di�erent
channel i0 of type l[T; l[T]] and use it to communicate with a di�erent Id process, identical with
the �rst one except for the channel it uses to receive arguments. This proliferation of nearly identical
copies of Id cries out for a polymorphic extension of the type system.

In the interest of harmonious design, the facilities for type abstraction and instantiation that
we introduce should follow the spirit of the pi-calculus, where all exchange of information is by
communication between processes on channels. The polymorphic pi-calculus achieves this by mak-
ing each communication include not only a tuple of values but also a tuple of types. For example,
the polymorphic identity function is implemented by the process

PolyId
def
= ifXg(x; r): r[x]: 0

where the type of i is now written lfXg[X; l[X]] | that is, each communication on i consists of
a type X, a value of type X, and a continuation channel carrying values of type X. In the body
of PolyId, x has type X and r has type l[X], so the output r[x] is consistently typed. A client of
PolyId must now send a type in addition to the other two arguments:

PolyIdClient
def
= (� r:l[T])(ifTg[x; r]: r(y): : : :)

In the terminology of the polymorphic lambda-calculus, we can think of each communication on
the channel i as consisting of an existential package of type 9X:[X; l[X]]. Indeed, the typing rules
in Section 3 for polymorphic output and input will correspond precisely to the usual existential
introduction and elimination rules of the polymorphic lambda-calculus. (It is interesting to note
that the natural primitive form of polymorphism in the pi-calculus is existential, not universal,
quanti�cation!)

3

Abstract Data Types

As in the lambda-calculus, polymorphism can be used in the pi-calculus to ensure that di�erent
parts of a program cannot directly manipulate the internal representations of each other's data
structures. The following example illustrates the use of polymorphic typing to construct abstract
data typesin the pi-calculus, following Mitchell and Plotkin's encoding of ADTs in the polymorphic
lambda-calculus [MP88].

Suppose we wish to implement boolean values as processes in the same way as above, but
keeping hidden the details of the protocol used to implement boolean values and conditionals.
We can achieve this by (1) providing conditional testing via an additional channel test of type
l[Bool; l[]; l[]], so that a client can test a boolean value b by sending it to test, along with two
alternative continuation channels, instead of communicating directly with b; and (2) abstracting
the types of t, f , and test, so that the only thing a client can do with a boolean is to pass it to test.
This is done by making the channels t, f , and test private (local) and exporting them to clients by
sending them along a channel getBools of polymorphic type lfXg[X;X; l[X; l[]; l[]]]:

B1
def
= (� t:Bool; f :Bool; test:l[Bool; l[]; l[]])

(getBoolsfBoolg[t; f; test]
j t(x; y): x[]: 0
j f(x; y): y[]: 0
j test(b; x; y): b[x; y]: 0)

A client that wants to use the booleans must �rst obtain them from the \boolean server" B1 by
reading from getBools, and can then only communicate directly along test, since its type for t and
f is just X; the actual type Bool has been hidden. An example of a di�erent implementation of
the boolean package is the process

B2
def
= (� t:Bool; f :Bool; test:l[Bool; l[]; l[]])

(getBoolsfBoolg[t; f; test]
j t(x; y): y[]: 0
j f(x; y): x[]: 0
j test(b; x; y): b[y; x]: 0)

where now True signals on its second argument and False on its �rst and the inversion of the behav-
iors of True and False is compensated by the fact that test reverses the order of its two continuation
channels when forwarding them along b. The processes B1 and B2 are not equivalent under any
reasonable untyped notion of equivalence | even the very permissive notion of trace inclusion |
because their sets of traces are unrelated. But in the typed setting, they should be considered
behaviorally equivalent, since (intuitively) no well-typed observer can distinguish between them.
In particular, the polymorphism of the channel getBools puts two important constraints on the
tests that a well-typed observer may perform on the bodies of B1 and B2: that t and f are the
only values the observer can send along test as �rst component, and that the observer cannot use
t and f as channels. This ensures, for example, that the output along b in B1 and B2 cannot be
consumed by the observer.

Overview

The main technical contributions of this paper are a de�nition of behavioral equivalence for poly-
morphic processes (using a typed version of the notion of barbed bisimulation [MS92, San92]) and

4

an associated proof technique by which equivalences like the one above can be established.1 The
basis of this proof technique is a re�nement of the usual subject reduction theorem. Given an
open process P and an open type environment � for P (\open" in the sense that the process and
type environment may have free type variables), the subject reduction theorem shows how to infer
constraints on the possible communications that P can perform by examining � (for instance, if a
channel appears in � with a completely abstract type, then we can infer that P will not perform
communications along this channel). We also rely on a substitution lemma showing that a type
substitution does not a�ect the communication actions that a process can take. To exploit these
results on a ground process Q and a ground environment � (where \ground" means not containing
free type variables) we proceed roughly thus: (1) we take an open process P and an open type
environment � in which P is well-typed and of which Q and � are ground instances; (2) we use the
subject reduction property to infer constraints on the behavior of P ; (3) we use the substitution
lemma to lift these constraints to Q. The open P and � can be constructed \on the
y," while
examining sequences of computation steps beginning from the initial ground processes and type
environment (the proofs of our examples follow this schema, exploiting a corollary which directly
combines the subject reduction and the substitution results).

The opening sections of the paper (2 to 5) de�ne the syntax, typing rules, and operational
semantics of the polymorphic pi-calculus and develop some basic meta-theoretic results, leading up
to the extended subject reduction theorem mentioned above. Section 6 de�nes barbed bisimulation
for polymorphic processes and establishes a few useful results. Section 7 then illustrates our proof
technique for bisimulation by showing the equivalence of the two implementations of the boolean
ADT. Section 8 o�ers a more ambitious example of our proof technique by verifying the equivalence
of two di�erent implementations of symbol tables.

In Section 9, we encounter some surprising results of the interaction between parametricity and
aliasing of values. In the presence of aliasing, an abstract data type may turn out to be less abstract
than a naive picture of parametric polymorphism might lead one to expect. We show examples in
both ML and pi-calculus.

Section 10 surveys related work and brie
y explores the prospects for a more \extensional"
treatment of parametricity in the polymorphic pi-calculus, following Reynolds's notion of relational
parametricity for the polymorphic lambda-calculus. Section 11 discusses some additional issues.

2 Syntax and Notational Preliminaries

We now proceed to formal de�nitions of the syntax and semantics of the polymorphic pi-calculus.
For completeness, we introduce here some additional process combinators not used in the examples
in the introduction: the replication construct !P , which informally stands for an arbitrary number
of copies of P running in parallel; the primitive equality test if x = y then P else Q; and the
choice construct P +Q, which can behave like either P or Q . The syntax of types and processes

1In this paper we have focused on bisimilarity, but we believe that our proof technique can be integrated with

other forms of behavioral equivalence like testing and trace equivalence.

5

is de�ned as follows:

T ::= X type variable

lf eXg[eT] polymorphic channel type

P ::= xf eXg(ey): P receiver

xf eT g[ey]: P sender
(� x:T)P channel creation
P j Q parallel composition
0 null process
!P replication
P + Q choice
if x = y then P else Q equality test

Note that this is a \bare" theoretical calculus, not a programming notation. For example, in a full-
scale programming language, we would not want to combine the type constructors for channels,
tuples, and type abstractions into a single syntactic form, but would separate them into orthogonal
features (cf. [PT96]). They are combined here for technical convenience.

The metavariables P;Q;R are used for process expressions, X, Y , and Z for type variables,
S, T , U , and V for types, and lower-case letters for channel names. We abbreviate sequences by
writing a tilde over a singleton of the appropriate kind | e.g., eT for a sequence of types | and
write ex: eT for a sequence of pairs xi:Ti of corresponding elements of ex and eT , implicitly assuming
that these have the same length. By abuse of notation, operations on singletons are implicitly
extended pointwise to sequences; for example, we write ex 62 dom(�) to mean that none of the xi
should be in the domain of the typing context �.

The type variables eX and the names ey in xf eXg(ey): P and the name x in (� x:T)P are binding
occurrences with scope P ; the type variables eX in the type lf eXg[eT] are binding occurrences
with scope eT . We use alpha-conversion implicitly as necessary to satisfy side conditions about
distinctness of bound and free names. The free names of a process P , de�ned in the obvious way,
are written fn(P). We abbreviate a typed channel creation (� x:T)P as (� x)P when T is evident
or unimportant. When the type component of a polymorphic tuple is empty, we drop it, writing
s[t]: P instead of sfg[t]: P , for example. We often drop 0 as the �nal su�x of a process expression,
writing x[y] instead of x[y]: 0. We write

Qm
j=1 as abbreviation for P1 j : : : j Pm. We assign parallel

composition and sum the lowest syntactic precedence among the operators.
We write [T=X]P for the result of substituting the type T for free occurrences of X in P ,

and similarly [b=x] for substituting channels for channels. Simultaneous substitution is written
[eT= eX]P . Alpha-conversion is applied silently, as necessary, to avoid capture. The metavariable �
ranges over substitutions of types for type variables. Type substitution is extended pointwise to
typing contexts.

A typing context � is a �nite sets of bindings, each mapping a distinct name to a type. We say
that a context � extends a context � if dom(�) � dom(�) and �(x) = �(x) for each x 2 dom(�).
The set of type variables occurring free in the range of � is written TVars(�).

A process is said to be type closed if it does not contain any free type variables.

3 Typing

A process P is well typed with respect to a typing context � if its operations respect the types
declared in � for its free names. Formally, the typing relation � ` P is the least relation closed

6

under the following rules:

�(a) = lf eXg[eS] �(eb) = [eT= eX]eS � ` P

� ` af eTg[eb]: P (T-Out)

�(a) = lf eXg[eS] �; ex:eS ` P ex =2 dom(�) eX =2 TVars(�)

� ` af eXg(ex): P (T-In)

� ` P � ` Q

� ` P j Q
(T-Par)

�; x:lf eXg[eT] ` P x =2 dom(�)

� ` (� x:lf eXg[eT])P (T-New)

� ` P

� ` !P
(T-Repl)

� ` P � ` Q

� ` P + Q
(T-Select)

�(a) = �(b) � ` P � ` Q

� ` if a = b then P else Q
(T-Test)

� ` 0 (T-Nil)

These rules should be mostly self-explanatory, by analogy with the polymorphic lambda-calculus.
In particular, T-Out corresponds to an n-ary variant of the familiar rule of existential introduction

� ` e 2 [T=X]S

� ` (pack [T; e] as 9X:S) 2 9X:S

since it packages up a tuple eT of types with a tuple eb of appropriately typed values, hiding some
instances of the types eT in the types eS given to the eb by the polymorphic channel a. Similarly,
T-In corresponds to the existential elimination rule

� ` e1 2 9X:S x =2 dom(�) X =2 TVars(�) �; x:S ` e2 2 T X not free in T

� ` (open e1 as [X;x] in e2) 2 T

since it unpackages a tuple of types and a tuple of values received along some polymorphic channel
and it uses the abstract typing of the received values to typecheck its body. (The �nal side condition,
which prevents a nonsensical escape of the hidden type variable in the lambda-calculus rule, is not
needed in the pi-calculus version since the body of a polymorphic input does not directly \yield a
value.")

Note that the channel creation operator is only well typed if the type of the new channel is
actually a channel type: processes like (� x:X)P are not allowed. This prevents a process from
creating new (inert) elements of types that it knows only abstractly. On the other hand, we do

7

allow equality testing between elements of an arbitrary type, since (as we show in Section 9) this
kind of testing cannot in general be prevented even in the absence of the testing operator.

Also, note that these rules are syntax directed, in the sense that, for each process expression
P , there is at most one typing rule that can appear as the �nal rule in a derivation of � ` P .
This justi�es \reading the rules backward" to extract typing derivations for the subexpressions of
P from a typing derivation for P itself.

We write Pr� for the set of type-closed processes that are well typed in �.

Technical Properties

We now state some simple static properties of the typing relation that will be needed later. (Here
and below, we omit straightforward proofs.)

3.1 Lemma [Weakening]: If �0 extends � and � ` P , then also �0 ` P .

3.2 Lemma [Type substitution preserves typing]: � ` P implies �� ` �P for any �.

3.3 Lemma [Substitution preserves typing]: Suppose that �; ex:eS ` R. If �0 extends � and
�0(eb) = eS, then �0 ` [eb=ex]R.
4 Operational Semantics

We give the operational semantics of processes by means of a labeled transition system, which
expresses the internal steps that a process can make and the communications with other processes
in which it can engage. The only di�erence with the standard (early) transition system of the
pi-calculus is that, in addition to channels, types may be exchanged in communications. Thus,
transitions are of the form P

�
�! P 0, where the label � ranges over actions of the following forms:

� internal communication

afeTg[eb] input of types eT and values eb at channel a
(�ex:eS)af eT g[eb] output of eT and eb at a, extruding bound names ex of type eS

In the case of input and output, a is the subject of the action. Input and output actions describe
possible interactions between P and its environment, while � actions are placeholders for internal
actions in which one subprocess of P communicates with another: an external observer can see
that something is happening (time is passing), but nothing more.

The pre�x (�ex:eS) in an output action (�ex:eS)afeTg[eb] is used to record those names in eb that
have been created fresh in P and are not yet known to the environment. (It will always be the case
that ex � eb.) When a name b is communicated outside of the scope of the � that binds it, the � must
be moved outwards to include both the sender and the receiver. Formally, this is accomplished by
moving the original � into the label of the output action (rule R-Open below) and then replacing
the � at the point where the output action meets a corresponding input action and turns into a �
(rule R-Com). This is known as scope extrusion.

When an output action has an empty set of extruded names, we drop the �-part. We write
names(�) for the set of all channel names appearing in �, and bn(�) for its set of extruded names.

The labeled transition relation P
�
�! P 0 is de�ned by the following rules, plus the evident

symmetric variants of the rules marked with �:

af eXg(ex): P af eT g[eb]
�����! [eT= eX][eb=ex]P (R-In)

8

afeTg[eb]: P af eTg[eb]
�����! P (R-Out)

P
(�ex:eS)af eTg[eb]
���������! P 0 Q

af eT g[eb]
�����! Q0 ex 62 fn(Q)

P j Q
�
�! (� ex:eS)(P 0 j Q0)

(R-Com�)

P
�
�! P 0 bn(�) \ fn(Q) = ;

P j Q
�
�! P 0 j Q

(R-Par�)

P
�
�! P 0 x 62 names(�)

(� x:S)P
�
�! (� x:S)P 0

(R-New)

P
(�ex:eS)af eTg[eb]
���������! P 0 x 6= a x 2 febg � fexg

(� x:S)P
(�ex:eS;x:S)af eTg[eb]
�����������! P 0

(R-Open)

!P j P
�
�! P 0

!P
�
�! P 0

(R-Repl)

P
�
�! P 0

P + Q
�
�! P 0

(R-Select�)

P
�
�! P 0

if s = s then P else Q
�
�! P 0

(R-Test-T)

s 6= t Q
�
�! Q0

if s = t then P else Q
�
�! Q0

(R-Test-F)

Note that we are ultimately interested in the operational semantics only of type-closed processes.
But we de�ne it for open processes too, since these are needed in order to track di�erent points
of view about the types of names. This extension is very mild, as explained by the following easy
lemmas.

4.1 Lemma: If P is type-closed and P
(�ex:eS)af eTg[eb]
���������! P 0, then eS and eT are ground types.

The two lemmas below show that a type substitution does not a�ect the possibilities of transi-
tions of processes (this is not true for substitutions of names for names [MPW92]).

4.2 Lemma: P
�
�! P 0 implies �P

��
��! �P 0 for any �.

4.3 Lemma: Suppose that �P
�
�! R.

1. If � is an output or an internal communication, then there are �0 and P 0 such that P
�0

�! P 0,
with ��0 = � and �P 0 = R.

2. If � = af eTg[eb], then for any eT 0 such that � eT 0 = eT we have P
affT 0g[eb]
�����! P 0 for some P 0 with

�P 0 = R.

9

5 Subject Reduction

In typed calculi, subject reduction expresses the relationship between the operational semantics
of a term and a typing for it. In the statement below, the type environment � can be thought
as R's \point of view" on the types of its free names. The theorem shows how this point of view
evolves under transitions and, most importantly, how it can be used to obtain information about
R's possible transitions. For instance, R can only perform input and output actions at names
whose type is at least a channel type; and the values sent out by R in an output must satisfy a
certain condition on the types. Clause (1), which shows that typing is preserved by internal steps,
is the analog of the standard subject reduction property of lambda-calculi (where the operational
semantics only talks of \reductions").

5.1 Theorem [Subject reduction]: Suppose � ` R and R
�
�! R0, with �, R, and R0 possibly

open (eS and eT below are also possibly open).

1. If � = � , then � ` R0.

2. If � = af eTg[eb], then, for some eX and eU ,
(a) �(a) = lf eXg[eU],
(b) if �0 extends � and �0(eb) = [eT= eX]eU , then �0 ` R0. (Note that some of the eb may already

occur in �, while others may be fresh.)

3. If � = (�ex:eS)afeTg[eb], then, for some eX and eU ,
(a) �(a) = lf eXg[eU],
(b) (�; ex:eS)(eb) = [eT= eX]eU ,
(c) �; ex:eS ` R0,

(d) each component of eS is a channel type.

Proof: By induction on the length of a derivation of R
�
�! R0, with a case analysis on the last

rule used in the derivation. In each case, we implicitly use the fact that the typing rules are syntax
directed to read o� typing derivations for the subexpressions of a well-typed process expression.

� R-In: We are given

R = af eXg(ex): P
� = af eTg[eb]
R0 = [eT= eX][eb=ex]P;

from which we must show

�(a) = lf eXg[eU]
if �0 extends � and �0(eb) = [eT= eX]eU , then �0 ` [eT= eX][eb=ex]P .

The �rst of these is immediate from T-In, while the second follows from the substitution
lemmas (3.3 and 3.2, observing in the second case that [eT= eX]� = �).

� R-Out: All the required facts are given by the premises to T-Out.

10

� R-Com: From the premises to R-Com, we have � = � and R = P j Q, with � ` P and
� ` Q, and

{ P
(�ex:eS)af eTg[eb]
���������! P 0, from which the induction hypothesis gives �; ex:eS ` P 0 (using part

3c) and (�; ex:eS)(eb) = [eT= eX]eU (using part 3b), and

{ Q
af eTg[eb]
�����! Q0, from which the induction hypothesis gives �; ex:eS ` Q0 (using part 2b).

Combining these with T-Com, we obtain �; ex:eS ` P 0 j Q0, as required.

� R-Par: Case analysis on the form of �, using the induction hypothesis and weakening.

� R-New: We are given that R = (� x:S)P and R0 = (� x:S)P 0, with �; x:S ` P and P
�
�! P 0.

Proceed by cases on the form of �.

{ If � = � , then the result follows immediately from the induction hypothesis and T-New.

{ If � = af eTg[eb], then the induction hypothesis guarantees that �(a) = lf eXg[eU] and, for
any �0 extending �; x:S, that �0(eb) = [eT= eX]eU implies �0 ` P 0.

Now, suppose that �0 extends � and that �0(eb) = [eT= eX]eU . Since x is a bound name, we
may assume it is distinct from any name bound by �, so �0; x:S extends �; x:S and we
have �0; x:S ` P 0. We then obtain �0 ` (� x:S)P 0 = R0 from T-New.

{ The case where � is an output is similar.

� R-Open: We are given

R = (� x:S)P
�; x:S ` P

P
(�ex:eS)af eTg[eb]
���������! R0

� = (�ex:eS; x:S)af eTg[eb];
with x 6= a and x 2 febg � fexg. The induction hypothesis gives

(�; x:S)(a) = lf eXg[eU]
(�; x:S; ex:eS)(eb) = [eT= eX]eU
�; x:S; ex:eS ` R0

each component of eS is a channel type:

From this, we obtain the required results as follows: For part (3a), since x 6= a, we have �(a) =
(�; x:S)(a) = lf eXg[eU]. For part (3d), by T-New, S is a channel type, so each component of
S; eS is a channel type. For parts (3b) and (3c), simply note that the typing context obtained
by extending �; x:S with ex:eS is identical to the context obtained by extending � with x:S; ex:eS.

� R-Repl, R-Select, R-Test-T, and R-Test-F are straightforward. �

For use in bisimilarity proofs, it is convenient to combine the subject reduction property with
the earlier properties of typing and substitution, yielding the corollary below. Intuitively, this
corollary says that if P is well typed and �P can perform an interaction, then P itself can perform
\the same" interaction and reach a corresponding well-typed state, where the new typing environ-
ment is determined by the subject reduction theorem. There are three clauses, corresponding to

11

the di�erent forms of action that �P might perform (� , input, output action). Each clause has
several conclusions, where the �rst two use the substitution property to obtain a transition from
P corresponding to that of �P and the remaining ones use it to calculate the relationship between
P 's transition and the original typing �.

5.2 Corollary: Suppose � ` P and �P
�
�! R.

1. If � = � , then there is some P 0 such that

(a) P
�
�! P 0,

(b) �P 0 = R,

(c) � ` P 0.

2. If � = af� eT g[eb] then, for some eX , eU , and P 0,

(a) P
af eTg[eb]
�����! P 0,

(b) �P 0 = R,

(c) �(a) = lf eXg[eU],
(d) if �0 extends � and �0(eb) = [eT= eX]eU , then �0 ` P 0.

3. If � = (�ex:� eS)af� eTg[eb] then there are some eX, eU , and P 0 such that

(a) P
(�ex:eS)af eTg[eb]
���������! P 0,

(b) �P 0 = R,

(c) �(a) = lf eXg[eU],
(d) (�; ex:eS)(eb) = [eT= eX]eU ,
(e) �; ex:eS ` P 0,

(f) each component of eS is a channel type.

Proof: By Theorem 5.1 and Lemma 4.3. For instance, in (3), parts (a) and (b) follow from
Lemma 4.3(1) and parts (c) to (f) follow from Theorem 5.1. �

6 Bisimulation

We now introduce our basic notions of observational equivalence and develop a few useful properties.

6.1 Barbed bisimulation and equivalence

Barbed bisimulation equates processes that can match each other's interactions and, at each step,
can communicate on the same channels. The latter is expressed by means of an observation pred-
icate #a, for each channel a, that detects the possibility of performing a communication with the
external environment along a. That is, P #a holds if there are a derivative P 0 and an action � with
subject a such that P

�
�! P 0.

On top of barbed bisimulation, we then de�ne barbed equivalence, which is the behavioral
relation we are mainly interested in; here, the requirement on two processes P and Q is that, for
all processes R, the compositions P jR and QjR are barbed bisimilar. In these compositions, R is

12

thought of as an observer, and the observation predicate #a as a signal of success. In CCS and
the untyped pi-calculus, barbed equivalence coincides with the ordinary bisimilarities (for the pi-
calculus, in the \early" formulation). Of course, in a typed calculus, the processes being compared
must obey the same typing and the compositions employed must be compatible with this typing.

6.1.1 De�nition: Let � be a ground typing. A relationR � Pr��Pr� is a barbed �-bisimulation

if (P;Q) 2 R implies:

1. if P
�
�! P 0 then there exists Q0 such that Q

�
�! Q0 and (P 0; Q0) 2 R;

2. if Q
�
�! Q0 then there exists P 0 such that P

�
�! P 0 and (P 0; Q0) 2 R;

3. for each channel a, P #a i� Q #a.

Two processes P and Q are said to be barbed �-bisimilar, written P �� � Q, if (P;Q) 2 R for some
barbed �-bisimulation R.

P and Q are barbed �-equivalent, written P �� Q, if, for each ground typing � extending �
and for each process R such that � ` R, we have P jR �� � QjR.

In the remainder, we write P �� � Q and P �� Q without recalling that P and Q must be
well-typed in � and that � is ground. The weak version of the equivalences, where one abstracts
away from the number of interactions in two matching actions, is obtained in the standard way.
Let =) be the re
exive and transitive closure of

�
�!, and let +a be =) #a, the composition

of the two relations. Then weak barbed �-bisimulation, written �� �, is de�ned by replacing in
De�nition 6.1.1 the transition Q

�
�! Q0 with Q =) Q0 and the predicate Q #a with Q +a. Weak

barbed �-equivalence, written ��, is de�ned by replacing �� � with �� �. The examples in the
following sections do not make use of the weak equivalences.

On well-typed processes, our typed barbed equivalences are normally much coarser than the
ordinary untyped relations, because the number of legal testers for two processes is smaller: Only
those testers that respect the given typing | in particular the constraints imposed by the poly-
morphic types | are allowed.

6.2 Properties of barbed bisimulation and equivalence

In the bisimilarity clauses of barbed bisimulation, types play no role, because they do not a�ect
interactions and observability of processes. Therefore the standard results on barbed bisimulation
in the untyped pi-calculus can be easily adapted to the typed case. In this section, we present a
proof technique for typed barbed bisimulation and some simple algebraic laws, and we study the
congruence properties of typed barbed equivalence.

6.2.1 De�nition: A relation R � Pr� � Pr� is a barbed �-bisimulation up to �� � if (P;Q) 2 R
implies:

1. if P
�
�! P 0 then there exists Q0 such that Q

�
�! Q0 and P 0 �� �R�

�

� Q0;

2. if Q
�
�! Q0 then there exists P 0 such that P

�
�! P 0 and P 0 �� �R�

�

� Q0;

3. for each channel a, P #a i� Q #a.

Two processes that are bisimilar up to �� � are �-bisimilar:

13

6.2.2 Lemma: Suppose that R is a barbed �-bisimulation up to �� �. Then R ��� �.

6.2.3 Lemma: The evident laws of commutativity, associativity and absorption of 0 for parallel
composition and summation, the unfolding of replication,

!P = P j!P;

and the extrusion law

(� a:T)(P jQ) = ((� a:T)P)jQ if a is not free in Q;

are all valid for ��. (These laws are the main axioms of the structural congruence relation used
in \chemical abstract machine style" presentations of the pi-calculus [Mil91].)

6.2.4 Lemma: Suppose that (� a:T)P and (� a:T)Q are well-typed under �. If P �� �;a:T Q then
(� a:T)P �� � (� a:T)Q.

Typed barbed equivalence enjoies the same kind of congruence properties as ordinary labeled
bisimulation of the untyped pi-calculus [MPW92].

6.2.5 Lemma: If P ��;a:T Q then (� a:T)P �� (� a:T)Q.

Proof: A consequence of Lemma 6.2.4 and of the extrusion law of Lemma 6.2.3. �

6.2.6 Lemma: If P �� Q then !P ��!Q.

Proof: A simple diagram chase, exploiting the technique of bisimulation up-to �� �. �

6.2.7 Lemma: If P �� Q and � ` R then also P +R �� Q+R.

6.2.8 Lemma: Suppose that P �� Q, that �(t) = �(s), and that � ` R. Then it holds that

if s = t then P else R �� if s = t then Q else R

and
if s = t then R else P �� if s = t then R else Q:

The relation �� is also preserved by output pre�x, and, by de�nition, by parallel composition.
As usual for pi-calculus bisimilarities, congruence fails for input pre�x. The same congruence
properties hold in the case of weak �-barbed equivalence (��) except, as usual for bisimilarity, for
the congruence with respect to summation.

7 Example: Boolean ADTs

We now show that the two implementations of booleans from the introduction are behaviorally
indistinguishable when the constraints imposed by the polymorphic types are taken into account.

Let �
def
= getBools : lfXg[X;X; l[X; l[]; l[]]]. To show that B1 �� B2, we have to prove

B1 j R �� � B2 j R for any ground � extending � and any ground R such that � ` R. Let

T1
def
= t(x; y): x[] T2

def
= t(x; y): y[]

F1
def
= f(x; y): y[] F2

def
= f(x; y): x[]

IF1
def
= test(b; x; y): b[x; y] IF2

def
= test(b; x; y): b[y; x]:

14

Using these abbreviations, the de�nitions of B1 and B2 become:

B1
def
= (� t:Bool; f :Bool; test:l[Bool; l[]; l[]])

(getBoolsfBoolg[t; f; test] j T1 j F1 j IF1)

B2
def
= (� t:Bool; f :Bool; test:l[Bool; l[]; l[]])

(getBoolsfBoolg[t; f; test] j T2 j F2 j IF2)

We now verify that the union of the following setsRi of pairs of processes is a barbed �-bisimulation
up to �� �. We only check clause (1) of the de�nition of barbed bisimulation, since clause (2) is
similar to (1) and clause (3) is straightforward.

� R1 has all pairs of the form (B1 j R;B2 j R) such that � ` R.

� R2 has all pairs of the form�
(� t; f; test)(T1 j F1 j IF1 j [Bool=X]R);

(� t; f; test)(T2 j F2 j IF2 j [Bool=X]R)
�

for R such that

�; t : X; f : X; test : l[X; l[]; l[]] ` R:

� R3 has all pairs of the form�
(� t; f; test; ep : l[])(T1 j F1 j h[c; d] j [Bool=X]R);

(� t; f; test; ep : l[])(T2 j F2 j h[d; c] j [Bool=X]R)
�

for ep;R such that

�; t : X; f : X; test : l[X; l[]; l[]]; ep : l[] ` Rep � fc; dg
h 2 ft; fg:

� R4 has all pairs of the form�
(� t; f; test; ep : l[])(N1 j c[] j [Bool=X]R);

(� t; f; test; ep : l[])(N2 j c[] j [Bool=X]R)
�

for ep;R;N1; N2 such that

�; t : X; f : X; test : lfg[X; l[]; l[]]; ep : l[] ` Rep � fcg
fN1; N2g � fT1; F1; T2; F2g

15

� R5 has all pairs of the form�
(� t; f; test)(N1 j [Bool=X]R);

(� t; f; test)(N2 j [Bool=X]R)
�

for R;N1; N2 such that

�; t : X; f : X; test : l[X; l[]; l[]] ` R
fN1; N2g � fT1; F1; T2; F2g:

These sets are constructed so that each pair of processes in Ri can match each other's interactions
with the derivatives forming pairs of processes that are either in Ri or in Ri+1. In the case of R1,
the interesting case is the interaction between B1 and R, where B1 makes the output at getBools
and R the input. By Corollary 5.2(2), one can infer that the input from R is of the form

R
getBoolsf�Xg[t;f;test]
����������������! �R0

where � = [Bool=X] and R0 satis�es the side conditions in the de�nition of R2. Process B2 j R
matches this interaction in the similar way.

We now show in detail the argument for R2 (the argument for the rest of the Ri is similar or
easier). Suppose the process

(� t; f; test)(T1 j F1 j IF1 j [Bool=X]R)

has an interaction. If only the subprocess [Bool=X]R contributes to the action, then, by Corol-
lary 5.2, its move can be written as [Bool=X]R

�
�! [Bool=X]R0 where R0 is well typed under the

same typing as R. In this case, the process (� t; f; test)(T2 j F2 j IF2 j [Bool=X]R) can make a
matching step, and the two derivatives are again in R2.

By de�nition, no interaction is possible within the system T1 j F1 j IF1, so it remains only to
consider the case of an interaction in which both T1 j F1 j IF1 and [Bool=X]R take part. Process
R is well-typed under the assumptions t : X; f : X; test : l[X; l[]; l[]]. Since the type of t and
f is not a channel type, by Corollary 5.2 [Bool=X]R cannot perform visible actions with t or f as
subject. Therefore the only possible interactions between T1 j F1 j IF1 and [Bool=X]R are along
the channel test. In this case, [Bool=X]R contributes an output. Moreover, since for R the �rst
argument in the type of test is X, by Corollary 5.2(clauses 3d,f) any output at test by [Bool=X]R
will have either t or f as �rst argument (the appeal to clause (f) of Corollary 5.2(3) is needed
to exclude the case in which this argument is a fresh channel). Suppose it is t (the other case is
symmetric). Then the output from [Bool=X]R is

[Bool=X]R
(�ep:l[]) test [t;c;d]
������������! [Bool=X]R0;

where c and d have type l[] and ep � fc; dg. Thus, up to the laws of Lemma 6.2.3, the action is

(� t; f; test)(T1 j F1 j IF1 j [Bool=X]R)
�
�!

(� t; f; test; ep : l[])(T1 j F1 j t[c; d] j [Bool=X]R0):

This is matched (up to the laws of Lemma 6.2.3) by the action

(� t; f; test)(T2 j F2 j IF2 j [Bool=X]R)
�
�!

(� t; f; test; ep : l[])(T2 j F2 j t[d; c] j [Bool=X]R0);

16

since, by Corollary 5.2(3e), we have

�; t : X; f : X; test : l[X; l[]; l[]]; ep : l[] ` R0

and therefore the side condition in the de�nition of R3 is satis�ed. This completes the argument.

Another interesting example is obtained replacing, in B1, the line implementing the conditional
test with:

test(b; x; y): if (b = t) _ (b = f) then b[x; y] else BAD

where BAD can be any process. This new package is equivalent to B1 because the value received
at test for b is always either t or f . This example shows that a client of the ADT is not authorized
to make up new values of type Bool, since the client knows nothing about this type.

None of these equivalences hold for the ordinary untyped pi-calculus, because without typing
we cannot impose appropriate constraints on the actions that an observer can make. For instance,
there are several traces that break the trace equivalence between B1 and B2: e.g.,

getBoolsfBoolg[t; f; test]: test[t; x; y]:t[x; y]

is a trace of B1 but not of B2.

8 Example: Two Implementations of a Symbol Table Package

We now apply our proof techniques to a more challenging example: two implementations of a
symbol table package. The two table implementations use quite di�erent representations for the
keys (strings vs. integers) and di�erent implementations of the package operations, hence they have
quite di�erent untyped behaviors.

A symbol table stores an association of (a �nite set of) strings to values of some type which is
unknown outside | the abstract type of keys. The only operation that clients can perform on keys
is to use the table to compare them for equality. The client may also insert a string in the table,
in which case an appropriate key is returned.

The client uses a channel getST to obtain the channels for making insertion and equality-test
requests. As in the boolean example, getST is polymorphic, hiding the concrete type of keys. The
two tables use di�erent implementations for this concrete type. In one case, the type is strings and
the association function is a partial identity function. In the second case, the type is integers and
the association function is a partial injective function from strings to integers.

To make the examples more readable, we use an extended process syntax including communica-
tion of integers and strings, union- and membership-test operations on sets, and recursive process
de�nitions. These constructs could be taken as syntactic sugar, since data values and recursive de�-
nitions can be coded in the pi-calculus [Mil91]; for brevity of the following proofs, however, we shall
take them as extensions of the syntax, since their meaning is clear and they can be accommodated
in our theory with only minor and obvious modi�cations.

The main bodies of the two table implementations (ST1 and ST2) are the recursive processes
Loop1 and Loop2hB;ni; in the latter the two parameters are a �nite set B of pairs of strings
and integers (giving the association function of the table) and a counter n that stores the �rst
integer not used in B. An insertion request has two parameters: a string t and a return channel
r. Process Loop1 simply returns a reference to t. Process Loop2hB;ni returns a reference to the
integer associated with string t, if an entry for t in B exists; otherwise it returns a reference to n,
adds the pair (t; n) to the set B, and increments the counter. An equality-test request has four

17

parameters v1; v2; f; g; the table returns an answer at f or g, depending on whether the the values
referenced to by v1 and v2 are equal or not.

We de�ne the two symbol tables ST1 and ST2. They will be well typed under the typing

�
def
= getST : lfXg

�
l
�
String; l[X]

�
; l
�
X;X; l[]; l[]

��
:

Below, B ranges over sets of pairs of strings and integers; t and s over strings, and n;m; i; and j
over integers; other words in lowercase letters are channels. We write S for the type l[String] and
T for l[Int].

ST1
def
= �(ins:l[String; l[S]];

eq:l[String; String; l[]; l[]])
(getSTfl[String]g[ins; eq]
j Loop1)

ST2
def
= �(ins:l[String; l[T]];

eq:l[Int; Int; l[]; l[]])
(getSTfl[Int]g[ins; eq]
j Loop2h;; 0i)

where Loop1 and Loop2hB;ni are de�ned as follows:

Loop1
def
=

eq(v1; v2; f; g): v1(h1): v2(h2):
if h1 = h2
then f []:Loop1
else g[]:Loop1

+ ins(t; r): (� u:S)(r[u]:Loop1 j !u[t])

Loop2hB;ni
def
=

eq(v1; v2; f; g): v1(h1): v2(h2):
if h1 = h2
then f []:Loop2hB;ni
else g[]:Loop2hB;ni

+ ins(t; r):
if 9 i such that (t; i) 2 B
then (� u:T)(r[u]:Loop2hB;ni j !u[i])
else (� u:T)(r[u]:Loop2hB [f(t; n)g; n+1i j !u[n])

Note that, in both tables, the values sent back to the client after an insertion are not actual values
of the abstract type (integers or strings), but references to them. This is to \protect" the values,
and is important for the proof of bisimilarity. We discuss this point further in Section 9.

To show that ST1 �� ST2, we have to prove that ST1 j R �� � ST2 j R for all � extending the
type environment � and all R such that � ` R. We de�ne a barbed �-bisimulation R up to �� �

as the union of the following sets Ri of pairs of processes:

� R1 contains all pairs of the form (ST1 j R; ST2 j R) such that � ` R.

18

� R2 contains all pairs of the form�
(� ins; eq; u1; : : : ; um)
(Loop1 j

Qm
j=1 !uj[tj] j [S=X]R);

(� ins; eq; u1; : : : ; um)
(Loop2hB;ni j

Qm
j=1 !uj [nj] j [T=X]R)

�
where

B
def
= f(si; i) : 0 � i < ng (1)

subject to the conditions

�; ins : l[String; l[X]]; eq : l[X;X; l[]; l[]]; u1 : X; : : : ; um : X ` R (2)

m;n � 0 (3)

fsi : 0 � i < ng = ftj : 1 � j � mg (4)

for all 1 � j �m it holds that 0 � nj < n (5)

for all 1 � j1; j2 �m it holds that tj1 = tj2 i� nj1 = nj2 (6)

(Condition (4) ensures that the sets of strings which have been inserted into the two tables
are the same. Condition 5 ensures that the integer keys used in the second table do not
exceed the parameter n of Loop2hB;ni. Condition 6 ensures that the two tables agree on the
equalities of keys stored in corresponding positions.)

� R3 contains all pairs of the form�
(� ins; eq; u1; : : : ; um; ep)
(P1 j

Qm
j=1 !uj [tj] j [S=X]R);

(� ins; eq; u1; : : : ; um; ep)
(P2 j

Qm
j=1 !uj [nj] j [T=X]R)

�
for

P1
def
= uj1(h1): uj2(h2):

if h1 = h2
then f []:Loop1
else g[]:Loop1

P2
def
= uj1(h1): uj2(h2):

if h1 = h2
then f []:Loop2hB;ni
else g[]:Loop2hB;ni

19

with B de�ned as in (1) and subject to the conditions (3)-(6) plus

�; ins : l[String; l[X]]; eq : l[X;X; l[]; l[]];
u1 : X; : : : ; um : X; ep : l[] ` R

(7)

and

1 � j1; j2 � mep � ff; gg:

� R4 is de�ned in the same way as R3, except that P1 and P2 are now de�ned like this:

P1
def
= uj2(h2): if tj1 = h2

then f []:Loop1
else g[]:Loop1

P2
def
= uj2(h2): if nj1 = h2

then f []:Loop2hB;ni
else g[]:Loop2hB;ni

� R5 is de�ned in the same way as R3, except that P1 and P2 are now de�ned like this:

P1
def
= if tj1 = tj2 then f []:Loop1 else g[]:Loop1

P2
def
= if nj1 = nj2

then f []:Loop2hB;ni
else g[]:Loop2hB;ni

� R6 contains all pairs of the form�
(� ins; eq; u1; : : : ; um; ep)
(P1 j

Qm
j=1 !uj [tj] j [S=X]R);

(� ins; eq; u1; : : : ; um; ep)
(P2 j

Qm
j=1 !uj [nj] j [T=X]R)

�
for

P1
def
= (� u:S)(r[u]:Loop1 j !u[t])

P2
def
= if (t; i) 2 B

then (� u:T)(r[u]:Loop2hB;ni j !u[i])
else (� u:T)

(r[u]:Loop2hB [(t; n); n+1i j !u[n])

with B de�ned as in (1) and subject to conditions (3)-(6) plus

�; ins : l[String; l[X]]; eq : l[X;X; l[]; l[]];
u1 : X; : : : ; um : X; ep : l[X] ` R

and

ep � frg:

20

For each Ri, we have to show that the processes in the pairs in Ri can match each other's
actions. We consider the actions of the �rst process, and sketch the proof for the main cases (again
checking only clause (1) of the de�nition of barbed bisimulation). We elide applications of the laws
in Lemma 6.2.3.

R1: Proceed as for the pairs of R1 in the boolean package example of Section 7. In the case
of interaction between, on the one hand, ST1 and R and, on the other hand, ST2 and R,
the pair of derivatives is

�
(� ins; eq)(Loop1 j [S=X]R0); (� ins; eq)(Loop2h;; 0i j [T=X]R0)

�
, for

some R0, and it is in R2.

R2: From (2) and Corollary 5.2(2c) we know that the process [S=X]R cannot interact at a channel
uj . There can be interactions between [S=X]R and Loop1 along channels eq and ins. From
(2) and Corollary 5.2 the action performed by R is either

R
(�ep:l[])eq [uj1

;uj2
;f;g]

���������������! R0

with

�; ins : l[String; l[X]]; eq : l[X;X; l[]; l[]];

u1 : X; : : : ; um : X; ep : l[] ` R0 (8)

1 � j1; j2 � mep � ff; gg

or

R
(�ep:l[X]) ins [t;r]
�����������! R0

with

�; ins : l[String; l[X]]; eq : l[X;X; l[]; l[]];
u1 : X; : : : ; um : X; ep : l[X] ` R0

ep � frg:

In the former case, the interaction between [S=X]R and Loop1 can be matched by an inter-
action between [T=X]R and Loop2hB;ni, and the two derivatives form a pair of processes in
R3.

In the latter case, the interactions of [S=X]R and [T=X]R with, respectively, Loop1 and
Loop2hB;ni produce pairs of derivatives in R6.

R3: Because of (7) and Corollary 5.2, process [S=X]R cannot perform actions at a channel uj .
There can be interactions between P1 and process !uj1 [tj1]. The analogous interaction between
P2 and !uj1 [nj1] yields a pair of processes in R4.

R4: Reason as for R3. Interactions between, on the one hand, P1 and !uj2 [tj2], and, on the other
hand, P2 and !uj2 [nj2], give a pair of processes in R5.

R5: The additional element to note is that by (6), nj1 = nj2 i� tj1 = tj2 . The pair of derivatives
is in R2.

R6: We must distinguish between the case when there is 0 � i < n such that (t; i) 2 B and the
case when there is no such i. In either cases, interactions, on the one hand, between P1 and
[S=X]R, and, on the other hand, between P2 and [T=X]R, give a pair of processes in R2.

21

9 Aliasing and Information Leakage

In the language considered in this paper, we have allowed conditional operators at arbitrary types:
a process can always test for equality or inequality between two values of the same type. When the
process's knowledge of the type of the two values is partial, this permits a \leakage of information"
that gives receivers of polymorphic communications some unexpected discriminating power. For
instance, suppose that x is a channel of type lfXg[X;X; l[X]]. We intuitively expect that the
recipient of a triple of values [a; b; c] sent along x should not be able to do anything with the a
and b except to send them back along c. But the conditional operator also allows recipients to
test whether a and b are equal. For another example, consider a variant ST10 of the symbol table
package ST1 of Section 8 where, on insertions of the same string, the same reference is returned.
An observer can distinguish ST1 from ST10, because the values that the former returns after an
insert are always di�erent, whereas those returned by the latter may be equal and therefore may
enable some matching. To protect against this leakage, in the two symbol table implementations we
have adopted a \safe" programming style in which all values transmitted abstractly to the outside
world are protected by fresh channels; this makes the equality test available to an observer useless.

Unfortunately (and, to us, rather surprisingly), this kind of testing by the receiver cannot be
prevented in general, in the sense that it can sometimes be simulated even in a language without
any conditional operator. Returning to the �rst example, for instance, suppose that, in addition to
x, there is a global channel g of type l[l[]], and consider the receiver process

P
def
= xfXg(m;n; o): (o[m]: o[n] j g(i): g(j): (i[] j j(): equal[])): (9)

Having received m, n, and o along x, P sends m and n along o (the only well-typed thing it can do
with m and n) and, in parallel, listens at g for two channels i and j, which it then tests by sending
a signal on i and listening to see whether it is received on j, emitting a success signal on a global
channel equal if so. We can say that P tests m and n for equality, in the sense that if we send it
the tuple fl[]g[a; a; g] along x (assuming a : l[]), then it can emit a signal on equal, whereas if we
send it fl[]g[a; b; c] along x (where a 6= b or c 6= g), it cannot emit a signal on equal.

In this example, information leakage allows a process to detect the identity of names whose type
is abstract. In general, due to leakage, a process may succeed in using a value with a capability
that is not part of the type with which the value had been received in an input. Here is another
example. Suppose y has type lfXg[l[X];X], and that a process Q receives two new names b and
c at y:

Q
yfIntg[b;c]
�������! Q1

Because of the type of y, the only interesting capability on b and c received by Q1 is to carry the
latter along the former. In particular, Q1 does not receive the capability of performing actions at
c. Suppose now that a channel z has type l[l[l[Int]]] and that Q1, in an input at z, receives b
again:

Q1
zfg[b]
����! Q2

Since b is received over a monomorphic channel, the knowledge of the type of b improves. We might
naively expect that the improvement does not a�ect the capabilities on c, since c is not mentioned

in the action at all. But this is not true, for instance, if Q2
def
= b[c] j b(x): x[5]: after the interaction

Q2
�
�! c[5], name c is used with the concrete type l[Int], showing that the process has acquired

the capability of using c as a channel.

22

Leakage is caused by aliasing | the fact that di�erent variables in the text of a process can
be instantiated to the same channel value, say b. The variables may have di�erent types and, as a
consequence, the process may succeed in using the union of the capabilities provided by these types
on b; moreover the increase may a�ect the capabilities on channels which had been received together
with b in an input | like c in the previous example. (This also explains why, in our formulation of
the subject reduction theorem, typing environments have unique binding for channels, as opposed
to, say, typing environments with multiple binding for channels so to track the possible di�erence
in the type with which distinct occurrences of a channel in a process have been created.)

The real signi�cance of these examples of information leakage is not at present clear to us.
Nor is it clear whether they can be avoided, e.g., by identifying syntactic or typing restrictions on
processes that would guarantee that information leakage cannot occur. For example, we cannot
just forbid aliasing of names passed with completely abstract types, since in example (9) it is o,
not m or n, that is aliased. Moreover, in (9) it would not even be enough to require that the third
name passed to P along x should not be aliased, since it is easy to construct variants of P where
the concrete reference to g is not a global channel but is obtained from the outside world by a later
communication.

Information leakage is not peculiar to the pi-calculus: similar examples can be constructed in
any setting with both polymorphism and aliasing. For instance, for an example similar to (9) in
Standard ML, let the global variable g be an integer reference cell

val g = ref 0

: int ref

and consider the following function f:

fun f r m n = (g:=0; r:=m;

let val i = !g in

g:=1; r:=n; (!g = i)

end)

: 'a ref -> 'a -> 'a -> bool

Then

f r x y =

�
true if x = y and r = g

false otherwise.

That is, f is a polymorphic function that, when its �rst argument happens to be g, is able to test
concretely for equality of its second and third arguments, even though it is given these arguments
with completely abstract type.

10 Related Work

The basic metatheory of the polymorphic pi-calculus has been studied by Turner [Tur96], who also
shows a strong correspondence between the polymorphic pi- and lambda-calculi by demonstrating
that Milner's translations of lambda-terms into untyped pi-calculus both preserve and re
ect poly-
morphic typing. Process calculi with weaker ML-style polymorphism have been developed by Gay
[Gay93] and Vasconcelos and Honda [VH93]. A rather di�erent style of polymorphism is considered
by Liu and Walker [LW95].

Many other type systems have been proposed for process calculi. One that particularly invites
comparison with the present system is the pi-calculus with input/output modalities developed

23

by the present authors [PS93], in which the capabilities of reading and writing on channels are
distinguished and may be passed separately from one process to another. There, as in the present
work, the main focus was on the e�ect of re�ned typings on behavioral equivalences; the main result
was that imposing a natural directionality on the use of channels in one of Milner's encodings
of the call-by-value lambda-calculus into the pi-calculus allowed us to prove that the encoding
preserved beta-reduction, which was not true in the untyped case. I/O modalities, together with
variant types, have also been used to prove the adequacy of a translation of a typed object-oriented
language into �-calculus [San96].

One di�erence between the way capabilities are restricted by polymorphism and by I/O modal-
ities is that, with the latter, an occurrence of a name which has lost certain capabilities can never
recover them. By contrast, in the polymorphic system capabilities can increase and decrease: for in-
stance, we may pass a value to the outside world in such a way that the receiver has no capabilities,
but when the value is passed back to us it recovers its hidden capabilities.

I/O modalities can be cleanly integrated with polymorphism: for example, a variant of the
polymorphic pi-calculus with I/O modalities (as well as higher-order polymorphism) forms the core
of the Pict programming language [PT96].

Another class of pi-calculus type systems for which behavioral consequences have been studied
are those based on linear typing [Hon93, KPT96, Hon96]. The crucial observation here is that, in
the absence of global operators such as general choice, a communication occurring on a linear (\use-
once") channel can never interfere with any other communication, and hence preserves the weak
bisimilarity class of the process. Thus, like I/O modalities and polymorphism, linear typing not
only leads to a coarser equivalence on processes (validating program transformations such as tail-
call optimization), but also enables more powerful forms of algebraic reasoning about equivalence.
The basic mechanisms of linearity have more recently been extended to type systems capable of
guaranteeing properties such as deadlock freedom in certain cases [Yos96, Kob96].

The basic intuition behind the notion of parametricity, introduced by Strachey [Str67] and
re�ned by Reynolds [Rey74] and others, is that a polymorphic function is parametric if its behavior
is independent of (or uniform in) the type at which it is instantiated. This intuition can be phrased
either intensionally | a parametric polymorphic function executes the same algorithm regardless of
its type parameter | or extensionally, using Reynolds's notion of relational parametricity [Rey83],
which expresses the uniformity of behavior of polymorphic expressions in a convenient extensional
form by showing how the externally observable behaviors of di�erent instances of a polymorphic
expression are \related" in a precise way. We have adopted an intensional point of view in this
paper, observing that the \abstractness" of type parameters is preserved during the evolution of
a process and using this to infer behavioral properties of unknown processes; but an extensional
approach would also be of interest. The main di�culty to be overcome here is that, because
of the \information leakage" phenomena discussed in Section 9, it is not easy to de�ne what it
means for two instances of a process expression to be \given related inputs" or what it means for
the two instances to \behave in related ways." Nor, for the same reasons, is it clear whether a
more extensional account of parametricity for the pi-calculus would be much more useful than the
operational one we've developed here. As far as we know, this problem has not yet been tackled
satisfactorily in the lambda-calculus either, though recent work by Pitts on operational accounts
of parametricity [Pit96, PS96, and unpublished notes] may be relevant.

Our proof technique based on polymorphic types yields a simple proof of equivalence between
processes whose untyped behaviors have incomparable sets of traces. Proof techniques with this
property are rare in the literature. Perhaps the best known is Larsen's relativised bisimulation

[Lar87]; indeed, our method can be seen as a disciplined instance of Larsen's, in which one uses

24

types to express constraints on the behaviors of the observers, rather than explicitly writing all
their possible behaviors.

11 Discussion

We close with a brief discussion of some additional technical issues.

Subject Reduction and Type Uni�cation

Examples in Section 9 show that increases of type knowledge on names, that a process may achieve
in an input, have to be propagated to all names of the process's type environment. This calls for
type uni�cation. A reader might wonder why it does not appear in the statement of our subject
reduction theorem. A formulation of the input clause of the subject reduction theorem which makes
this the increase of type information and the use of type uni�cation explicit is the following:

11.1 Theorem [Subject reduction, more explicit input clause]: Let � and P be open. Sup-
pose � ` P .

If P
af eXg[eb]
�����! P 0 (with eX fresh for P and �) then

(a) �(a) = lf eXg[eU], for some eU ,
(b) if �0 def= �]eb : eU and � the substitution s.t. �0(eb) = � eU , then �0 ` �P 0.

In clause (b), �]eb : eU denotes (�rst-order) type uni�cation between � and eb : eU .
The two versions of subject reduction (namely the original Theorem 5.1(2) and the one above)

are equivalent. clearly, the one above implies the original one; here is a proof showing the converse:

Proof: From � ` P and Lemma 3.2, �� ` �P . From P
af eXg[eb]
�����! P 0 and Lemma 4.2, �P

af� eXg[eb]
������!

�P 0. It also holds that (assuming that eY are fresh type variables)

� (��)(a) = lfeY g[�([eY = eX]eU)],
� �0 extends ��,

� �0(eb) = � eU = [� eX=eY](�([eY = eX]eU))
Therefore, from Theorem 5.1(2), we can conclude that �0 ` �P 0. �

Labeled Equivalence

In this paper we have worked in terms of barbed equivalence, where the bisimulation game between
two processes is played only on internal communications and the de�nition itself requires congru-
ence for parallel composition. In the ordinary labeled bisimulations, (like the strong and weak
bisimulations of CCS [Mil89], or late and early bisimulations of the untyped pi-calculus [MPW92])
no congruence property is built into the de�nition, and the bisimulation game is played also on the
visible actions.

The main advantage of barbed equivalence is that its de�nition is straightforward, even in a
typed setting. On the other hand, with labeled bisimilarities, proofs for real examples require less
work, because the bisimulation candidates are typically smaller (although conceptually the proofs
tend to be of similar di�culty).

25

In the presence of polymorphism| and in general in typed calculi | �nding the right de�nition
of labeled bisimulation and proving the necessary basic properties (in particular the congruence for
parallel composition) appears hard. The reason has to do with multiple \points of view" about
the types of the values in a program, one of the most subtle features of polymorphism | both
the universal polymorphism that we are dealing with here and the subtype polymorphism that has
been considered elsewhere. When a value is transmitted abstractly from one process to another, the
receiver has less information about it | and so may use fewer of its actual capabilities | than the
sender. Indeed, a value may be sent with partial type information and then retransmitted under
an even more abstract type, so that there may be many di�erent points of view on the type of a
single value in the same running program.

In barbed equivalence, we do not need to worry about multiple points of views. The observer
is explicitly given | it is a process that runs in parallel with the tested processes | and can
therefore be required to be well-typed. Then the subject-reduction theorem guarantees that it
will respect the constraints on the use of channels imposed by the typing system. By contrast, in
labeled bisimulation the observer is implicit | its behavior is not given beforehand | and must
be typechecked dynamically to make sure that it behaves like a well-typed process.

Acknowledgements

We are grateful to David N. Turner for early conversations on polymorphic bisimulation; to Peter
O'Hearn, Andy Pitts, and Jon Riecke, for insights about parametricity and aliasing; and to the
members of the the Cambridge Interruption Club for general discussions of polymorphism in the
pi-calculus. Comments from Gerard Boudol, Ole Jensen, Uwe Nestmann, Andy Pitts, Peter Sewell,
Perdita Stevens, David Turner, and the anonymous referees helped us improve earlier drafts.

This work was mostly completed while Pierce was at the Computer Lab, University of Cam-
bridge, and supported by EPSRC grant number GR/K 38403. Sangiorgi was supported by the
CNET project \Mod�elisation de Syst�emes Mobiles."

26

References

[Gay93] Simon J. Gay. A sort inference algorithm for the polyadic �-calculus. In Proceedings

of the Twentieth ACM Symposium on Principles of Programming Languages, January
1993.

[Gir72] Jean-Yves Girard. Interpr�etation fonctionelle et �elimination des coupures de l'arithm�e-

tique d'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972.

[Hon93] Kohei Honda. Types for dydadic interaction. In CONCUR'93, volume 715 of Lecture
Notes in Computer Science, pages 509{523, 1993.

[Hon96] Kohei Honda. Composing processes. In Principles of Programming Languages (POPL),
pages 344{357, January 1996.

[Kob96] Naoki Kobayashi. A partially deadlock-free typed process calculus. Technical report,
Department of Information Science, University of Tokyo, 1996. to appear.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-
calculus. In Principles of Programming Languages, 1996.

[Lar87] K. G. Larsen. A context dependent equivalence between processes. Theoretical Computer
Science, 49:185{215, 1987.

[LW95] Xinxin Liu and David Walker. A polymorphic type system for the polyadic �-calculus.
In CONCUR'95: Concurrency Theory, pages 103{116. Springer, 1995.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil91] Robin Milner. The polyadic �-calculus: a tutorial. Technical Report ECS{LFCS{91{
180, Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, UK, October 1991. Proceedings of the International Summer

School on Logic and Algebra of Speci�cation, Marktoberdorf, August 1991. Reprinted in
Logic and Algebra of Speci�cation, ed. F. L. Bauer, W. Brauer, and H. Schwichtenberg,
Springer-Verlag, 1993.

[MP88] John Mitchell and Gordon Plotkin. Abstract types have existential type. ACM Trans-

actions on Programming Languages and Systems, 10(3), July 1988.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and II).
Information and Computation, 100:1{77, 1992.

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, 19th ICALP,
volume 623 of Lecture Notes in Computer Science, pages 685{695. Springer Verlag, 1992.

[Pit96] A. M. Pitts. Reasoning about local variables with operationally-based logical relations.
In 11th Annual Symposium on Logic in Computer Science. IEEE Computer Society
Press, Washington, 1996.

[PS93] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. In
Logic in Computer Science, 1993. Full version to appear in Mathematical Structures in

Computer Science, 1996.

27

[PS96] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state.
In A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Techniques in

Semantics. 1996. To appear.

[PT96] Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the
pi-calculus. To appear, 1996.

[Rey74] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Program-

mation, pages 408{425, New York, 1974. Springer-Verlag LNCS 19.

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, pages 513{523, Amsterdam, 1983. Elsevier
Science Publishers B. V. (North-Holland).

[San92] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. PhD thesis, Department of Computer Science, University of Edin-
burgh, 1992.

[San96] Davide Sangiorgi. An interpretation of typed objects into typed �-calculus. To appear
as Technical Report INRIA-Sophia Antipolis, 1996.

[Str67] C. Strachey. Fundamental concepts in programming languages. Lecture Notes, Interna-
tional Summer School in Computer Programming, Copenhagen, August 1967.

[Tur96] David N. Turner. The Polymorphic Pi-calulus: Theory and Implementation. PhD thesis,
University of Edinburgh, 1996.

[VH93] Vasco T. Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic pi-
calculus. In Proceedings of CONCUR '93, July 1993. Also available as Keio University
Report CS-92-004.

[Yos96] Nobuko Yoshida. Graph types for monadic mobile processes. Manuscript, May 1996.

28

