A Strategy for Exploiting Implicit

Loop Parallelism in Java Programs

Aart J.C. Bik and Dennis B. Gannon
Computer Science Department, Indiana University
Lindley Hall 215, Bloomington, Indiana 47405-4101, USA
ajcbik@cs.indiana.edu

Abstract

In this paper, we explore a strategy that can be used
by a source to source restructuring compiler to exploit
implicit loop parallelism in Java programs. First, the
compiler must identify the parallel loops in a program.
Thereafter, the compiler explicitly expresses this par-
allelism in the transformed program using the multi-
threading mechanism of Java. Finally, after a sin-
gle compilation of the transformed program into Java
byte-code, speedup can be obtained on any platform
on which the Java byte-code interpreter supports ac-
tual concurrent execution of threads, whereas threads
only induce a slight overhead for serial execution. In
addition, this approach can enable a compiler to ex-
plicitly express the scheduling policy of each parallel
loop in the program.

1 Introduction

One of the important design goals of the Java pro-
gramming language was to provide a truly architec-
tural neutral language, so that Java applications could
run on any platform. To achieve this objective, a
Java program is compiled into architectural neutral
instructions (byte-code) of an abstract machine (the
Java Virtual Machine), rather than compiled into na-
tive machine code. In this manner, a compiled Java
program will run on any platform on which a Java
byte-code interpreter is available.

This idea has already proven to be successful in the
past. Some of first implementers of Pascal compil-
ers [6], for example, used so-called p-code as target
language, forming the language of an abstract ma-

chine (the Virtual Stack Machine). The compiler it-
self, translating Pascal program into p-code, was en-
tirely written in p-code. Hence, to install Pascal on a
particular platform, only a simple p-code interpreter
had to be written. Likewise, the Java compiler itself
is written in Java, and the byte-code version of this
compiler can run immediately on any platform that
provides a Java byte-code interpreter. Because many
Java utilities are written in Java as well, a complete
Java environment becomes available after this rela-
tively simple byte-code interpreter together with some
native methods have been implemented on a particu-
lar platform. Without any doubt, this has contributed
to the rapid spread of the language.

Although interpretation of byte-code is, in general,
faster than the interpretation of high level languages,
it is definitely slower than executing native machine
code. Clearly, for particular interactive applications
this is not a major drawback, but still other situa-
tions remain in which performance is critical. In these
cases, so-called ‘just-in-time compilation’ may be use-
ful, where at run-time byte-code is compiled into na-
tive machine code. In fact, Sun claims that with this
approach the performance of Java can come close to
the performance of compiled languages. However, be-
cause the demand for more computing power is likely
to remain, other means to speedup Java programs
have to be found.

In this paper, we explore a strategy that can be
used by a source restructuring compiler to exploit im-
plicit loop parallelism in Java programs. While not
yet incorporated in a working compiler, we describe
the required transformations and illustrate the poten-
tial speedup with a series of experiments.



Within our framework, the compiler must first iden-
tify the parallel loops in a Java program, either by
means of advanced data dependence analysis, or sim-
ply by means of user annotations. Thereafter, the
compiler uses the multi-threading mechanism of the
Java programming language (see e.g. [2, 12, 20, 21])
to explicitly express these parallel loops in the trans-
formed program. In this manner, after a single compi-
lation of the transformed program into Java byte-code,
speedup can be obtained on any platform on which
the Java byte-code interpreter supports actual con-
current execution of threads. Furthermore, threads
only induce a slight overhead for serial execution. Fi-
nally, this approach enables the compiler to express
the scheduling policy of each parallel loop in the pro-
gram. However, since threads are lightweight pro-
cesses sharing one address-space, the actual concur-
rent execution of threads is typically only supported
on shared-address-space architectures [15]. Hence, the
focus of this paper is to obtain speedup on such archi-
tectures. Future research, however, will focus on let-
ting a restructuring compiler use the networking ca-
pabilities of Java in a message-passing like manner to
take advantage of computing power that is available
over a network.

The rest of this paper is organized as follows. First,
in section 2, we give some preliminaries related to ex-
ploiting implicit loop parallelism. Thereafter, in sec-
tion 3, we discuss how a compiler can explicitly im-
plement parallel loops in Java using multi-threading.
In section 4, we presents the results of experiments.
Finally, we state conclusions in section 5.

2 Preliminaries

Some preliminaries related to exploiting implicit loop
parallelism and Java restructuring are given.

2.1 Parallel Loops

If all iterations of a loop are independent, i.e. if no
data dependence is carried by the loop, then this loop
can be converted into a truly parallel loop, frequently
referred to as a DO-ALL-loop. Because data depen-
dence theory, data dependence analysis and loop par-
allelization are discussed extensively in the literature
(seee.g.[3,4,5,7,10, 14, 23, 22, 25, 26, 27, 28, 29]), we
do not further elaborate on these issues in this paper.

Instead, we simply assume that our restructuring
compiler has some (conservative) mechanism to de-
termine whether data dependences are carried by a
particular loop.

Even if data dependences are carried by a loop, some
parallelism may result from executing the loop as a
DO-ACROSS-loop, where a partial execution of some
(parts) of the iterations is enforced using synchroniza-
tion to satisfy the data dependences. In [8, 9], this
synchronization is modeled under the assumption that
processors operate synchronously by using a particu-
lar delay d > 0 between consecutive iterations of the
DO-ACROSS-loop: the ith iteration is executed af-
ter a delay of (i — 1) - d. Alternatively, synchroniza-
tion can be enforced using the primitives testset/test
(or advance/await) [17, ch6][18, 19][28, p393-395],
which can be implemented with a scalar synchroniza-
tion variable [27, p84-86].

A more general form of synchronization in a DO-
ACROSS-loop is provided by random synchroniza-
tion with primitives post/wait [27, p75-83][29, p289-
295]. If data dependences are carried by the loop,
a non-blocking post-statement that sets a bit corre-
sponding to the current iteration is placed directly af-
ter the source statement of each static data depen-
dence. Directly before the sink statement of this data
dependence, we place a blocking wait-statement that
tests the iteration on which the current source in-
stance depends. Different synchronization variables,
implemented as bit-arrays, are used to synchronize
the different static data dependences in the loop. The
automatic generation of synchronization is addressed
in [16, 17, 18, 19, 29].

On shared-address space architectures, parallel
loops can be executed using fork/join-like parallelism.
In this approach, a master thread executes the se-
rial parts of a program, and initiates a number of
slave threads, or workers, when a parallel loop is
reached [28, 385-387]. After all iterations of this loop
have been executed, the workers synchronize using
barrier synchronization.

Whether all threads are actually executed on differ-
ent physical processors or whether threads are sched-
uled competitively depends on the operating system.
The way in which iterations of the parallel loop are as-
signed to the workers, on the other hand, is dependent
on the scheduling policy [25, ch4][27, p73-74][28,
p387-392][29, 296-298] that is used.



In pre-scheduling, either a block of consecutive
iterations is assigned statically to each worker (block-
scheduling), or iterations are assigned statically in a
cyclic fashion to the workers (cyclic scheduling). To
reduce the potential of load imbalance, we can also
use self-scheduling. Here, workers enter a critical
section to dynamically obtain a next chunk of iter-
ations to execute. A small chunk size yields better
load balance at the expense of synchronization over-
head, whereas a large chunk size trades synchroniza-
tion overhead for potential load imbalance. A good
comprise is to vary the chunk size dynamically, such as
assigning 1/p of the remaining iterations to each next
worker, where p denotes the number workers (guided
self-scheduling).

2.2 Java Restructuring

In figure 1, we illustrate our approach to exploiting
implicit loop parallelism in Java programs.

A Java program MyClass. java is used as input of
a source to source Java restructuring compiler (re-
ferred to as javar in the figure). This compiler applies
data dependence analysis to program, and, depending
on the outcome of this analysis, transforms the pro-
gram to take advantage of implicit loop parallelism.
Parallel loops (both DO-ALL- and DO-ACROSS-like
loops) are explicitly coded using the multi-threading
mechanism of Java. This implies that the transformed
program can still be compiled into byte-code by any
Java compiler (javac), and interpreted by any byte-
code interpreter (java or, alternatively, an interpreter
that is embedded in a browser or appletviewer). Be-
cause filenames are essential in Java, the transformed
program is stored in the file MyClass. java again, al-
though a copy of the original java program can be
saved in MyClass.old if desired.

java source to source restructuring
N\
) !
MyClassjava (la? MyClassjava m

MyClassclass |
java

Interpretation
of the byte code

MyClass.old

Figure 1: Restructuring, compiling, and interpreting

In this paper, we focus on the parallelization of
stride-1 loops that have the following form:

L1: for (int i = low; i < high; i++)
body(i);

Note that conventional compiler techniques, like
constant propagation, scalar forward substitution, in-
duction variable substitution, and loop normaliza-
tion [1, 11, 24, 29] may be useful to convert some other
loop constructs into this form.

In essence, the parallelization of the a loop merely
consists of adding a new method runL1 to the class in
which this loop occurs:

void runLi(int 1, int h, int s) {
for (int i = 1; i < h; i += s)
body(i);

If the loop occurs in an instance method, then runL1
is also made an instance method. Otherwise, runL1
made a class (or static) method. In this manner, all
variables remain visible in the new loop-body (except
for some local variables, which will be handled differ-
ently). Thereafter, a new class LoopL1Worker is con-
structed, having an instance method run that repeti-
tively fetches new iterations from a pool and executes
the runLl method for these iterations. In this man-
ner, a number of threads can be used to concurrently
execute the iterations of loop L1. Moreover, by provid-
ing a new entry method (viz. runL1) for each parallel
loop, an arbitrary number of loops can be parallelized
in each class.

In the next sections, we will further elaborate on
this idea and provide a class hierarchy in which loop
workers can be implemented.

3 Loop Parallelization in Java

In figure 2, we present our class hierarchy for im-
plementing parallel loops in Java. The top layer
of this hierarchy is completely independent of the
source program. Hence, these classes may be pro-
vided in a separate, immutable package. The par-
ticular classes in the second layer of this hierarchy
(viz. LoopLlWorker..LoopLnWorker) are constructed
explicitly by the restructuring compiler and are added
to the transformed Java program.



interface abstract class int

erface class class
[ Runnable }, >[ LoopWorker ]< - {ScheduIeTypes} - >[ Pool ] [ RandomSync]

class cl
[L ooplL. 1Worker] ----------- [L ooplL. nWorker]

Figure 2: Class Hierarchy

3.1 Schedules

The interface Schedules is used to provide the classes
LoopWorker and Pool with symbolic constants that
represent different scheduling policies:

interface Schedules {
static final int SCHED_BLOCK
static final int SCHED_CYCLIC
static final int SCHED_GUIDED
}

nonn
-

In this paper, we focus on the implementation of
three scheduling policies, namely block, cyclic, and
guided-self scheduling. Other scheduling policies,
however, can be easily incorporated in the framework.

3.2 LoopWorker

The abstract class LoopWorker provides an abstrac-
tion of a worker that executes certain iterations of a
parallel loop. Instance variables 1, h, and s represent
an execution set [1,h) and stride for the iterations that
the worker currently must execute. Instance variable
pool and sync[] are used to store a pool of iterations
and a number of synchronization variables that will
be shared amongst all workers that execute the same
parallel loop:

abstract class LoopWorker implements Runnable, Schedules {
// Variables

int 1, h, s;

Pool pool;

RandomSync sync[];

// Methods

boolean nextWork() { ... }
static void parloop(...) { ... }

} // End of Loop Worker

Because LoopWorker implements the interface
Runnable, it must provide an instance method run.
This method, however depends on the particular par-
allel loop for which a worker is required. As illus-
trated in figure 2, the restructuring compiler will ex-
plicitly construct a class description for the work-
ers of a particular parallel loop (with label Li) by

extending the class LoopWorker with another class
(viz. LoopLiWorker) that provides the appropriate
run method. Hence, LoopWorker remains abstract.

Instance method nextWork, fetching the next
amount of work from the shared pool, can already be
provided for all workers. This method simply consists
of calling a method next on the pool. The value re-
turned by next, indicating whether more work has to
be done, is also returned by nextWork:

boolean nextWork() {
return pool.next(this);

}

Finally, the class LoopWorker provides a class
method parloop that can be used to start the execu-
tion of a parallel loop. This method expects the lower
and upper bound of a stride-1 parallel loop in low
and high, some workers in array worker (which, in
fact, will always be workers of a specific LoopLiWorker
class), the number of synchronization variables re-
quired in numS and a scheduling policy in tp. First, a
pool and the appropriate number of synchronization
variables, both shared amongst all workers, are ob-
tained. Thereafter, a thread is started for each worker.
After the fork, the method performs a join by simply
waiting for all threads to finish:

static void parloop(int low, int high, LoopWorker worker[],
int numS, int tp) {

int numW = worker.length;
Thread thread[] = new Thread[numW];
Pool pool = new Pool(low, high, numW, tp);

RandomSync sync[] new RandomSync [numS];
for (int i = 0; i < numS; i++)
sync[il = new RandomSync(low, high);

// FORK

for (int i = 0; i
worker[i].pool
worker[il.sync = sync;
thread[i] new Thread(worker[i]);
thread[i].start();

}

// JOIN

for (int i = 0; i < numW; i++) {
try thread[il.join(); catch (Exception e) ;

}

}

numW; i++) {
pool;

nmnnaA

3.3 Pool

The class Pool defines the structure of a pool, which
will become instantiated for each parallel loop. In-
stance variables low and high represent the execution
set [low,high) of a particular stride-1 parallel loop.



Instance variables tp and numW are used to record the
scheduling policy and the number of workers. Instance
variable size is used for several purposes:

class Pool implements Schedules {

// Variables
int low, high, tp, numW, size;

// Methods
Pool(int low, int high, int numW, int tp) {...}
synchronized boolean next(LoopWorker worker) { ... }

} // End of Pool

In the only constructor of this class, initial values
are assigned to all the instance variables:

Pool(int low, int high, int numW, int tp) {

this.low = low;
this.high = high;
this.numW = numW;
this.tp = tp;

// Initialization for Different Scheduling Policies
switch (tp) {
case SCHED_BLOCK:
this.size = (int) Math.ceil(((double) high-low)
/ numW) ;
break;
case SCHED_CYCLIC:
this.size = numW
break;
case SCHED_GUIDED:
break;

// No initialization required

}
}

Instance method next is used to fetch the next
amount of work to be done. As illustrated in figure 3,
during execution of a parallel loop, all the workers will
compete for work in the shared pool. Therefore, the
next amount of work must be obtained in a critical
section. In Java, this mutual exclusion is obtained by
making next a synchronized method:

synchronized boolean next(LoopWorker worker) {
boolean more = false;

switch (tp) {
case SCHED_GUIDED:
size = (int) Math.ceil(((double) (high-low))
/ numW) ;
// FALL THROUGH
case SCHED_BLOCK:
more (low < high);

worker.l = low;

worker.h = Math.min(low + size, high);
worker.s = 1;

low += size;

break;

case SCHED_CYCLIC:
more (size—- > 0);

worker.l = low++;
worker.h = high;

worker.s = numW;

break;

return more;

}

Workers

JOIN

Figure 3: Execution of a Parallel Loop

Depending on the scheduling policy used, the
method next sets the new values of the instance vari-
ables 1, h, and s of the worker. Using cyclic schedul-
ing, each worker exclusively starts with one of the iter-
ations [low,numW) and steps through the original exe-
cution set with stride numW. Using block or guided-self
scheduling, each worker obtains a block of iterations,
where the block size varies for the latter policy (note
that low becomes updated during each call to next).
The return value of next indicates whether more work
has to be done.

Note that in order to obtain a uniform interface be-
tween workers and the pool, the pre-scheduled policies
have in fact been implemented as special versions of
self-scheduled policies, where each worker directly ob-
tain all its work in the first call to next, and terminates
after the second call to this method. Other scheduling
policies can be easily incorporated into this framework
by making the appropriate additions to Schedules
and Pool. Furthermore, note that the way in which
the actual CPU time is given to the threads that im-
plement a parallel loop depends on thread scheduler
in the implementation of the Java Virtual Machine.

3.4 RandomSync

In the implementation of the pool, we already have
exploited the fact that synchronized methods can be
used to enforce mutual exclusion.



However, the implicit monitors [13] associated with
all objects in Java make it also extremely simple to
implement random synchronization for DO-ACROSS-
like loops.

The class RandomSync defines the implementation
of each synchronization variable. An instance variable
postarray implements the bit-array, while low is used
to record the lower bound of the execution set of the
parallel loop:

class RandomSync {
// Variables
boolean postarray[];
int low;
// Methods
RandomSync (int low, int high) {...
synchronized void doWait(int j) { ...
synchronized void doPost(int i) { ...
} // End of RandomSync

SRR

A synchronization variable is constructed with the
following constructor, expecting the lower and up-
per bound of the parallel loop with execution set
[Low,high) as parameters:

RandomSync(int low, int high) {
this.low = low;
this.postarray = new boolean[high-low];

}

In this constructor, a new ‘bit’-array having one bit
for each iteration is created (viz. bit (i-low) belongs
to iteration i), and the lower bound is recorded.

Waiting for a post on the synchronization variable
in iteration j is implemented using the following syn-
chronized method doWait:

synchronized void doWait(int j) {

if (low <= j)
while (! postarray[j-low])

try wait(); catch (Exception e) ;
}

The test low <= j makes this method non-blocking
for out-of-bounds test (which always go backwards
in the iteration space). Because a thread that exe-
cutes wait becomes truly suspended, we have avoided
a busy-waiting implementation. Because being no-
tified does not necessarily mean that the appropriate
bit actually has been set, wait is executed in a while-
statement (rather than in an if-statement).

The bit that corresponds to iteration i is set using
the following synchronized method doPost:

synchronized void doPost(int i) {

postarray[i-low] = true;

notifyAll();
}

The call notifyAll() will eventually resume all
threads that are blocked on the same synchronization
variable (although, of course, they may only re-enter
the monitor one at the time).

3.5 Actual Loop Parallelization

Now, we are ready to discuss the steps that can be
taken by a compiler to exploit implicit loop parallelism
in a stride-1 loop of the following form, where low and
high denote arbitrary expressions that remain con-
stant during execution of the loop:

. class MyClass ... {
. myMethod(...) {

Li: for (int i = low; i < high; i++)
body(i);

L
}

We assume that the restructuring compiler has as-
certained that loop Li can be executed in either a DO-
ALL-like or DO-ACROSS-like manner. Let SVARS de-
note the number of synchronization variables required
(SVARS == 0 for a DO-ALL-loop).

3.5.1 Construction of LiRun

First, depending on whether myMethod is a class
method (or even a nameless static initializer), or an
instance method, the following method runLi is added
to myClass as a class or instance method:!

[static] void runLi(int 1, int h, int s, RandomSync sync[])
{ for (int i = 1; i < h; i += s)

body(i);
}

In this manner, all references within the loop-body
will preserve their meaning, except for references to
local variables of myMethod that are declared outside
Li (including any arguments of myMethod). To enable
the parallelization of such loops as well, in these cases
the compiler first performs the preparatory rewriting
discussed below. After the preparatory rewriting, the
method runli is generated, and any reference within
the loop-body will preserve its meaning.

LFor readability, we use identifiers runLi and LoopLiWorker.
In a practical implementation, however, the compiler is respon-
sible for avoiding conflicts with existing identifiers.



For each local variable that is declared outside Li
but referenced within the loop-body, the compiler adds
a new private variable to MyClass as a class or in-
stance variable (thereby avoiding any name conflicts),
depending on whether myMethod is a class method or
instance method. Thereafter, each occurrence of the
local variable is replaced by this new private variable.
The declaration of each such local variable is simply
deleted (note that Java requires that local variables
are explicitly set before used), and possibly replaced
by an assignment statement performing any explicit
initialization performed in the former declaration. For
a parameter of myMethod, the compiler generates a
statement that copies the value of the variable used in
the header into the private variable before any other
statement of myMethod. Because private variables re-
main in existence after invocation of a method, it may
be useful to assign null to all new private reference
variables at the end of the method to make all data al-
located during the invocation available to the garbage
collector again (which will happen if this data is not
accessible by means of other remaining reference vari-
ables).

EXAMPLE: Consider the following instance
method myMethod that is a member of the class
MyClass:

class MyClass {
int ull;

void myMethod(int x, int y) {
int a=.., b= ..., c[] = new int[10000];

Li: for (int i = b; i < b+20; i++);
uli]l = x - a * u[i] * c[i];

}
}

Before parallelization of the i-loop, the compiler han-
dles some local variables as explained above (viz. x, a
and c):

class MyClass {
int u[];
private int t_a, t_x, t_c[];

void myMethod(int x, int y) {
t_x X;
t_a
int b
t_c

new int[10000];

Li: for (int i = b; i < b+20; i++);
uli] = t_x - t_a * u[i] * t_c[il;

t_c = null; // Unhook

After this preparatory rewriting, all the refer-
ences within the following newly constructed instance
method runLi will preserve their meaning:

void runLi(int 1, int h, int s, RandomSync sync[]) {
for (int i = 1; i < h; i += s)
uli] = t_x - t_a * ul[i] * t_c[i];
}

Providing a unique entry-point (viz. runLi) for
each parallel loop enables the parallelization of an ar-
bitrary number of loops in each class. In all cases
where adding a new method and private variables to
the class MyClass is undesirable, the compiler can re-
sort to simply leaving all loops serial.

3.5.2 Imsertion of Random Synchronization

For DO-ACROSS-like execution, the compiler adds
the appropriate synchronization primitives to the
loop-body according to methods described in the lit-
erature [16, 17, 18, 19, 29]). Signaling iteration i on
the synchronization variable with number k is imple-
mented as sync[k].doPost (i). Likewise, waiting for
iteration j on the synchronization variable with num-
ber k is implemented as sync[k] .doWait (j).

EXAMPLE: In the following single loop, there is
a static flow dependence S10.Ss on the array a with
distance 5:

Li:  for (int i = 0; i < N-5; i++) {
Si: a[i+b] = c[i] * 30.0;
§2: dlil = alil / 20.0;

}

Hence, this loop can be executed in a DO-ACROSS-
like manner by adding the appropriate synchroniza-
tion. In this case, only one synchronization variable is
required (viz. SVARS == 1):

Li: for (int i = 0; i < N-5; i++) {

Si: a[i+b] = c[i] * 30.0;
sync[0] .doPost (i) ; // POST(ASYNC, i)
sync[0].doWait (i-5); // WAIT(ASYNC, i-5)

52: d[il = alil / 20.0;
}

3.5.3 Construction of LoopLiWorker

If myMethod is a class method, then the following class
LoopLiWorker is constructed and added to the pro-
gram:

class LoopLiWorker extends LoopWorker {
public void run() {
while ( nextWork() )
myClass.runLi(l, h, s, sync);
}
}



In this case, the whole loop Li is replaced by the fol-
lowing block, where low and high denote the lower
and upper bound expression used in the original loop:

{ LoopLiWorker worker[] = new LoopLiWorker [NUMI;
for (int i = 0; i < NUM; i++)
worker[i] = new LoopLiWorker();
LoopWorker.parloop(low, high, worker, SVARS, SCHED);
}

Here, NUM, SVARS, and SCHED denote literal constants
that are selected by the compiler representing, respec-
tively, the number of workers, the number of synchro-
nization variables, and the kind of scheduling policy
for this parallel loop.

If, on the other hand, myMethod is an instance
method, then the following slightly more elaborate
class LoopLiWorker is constructed and added to the
program:

class LoopLiWorker extends LoopWorker {
MyClass target;

LoopLiWorker (MyClass target) {
this.target = target;
}

public void run() {
while ( nextWork() )
target.runlLi(l, h, s, sync);
}
} // End of LoopLiWorker

In this case, we replace the whole loop Li in
myMethod by the following block, slightly differing
from the block shown below because now variable this
is passed to the constructor:

{ LoopLiWorker worker[] = new LoopLiWorker [NUM];
for (int i = 0; i < NUM; i++)
worker[i] = new LoopLiWorker(this);
LoopWorker.parloop(low, high, worker, SVARS, SCHED);
}

By generating the code within a block, the com-
piler limits the life-time of the workers, making these
earlier available to garbage collection. In the former
case, different worker will simultaneously operate on
class data, whereas in the latter case the worker may
even operate in parallel on an object of class MyClass.
However, because the loop has been marked as a par-
allel loop and, if required, synchronization primitives
have been added by the compiler, this should not give
rise to any race hazards.

4 Experiments

In this section, we present some experiments that have
been conducted on an IBM RISC System/6000 G30
with four 601 processors using the IBM V1.0.2.B Java
programming environment. In all experiments, the
byte-code has been obtained by compiling the Java
programs with the flag -O’. Moreover, in all experi-
ments (except the first one), we have run the inter-
preter with both just-in-time compilation as well as
the actual concurrent execution of threads enabled.

4.1 Initialization Code

Consider, as first example, the following class having
an array a as class variable and an array b as instance
variable:

class Init {
// Class Variables
final static int N = 620;
static double a[]l[] = new double[N][N];
// Instance Variables
double b[1[];

} // End of Init

The class defines the following class method:

// Class Methods

public static void main(String args[]) {
Li: for (int i 0; i < N; i++) {

double z Math.sqrt ((double) i);

=0; j <N; j++)
= z;

new Init().doit();
}

In this class method main, first the elements of a are
initialized. Thereafter, a new object of the class Init
is created, and the following instance method, in which
an instance array b is initialized in a similar manner,
is called on this object:

// Instance Methods
void doit() {

L2: for (int i = 0; i < N; i++) {
double z = Math.sqrt((double) i);
for (int j = 0; j < N; j++)

this.b[i][j] = z;
}
}

The constructor of the class has the following form:

// Constructors
Init() {

b = new double[N][N];
}



Data dependence analysis reveals that both loop L1
as well as loop L2 can be converted into a parallel
loop. Because no references to local variables declared
outside the loop are made within the loop-body, no
preparatory rewriting is required.

Because L1 appears in a class method, the whole
loop is converted into the following call, where NUM
and SCHED denote the number of workers that must
be allocated and the scheduling policy for this loop,
respectively:

public static void main(String args[1) {

Li: { LoopLlWorker worker[] = new LoopLlWorker [NUM];
for (int i = 0; i < NUM; i++)
worker[i] = new LoopLlWorker();
LoopWorker.parloop(0, N, worker, 0, 0);
}

) o

Furthermore, the compiler adds the following class
method to the class Init, in which the of L1 is ex-
ecuted for iterations defined by the parameters 1, h,
and s:

static void runL1(int 1, int h, int s, RandomSync sync[]) {
for (int i = 1; i < h; i +=35) {
double z = Math.sqrt((double) i);
for (int j = 0; j < N; j++)
a2[i]1[j] = z;
}
}

Finally, parallelization of L1 is completed by adding
the following class to the program:

class LoopLlWorker extends LoopWorker {
public void run() {
while ( nextWork() )
Init.runl1(1l, h, s, sync);
}
}

Likewise, loop L2 is replaced by the following con-
struct that will initiate the execution of NUM workers
for this loop:

void doit() {
L2: { LoopL2Worker worker[] = new LoopL2Worker [NUM];
for (int i = 0; i < NUM; i++)
worker[i] = new LoopL2Worker(this);
LoopWorker.parloop(0, N, worker, 0, 0);
}
}

Method runL2 has the following form:

void runL2(int 1, int h, int s, RandomSync sync[]) {
for (int i = 1; i < h; i +=35) {
double z = Math.sqrt((double) i);
for (int j = 0; j < N; j++)
b2[i]1[j] z;

Finally, the following class LoopL2Worker is con-
structed, saving the appropriate object in an instance
variable target. The method runL2 will be called
repetitively on this object until all iterations have been
executed:

class LoopL2Worker extends LoopWorker {

Init target;

LoopL2Worker (Init target) {

this.target = target;
}
public void run() {
while ( nextWork() )
target.runlL2(1, h, s, sync);

}

}

In figure 4, we show the execution times of both
the original loops and the parallel loops (using block
scheduling) for a varying number of threads in case
just-in-time compilation is disabled. In figure 5, the
results of conducting the same experiments are shown
using just-in-time compilation. In both cases we see
that threads only induce a slight overhead in case one
worker is allocated. Moreover, using 4 workers, the
speedup becomes close to the best possible speedup
of 4.

IBM Risc System/6000 G30

1.6
. 14p ]
&8 Serial L1 ——
s 12+ Parallel L1 —+—
° Serial L2 -
£ 1r Parallel L2 -« 1
o8t b |
il
5 0.6 | - — 3
(% o
¢ " «
n 04 r * b
0.2 + 1
0 1 1 1 1
1 2 3 4 5 6

Number of Threads

Figure 4: Initialization Code (no JIT)

4.2 Matrix Multiplication

To demonstrate the usefulness of the scheduling poli-
cies presented in this paper, we have conducted some
experiments using the following class Matmat, consist-
ing of only class variables and class methods:



IBM Risc System/6000 G30

0.25
7 02 Serial L1 —— |
o Parallel L1 -—+—-
~ Serial L2 s
E 0.15 r Parallel L2 - 1
= R
c
g 01r x P T
5 e _
2 -
x
w 0.05 ]
0 1 1 1 1
1 2 3 4 6
Number of Threads

Figure 5: Initialization Code (JIT)

class Matmat {

// Class Variables
final static int M
static double a[l[]
static double b[][]
static double c[][]

120, N = 120, K = 60;
new double[M][N];
new double[N][K];
new double[M][K];

// Class Methods
public static void main(String args[]) {

for (int i = 0; i < M; i++)
for (int j = 0; j < K; j++)
for (int k = 0; k < N; k++)
c[il[j] += alillk] * b[kI[jl;

L1:

, .
} // End of Matmat

The most straightforward way to parallelize this im-
plementation on a shared-address-space architecture is
to convert the outermost i-loop into a parallel loop.
Using the framework of this paper, this transformation
is performed by replacing the whole loop by a single
call:

public static void main(String args[]) {

L1:

{ LoopLiWorker worker[] = new LoopLiWorker [NUM];
for (int i 0; i < NUM; i++)
worker[i] = new LoopL1Worker();
LoopWorker.parloop(0, M, worker, 0, sched);

}

Furthermore, the following class method is added to
the class Matmat:

10

static void runLl(int 1, int h, int s, RandomSync sync[]) {
for (int i = 1; i < h; i += s)
for (int j = 0; j < K; j++)
for (int k = 0; k < N; k++)
c[il[j] += alillk] * b[k1[j];

}

Parallelization of the loop L1 is completed by adding
the following class to the program:

class LoopLlWorker extends LoopWorker {
public void run() {
while ( nextWork() ) {
Matmat.runL1(1l, h, s, sync);

}
}
}
IBM Risc System/6000 G30

1.6 1
_ 14 ¢ 1
) \ Serial ——
@ 1.2+ 0\ Block —+— A
> \ Cyclic =
2 1t \ Guided -~ ]
= \
c 08r M ]
S .
‘é 0.6 | T
o) T -
lﬁ 0.4 - B 1

0.2 |+ 1

0 1 1 1 1
1 2 3 4 6
Number of Threads

Figure 6: Matrix Multiplication

In figure 6, we show the execution time of the origi-
nal serial loop and the parallel loop implemented using
threads for a varying number of threads and the three
different scheduling policies presented in this paper.
Because work is spread evenly over the iterations, the
scheduling policies have similar performance.

Now, suppose that the array a is used to store a
lower triangular matrix, so that the innermost loop
in both the original method as well as in the runL1
method can be expressed as follows:

for (int k = 0; k < i; k++)

Obviously, this implies that the amount of work is
not spread evenly over the iterations. In figure 7, we
see that in this case block scheduling suffers from some
load imbalance.



IBM Risc System/6000 G30

0.8
,@ . Serial —
o Block —+—
s 05f Cyclic = 1
£ . “ Guided >
= 0.4 | AN - f
c -
S 03| . i R |
5 . g B
L% 02t R B 4

0.1 f i

0 1 1 1 1
1 2 3 4 6
Number of Threads

Figure 7: Triangular Matrix Multiplication

In this figure, we also see that this load imbalance
problem is alleviated if more workers than actual pro-
cessors are allocated.

Now, suppose that for some reason, only a few rows
of the matrix stored in ¢ have to be computed. This
can be accomplished by using a boolean array filter:

for (int i 0; i < M; i++)
if (filter[i])

IBM Risc System/6000 G30

0.9

ol 1
m 0.7 \ Serial —~— 1
8 Block -
2 0.6 | N Cyclic —=—
Q \ i *
£ 05 | Guided |
= X\ B
.5 04 + 1
3 0.3 | ks ) 4
L 0.2 + ]

0.1+ 1

0 1 1 1 1
1 2 3 4 5 6

Number of Threads

Figure 8: Matrix Multiplication (with filter)

If, for example, every other element of the boolean
array filter is set, a severe load imbalance may re-
sult using cyclic scheduling, as illustrated in figure 8.

11

If, as another example, only the first 60 elements are
set, guided self-scheduling suffers from a similar load
imbalance, as can be seen in figure 9. These experi-
ments indicate that, in general, we can make no de-
cisive statement about which scheduling policy is the
best.

IBM Risc System/6000 G30

0.9 T

0.8 1
m 0.7 | A Serial —
] N Block -+
2 0.6 | Cyclic ~=—
Q N 1 x
£ 05 | - Guided |
'_ ,
g 04 - *
8 03+t S 1
8 o
| 0.2 - e 1

0.1 r 1

0 1 1 1 1
1 2 3 4 6
Number of Threads

Figure 9: Matrix Multiplication (with filter)

4.3 Random Synchronization

In the following class, the loops L1 and L2, referring to
class variables only, are candidates for parallelization:

class Dependence {

// Class Variables

final static int N = 300;

final static int K = 2400;

static double al] = new double[N];
static double b[][] = new double[N][K];

// Class Methods
public static void main(String args[]) {

for (int i = 7; i < N-5; i++) {

L1
S1 al[i+5] = 10.0 - b[i-7]1[0]
L2 for (int j = 0; j < N; j++)
52 bl[il[j]1 = al[il - 20.0;
}
}

} // End of Dependence

Although no data dependence is carried by the in-
nermost j-loop, we rather convert the outermost into
a parallel loop, because in that manner startup over-
head of the parallel loop can be amortized over much
more iterations.



Unfortunately, the i-carries the static data depen-
dences S16. Sy with distance 5 and S3d.S; with dis-
tance 7. Hence, parallelization of loop L1 is only valid
if the appropriate random synchronization is used to
enforce the instances of these data dependences.

The whole loop L1 is replaced by the following call:

public static void main(String args[1) {

Li: { LoopLiWorker worker[] = new LoopLiWorker [NUM];
for (int i = 0; i < NUM; i++)
worker[i]l = new LoopLlWorker();
LoopWorker.parloop (7, N-5, worker, 2, sched);
}
}

The following class method runL1 is added to the class
Dependence:

static void runL1(int 1, int h, int s, RandomSync sync[]) {
for (int i 1; i < h; i +=38) {

sync[1].doWait (i-7); // WAIT(BSYNC, i-7)
al[i+5] = 10.0 - b[i-7]1[0];

sync[0] .doPost (i) ; // POST(ASYNC, i)
sync[0] .doWait (i-5); // WAIT(ASYNC, i-5)

for (int j = 0; j < Dep.N; j++)
b[i1[j]1 = alil - 20.0;
sync[1] .doPost (i) ;
}
}

// POST(BSYNC,

~

i

Finally, the following class is added to the program:

class LoopLlWorker extends LoopWorker {
public void run() {
while ( nextWork() )
Dep.runL1(1l, h, s, sync);

}
}
IBM Risc System/6000 G30
0.8 ‘ ‘ ‘ ———
0.7 M . . § ]
B 06
(]
£
° 05 4
= 04 | B . B B
c
o .
g 0.3 Serial -— A
3 Block -+
5 0.2 - Cyclic ~=— A
Guided -
0.1 r 1
0 1 1 1 1
1 2 3 4 5 6

Number of Threads

Figure 10: Random Synchronization

12

In figure 10, we show the execution time of the orig-
inal fragment and the parallel implementation of the
DO-ACROSS-loop for a varying number of threads
on the IBM. Clearly, the overhead associated with
random synchronization is more substantial than the
overhead of a truly parallel loop. Furthermore, this
experiment illustrates the using the wrong scheduling
policy may effectively serialize the parallel loop.

4.4 Pixel Initialization

The following example is based on an applet example
found in [20]:
public class MemoryImager extends Applet {

final static int d_x
final static int d_y

700;
1000;

public void generateImage() {
int pixels[] = new int[d_x * d_yl;

Li: for (int y = 0; y < d_y; y++)

for (int x = 0; x < d_x; x++) {
int r = (x7y) & Oxff;
int g = (x*2°y*2) & Oxff;
int b = (x*4"y*4) & Oxff;
pixels[(y*d_x)+x] = (265 << 24)|(r << 16)|
(g << 8) |b;

In this example, an integer array is constructed that
will be used to initialize a new image. Data depen-
dence analysis reveals that every iteration refers to
a unique element in the array pixels, so that both
loops can be executed in parallel. Again, we prefer
the parallelization of the outermost loop.

Because the loop-body of the y-loop refers to the
local array pixel that is declared outside this loop,
the following preparatory rewriting is performed:

public class MemoryImager extends Applet {
private int t_pixels[];

public void generateImage() {
t_pixels = new int[d_x * d_y];

L1: for (int y = 0; y < d_y; y++)
for (int x = 0; x < d_x; x++) {

t_pixels[(y*d_x)+x] = ...

}
t_pixels
}
}

null; // Unhook



Thereafter, the following instance method runL1 is
added to the class MemoryImager:

void runLl(int 1, int h, int s, RandomSync sync[1) {

for (int y = 1; y < h; y += s)
for (int x = 0; x < d_x; x++) {
int my_r = (x"y) & Oxff;
int my_g = (x*27yx2) & Oxff;
int my_b = (x*4"yx4) & Oxff;

t_pixels[(y*d_x)+x] = (2565 << 24)|(my_r << 16) |
(my_g << 8) Imy_b;

As in the previous example, eventually a loop-
worker is added to the program and the original loop
is replaced by the appropriate construct. In figure 11,
we show the execution time of the original serial loop
and the parallel loop.

IBM Risc System/6000 G30
0.7 ‘ ‘ ‘ |
0.6 [\ |
m \
(8] [ \ |
@ o .‘\ Serial ——
2 A Block ——
£ %41 A\ Cyclic - 1
e x. Guided =
ke] 0.3+ \.\ |
S ‘\\ S
g 02f . S 7
N
0.1+ |
0 ‘ ‘ ‘ ‘
1 2 3 4 5 6

Number of Threads

Figure 11: Pixel Initialization

5 Conclusions

In this paper, we have shown how a source to source
restructuring compiler can exploit implicit loop par-
allelism in Java programs using multi-threading. We
have presented a class hierarchy for implementing par-
allel loops in Java. The top layer of this hierarchy is
completely independent of the source program, and
can be provided in a separate, immutable package.
Classes in the second layer of this hierarchy are con-
structed explicitly by the compiler and are added to
the transformed program.

13

Experiments indicate that speedup can be ob-
tained on a platform on which the Java byte-code
interpreter supports actual concurrent execution of
threads, whereas threads only induce a slight over-
head for serial execution. Different scheduling policies
are provided in our framework.

Future work will focus on incorporating the frame-
work presented in this paper in a Java restructuring
compiler. Furthermore, because the actual concur-
rent execution of threads is typically only supported
on shared-address space architectures, future research
will focus on how the networking capabilities of Java
can be automatically exploited in a message-passing
like manner to exploit computing power that is avail-
able over a network.

References

[1] Alfred V. Aho, Ravi Sethi, and Jefirey D. Ull-
man.  Compilers Principles, Techniques and
Tools. Addison-Wesley, 1986.

Ken Arnold and James Gosling. The Java Pro-
gramming Language. Addison-Wesley, Reading,
Massachusetts, 1996.

Utpal Banerjee. Dependence Analysis for Super-
computing. Kluwer, Boston, 1988.

[4] Utpal Banerjee. Loop Transformations for
Restructuring Compilers: — The Foundations.
Kluwer, Boston, 1993.

[5] Utpal Banerjee.
Boston, 1994.

Loop Parallelization. Kluwer,

[6]

D.W. Barron. The Java Programming Language.
Addison-Wesley, Reading, Massachusetts, 1996.
[7] David Callahan. A Global Approach to Detection
of Parallelism. PhD thesis, Department of Com-
puter Science, Rice University, 1987.

Ron G. Cytron. Doacross, beyond vectorization
for multiprocessors. In Proceedings of the Inter-
national Conference on Parallel Processing, pages
836—844, 1986.



[9]

[14]

[15]

Ron G. Cytron. Limited processor scheduling of
doacross loops. In Proceedings of the Interna-
tional Conference on Parallel Processing, pages
226-234, 1987.

Erik H. D’Hollander. Partitioning and labeling
of index sets in DO loops with constant depen-
dence vectors. In Proceedings of the Interna-

tional Conference on Parallel Processing, pages
139-144, 1989. Volume 2: Software.

C.N. Fischer and R.J. LeBlanc. Crafting a Com-
piler. Benjamin-Cummings, Menlo Park, Califor-
nia, 1988.

David Flanagan. Java in a Nutshell. O’Reilly &
Associates, Sebastopol, CA, 1996.

C.A.R. Hoare. Monitors: An operating sys-
tem structuring concept. Communications of the
ACM, 17(10):549-557, 1974.

David J. Kuck. The Structure of Computers and
Computations. John Wiley and Sons, New York,
1978. Volume 1.

Vipin Kumar, Ananth Grama, Anshul Gupta,
and George Karypis. Introduction to Parallel Pro-
gramming. The Benjamin/Cummings Publishing
Company, Redwood City, CA, 1994.

Zhiyuan Li and Walid Abu-Sufah. On reduc-
ing data synchronization in multiprocessed loops.
IEEFE Transactions on Computers, C-36:105-109,
1987.

Samuel P. Midkiff. The Dependence Analysis and
Synchronization of Parallel Programs. PhD the-
sis, C.S.R.D., 1993.

Samuel P. Midkiff and David A. Padua. Compiler
generated synchronization for DO loops. In Pro-
ceedings of the International Conference on Par-
allel Processing, pages 544-551, 1986.

Samuel P. Midkiff and David A. Padua. Compiler
algorithms for synchronization. IEEE Transac-
tions on Computers, C-36:1485-1495, 1987.

Patrick Naughton. The Java Handbook. McGraw-
Hill, New York, 1996.

14

[21]

[22]

[27]

[28]

[29]

Patrick Niemeyer and Joshua Peck. Ezploring
Java. O’Reilly & Associates, Sebastopol, CA,
1996.

David A. Padua, David J. Kuck, and Duncan H.
Lawrie. High speed multiprocessors and compila-
tion techniques. IEEE Transactions on Comput-
ers, C-29:763-776, 1980.

David A. Padua and Michael J. Wolfe. Advanced
compiler optimizations for supercomputers. Com-
munications of the ACM, 29:1184-1201, 1986.

Thomas W. Parsons. Introduction to Compiler
Construction. Computer Science Press, New
York, 1992.

Constantine D. Polychronopoulos. Parallel Pro-
gramming and Compilers. Kluwer, Boston, 1988.

Constantine D. Polychronopoulos, David J.
Kuck, and David A. Padua. Execution of parallel
loops on parallel processor systems. In Proceed-
ings of the International Conference on Parallel
Processing, pages 519-527, 1986.

Michael J. Wolfe. Optimizing Supercompilers for
Supercomputers. Pitman, London, 1989.

Michael J. Wolfe. High Performance Compilers
for Parallel Computers. Addison-Wesley, Red-
wood City, California, 1996.

H. Zima and B. Chapman. Supercompilers for
Parallel and Vector Computers. ACM Press, New
York, 1990.



