
PUTTING IT IN CONTEXT:

A SYNTACTIC THEORY OF

INCREMENTAL PROGRAM CONSTRUCTION

Shinn-Der Lee

Submitted to the faculty of the University Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

June 1996

This report is based on work supported in part by the National Science Foundation

grants numbered CCR 93-02114 and CDA 93-12614.



Copyright c
 1996

Shinn-Der Lee

ALL RIGHTS RESERVED



Acknowledgements

I would like to thank my advisor Daniel P. Friedman for introducing me to the

enchanting world of programming languages, for fascinating me with his relentless

pursuit of new ways to program, for his interest and encouragement in my work, and

for his patience and supervision during the writing of this thesis.

I would also like to thank the other members of my doctoral committee: Christo-

pher T. Haynes, Paul W. Purdom, and George Springer. Their support and advise

have been enormously valuable to the completion of this thesis.

I am grateful to Matthias Felleisen for answering all my questions about pro-

gramming languages and lambda calculi. I wish to thank Stan Je�erson. Through

numerous conversations, he has sharpened my ability to formalize my ideas about

programming. He has also guided me through the early stages of my endeavor in

English technical writing.

My fellow graduate students have not only provided insightful criticisms on my

work, but have also been friends. Thanks go to Mike Ashley, Mayer Goldberg, Julia

Lawall, Jenq-Kuen Lee, Anurag Mendhekar, Jon Rossie, John Simmons, Jonathan

Sobel, and Simon Tung.

Finally, I wish to thank my family. I am grateful to my parents, whose unwavering

trust has been a constant source of motivation for me to carry on. I am especially

indebted to my loving and caring wife Wei and our son Daniel. Without their faith

in me, my graduate studies would not have been possible.

iii



Abstract

The ability to construct programs in an incremental fashion is a premise of popular

programming paradigms such as modular programming, object-oriented program-

ming, and interactive programming. Incremental program development amounts to

�lling the holes of well-planned program contexts with new experimental components,

or assembling new programs from previously developed and thoroughly tested com-

ponents, or a combination of both. Its popularity lies in the 
exibilities it provides

for reusing existing program components and program structures. The bene�ts of

constructing programs incrementally are reduced demand on human and computing

resources, faster turn-around time, and enhanced program reliability.

We present a schema for enhancing programming languages with incremental pro-

gram construction capabilities based on the notion of program contexts. By perceiv-

ing fully-evolved program contexts (proper parse trees) as compiled code, partially-

evolved program contexts (improper parse trees with holes as non-terminal leaves) as

compilation operators, and context hole �lling as the means to link together compiled

code, the schema conservatively extends programming languages with mechanisms

capable of modeling the incremental construction, linking, and loading of compiled

program components.

We use the schema to enrich three �-calculi. The enriched pure �-calculus is

capable of expressing a metacircular compiler for itself. The enriched �-calculus with

elaborate variable de�nition notations is a module manipulation language suitable for

modular programming. The enriched �-calculus with elaborate variable referencing

devices is capable of expressing variable references whose linking relation can be

altered when their context evolves. Such relinkable variable references can provide

the late binding behavior required by interactive and object-oriented programming.

Our language design schema is unique in three aspects. First, it distinguishes

the construction of programs from the execution of programs. Linking is described

iv



strictly as a compile-time operation, rather than in terms of run-time computational

steps such as environment lookups or record �eld selections. Second, the language

design methodology our schema introduces is modular. The induced incremental

program construction operations can be added to a language one at a time. Hence,

extensibility and modi�ability are available at the language design level. Third, the

two basic code editing functions required by our schema are the copying of code

that models the reuse of existing program components and the renaming of variables

that models the linking of existing program components. The incremental program

construction capabilities derived from our schema thus mimic source code editing if

programs were constructed incrementally by hand.

v



Contents

Acknowledgements iii

Abstract iv

Contents vi

Figures xi

1 Introduction 1

1.1 Incremental Program Construction : : : : : : : : : : : : : : : : : : : 6

1.1.1 Incremental Machine Code Construction : : : : : : : : : : : : 6

1.1.2 Incremental Source Code Construction : : : : : : : : : : : : : 8

1.1.3 Incremental Compiled Code Construction : : : : : : : : : : : 10

1.2 Lambda Calculus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.3 Context-Enriched Lambda Calculus : : : : : : : : : : : : : : : : : : : 13

1.4 Simulations of Lambda Contexts : : : : : : : : : : : : : : : : : : : : 15

1.5 Twice Context-Enriched Lambda Calculus : : : : : : : : : : : : : : : 16

1.6 Context-Enriched Calculus of De�nitions : : : : : : : : : : : : : : : : 18

1.7 Context-Enriched Calculus of Relinkables : : : : : : : : : : : : : : : : 19

1.8 Incremental Programming : : : : : : : : : : : : : : : : : : : : : : : : 21

1.9 Finale : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

2 Lambda Calculus 25

2.1 Term Language : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

vi



2.2 Term Equality Framework : : : : : : : : : : : : : : : : : : : : : : : : 27

2.2.1 Notion of Reduction : : : : : : : : : : : : : : : : : : : : : : : 28

2.2.2 Church-Rosser Property : : : : : : : : : : : : : : : : : : : : : 29

2.3 Alpha Convertibility : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

2.4 Beta Convertibility : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

2.5 Lambda Calculus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

2.6 Programming with Lambda Calculus : : : : : : : : : : : : : : : : : : 36

2.6.1 Datatypes as Functions : : : : : : : : : : : : : : : : : : : : : : 37

2.6.2 Applied Lambda Calculi : : : : : : : : : : : : : : : : : : : : : 38

2.6.3 Recursive Functions : : : : : : : : : : : : : : : : : : : : : : : : 39

2.7 Contexts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

3 Context-Enriched Lambda Calculus 45

3.1 Term Language : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

3.2 Alpha Convertibility : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

3.3 Reduction Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

3.3.1 Function Invocation : : : : : : : : : : : : : : : : : : : : : : : : 50

3.3.2 Loading Compiled Code : : : : : : : : : : : : : : : : : : : : : 51

3.3.3 Constructing Compiled Applications : : : : : : : : : : : : : : 52

3.3.4 Constructing Compiled Abstractions : : : : : : : : : : : : : : 53

3.4 Calculus of Compiled Code : : : : : : : : : : : : : : : : : : : : : : : : 54

3.5 Redundant Parameters : : : : : : : : : : : : : : : : : : : : : : : : : : 59

3.6 Transparency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

3.7 Additional Non-Binding Constructs : : : : : : : : : : : : : : : : : : : 65

3.8 Programming Examples : : : : : : : : : : : : : : : : : : : : : : : : : 68

3.8.1 Program Symbols : : : : : : : : : : : : : : : : : : : : : : : : : 68

3.8.2 First-Class Environments : : : : : : : : : : : : : : : : : : : : : 69

4 Simulations of Lambda Contexts 75

4.1 Notions and Notations : : : : : : : : : : : : : : : : : : : : : : : : : : 76

vii



4.2 First Simulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

4.2.1 Simulating Hole Filling : : : : : : : : : : : : : : : : : : : : : : 79

4.2.2 Compiling Lambda Contexts : : : : : : : : : : : : : : : : : : : 80

4.3 Second Simulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

4.3.1 Binding Structures : : : : : : : : : : : : : : : : : : : : : : : : 82

4.3.2 Encoding Annotations : : : : : : : : : : : : : : : : : : : : : : 86

4.3.3 Encoding Contexts : : : : : : : : : : : : : : : : : : : : : : : : 88

4.3.4 Simulating Hole Filling : : : : : : : : : : : : : : : : : : : : : : 90

5 Twice Context-Enriched Lambda Calculus 95

5.1 Term Language : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

5.2 Calculus of Compiled Code : : : : : : : : : : : : : : : : : : : : : : : : 97

5.3 Thrice Context-Enriched Lambda Calculus : : : : : : : : : : : : : : : 100

5.4 Metacircular Self-Compilation : : : : : : : : : : : : : : : : : : : : : : 100

5.5 Renaming Free Identi�ers : : : : : : : : : : : : : : : : : : : : : : : : 103

6 Context-Enriched Calculus of De�nitions 107

6.1 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 108

6.2 Context-Enriched De�nition Calculus : : : : : : : : : : : : : : : : : : 109

6.3 Twice Context-Enriched De�nition Calculus : : : : : : : : : : : : : : 112

6.3.1 Term Language : : : : : : : : : : : : : : : : : : : : : : : : : : 112

6.3.2 Alpha Convertibility : : : : : : : : : : : : : : : : : : : : : : : 113

6.3.3 Reduction Rules : : : : : : : : : : : : : : : : : : : : : : : : : 115

6.3.4 Calculus of Compiled Code : : : : : : : : : : : : : : : : : : : 119

6.3.5 Metacircular Self-Compilation : : : : : : : : : : : : : : : : : : 121

6.4 Modules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122

6.5 Combining Modules : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123

6.5.1 Simultaneous De�nitions : : : : : : : : : : : : : : : : : : : : : 124

6.5.2 Private De�nitions : : : : : : : : : : : : : : : : : : : : : : : : 125

6.5.3 Overriding De�nitions : : : : : : : : : : : : : : : : : : : : : : 126

viii



6.5.4 Mutually-Linked Overriding De�nitions : : : : : : : : : : : : : 126

7 Context-Enriched Calculus of Relinkables 129

7.1 Berkling and Fehr's Lambda Calculus : : : : : : : : : : : : : : : : : : 130

7.2 Relinkables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133

7.2.1 Provisionally-Instantiated Relinkables : : : : : : : : : : : : : : 134

7.2.2 Variable Name Delimitation : : : : : : : : : : : : : : : : : : : 135

7.2.3 Calculus of Relinkables : : : : : : : : : : : : : : : : : : : : : : 137

7.2.4 A Concrete Representation of Relinkables : : : : : : : : : : : 137

7.3 Context-Enriched Calculus of Relinkables : : : : : : : : : : : : : : : : 138

7.4 Twice Context-Enriched Calculus of Relinkables : : : : : : : : : : : : 143

7.4.1 Free Variables and Free Variable Names : : : : : : : : : : : : 144

7.4.2 Distance Adjustments : : : : : : : : : : : : : : : : : : : : : : 145

7.4.3 Alpha Convertibility : : : : : : : : : : : : : : : : : : : : : : : 146

7.4.4 Reduction Rules : : : : : : : : : : : : : : : : : : : : : : : : : 148

7.4.5 Calculus of Compiled Code : : : : : : : : : : : : : : : : : : : 151

7.5 Optimizing Compiled Code : : : : : : : : : : : : : : : : : : : : : : : 152

8 Incremental Programming 155

8.1 Object-Oriented Programming : : : : : : : : : : : : : : : : : : : : : : 155

8.1.1 Object Representation : : : : : : : : : : : : : : : : : : : : : : 156

8.1.2 Object Inheritance : : : : : : : : : : : : : : : : : : : : : : : : 158

8.1.3 Object Self-Reference : : : : : : : : : : : : : : : : : : : : : : : 160

8.1.4 Attribute Selection and Sealing : : : : : : : : : : : : : : : : : 163

8.1.5 Discussions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 165

8.2 Interactive Programming : : : : : : : : : : : : : : : : : : : : : : : : : 167

8.2.1 Evaluating De�ne Expressions : : : : : : : : : : : : : : : : : : 169

8.2.2 Evaluating Non-De�ne Expressions : : : : : : : : : : : : : : : 172

ix



9 Finale 175

9.1 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 175

9.2 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 178

9.2.1 Denotational Semantics of Lambda Calculus : : : : : : : : : : 178

9.2.2 Lambda Calculus with Names : : : : : : : : : : : : : : : : : : 180

9.2.3 Jigsaw : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 182

9.3 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 183

9.3.1 E�ective Implementation : : : : : : : : : : : : : : : : : : : : : 183

9.3.2 Enriching Typed Lambda Calculi : : : : : : : : : : : : : : : : 184

9.3.3 Garbage Collecting Redundant Parameters : : : : : : : : : : : 185

9.4 Concluding Remarks : : : : : : : : : : : : : : : : : : : : : : : : : : : 186

Bibliography 187

x



List of Figures

3.1 Term language of context-enriched �-calculus �C : : : : : : : : : : : 46

3.2 Reduction rules of context-enriched �-calculus �C : : : : : : : : : : : 55

3.3 Constructing recursive �rst-class environments : : : : : : : : : : : : : 71

5.1 Contexts of context-enriched �-calculus ���C : : : : : : : : : : : : : : : 96

5.2 Term language of twice context-enriched �-calculus ���CC : : : : : : : 98

5.3 Reduction rules of twice context-enriched �-calculus ���CC : : : : : : 99

6.1 Contexts of de�nition calculus : : : : : : : : : : : : : : : : : : : : : : 110

6.2 Term language of context-enriched de�nition calculus ���D : : : : : : : 111

6.3 Contexts of ���D-calculus : : : : : : : : : : : : : : : : : : : : : : : : : 112

6.4 Term language of twice context-enriched de�nition calculus ���DD : : 113

6.5 Reduction rules of twice context-enriched de�nition calculus ���DD : : 120

7.1 Contexts of �-calculus with relinkables : : : : : : : : : : : : : : : : : 139

7.2 Term language of twice context-enriched calculus of relinkables ���RR 143

7.3 Reduction rules of twice context-enriched calculus of relinkables ���RR 151

7.4 Compiled code optimization rules : : : : : : : : : : : : : : : : : : : : 153

9.1 Denotational semantics of �-calculus : : : : : : : : : : : : : : : : : : 179

xi



xii



Chapter 1

Introduction

We present a schema for incorporating incremental program construction capabilities

into programming languages.

The ability to build programs in an incremental fashion is a premise of many

programming systems. Source code editing using a text editor is su�cient for the

job. The approach has not 
ourished into a mainstream programming paradigm

for obvious reasons. Human intervention is error prone. The repetitive text editing

chore can be more e�ectively handled by machines. Furthermore, recompilation of

source code is a terrible waste of computing resources. More critically, the source

code of some widely used utility programs are not available because of commercial or

proprietary restrictions. Realistic incremental program construction must therefore

be based on some form of machine code, rather than on source code.

Among the prominent alternatives is modular programming. Modules are tightly

encapsulated program components that communicate with one another only through

clearly speci�ed import and export interfaces. Programs are formed by linking

separately-developed modules together. The linking of modules is static. Once a

link is established, it can never be broken. This stringent constraint is not the best

for incremental program construction. Time and again, a program can be obtained

by modifying only a few links of an existing system of modules. There is no need to

take apart the entire system to accommodate the few necessary changes.

1



2

Object-oriented programming is an enhancement of modular programming. Ob-

jects have encapsulation capabilities similar to modules. They also have the static

linking features of modules. Above and beyond, objects embrace a progressive modi-

�cation mechanism allowing for the relinking of import attributes often explained in

terms of late binding variable references.

Another popular form of incremental program development is interactive pro-

gramming. An interactive evaluator uses an incrementally constructed environment

to keep track of previously evaluated de�nitions. A new program is constructed each

time a de�nition is submitted to the evaluator for evaluation. The interactive envi-

ronment is used in the evaluation of the submitted de�nition. The result is then used

to extend or override the existing interactive environment to yield a new environ-

ment. The interactive environment therefore constitutes a growing program in which

mutually dependent de�nitions are added in an incremental fashion.

The popularity of the above incremental programming paradigms stems from the

degree of 
exibility they provide in the reuse of existing program code and program

structures. The obvious bene�ts of reuse are reduced demand on human and comput-

ing resources as well as faster turn-around time. Moreover, if reuse of some existing

code is in high demand, it is economically feasible to verify the code vigorously.

Consequently, by reusing proven existing code, program reliability can be greatly

enhanced.

Incremental program development amounts to �lling in the blanks of well-planned

program structures with new experimental components, or assembling new programs

from previously developed and thoroughly tested components, or a combination of

both. To illustrate, the following example, which is taken from Abelson and Sussman

[4], shows an interactive Scheme [21] programming session that develops a program for

computing the square root of a given number x using Newton's method of successive

approximations (the interactive Scheme evaluator issues a prompt (>) preceded by

a number added for reference purposes when it is ready to accept the next input

expression):



3

1> (de�ne sqrt (lambda (x) (sqroot 1:0 x)))

2> (de�ne sqroot

(lambda (g x)

(if (good? g x) g (sqroot (improve g x) x))))

3> (de�ne improve (lambda (g x) (= (+ g (= x g)) 2)))

4> (de�ne good? (lambda (g x) (< (abs (� (� g g) x)) 0:001)))

5> (sqrt 0:0001)

0:0323

6> (de�ne good?

(lambda (g x)

(< (abs (= (� (improve g x) g) g)) 0:001)))

7> (sqrt 0:0001)

0:0100

The idea is to start with a guess g for the square root of x. We are done if the guess

is good enough for our needs; otherwise, we can repeat the process with an improved

guess that is the average of g and x=g. The function sqrt is the intended program for

computing square roots, the function sqroot implements the iterative approximation

process, the function improve computes the next guess, and the predicate good?

decides when the guess is good enough for the approximation process to terminate.

Later on, we discover that a better good?-predicate is necessary to work with

very small numbers such as 0.0001; see the obviously unacceptable response to the

�fth prompt. We can do so by revising the de�nition of good?, hence the input to

the sixth prompt. Such a rede�nition of good? is seen by the function sqroot and

so a new program for computing square roots is developed, as witnessed by the result

of the seventh prompt.

The incremental construction of the square root program can be described as

follows:

0> Initially, the evaluator holds a letrec-expression with a blank
1
in the location

for its recursive bindings and another blank
2
in the position for its body



4

expression:

(letrec (
1
)

2
)

1> Evaluating the de�nition of sqrt amounts to �lling in
1
with the binding of

sqrt and another occurrence of
1
, hence yielding:

(letrec ((sqrt (lambda (x) (sqroot 1:0 x)))

1
)

2
)

Likewise, evaluating the next three de�ne-expressions incrementally �lls in
1

with bindings of sqroot, improve, and good?:

(letrec ((sqrt (lambda (x) � � � sqroot � � �))
(sqroot (lambda (g x) � � �good? � � � sqroot � � � improve � � �))
(improve (lambda (g x) � � �))
(good? (lambda (g x) � � �))

1
)

2
)

In the process, the free variable references sqroot, improve, and good? used

in the functions sqrt and sqroot are incrementally linked to their latest binding

due to the recursive nature of the letrec-expression.

5> Evaluating a non-de�ne-expression means replacing the blank
2
with the

expression after removing the blank
1
. So, computing the square root of

0.0001 amounts to constructing the following program:

(letrec ((sqrt (lambda (x) � � � sqroot � � �))
(sqroot (lambda (g x) � � �good? � � � sqroot � � � improve � � �))
(improve (lambda (g x) � � �))
(good? (lambda (g x) � � �)))

(sqrt 0:0001))



5

6> The rede�nition of good? �lls in the blank
1
with a new binding for good?;

moreover, the previous binding of good? is hidden by converting its name to

something inaccessible:

(letrec ((sqrt (lambda (x) � � � sqroot � � �))
(sqroot (lambda (g x) � � �good? � � � sqroot � � � improve � � �))
(improve (lambda (g x) � � �))
( (lambda (g x) � � �))
(good? (lambda (g x) � � � improve � � �))

1
)

2
)

Consequently, the free variable reference good? in the de�nition of sqroot is

linked to the new binding of good? to yield a new square root function.

As shown by the example above, a key machinery needed in the incremental con-

struction of programs is an expressive linking mechanism to facilitate easy addition

or modi�cation of existing program components. It is the aim of this thesis to deepen

the understanding of such a notion of linking. Our contribution is a schema for en-

hancing programming languages with incremental program construction capabilities

based on the ability to link together separately-compiled program components. The

schema is unique in three aspects. First, it distinguishes the incremental construction

of programs from the execution of programs. As a result, linking is not described in

terms of run-time computational steps such as environment lookups or record �eld

selections. Instead, it is modeled strictly as a compile-time operation. Second, the

language design methodology our schema introduces is modular. Incremental pro-

gram construction operations can be added to a language one at a time. This is

made possible in part by the fact that our schema distinguishes between compile-

time linking and run-time computation. Third, the linking capabilities derived from

our schema mimic source code editing. The two basic editing functions required by

our schema are consistent with those that would have been used most often if editing

were done by hand. They are the copying (inclusion) of code that models the reuse of



6

existing program components and the renaming of variables that models the linking

of existing program components.

1.1 Incremental Program Construction

We address the di�culties involved in enhancing a programming language with in-

cremental program construction capabilities in terms of the pure �-calculus [7]. We

choose the �-calculus as a representative to convey our design methodology for two

reasons. First, the �-calculus possesses all the basic obstacles to incremental program

construction inherently associated with most languages. Second, the syntactic nature

of the �-calculus helps highlight the similarities between the linking features induced

by our schema and the most intuitive form of incremental program construction, i.e.,

source code editing. We refer the reader not familiar with the basic inner workings

of the �-calculus to Chapter 2.

1.1.1 Incremental Machine Code Construction

The term language of the untyped (pure) �-calculus has the following abstract syntax:

e ::= x j �x:e j e e

That is, a �-term e is either

� a variable reference x that refers to the closest function parameter named x,

� an abstraction �x:e that models a function with parameter x and body e, or

� an application e1 e2 that models the application of the function denoted by the

term e1 to the argument denoted by the term e2.

Traditionally, the �-calculus is perceived as a substitution-based computational

machine in which �-terms are the machine code. A machine instruction is then a

�-redex of the form (�x:e1) e2. It models the application of the function �x:e1 to



7

the argument e2. Its execution is modeled by substituting the argument e2 for every

reference to the function parameter x, which is denoted as

[e2=x]e1

Based on the way �-terms are de�ned and the correspondence between machine

code and �-terms, one might think that incremental machine code construction ca-

pabilities are readily built into the �-calculus. This is unfortunately a misconception.

The culprit is that the �-calculus is a statically-scoped language. It means that the

linking relation between a function parameter and the variable references that refer

to the parameter is static. It cannot be altered by any means. This vital characteris-

tic of static scope is upheld in the �-calculus by the �-conversion and �-substitution

meta-operations. The former says that the name of a function parameter can be

replaced as long as the parameter's linking relation is maintained. Hence, changing

the parameter names x and y of �x:�y:(x y) to w and z, thus yielding the �-term

�w:�z:(w z), does not a�ect the function's behavior. The two �-terms actually denote

the same function.

The �-substitution meta-operation complies with static scope by employing �-

conversion to avoid inadvertent alteration of any function parameter's linking relation.

For instance, substituting the term �y:z for the variable x in �z:(z x) must not simply

replace the x of �z:(z x) with �y:z. It would yield the term �z:(z �y:z) in which the

static linking relation of the function parameter z is violated. Instead, the name of

the function parameter z is changed to some fresh z0 to yield the result �z0:(z0 �y:z)

where the function parameter's static linking relation persists.

Consequently, any attempt to de�ne a function in the �-calculus that would take

any machine code e and construct out of it the function �x:e in which the parameter

x would link with the free occurrences of the variable x in e is destined to fail. It

would require the changing of the linking relation of the function parameter x (or

equivalently, the linking relation of the free variable references x in e), an anomaly

known as variable capture that is outlawed by the nature of static scope. Unfortu-



8

nately, such an anomalous feature is precisely the essence of the linking capabilities

needed to construct programs incrementally at the machine code level.

1.1.2 Incremental Source Code Construction

The notion of capture does exist in the theoretical study of the �-calculus, though

not with �-terms. It is associated with a separate meta-notion called contexts [7].

The abstract syntax of �-contexts is:

h 2 Holes = fh1;h2; : : :g
C ::= h j x j ���x:C j C C

That is, a �-context C is either

� a hole h,

� an identi�er x,

� an abstraction ���x:C of a context C over the identi�er x, or

� an application C1 C2 of a context C1 to another context C2.

Although �-terms e and �-contexts C are built out of the same syntactic structures,

they are based on distinct notions of names: variables x for �-terms versus identi�ers

x and holes h for �-contexts. We thus typeset �-contexts in boldface to distinguish

them from �-terms.

Whereas �-terms model machine code, �-contexts can be characterized as repre-

senting incomplete source code|incomplete in the sense that their parse trees may

have non-terminal leaves designated by holes. Thus, variables of �-terms correspond

to machine locations while identi�ers of �-contexts are source program symbols.

The analogue of �-substitution [e2=x]e1 for �-contexts is hole �lling, which is

denoted as

[C2=h]C1



9

It substitutes the �-context C2 for occurrences of the hole h in C1. Conceptually,

[C2=h]C1 amounts to replacing each non-terminal leaf designated by the name h in

the parse tree C1 with the parse tree C2. In contrast to �-substitution, hole �lling

[C2=h]C1 has the e�ect of literally replacing occurrences of h inC1 withC2. Identi�er

capture is indeed solicited. For instance, �lling the hole h of the �-context ���x:h with

the �-context x yields ���x:x, not ���x0:x for some identi�er x0 distinct from x. That

is, the replacement context x for the hole h gets linked to the parameter x of the

abstraction context ���x:h.

Using hole �lling, we can construct any application �-context C1 C2 out of the

�-contexts C1 and C2 by �lling the holes h1 and h2 of the application �-context h1 h2

with C1 and C2, respectively. Likewise, by �lling the hole h of the abstraction �-

context ���x:h with C, we can construct any abstraction �-context ���x:C in which free

occurrences of x in C are linked to the parameter x of ���x:h via identi�er capture.

Intuitively, there are only two categories of terminal node in a parse tree, namely,

identi�ers and holes. Furthermore, there are only two categories of internal node in a

parse tree. They correspond to application contexts and abstraction contexts. Hence,

by the inductive nature of the way �-contexts are de�ned, starting with holes h and

identi�ers x, any composite �-context can be incrementally constructed using the two

basic hole-�lling operations described.

So, with �-contexts, incremental program construction capabilities are readily

available, but only at the source code level. It is then our goal to integrate into

a single calculus the capabilities of �-contexts and �-terms. The task is non-trivial

since �-substitution and hole �lling cannot operate on the same domain. In particular,

functions may no longer be statically scoped because of the existence of holes. As a

result, we cannot simply transplant the �-conversion and �-reduction of �-terms to

�-contexts, or, conversely, the hole �lling of �-contexts to �-terms. For example, we

cannot rename the parameter y of �y:(x h) to yield �z:(x h) because we do not have

a complete picture of its scope; indeed, we have no idea what the hole h will be �lled



10

with. Consequently, we cannot treat the application

(�x:�y:(x h)) �x:y

as a �-redex and substitute �x:y for the variable x in �y:(x h). That would require

renaming the parameter y of the function �y:(x h).

1.1.3 Incremental Compiled Code Construction

The problem is that we overlook the distinction between the purpose of �-terms and

�-contexts, one is for modeling computation and the other is for modeling program

construction. So, instead of forcing every term in the integrated calculus to play the

role of both machine code (�-terms) and source code (�-contexts) at the same time,

we separate the domains of �-substitution and hole �lling. The integrated calculus is

therefore a mixture of machine code and source code. Of course, there is then the need

to compile source code into machine code. For that, we must incorporate compilation

mechanisms into the integrated calculus. But then, why can't we simply treat source

code as compiled code since they are subject to compilation anyway. So, rather than

extending the calculus of �-terms with �-contexts, our alternative is to translate �-

contexts into compiled code and extend the �-calculus with compiled �-contexts, thus

obtaining incremental program construction capabilities at the compiled code level.

The general schema is as follows. We distinguish between �-contexts with and

without holes since they have di�erent compilation interpretations. A (fully-)evolved

�-context e has no holes:

e ::= x j ���x:e j e e

It is a piece of complete source code ready for compilation. It is not generally feasible

to compile an evolved �-context into some machine code, however. At issue are

the free identi�ers of the context. We cannot simply translate them into free �-

term variables. Once that is done, we lose the capacity to link them later since free

variable capture is not expressible with statically-scoped �-terms. Hence, we need new



11

terms in the integrated calculus to model compiled but not yet fully-linked version of

evolved contexts. Moreover, there should also be a compiled code loading mechanism

to transform compiled code into machine code once the compiled code is fully-linked.

A partially-evolved �-context C+, on the other hand, is a �-context that contains

at least one hole:

C+ ::= h j ���x:C+ j e C+ j C+ e j C+ C+

When the holes of a partially-evolved context are �lled with other contexts, new

contexts are constructed. A partially-evolved context can therefore be seen as a

compilation operator that constructs new compiled code out of existing compiled

code. Consequently, depending on the evolvedness of the �ller contexts, hole �lling

can be perceived as the application or composition of such compiled code constructors.

Furthermore, by the inductive nature of their de�nitions, composite contexts can be

constructed from �lling the holes of the two most basic partially-evolved contexts,

namely, h1 h2 and ���x:h. We therefore require only two basic incremental compiled

code constructors, one for each of the two basic composite contexts.

To summarize, our schema of enriching the �-calculus is to add to the �-calculus

these compilation mechanisms to simulate the behavior of �-contexts:

� new terms for modeling the compiled but not yet fully-linked code of evolved

�-contexts,

� a loading operation for assimilating compiled code into machine code, and

� a basic compilation operator for modeling the incremental construction of each

category of composite �-contexts.

The integrated calculus is therefore a mixture of machine code, compiled code, and

incremental compiled code constructors. It still models program execution with �-

reductions. In addition, the extended calculus is capable of expressing the construc-

tion, linking, and loading of separately-developed compiled code in an incremental

fashion.



12

It is our intention to demonstrate that the context-enriching schema described

above does indeed enhance a programming language with incremental program con-

struction capabilities. In the �rst half of this thesis we show the feasibility of the

context-enriching schema on the pure �-calculus. We develop in detail the necessary

compilation mechanisms, study their novel features with emphasis on their linking

capabilities, and investigate their interaction with the computational aspects of the

�-calculus. Also included are proofs that the induced compilation mechanisms are in

fact capable of simulating the behavior of �-contexts.

The applicability of our schema is not restricted to the pure �-calculus. It can

be easily adapted to real programming languages. Obviously, more basic compila-

tion operators must be added to accommodate extra core constructs. Likewise, new

categories of compiled code must be introduced to model additional categories of

evolved contexts. There is no change to the fundamentals of their linking mecha-

nisms, however. In particular, linking can always be modeled as variable capture.

To demonstrate our point, we apply the context-enriching schema to languages with

more descriptive variable de�ning and referencing mechanisms in the second half of

the thesis.

The rest of this chapter provides an overview of our work. Each section below is

a short summary of one of the succeeding chapters.

1.2 Lambda Calculus

As a starting point, we survey the basics of the untyped �-calculus [7]. We pay special

attention to two fundamental concepts of the �-calculus that are most relevant to our

work, namely, variable renaming and contexts.

Although variable renaming is traditionally used as a means to avoid inadvertent

variable capture, it is not essential to the understanding of programming with the �-

calculus. By tinkering with the representation of �-terms [9, 14, 34] or the de�nition of

�-substitution [1], the �-reduction rule can be framed in a setting in which variable



13

renaming is unnecessary. We have found that variable renaming is indispensable

to our work, however. Our incremental compiled code construction operations rely

exclusively on the renaming of variables to model the linking of separately-developed

program components. A detailed description of variable renaming is a must.

Our schema is founded on the notion of contexts. A comprehensive description of

the behavior of contexts is thus in order. Particularly, we review in detail the primary

meta-operation on contexts, namely, hole �lling. Furthermore, we demonstrate that

allowing hole �lling and �-substitution to operate on the same domain easily leads to

the contradictory conclusion that all programs are equal, hence showing the potential

di�culties involved in integrating the two programming notions in a single system.

1.3 Context-Enriched Lambda Calculus

We give a comprehensive description of the application of our context-enriching

schema to the pure �-calculus. The result, ���C, is a conservative extension of the

�-calculus with incremental compiled code construction capabilities.

The key mechanism needed in the development of ���C is a compiled code repre-

sentation of evolved �-contexts (source code). Let q be a one-to-one function that

assigns a distinct variable name q(x) to each identi�er x. Then, the image of an

evolved �-context e is the �-term im(e) de�ned inductively on the structure of e as

follows:

im(x) � q(x)

im(���x:e) � �q(x):im(e)

im(e1 e2) � im(e1) im(e2)

That is, im(e) has the same structure as e but with each identi�er x replaced by

q(x). For example, im(���x:(y (x z))) is the �-term �x:(y (x z)), where x, y, and z are

the unique variable names assigned to x, y, and z by q. An evolved �-context e is



14

then compiled into the following free identi�er abstraction

�fx1 :x1; : : : ;xn :xng:im(e)

where x1; : : : ;xn are the free identi�ers of e and x1; : : : ; xn are the unique variable

names q(x1); : : : ; q(xn). Such a free identi�er abstraction models compiled but not yet

fully-linked code. The speci�cation fx1 :x1; : : : ;xn :xng indicates that free occurrences
of the variables x1; : : : ; xn in the machine code e are temporary placeholders for the

unlinked free identi�ers x1; : : : ;xn.

Like �-parameters, the parameter variables x1; : : : ; xn of a free identi�er abstrac-

tion �fx1 :x1; : : : ;xn :xng:e are considered the abstraction's bound variables; hence,

in the wake of �-substitution, they can be renamed to avoid inadvertent variable cap-

ture. Unlike �-parameters, �-parameter variables are quasi-statically scoped [42]. The

free occurrences of xi in e are not statically linked to the �-parameter xi :xi; they

can be relinked . Such quasi-statically scoped �-parameter variables facilitate the

sought-after variable linking mechanism needed in incremental program construction.

According to our schema, there are two incremental compiled code construction

operators, one for constructing the compiled code of evolved �-abstractions and one

for constructing the compiled code of evolved applications. Linking is needed in the

former operation. The compilation operator involved is lamx (one for each identi�er

x to be exact). Metaphorically speaking, it is a unary operator that incrementally

constructs the compiled code of a �-context ���x:e from the compiled code of a �-

context e. In particular, let the free identi�er abstraction �fx1 :x1; : : : ;xn :xng:e be
the compiled code of the �-context e. Then,

lamx �fx1 :x1; : : : ;xn :xng:e ! �fx1 :x1; : : : ;xn :xng:�x:e

The resulting free identi�er abstraction �fx1 :x1; : : : ;xn :xng:�x:e is the compiled

code of the �-context ���x:e. Notice that in the process, the operator lamx takes

advantage of the quasi-statically-scoped nature of the free occurrences of x (x is xi

if x is some xi; otherwise, x is a fresh variable name) in e and relinks them to the



15

parameter x of the newly constructed �-abstraction, thus mimicking the identi�er

capture behavior of context hole �lling.

The other incremental compiled code construction operator app is a binary oper-

ator that constructs the compiled code of a �-context e1 e2 from the compiled code

of �-contexts e1 and e2. Let ��1:e1 and ��2:e2 be the respective compiled code of

the �-contexts e1 and e2. Then,

app ��1:e1 ��2:e2 ! ��1]�2:(e1 e2)

The result is the compiled code of the �-context e1 e2. The notation �1]�2 denotes a
variant of the union of the free identi�er parameter sets �1 � fx1 :x1; : : : ;xm :xmg and
�2 � fy1 :y1; : : : ;yn :yng that uses variable renaming to ensure that an identi�er and

its variable can occur in the union once only. It models the fact that free occurrences

of the same identi�er in both e1 and e2 should be assigned the same temporary

placeholder in both e1 and e2.

1.4 Simulations of Lambda Contexts

Our schema enriches the �-calculus with compilation capabilities to model the be-

havior of �-contexts. It is thus imperative that the notion of context hole �lling is

indeed expressible in ���C. We give not one but two simulations.

The �rst simulation is in essence an incremental compiler for the �-calculus. An

evolved �-context e is translated into a constant function that always returns its

compiled code in the form of the �-abstraction

�fx1 :q(x1); : : : ;xn :q(xn)g:im(e)

where x1; : : : ;xn are the free identi�ers of e. A partially-evolved �-context C+, on the

other hand, is encoded as some composition of the two compiled code construction

operators lamx and app of ���C. A hole �lling operation [C2=h]C1 is then interpreted

as a composition of the encodings of C1 and C2.



16

The second simulation does not rely on distinguishing evolved and partially-

evolved contexts. Every �-context C is translated into its image im(C) de�ned as

follows (the one-to-one function q has been extended to assign a unique variable name

q(h) to each hole h as well):

im(h) � q(h) :fx1 :q(x1); : : : ;xn :q(xn)g
im(x) � q(x)

im(���x:C) � �q(x):im(C)

im(C1 C2) � im(C1) im(C2)

Each hole h is represented by its unique variable q(h) annotated with the identi�ers

it intends to capture, namely, x1; : : : ;xn. The annotation fx1 :q(x1); : : : ;xn :q(xn)g
is a linking mechanism that maps identi�ers (source code symbols) x1; : : : ;xn to

variables (machine code locations) q(x1); : : : ; q(xn). It states that when the hole h

is �lled with some context C0, free occurrences of the identi�ers x1; : : : ;xn in C0 are

replaced by their variables q(x1); : : : ; q(xn), thus accomplishing the desired linking

e�ect. Hence, in the second simulation, every context is fully compiled. They are

then linked together using the above hole annotation mechanism. In other words, the

second simulation is an incremental linker for �-terms.

1.5 Twice Context-Enriched Lambda Calculus

By applying our incremental program construction capability enhancing schema to

the pure �-calculus, we obtain a context-enriched �-calculus ���C. As a second demon-

stration, we apply the schema to ���C to yield the twice context-enriched �-calculus

���CC, and then to ���CC to yield the thrice context-enriched �-calculus ���CCC, and

so forth. Interestingly, the twice context-enriched calculus ���CC is the \�xpoint" of

the repetitive applications of our schema to the �-calculus.

Intuitively, the ���C-calculus extends the �-calculus with free identi�er abstractions

�fx1 :y1; : : : ;xn :yng:e to model the compiled code of evolved �-contexts. The evolved



17

���C-contexts corresponding to free identi�er abstractions are of the form:

���fx1 :y1; : : : ;xn :yng:e

They can be compiled into nested �-abstractions of the form

�fz1 :z1; : : : ; zm :zmg:�fx1 :y1; : : : ;xn :yng:e

The machine code e is the image of the source code e. Free occurrences of the

identi�ers y1; : : : ;yn in the source code e are replaced by their respective place-

holders y1; : : : ; yn in the machine code e. Similarly, the free identi�ers z1; : : : ; zm of

���fx1 :y1; : : : ;xn :yng:e are compiled into their respective placeholders z1; : : : ; zm in

the machine code e.

Thus, to obtain the twice context-enriched �-calculus ���CC from the once context-

enriched �-calculus ���C, we need to introduce only an extra compiled code construc-

tion operator to build the compiled code of ���fx1 :y1; : : : ;xn :yng:e from the compiled

code of e. Moreover, such an operator is a primitive involving no free variables, i.e., it

is a constant. As a result, further context-enrichment of the ���CC-calculus introduces

no new compilation mechanisms, thus converging the process to ���CC.

The context-enriched version of a �-calculus is capable of compiling the �-contexts

incrementally, a goal designed into our schema. It is therefore possible to express

the compilation of the ���CC-contexts in the ���CC-calculus. That is, there is a self-

compiler [8, 52] for ���CC. Furthermore, we can show that the self-compiler is metacir-

cular [45]. That is, each category of evolved ���CC-contexts can be translated directly

into the machine code of the same category of ���CC-terms, no auxiliary notions or

mechanisms are necessary.

The context-enriched calculi ���C and ���CC demonstrate that it is indeed possi-

ble to conservatively extend the �-calculus with incremental program construction

capabilities. In the second part of this thesis we apply the schema to intricate vari-

able de�ning and referencing mechanisms to provide the advanced linking capabilities

required by popular incremental programming paradigms.



18

1.6 Context-Enriched Calculus of De�nitions

We extend the �-calculus with de�nitions d, which are more elaborate variable de�n-

ing mechanisms [59]:

e ::= x j �x:e j e e j let d in e

d ::= fx1 = e; : : : ; xn = eg

The computational behavior of the new �-terms let d in e can be explained in terms

of the following syntactic expansion:

let fx1 = e1; : : : ; xn = eng in e �
8><
>:

(�x1 : : : xn:e) e1 � � � en if n > 0

e otherwise

Hence, de�nitions merely add a shorthand for expressing some commonly used pro-

gramming idioms. We then apply our context-enriching schema to the extended

calculus.

The contexts of the �-calculus with de�nitions are:

C ::= h j x j ���x:C j C C j let D in C

D ::= h j fx1 = C; : : : ;xn = Cg

When we see the free identi�ers of a D-context fx1 = C1; : : : ;xn = Cng as import

identi�ers, the de�ning identi�ers x1; : : : ;xn become export identi�ers. By assign-

ing a new category of compiled code abstractions for evolved D-contexts, we have

abstractions that import and export variables through identi�ers (external names).

They are modules [73]. The context-enriched calculus of de�nitions ���DD is there-

fore a module manipulation language. The operation that incrementally constructs

the compiled code of the context let D in C from the compiled code of the con-

texts D and C is the means to import the module of D into the compiled code of

C. The operation that incrementally constructs the compiled code of the context

fx1 = C1; : : : ;xn = Cng from the compiled code of the contexts C1; : : : ;Cn provides

the mechanism for building modules from scratch.



19

Additional module construction operations can be easily derived from commonly

used compound de�nitions. For instance, the compound de�nition seq d1 d2 combines

the two de�nitions d1 and d2 such that we have the following syntactic expansion:

let (seq d1 d2) in e � let d1 in let d2 in e

That is, the bindings of d1 are visible to the bindings of d2; moreover, the bindings of

d2 override those of d1 in case of con
icts. The corresponding module operator seq

derived from our context-enriching schema is capable of incrementally constructing

the module of seq D1 D2 from the modules of D1 and D2 by linking the import

variables of D2 to the export variables of D1.

A point worth stressing here again is that the compilation mechanisms introduced

by our context-enriching schema are strictly about the incremental construction of

programs; they do not interfere with the computational behavior of the underlying

calculus. As a result, the addition of new module operators to ���DD can be done

in a modular fashion. Indeed, the complexities involved in the process stem mainly

from the syntactic expansion of the derived de�nitions such as seq d1 d2. The induced

module operators actually have relatively straightforward semantic descriptions that

incur only simple identi�cation of import and export variables.

1.7 Context-Enriched Calculus of Relinkables

As another exercise, we extend the �-calculus with relinkable variable references r,

which are more elaborate variable referencing mechanisms:

k 2 f1; 2; : : :g
r ::= [xk; xk; : : :]

e ::= r j �x:e j e e

A relinkable variable reference [xk11 ; x
k2
2 ; : : :] is a (possibly in�nite) sequence of variable

references xk11 ; x
k2
2 ; : : :, e.g., [x

2; y3; z1]. Each constituent xk is a variable reference x



20

with a lexical address k [9, 10, 14]. It refers to the kth nearest enclosing function

parameter named x. Hence, the reference x2 in �x:�y:�x:[x2] refers to the under-

lined function parameter, not the one overlined. Semantically, a relinkable variable

reference [xk11 ; x
k2
2 ; : : :] is equivalent to

if xk11 is bound then xk11

else if xk22 is bound then xk22
. . .

else [xk11 ; x
k2
2 ; : : :] is unbound

If the �rst constituent xk11 is bound, its denotation dominates the others. Otherwise,

if the second constituent xk22 is bound, its denotation dominates the rest, and so forth.

In other words, a relinkable variable reference is a dispatch based on the boundness

of its constituents.

A relinkable variable reference is so called since we can relink it to di�erent �-

parameters as its enclosing context grows. For instance, the same relinkable variable

reference [x2; y1; x1; x3] in the following successive terms changes its link to refer to

di�erent �-parameters (the constituent variable reference and the function parameter

to which it refers are underlined):

�x:[x2; y1; x1; x3]

�y:�x:[x2; y1; x1; x3]

�x:�y:�x:[x2; y1; x1; x3]

�x:�x:�y:�x:[x2; y1; x1; x3]

The semantics of [x2; y1; x1; x3] is therefore quite sensitive to its surrounding context.

The potential of relinkable references is unleashed when they are enriched with

the notion of contexts. The result is a calculus ���RR capable of expressing variable

references with adaptive behavior. These are the kind of variable references needed

in object-oriented programming and interactive programming.



21

1.8 Incremental Programming

The module manipulation calculus ���DD and the calculus of relinkable variable refer-

ences ���RR together are expressive enough to encode the adaptive behavior fundamen-

tal to these common incremental programming paradigms in practice: object-oriented

programming and interactive programming.

The three most essential features of object-oriented programming are object en-

capsulation, inheritance, and late binding [31]. Object encapsulation is about infor-

mation hiding and modularity. Objects interact with one another only through clearly

speci�ed import and export interfaces. Object inheritance implements code reuse and

code organization. It is the mechanism by which new and enhanced objects can be

de�ned in terms of existing objects. Late binding provides the necessary means for

existing objects to adapt to their ever-changing context.

An object is therefore a ���DD-module. The export interface of a module speci�es

an object's public attributes (an attribute is either a method or an instance variable).

The import interface speci�es an object's dependencies on other objects. Existing ob-

jects are (re)used to construct new objects using the module construction operations

of ���DD. Late-bound virtual references essential to object inheritance are relinkable

variable references of ���RR. A relinkable variable reference [x1; : : : ; x1] is a virtual

reference whose link is subject to change as many times as necessary. A relinkable

variable reference [x2; x1] is a virtual reference that can be relinked only once. A

relinkable variable reference [y2; x2; y1; x1] is a virtual reference that can be linked to

either of the two attributes denoted by x or y.

Hence, unlike Smalltalk [30], but similar to C++ [68], our object system does not

rely on some pseudo-variable named self to accomplish intra-object virtual attribute

references. Instead, the pseudo-variable is strictly reserved for the purpose of object

self-reference. Furthermore, our virtual references can be sealed o� individually so

that their links are not subject to future modi�cations. Moreover, virtual references

can decide by themselves on which of the many versions of future modi�cations to



22

take as their permanent denotation. All in all, we are able to show that object-

oriented programming can be modeled with compile-time linking, rather than run-

time environment lookup or record �eld selection [2, 5, 22, 23, 24, 32, 37, 51, 57, 60, 74].

Lisp [66] and its dialects such as Scheme [4, 21] employ an interactive evaluator as

a means for incremental program development. An interactive evaluator uses an ever-

growing environment to keep track of the bindings produced by previously evaluated

de�ne-expressions. Each de�ne-expression submitted to the evaluator is evaluated

in the scope of the current interactive environment to yield a binding. The binding

is then used to extend or override the existing interactive environment to yield a new

environment for the evaluation of the next expression. The interactive environment

thus constitutes an incrementally constructed program.

Traditionally, the adaptive behavior of an interactive system is explained in terms

of side e�ects [21] or dynamic binding [4]. We are able to describe the adaptive

nature of interactive programming as yet another form of incremental program con-

struction based on relinkable variable references. The ever-growing environment of an

interactive evaluator is a module whose exports are the previously evaluated de�ne-

expressions and whose imports are free variables expressed as relinkable variable

references. The binding produced by each de�ne-expression is a modi�er used to

transform the current interactive environment module to a new environment module.

1.9 Finale

We have presented a schema for enhancing programming languages with incremental

program construction capabilities and demonstrated its usefulness. It is appropriate

to summarize key contributions, to compare with other work, and to plot future plans.

Programming language design is about the abstraction of recurring programming

idioms. The expressiveness of a programming language is tied to the idioms it can


uently express. In this sense, our context-enriched �-calculi are highly desirable

because



23

� They cover the basics of many prominent programming paradigms.

� Their linking mechanisms involve only the copying of code and the renaming of

variables.

� Their compilation mechanisms are orthogonal to the computational devices of

the enhanced calculus.

� They are derived from a modular language design methodology.

There are many issues concerning our context-enhancing schema left unexplored.

Among them are:

typing The typing of object-oriented programming languages is currently a very

active research area [2, 32, 51, 57]. Some of the crucial notions underlying

the programming paradigm are shared by our context-enriched calculi. It is

therefore tempting to investigate if our schema simpli�es or complicates typing

issues.

implementation E�cient implementation should not be the deciding factor of the

practicality of our schema, but a stronger case can be presented if we have

one. (Build it and they will come.) Many of the clever implementation tech-

niques employed in some popular functional [17, 27, 56, 62] and object-oriented

languages [20, 25, 26] may be applicable to our context-enriched calculi.

The above issues, as well as related work, are discussed in Chapter 9. It is now

time to start �lling in the holes.



24



Chapter 2

Lambda Calculus

The �-calculus has made an indelible imprint on the study of programming languages.

As a mathematical notion, it is used for de�ning programming language semantics.

A case in point is the denotational approach of Scott and Strachey [48, 61, 67]. As a

computational notion, the �-calculus is Turing-complete; every computable function

is de�nable in the �-calculus [38]. As a programming notion, its features form the

core of many contemporary high-level programming languages [21, 49]. One of the

reasons that make �-calculus the quintessential representative used in conveying new

programming notions is its concise and expressive syntax. In our case, the �-calculus

also happens to exhibit all the obstacles to incremental program construction that

are inherent to statically-scoped languages.

There are many variants of the untyped �-calculus. Each of them possesses par-

ticular idiosyncrasies inherent to the type of computation it is intended to model.

Examples are �-calculi that employ call-by-name or call-by-value evaluation strate-

gies [58], �-calculi that include constants and sophisticated datatypes [35], �-calculi

that embody imperative features such as assignments [29, 53] and continuations [29].

Our schema applies to them all. Of concern to us is how to construct programs incre-

mentally. The way computation is actually modeled has little impact on our schema.

We therefore choose to illustrate our schema on the �-calculus that has the least

complicated description|the call-by-name untyped pure �-calculus. For an in-depth

25



26

treatment of the �-calculus, the reader is advised to consult the literature [7, 33, 34].

In this chapter we brie
y overview only its basic concepts and notations that are

relevant to our work.

2.1 Term Language

The syntax of the pure �-calculus is constructed from the following alphabet:

x; y; z; : : : 2 Vars variable names

� lambda

: dot

(; ) parentheses

The set of �-terms � is de�ned inductively as follows:

variable: if x 2 Vars then x 2 �;

abstraction: if x 2 Vars and e 2 � then (�x:e) 2 �;

application if e1 2 � and e2 2 � then (e1 e2) 2 �.

A common shorthand for the above inductive de�nition is the following abstract

syntax:

e 2 �

e ::= x j (�x:e) j (e e)
(�)

Intuitively, the three categories of �-term encompass these programming notions:

statically-scoped function: An abstraction (�x:e) is a statically-scoped function.

The variable x names the function's parameter. The term e is the function's

body. The scope of the parameter x consists of the body e. Free occurrences of

the variable x in e refer to the function's parameter.

function parameter reference: A variable reference x is a name used in the body

of a function to refer to the function's parameter. A variable name used as a



27

function parameter is called a binding occurrence; it is called an applied occur-

rence when used as a reference to a function parameter.

function application: An application (e1 e2) denotes function application, the com-

putational engine of the �-calculus. The term e1 is the function part of the

application. The term e2 is the argument of the application.

To avoid the proliferation of parentheses, abstractions (�x:e) and applications

(e1 e2) are generally written without their parentheses, namely, �x:e and e1 e2. Ap-

plication is left associative. Hence, e1 e2 e3 is equivalent to the fully-parenthesized

((e1 e2) e3). Abstraction associates to the right. Hence, �x:�y:e is (�x:(�y:e)) when

fully parenthesized. Moreover, internal "�"s and "."s of nested abstractions are sup-

pressed. Hence, �xy:e is a shorthand for �x:�y:e, which is (�x:(�y:e)). The notation

e1 � e2 means that e1 and e2 are syntactically identical.

2.2 Term Equality Framework

The �-calculi are theories of equality (convertibility) between �-terms. In this section

we give a general framework for de�ning such term equality relations, which is used

later on to instantiate the �-calculi of interest to us.

We �rst present the notion of one-hole contexts. They denote incomplete �-terms.

The one-hole contexts of the �-calculus are constructed from the same alphabet as the

�-terms except for the addition of a hole denoted as []. The set of one-hole contexts

�[] is de�ned by the following abstract syntax:

C[] 2 �[]

e 2 �

C[] ::= [] j �x:C[] j C[] e j e C[]
(�[])

Each one-hole context C[] is a �-term that has a hole [] in it. The notationC[e] denotes

the �-term resulting from replacing the hole of C[] with the �-term e. For instance,

�x:[�y:(x y)] is the �-term �xy:(x y). One-hole contexts provide a convenient way for

us to isolate a particular subterm e0 out of a �-term e, e � C[e0].



28

2.2.1 Notion of Reduction

A notion of reduction (reduction rule) R on �-terms is a binary relation on �:

R � �� �

For each (e1; e2) 2 R, e1 is called an R-redex, e2 is the R-contractum of e1, and the

reduction from e1 to e2 is an R-contraction step.

A notion of reduction R is compatible with the syntactic construction of �-terms

if (e1; e2) 2 R implies that (C[e1]; C[e2]) 2 R for any one-hole context C[]. That is,

two terms e1 and e2 are R-related if they di�er only on a particular subterm and the

di�erent subterms are R-related. Since the �-terms � are constructed inductively,

every notion of reduction R induces a compatible closure. That is, there is always

a smallest extension of R that is compatible. Formally, the compatible closure of R,

denoted as !R, is a binary relation on � de�ned inductively as follows:

(e1; e2) 2 R ) e1!Re2

e1!Re2 ) e1 e!Re2 e

e1!Re2 ) e e1!Re e2

e1!Re2 ) �x:e1!R�x:e2

The compatible closure of R is also called the one-step R-reduction. We say that e1

one-step R-reduces to e2 if e1!Re2.

The re
exive and transitive closure of !R is the R-reduction relation !!R:

e1!Re2 ) e1!!Re2

re
exivity: e!!Re

transitivity: e1!!Re2; e2!!Re3 ) e1!!Re3

In the case of e1!!Re2, we say that e1 R-reduces to e2 or e2 is an R-reduct of e1.

The least equivalence relation generated by!!R is the R-equality (R-convertibility)



29

relation =R:

e1!!Re2 ) e1=Re2

re
exivity: e=Re

symmetry: e1=Re2 ) e2=Re1

transitivity: e1=Re2; e2=Re3 ) e1=Re3

It is the theory of equality on the �-terms � induced by the notion of reduction R.

We say that e1 is R-convertible (R-equivalent) to e2 if e1=Re2.

A term is called an R-normal form if it does not contain as subterm an R-redex.

That is, e is an R-normal form if we cannot partition it into a one-hole context C[] and

an R-redex subterm e0 such that e � C[e0]. We say that a term e1 has an R-normal

form e2 if e2 is an R-normal form and e1 is R-equivalent to e2.

Computationally speaking, an R-redex e1 is an instruction of a reduction machine

and the contraction of e1 to its contractum e2 amounts to the execution of the machine

instruction e1 to yield the result e2. An R-normal form is a program that has no

more instructions to be executed. It is an answer. The compatible closure of R

says that each R-instruction in a program can be autonomously executed regardless

of its surrounding program context. The R-reduction !!R computes the answer of

programs. The R-convertibility says that two programs are equivalent if they compute

to the same answer.

2.2.2 Church-Rosser Property

Since the one-step R-reduction relation !R underlying the R-equality relation =R

is not obligated to contract any particular R-redex of a term, a term is reducible

to possibly many di�erent terms when it has several R-redexes as subterms. It is

thus essential for the equality relation =R to be computationally well-behaved in the

sense that regardless of which redex we choose to execute in each reduction step, if a

program has an answer, it is always the same one. This is formalized below.

A binary relation � on � satis�es the diamond property, notated as � j= 3, if
for all �-terms e, e1, and e2 such that e�e1 and e�e2, there exists a �-term e3 such



30

that e1� e3 and e2�e3. A notion of reduction R is said to be Church-Rosser if its

induced R-reduction relation!!R satis�es the diamond property. In other words, if e

R-reduces to two di�erent terms e1 and e2, then e1 and e2 have a common R-reduct

e3. Two immediate consequences of R being Church-Rosser are:

� a term can have at most one R-normal form; hence, if a program has an answer,

the answer is unique,

� if a program has an answer, i.e., it is R-equivalent to an R-normal form, then

it is possible to R-reduce the program to its answer.

Given an existing reduction machine whose instructions are modeled by some

notion of reduction R1, in many cases we can obtain a new reduction machine by

adding instructions represented by a second notion of reduction R2. The collective

notion of reduction R for the new machine is then the union of R1 and R2:

R = R1 [R2

= f(e1; e2) j (e1; e2) 2 R1 or (e1; e2) 2 R2g

To ensure that the new machine remains in good computational behavior, we must

show that the collective notion of reduction R is Church-Rosser. A modular approach

to such a proof is attributed to Hindley and Rosen:

Lemma 2.1 (Hindley-Rosen) Let �1 and �2 be binary relations on some set X

and let �+ be the transitive closure of the union of �1 and �2. Suppose that

� Both relations �1 and �2 satisfy the diamond property individually.

� The relations �1 and �2 commute with each other, �.e., for all elements x, x1,

and x2 of X, if x�1x1 and x�2x2, then there exists an element x3 of X such

that x1�2x3 and x2�1x3.

Then, the binary relation �+ satis�es the diamond property.



31

So, to prove that the collective notion of reduction R of the new machine is

Church-Rosser, we need only show that:

� each of the two notions of reduction R1 and R2 is Church-Rosser, i.e.,!!R1
j= 3

and !!R2
j= 3, and

� the reduction relations !!R1
and !!R2

commute with each other.

The lemma is particularly useful since we already know that the notion of reductionR1

of the existing machine is Church-Rosser. We thus need only show that the new notion

of reduction R2 is Church-Rosser and that the execution of the instructions of R2 do

not interfere with the execution of the instructions of R1 to meet the commutativity

requirement.

We are now ready to introduce the two fundamental �-term equality relations of

the �-calculus: �- and �-convertibilities. The former captures the static scope nature

of function parameters. The latter provides a vehicle for computing with functions.

These �-term equivalence relations are the subject of the next two sections.

2.3 Alpha Convertibility

The functions modeled by �-calculus abstractions are statically scoped. That means

the linking relation between a function's parameter and its associated references can-

not be altered under any circumstances. The parameter name is used merely as a

visual aid to express the linking relation. Consequently, we can change the parame-

ter's name without changing the meaning of the function, as long as we also rename

all its associated references accordingly. Thus, �x:�y:(x y) and �w:�y:(w y), which

is the result of changing the parameter name x of �x:�y:(x y) to w, denote the same

function. In contrast, �y:�y:(y y) does not result from renaming the parameter x of

�x:�y:(x y) to y since that would change the linking relation of parameters x and y.

A basic syntactic notion needed in the formal description of function parameter

renaming is the set of free variables occurring in a term e, denoted as fv(e). Intuitively,



32

a variable reference x is free in a term e only if it does not refer to some function

parameter. Thus, the underlined occurrence of x in the application term (�x:x) x is

free while the overlined occurrence is not. Formally, the set fv(e) is de�ned inductively

on the structure of e as follows:

fv(x) = fxg
fv(�x:e) = fv(e) n fxg
fv(e1 e2) = fv(e1)[ fv(e2)

(fv)

The abstraction clause enforces static scope for function parameters. Free occurrences

of x in the body e of a function �x:e refer to the function's parameter. They are not

free beyond the function, hence the removal of x from the set fv(e).

The fact that the actual name of a function's parameter is irrelevant to the func-

tion's behavior is expressed in the �-calculus by the following notion of reduction

known as �-conversion (parameter renaming):

�x:e ! �y:hy=xie
where y 6� x and y =2 fv(e)

(�)

which is an alternative expression of the notion of reduction � using the usual set

notation:

� = f(�x:e; �y:hy=xie) j y 6� x; y =2 fv(e)g

It says that we can change the parameter's name x of a function �x:e to a new name

y, as long as we also change the free references of x in e to y, which is what the

notation hy=xie stands for. There are two provisions in choosing the new name y.

First, y is not x, the original name of the parameter; otherwise, the name change

would be vacuous. Second, y is not the name of any of the free variables occurring in

the body term e. It ensures that no linking relation between a function parameter and

its references will be altered by the change of the parameter's name. Had y 2 fv(e),

the free occurrences of y in e would have been linked to the renamed parameter. In

essence, only the name used by a function's parameter and its references is changed

by �-conversion, but not the linking relation.



33

The �-substitution meta-operation hy=xie used in function parameter renaming

replaces every free occurrence of x in e with the new name y:

hy=xiz �
8><
>:

y if x � z

z otherwise

hy=xi�z:e �

8>>>>><
>>>>>:

�z:e if x � z

�z:hy=xie if x 6� z and z 6� y

�w:hy=xihw=zie if x 6� z but z � y

hy=xi(e1 e2) � hy=xie1 hy=xie2

(h�=xi�)

The abstraction clause is the most complex. There are three cases involving three

variables, namely, the variable to be replaced x, the replacement y, and the function's

parameter z. When z is x, x is not a free variable in �z:e; hence, the renaming has

no e�ect on �z:e. When z is neither x nor y, the parameter z does not interfere with

the renaming process. The �-substitution can therefore be carried into the body e

without bothering the parameter. The last case, when z is not x but is the same as

y, requires special attention. Renaming free occurrences of x in e to y naively would

amount to linking the free x's in e to the parameter z, a 
agrant violation of static

scope. Consequently, �-conversion is used inductively �rst to rename the parameter

z to a fresh variable w to avoid inadvertent capture of y. The freshness of w can be

guaranteed by choosing it to be di�erent from x and z, and not to be one of the free

variables of e.

According to the �-term convertibility framework described in Section 2.2, the no-

tion of reduction � induces a term equivalence relation =� that e�ectively says that

two terms are �-equivalent if one can be made syntactically identical to the other by

the renaming of its function parameters. But since the primary motivation behind

the �-calculus is the modeling of the behavior of functions, not their cosmetic ap-

pearances, such terms are identi�ed because they actually denote the same program.

Thus, e1 � e2 is generalized to mean either that e1 and e2 are syntactically identical

or that they are identical up to the renaming of some function parameters. This is

the �-congruence variable convention adopted widely in the literature.



34

There is another reason to adopt the �-congruence variable convention. It has to

do with the notion of normal forms, which are answers produced by the execution of

programs. Since renaming is applicable to every function parameter, a term contain-

ing at least an abstraction as a subterm can never be an �-normal form and therefore

technically cannot play the role of an answer. By identifying terms that di�er only

in their function parameter names, the problem disappears.

A second commonly used variable convention is the hygiene variable convention.

It says that in a mathematical context, e.g., a de�nition or a theorem, the func-

tion parameters of the terms involved are distinct from one another and are distinct

from the free variables of the terms involved. Assumption of the hygiene convention

greatly simpli�es the presentation of many computational concepts and mechanisms

expressed in terms of the �-calculus. It is used throughout most of this thesis. There

are exceptional cases in which we must identify some parameters, however. The reader

will be alerted on such occasions.

2.4 Beta Convertibility

The second equivalence relation on �-terms is induced by the following notion of

reduction:

(�x:e) e0 ! [e0=x]e (�)

which is another way of expressing:

� = f((�x:e) e0; [e0=x]e) j e; e0 2 �g

It invokes the function represented by the abstraction �x:e on the argument repre-

sented by the term e0. The intended behavior is for the parameter x to assume the

argument e0 while computing the answer of the function body e. This is modeled by

substituting each free occurrence of x in e with e0, denoted as [e0=x]e.

The �-substitution meta-operation [e0=x]e is de�ned by induction on the structure

of e as follows:



35

[e0=x]z �
8><
>:

e0 if x � z

z otherwise

[e0=x]�z:e �

8>>>>><
>>>>>:

�z:e if x � z

�z:[e0=x]e if x 6� z and z =2 fv(e0)

�w:[e0=x]hw=zie if x 6� z but z 2 fv(e0)

[e0=x](e1 e2) � [e0=x]e1 [e
0=x]e2

([�=x]�)

In the abstraction clause, �-conversion is used to avoid inadvertent capture when the

parameter z is a also a free variable of e0. The new name w is not the same as x or z,

nor is it a free variable of e or e0. It is chosen as such to maintain the static linking

relation of the function parameter. The abstraction clause can be simpli�ed to

[e0=x]�z:e � �z:[e0=x]e

when the variable conventions are assumed to ensure that the function parameter z

is not the same as the to-be-replaced variable x nor any of the free variables of the

argument term e0, the replacement for x.

As we can see from the de�nition of the �-substitution above, �-conversion is

needed to avoid inadvertent variable capture. It is not essential to the understanding

of functional programming, however. Indeed, by tinkering with the representation of

�-terms and the de�nition of the �-reduction rule, the �-calculus can be framed in a

nameless setting and therefore rendering �-conversion unnecessary [1, 9, 10, 14]. We

are obliged to discuss it in detail since our incremental compiled code construction

operations rely exclusively on variable renaming to model the linking of separately-

developed program components.

We should point out the similarity between the two substitution meta-operations

hy=xie and [y=x]e. In most treatments of the �-calculus, the former is viewed as a

special case of the latter. This is really an oversight. They model two very distinct

notions about functions, namely, statically-scoped function parameters and function

invocation. Hence, even though the syntactic description of �-substitution is a de-

generate case of �-substitution, they are each given a distinct notation.



36

2.5 Lambda Calculus

The �-calculus of interest is the term equality relation generated by the notion of

reduction �. Thus, e1!�e2 denotes the one-step �-reduction of e1 to e2, e1!!�e2 is

the �-reduction of e1 to e2, and e1=�e2 means e1 is �-equivalent to e2.

Computationally, we can perceive the �-calculus as a �-reduction machine. The

�-terms are machine code and the �-redexes are machine instructions. The execution

of a machine instruction (�x:e) e0 yields the result [e0=x]e. The execution of a program

then continuously replaces each �-redex with its contractum. There are two possible

outcomes. In one case there is no more �-redexes left to contract. The result is a

�-normal form that is the answer of the program. In the other case there is always

some �-redexes available for further contraction. The computation thus produces no

answer.

Clearly, for the above intuition to hold, we must have the assurance that the

notion of reduction � is Church-Rosser, i.e., two �-reductions starting from the same

term are con
uent. This is indeed the case as is supported by the following theorem:

Theorem 2.2 (Church-Rosser) The reduction relation !!� satis�es the diamond

property, i.e., if e!!�e1 and e!!�e2, then there is a �-term e3 such that e1!!�e3 and

e2!!�e3.

There are many ways to prove the theorem. We will not repeat them here but refer

the interested reader to the literature [7, 69].

2.6 Programming with Lambda Calculus

Programming with the �-calculus is programming with functions. The computational

power of the �-calculus comes from its ability to represent datatypes as functions and

to express iterations using recursive functions.



37

2.6.1 Datatypes as Functions

Basic datatypes such as integers and booleans can be encoded in the �-calculus as

special functions. To illustrate, the boolean values of true and false are often coded

as the following �-terms:

true : T � �x:�y:x

false : F � �x:�y:y

The conditional construct if e1 then e2 else e3 found in most languages may then

be de�ned as:

if e1 then e2 else e3 � e1 e2 e3

Particularly, the boolean negation operator not is �-de�nable as follows:

not � �x:(if x then F else T )

� �x:(x F T )

with the following expected behavior (where we have underlined the �-redex(es) con-

tracted in each step):

not T � (�x:(x F T )) T

!� T F T

� (�x:�y:x) F T

!!� F

not F � (�x:(x F T )) F

!� F F T

� (�x:�y:y) F T

!!� T

Compound datatypes such as tuples, lists (sequences), and records can also be

represented as functions. For instance, n-tuples and their selectors are �-de�nable as

follows:

n-tuple he1; : : : ; eni : �s:(s e1 � � � en)
where s =2 fv(e1)[ � � � [ fv(en)

ith element selector �n
i : �t:(t �x1 � � �xn:xi)

such that

�n
i he1; : : : ; eni � (�t:(t �x1 � � �xn:xi)) �s:(s e1 � � � en)



38

!� (�s:(s e1 � � � en)) �x1 � � �xn:xi
!� (�x1 � � �xn:xi) e1 � � � en
!!� ei

2.6.2 Applied Lambda Calculi

The above illustrations use clever coding tricks. An alternative is to augment the �-

calculus with basic constants and datatype constructors along with their associated

notions of reduction (these notions of reduction are known as �-rules). Such extensions

of the �-calculus are often called applied �-calculi [35].

For instance, we may extend the term language of the �-calculus to include integers

and arithmetic operations (we use in�x notation for arithmetic terms):

k 2 f: : : ;�2;�1; 0; 1; 2; : : :g
e ::= x j �x:e j e e j k j e+ e j e� e j e � e j � � �

and then add the following necessary notions of reduction to the extended calculus:

k1 + k2 ! k where k = k1 + k2

k1 � k2 ! k where k = k1 � k2

k1 � k2 ! k where k = k1 � k2
� � �

(+)

(�)
(�)

The �-rules need not operate only on constants, which is the case for the example

above, they can be de�ned on �-terms in general. For instance, we may add n-tuples

he1; : : : ; eni and their selectors �n
i to the term language of the �-calculus:

e ::= x j �x:e j e e j he1; : : : ; eni j �n
i

Of course, we should also extend the �-calculus with the following notion of reduction:

�n
i he1; : : : ; eni ! ei (�n

i )



39

In any case, care must be taken to preserve the Church-Rosser property when new

�-rules are added to the �-calculus [16, 39]. According to the Hindley-Rosen Lemma,

the added �-rules must be shown to be Church-Rosser; moreover, they must commute

with the existing �-rule.

In the thesis, we demonstrate our context-enriching schema only on the pure �-

calculi, but will use the applied �-calculi in examples. The addition of constants has

no impact on the applicability or complexity of the schema. Intuitively, constants have

no free variables, we can therefore isolate them from the subject of linking (variable

capture).

2.6.3 Recursive Functions

Recursive functions are de�ned in the �-calculus using �xpoint combinators (a combi-

nator is a �-term that has no free variables). A typical example is the Y combinator

de�ned below:

Y � �f:((�x:(f (x x))) (�x:(f (x x))))

It has the unusual property that for any function G, one has:

Y G � (�f:((�x:(f (x x))) (�x:(f (x x))))) G

!� (�x:(G (x x))) (�x:(G (x x)))

!� G ((�x:(G (x x))) (�x:(G (x x))))

=� G (Y G)

Thus, to de�ne a recursive function

f = �x:(� � � f � � �)

we only need to form the function

G � �f:�x:(� � � f � � �)



40

and submit it to the Y combinator:

f =� Y G

=� G (Y G)

� (�f:�x:(� � �f � � �)) (Y G)

!� �x:(� � � (Y G) � � �)
=� �x:(� � � f � � �)

Following tradition, we use �x to denote collectively all �xpoint combinators that

depict the necessary behavior shown above.

As an example, the following is a recursive function fact that computes n!:

fact � �x �f:�n:(if n = 0 then 1 else n � (f (n� 1)))

=� �n:(if n = 0 then 1 else n � (fact (n� 1)))

To illustrate,

fact 3 � (�n:(if n = 0 then 1 else n � (fact (n� 1)))) 3

!! if 3 = 0 then 1 else 3 � (fact (3� 1))

!! 3 � (fact 2)
!! 3 � (if 2 = 0 then 1 else 2 � (fact (2� 1)))

!! 3 � (2 � (fact 1))
!! 3 � (2 � (if 1 = 0 then 1 else 1 � (fact (1� 1))))

!! 3 � (2 � (1 � (fact 0)))
!! 3 � (2 � (1 � (if 0 = 0 then 1 else 0 � (fact (0� 1)))))

!! 3 � (2 � (1 � 1))
!! 6



41

2.7 Contexts

Programming with the �-calculus constitutes a limited form of incremental program

construction. Simple functions can be composed to form sophisticated functions.

There is no machinery built into the �-calculus to directly model the more general

form of incremental program construction that we are looking for; that would require

the capacity to link free variables. Indeed, a function Lx that takes a term e and

produces the term �x:e such that free occurrences of x in the given e are linked to the

parameter x of the newly constructed abstraction is not de�nable in the �-calculus.

That would require variable capture and the existence of Lx would render the �-

calculus inconsistent. In particular, we would be able to prove that the two boolean

values T � �x:�y:x and F � �x:�y:y are equivalent!

Here is one way the contradictory conclusion can be reached. According to the

�-congruence variable convention, we have the following �-equivalent representations

of the same function:

F1 � �f:�x:(f x) � �f:�y:(f y) � F2

Hence, we should have

F1 Lx =� F2 Lx

But that would mean T =� F because

F1 Lx � (�f:�x:(f x)) Lx

!� �x:(Lx x)

=� �x:�x:x

� F

F2 Lx � (�f:�y:(f y)) Lx

!� �y:(Lx y)

=� �y:�x:y

� T

Consequently, we would be able to show that all �-terms are equivalent because for

any two terms e1 and e2, we have

T =� F ) (T e1 e2) =� (F e1 e2)

) e1 =� e2



42

In other words, all programs are equal, thus rendering the �-calculus useless as a

reasoning system.

To model linking, we turn to the notion of contexts [7]. Recall the one-hole

contexts C[] introduced earlier in Section 2.2 to characterize the compatible closure

of notions of reduction. A one-hole context C[] is a �-term with a single hole [] in it.

The �-term generated by �lling the hole of a one-hole context C[] with a term e is

written as C[e]. It replaces the hole of C[] with e. For instance, �lling the one-hole

context �x:[] with the term �y:(x y) yields the �-term �xy:(x y). Notice that the

free variable x of the �ller term �y:(x y) is no longer free in the result. This variable

capture feature of hole �lling is the basis of our schema.

It is clear that context hole �lling cannot be an operation on �-terms; otherwise,

we would be able to de�ne the function Lx alluded to earlier. Not surprisingly,

contexts remain strictly as a meta-notion in the study of the �-calculus. It is our

goal to incorporate the linking capability of hole �lling as a programming notion into

languages.

In this thesis we deal with contexts with multiple holes each of which can have

multiple occurrences. The syntax of the contexts of the �-calculus are constructed

from the following alphabet:

h 2 Holes = fh1;h2; : : :g holes

x;y; z; : : : 2 Idents identi�er names

��� lambda

: dot

(; ) parentheses

The set of �-contexts ��� has the following abstract syntax:

C 2 ���

C ::= h j x j ���x:C j C C

Although �-terms e and �-contexts C are built from the same syntactic structures,

they are based on distinct categories of names: �-terms use variables x while �-



43

contexts employ identi�ers x. We thus typeset �-contexts in boldface to distinguish

them from �-terms.

Following our intuition that �-terms are machine code, contexts can be perceived

as source code. Consequently, whereas variables are machine locations, identi�ers

are source program symbols. Technically speaking, �-contexts represent potentially

incomplete source code|incomplete in the sense that their parse trees may have

non-terminal leaves designated by holes h.

The basic operation on �-contexts that provides the sought-after linking capabil-

ities is the hole �lling meta-operation [C0=h]C. It literally substitutes the �-context

C0 for occurrences of the hole h in C, thus amounting to replacing each non-terminal

leaf designated by the hole h in the parse tree C with the parse tree C0. Hole �lling

[C0=h]C is de�ned inductively on the structure of C as follows:

[C0=h]h0 �
8><
>:
C0 if h � h0

h0 otherwise

[C0=h]x � x

[C0=h]���x:C � ���x:[C0=h]C

[C0=h](C1 C2) � [C0=h]C1 [C
0=h]C2

([�=h]�)

Capture of free identi�ers is solicited; see the abstraction clause. Hence, contrasting

to

[y=x]�y:x � �y0:y

for some fresh variable name y0,

[y=h]���y:h � ���y:y

Finally, we must point out that there are no equivalents of �- and �-substitutions

in �-contexts. For example, the abstraction ���x:h is not �-equivalent to ���y:h. Filling

each of their holes h with the same x yields incomparable results:

[x=h]���x:h

� ���x:x

[x=h]���y:h

� ���y:x



44

Intuitively, because of the hole h, the scope of the function parameter x is not fully

known. It is therefore unwise to rename it to y. Thus, static scope does not apply

to abstractions in �-contexts. The �-reduction rule is not valid on �-contexts either.

For instance,

(���x:���y:(x h)) ���x:y

is not a �-redex since contracting it would require us to rename the parameter y,

which has already been declared invalid.

The capability to express identi�er capture through hole �lling is what attracted

us to consider the notion of contexts as a model of incremental program construction.

In the following chapters, the feature is integrated into the �-calculus. It is the �rst

time that it has been done in its full capacity.



Chapter 3

Context-Enriched Lambda

Calculus

We apply the context-enriching schema to the pure �-calculus. The result is a conser-

vative extension of the �-calculus ���C with incremental compiled code construction

capabilities. A comprehensive description of ���C is the subject of this chapter. To

demonstrate the expressiveness of ���C, we show that program symbols and �rst-class

environments are ���C-de�nable. The fact that ���C is su�cient to simulate the behavior

of �-contexts is veri�ed in Chapter 4.

3.1 Term Language

Our schema enriches a calculus of machine code with the notion of compiled code

and incremental compiled code construction mechanisms. To enrich the �-calculus,

we thus add:

� a new category of compiled code abstraction to simulate the compiled version

of evolved �-contexts e,

� a unary compiled code loading operator load to assimilate compiled code into

machine code,

45



46

Syntactic Domains:

x 2 Vars (Variables)

x 2 Idents (Identi�ers)

~x 2 Unlnks (Unlinked Identi�er Indicators)

Abstract Syntax:

e ::= x j �x:e j e e j ��:e j ���
��� ::= load j ~x j lamx j app
� ::= fx1 :x1; : : : ;xn :xng

x1; : : : ;xn pairwise distinct,

x1; : : : ; xn pairwise distinct

Figure 3.1: Term language of context-enriched �-calculus �C

� unary compiled code operators lamx, one for each identi�er x, to incrementally

build the compiled code of abstraction �-contexts ���x:e, and

� a binary compiled code operator app to incrementally build the compiled code

of application �-contexts e1 e2.

The syntax of the context-enriched �-calculus �C is summarized in Figure 3.1.

An evolved �-context e is source code ready for compilation. Let q be a one-to-one

function that assigns a distinct variable name q(x) to each identi�er x. Let the image

�-term of an evolved �-context e, denoted as im(e), be de�ned inductively on the

structure of e as follows:

im(x) � q(x)

im(���x:e) � �q(x):im(e)

im(e1 e2) � im(e1) im(e2)



47

That is, im(e) has the same structure as e but with each identi�er x replaced by

q(x). Compilation is then straightforward for a closed evolved �-context, which is an

evolved �-context that has no free identi�ers. It can be translated into its image, e.g.,

compiling ���x:���y:(x y) into �q(x):�q(y):(q(x) q(y)), or equivalently �x:�y:(x y). The

task becomes non-trivial for an open evolved �-context that has free identi�ers whose

linking relation is still undetermined. For instance, we cannot translate y ���x:(x y)

into

im(y ���x:(x y)) � q(y) �q(x):(q(x) q(y))

� q(y) �x:(x q(y))

It is unclear what the linking relation of the free variable references q(y) should be.

We therefore require free identi�er abstractions

�fx1 :x1; : : : ;xn :xng:e

to play the role of potentially not yet fully linked compiled code. The speci�cation

fx1 :x1; : : : ;xn :xng, where the identi�ers x1; : : : ;xn are pairwise distinct and so are

the variables x1; : : : ; xn, indicates that free occurrences of the variables x1; : : : ; xn

in the machine code e are temporary placeholders for the unlinked free identi�ers

x1; : : : ;xn. Each parameter xi :xi has an identi�er xi and a variable xi. The parameter

identi�er xi comes from the evolved �-context (source code) of e. The parameter

variable xi, like the parameter of a �-abstraction, denotes a placeholder in the machine

code e. The idea then is to compile an evolved �-context e into a free identi�er

abstraction

�fx1 :q(x1); : : : ;xn :q(xn)g:im(e)

where x1; : : : ;xn are the free identi�ers of e and q(x1); : : : ; q(xn) are their respective

placeholders in the machine code im(e). (The compiler is de�ned in Chapter 4.) That

is, each free identi�er xi of the source code e becomes a �-bound free variable xi of

the machine code im(e). To illustrate, the compiled version of the closed evolved

�-context ���x:���y:(x y) is

�fg:�q(x):�q(y):(q(x) q(y)) � �fg:�x:�y:(x y)



48

and the compiled code of the open evolved �-context y ���x:(x y) is

�fy :q(y)g:(q(y) �q(x):(q(x) q(y))) � �fy :yg:(y �x:(x y))

The parameter variables of a free identi�er abstraction ��:e need not coincide

with the free variables of e. There can be more parameter variables speci�ed in �

than are actually referred to in e; the unreferenced ones are simply ignored. An

example is �fx :xg:�y:y, which could be the result of optimizing the compiled code

�fx :xg:((�w:�y:y) �z:x) by contracting the underlined �-redex. There can also be

free variables in machine code e that are not speci�ed in �; they simply obey static

scope, a design decision we have consciously made. It allows us to embed machine

code in source code, so to speak. For instance, we may express the compiled code

of ���z:(x (z y)) as �fy :yg:�z:(x (z y)). Hence, the e-part of compiled code ��:e can

be parameterized, e.g., �x:�fy :yg:�z:(x (z y)). Furthermore, �-abstractions may be

nested, e.g., �fx :xg:�fy :yg:�z:(x (z y)).

The parameter speci�cation fx1 :x1; : : : ;xn :xng of a free identi�er abstraction

forms a set. The order of its elements is immaterial to the behavior of the ab-

straction. As a result, we do not distinguish free identi�er abstractions that di�er

only in the syntactic ordering of their parameters. Hence, �fx :x;y :yg:(x y) and

�fy :y;x :xg:(x y) are considered identical.

We adopt the following notational convention for �-abstractions throughout the

thesis. Let �x denote a series of pairwise distinct identi�ers x1; : : : ;xn and let �x be a

series of the same number of pairwise distinct variables x1; : : : ; xn. Then, �f�x : �xg:e
abbreviates �fx1 :x1; : : : ;xn :xng:e.

3.2 Alpha Convertibility

The �rst order of business in de�ning the ���C-calculus is the formalization of �-

conversion. A �-abstraction is a variable binding construct. It is thus possible to

rename the parameter x of �x:e to a fresh variable y without changing the behavior

of the abstraction:



49

�x:e ! �y:hy=xie (�-�)

where the fresh variable y is neither x nor one of the free variables of e. A free

identi�er abstraction is also a variable binding form. Its parameter variables are

subject to �-conversion as well:

�f: : : ;xi :xi; : : :g:e ! �f: : : ;xi :y; : : :g:hy=xiie (�-�)

The fresh variable y should not be xi, the parameter variable it replaces. It should

not be any of the free variables in the body e so that no inadvertent capture occurs.

Neither should it be one of the other parameter variables xj; otherwise the resulting

parameter speci�cation f: : : ;xi :xj; : : : ;xj :xj; : : :g is not well-formed. The notion of

reduction � for parameter renaming is then the union of the two basic notions of

reduction �-� and �-�:

� = �-�[�-� (�)

Two fundamental syntactic notions needed in the de�nition of �-conversion are the

notion of free variables and the �-substitution meta-operation hy=xie. An occurrence
of a variable x in e is free if it is not in linking relation with any �- or �-abstraction

parameter. The set of free variable of a ���C-term e, denoted as fv(e), conservatively

extends its �-term counterpart:

fv(x) = fxg
fv(�x:e) = fv(e) n fxg
fv(e1 e2) = fv(e1)[ fv(e2)

fv(�f�x : �xg:e) = fv(e) n f�xg
fv(���) = ;

The compiled code related primitives ��� contain no free variable references; they are

constants. The scope of the parameter variables �x of a free identi�er abstraction

�f�x : �xg:e is the term e. Hence, free occurrences of �x in e are not considered free

beyond the abstraction.



50

The �-substitution meta-operation hy=xie that replaces the variable name y for

the free occurrences of the variable name x in the ���C-term e is also a conservative

extension of its �-term counterpart:

hy=xiz �
8><
>:

y if x � z

z otherwise

hy=xi�z:e � �z:hy=xie
hy=xi(e1 e2) � hy=xie1 hy=xie2

hy=xi�f�x : �xg:e � �f�x : �xg:hy=xie
hy=xi��� � ���

Since the renaming of parameter variables is universally applicable, we can assume

that the parameter variables �x in the �-abstraction clause are distinct from x and y.

The above simpli�cation is a result of the following variable conventions:

�-congruence Two ���C-terms that are syntactically identical up to the renaming of

their parameter variables are identi�ed (�).

hygiene The parameter variables of the ���C-terms involved in any mathematical

contexts are mutually distinct from one another and are distinct from the free

variables as well.

3.3 Reduction Rules

The context-enriched �-calculus ���C has four reduction rules. In addition to the �-

reduction rule for modeling function invocation, there is one rule for de�ning each of

the three compiled code operators load, app, and lamx.

3.3.1 Function Invocation

The �-reduction rule is still of the form:

(�x:e) e0 ! [e0=x]e (�)



51

The �-substitution meta-operation [e0=x]e is conservatively extended to include the

newly introduced free identi�er abstractions ��:e and constants ���:

[e0=x]z �
8><
>:

e0 if x � z

z otherwise

[e0=x]�z:e � �z:[e0=x]e

[e0=x](e1 e2) � [e0=x]e1 [e
0=x]e2

[e0=x]�f�x : �xg:e � �f�x : �xg:[e0=x]e
[e=x]��� � ���

We have used the variable conventions to ensure that �-substitution does not cause

inadvertent variable capture. In particular, in the �-abstraction clause, x is not one

of the parameter variables �x and none of the parameter variables are free in e0.

3.3.2 Loading Compiled Code

The operator load loads compiled code modeled by free identi�er abstractions. Ide-

ally, when �f�x : �xg:e is ready for loading, the parameter variables �x should no longer

occur free in e, they should have been linked in the process. If that is always the

case, loading �f�x : �xg:e can be accomplished by simply stripping o� the abstractor

�f�x : �xg to yield the machine code e:

load ��:e ! e

This is a di�cult condition to verify, however. We thus incorporate constants ~x, one

for each identi�er x, into the calculus to serve as unlinked free identi�er indicators.

They are a unique category of constants whose interpretation is orthogonal to the

rest of the calculus. The reduction rule for compiled code loading is:

load �fx1 :x1; : : : ;xn :xng:e ! [~xn=xn] � � � [~x1=x1]e (load)

It removes the abstractor �fx1 :x1; : : : ;xn :xng after substituting each free occurrence
of xi in the machine code e with the unlinked identi�er indicator ~xi of xi. (A mecha-



52

nism to provide unlinked parameter variables with default denotations other than ~x

can be found in Chapter 7.)

For instance,

load �fx :x;y :yg:�z:y ! [~x=x][~y=y]�z:y

� �z:~y

The constant ~y in the contractum �z:~y indicates that the identi�er y had not been

linked when the compiled code was loaded.

3.3.3 Constructing Compiled Applications

The incremental compiled code construction operator app models the �lling of the

application �-context h1 h2 with the evolved �-contexts e1 and e2. The reduction

rule is:

app ��1:e1 ��2:e2 ! ��1]�2:(e1 e2) (app)

It constructs the compiled version of the �-context e1 e2, expressed as ��1]�2:(e1 e2),
from the compiled code of e1 and e2 represented by ��1:e1 and ��2:e2, respectively.

The notation �1]�2 denotes a variant of the union of �1 and �2 that relies on

�-conversion to meet these constraints:

(i) To maintain the well-formedness of the union, an identi�er x can occur in both

�1 and �2 as long as its variables are identical, that is,

(x :x1 2 �1 and x :x2 2 �2) if and only if x1 � x2.

Similarly, a variable x can occur in both �1 and �2 as long as its corresponding

identi�ers are identical, that is,

(x1 :x 2 �1 and x2 :x 2 �2) if and only if x1 � x2.

(ii) The parameter variables of �1 do not capture the free variables of e2 except for

those speci�ed in (i). That is, if x :x 2 �1 and x is not a parameter identi�er of



53

�2, then x should not be a free variable of e2. Likewise, the parameter variables

of �2 do not capture the free variables of e1 except for those speci�ed in (i).

Notice that this is the �rst time we depart from the hygiene variable convention

and insist that some parameter variables of both �1 and �2 actually be identical

under condition (i). Beyond that, condition (ii) is merely a rephrase of the hygiene

convention.

The constraint �1]�2 is purely arti�cial since it can always be met by renaming the
parameter variables of �1 and �2. Hence, every term of the form app ��1:e1 ��2:e2

has an �-equivalent app-redex. For example,

app �fx :x;y :yg:(x y) �fx :w; z :yg:(x w y)

� app �fx :v;y :yg:(v y) �fx :v; z :zg:(x v z)

! �fx :v;y :y; z :zg:(v y (x v z))

To take the union of the two sets �1 � fx :x;y :yg and �2 � fx :w; z :yg, we identify
the variables of x and distinguish the variables of y and z. Hence, both x and w are

renamed to v and the variable y of z is renamed to z. The resulting speci�cations

fx :v;y :yg and fx :v; z :zg can then be combined to form the union fx :v;y :y; z :zg.
Intuitively, �fx :x;y :yg:(x y) and �fx :w; z :yg:(x w y) are the compiled code of e1 �
x y and e2 � x x z, respectively. The contractum �fx :v;y :y; z :zg:(v y (x v z)) is

the compiled version of e1 e2 � x y (x x z), the result of �lling the holes of h1 h2

with e1 and e2.

3.3.4 Constructing Compiled Abstractions

The incremental compiled code construction operator lamx, one for each identi�er

x, models the �lling of the hole h of the �-context ���x:h with the evolved �-context

e. The reduction rule is:

lamx ��:e ! ��:�x:e

x :x 2 � or else x is fresh

(lam)



54

It builds the compiled code ��:�x:e of ���x:e from the compiled code ��:e of e. The

choice of x in the contractum ��:�x:e depends on whether x is speci�ed in �. If so,

x :x 2 � and x is the parameter of the newly constructed abstraction �x:e; otherwise, x

is a fresh variable name not free in e. In both cases, a new abstraction is constructed.

In the former, the free occurrences of x in e become linked to the parameter of

the newly constructed abstraction. In other words, they are captured by the new

parameter. Notice that this is the second time we have bypassed the hygiene variable

convention and actually require the happening of variable capture instead. In the

latter, the new parameter x is carefully chosen to be distinct from the free variables

of e so as to avoid inadvertent capture since x is not a free identi�er of e.

To demonstrate, when x and y are distinct identi�ers, the result of �lling ���x:h

with y is ���x:y. This is modeled as:

lamx �fy :yg:y ! �fy :yg:�x:y

The free identi�er abstraction �fy :yg:y is the compiled version of y and �fy :yg:�x:y
is the compiled code of ���x:y. In contrast,

lamy �fy :yg:y ! �fy :yg:�y:y

where the contractum is the compiled version of ���y:y, a result of �lling ���y:h with y.

Hence, an incremental compiled code constructor lamx generates the compiled

code of a function from the compiled code of the function's body. It relies on the fact

that the parameter variables x1; : : : ; xn of �fx1 :x1; : : : ;xn :xng:e are quasi-statically
scoped [42]. The linking relation between the free occurrences of xi in e and the �-

parameter xi :xi is not static; the free variable references as a whole can be relinked

to the parameter of a newly constructed encapsulating �-abstraction.

3.4 Calculus of Compiled Code

The notion of reduction c underlying the extended calculus �C is the union of the

four reduction rules �, load, lam, and app described in the last section. They



55

(�x:e) e0 ! [e0=x]e

load �fx1 :x1; : : : ;xn :xng:e ! [~xn=xn] � � � [~x1=x1]e
app ��1:e1 ��2:e2 ! ��1]�2:(e1 e2)

lamx ��:e ! ��:�x:e

x :x 2 � or else x is fresh

(�)

(load)

(app)

(lam)

Figure 3.2: Reduction rules of context-enriched �-calculus �C

are collectively repeated in Figure 3.2. The one-step c-reduction relation !c is the

compatible closure of c. That is, a term e1 one-step c-reduces to the term e2 if e2 is

the result of replacing a c-redex subterm e01 of e1 with its contractum e02. The re
exive

and transitive closure of !c is the c-reduction relation !!c. The least equivalence

relation generated by !!c is the equational theory �C. Equivalence under �C is

written as e1 =c e2. We often omit the subscript c of the reduction relations and

write !, !!, and = for !c, !!c, and =c, instead.

To summarize, computation in �C involves three categories of machine instruction:

� function invocation modeled by the �-rule,

� incremental compilation and linking modeled by the app- and lam-rules, and

� the incorporation of compiled code into machine code modeled by the load-rule.

What sets ���C apart from languages like the �-calculus is that incremental construc-

tion, linking, and loading of compiled code are readily available in a single system,

instead of as additional programming environment tools. Furthermore, as promised,

the incremental compilation mechanisms of ���C use only two basic editing operations,

namely, the copying of compiled code and the renaming of variables, to model the

reuse and linking of existing program components.

As a sanity check, in the rest of this section we show that the notion of reduction

c underlying the ���C-calculus is Church-Rosser. That is,



56

Theorem 3.1 The reduction relation !! satis�es the diamond property.

It ensures that the ���C-calculus as a computational model produces unique answers,

if any, for programs. The proof of Theorem 3.1 uses the Hindley-Rosen Lemma; see

Section 2.2.2. Let the notion of reduction 
 be the union of the compiled code oriented

reduction rules lam, app, and load:


 = lam[ app[ load

Let !
 and !!
 denote the one-step 
-reduction and the 
-reduction relations. We

can show that the notion of reduction 
 is Church-Rosser:

Lemma 3.2 !!
 j= 3. The 
-reduction relation !!
 satis�es the diamond property.

Proof: We prove a stronger result that the one-step 
-reduction relation!
 satis�es

the diamond property. From which it is clear that the 
-reduction relation !!
 also

satis�es the diamond property.

The one-hole ���C-contexts C[] have the following abstract syntax:

C[] ::= [] j �x:C[] j C[] e j e C[] j ��:C[]

Let F � C[lamx ��:e] be a term that has a 
-redex lamx ��:e as a subterm. Let

F1 � C[��:�x:e] be the result of contracting the 
-redex of F . There are three cases

we must consider:

(a) F one-step 
-reduces to F2 � C[lamx ��:e0] because of the one-step 
-reduction

of e to e0. Then, F3 � C[��:�x:e0] is the common one-step 
-reduct of F1 and

F2:

F1 � C[��:�x:e] !
 C[��:�x:e0] � F3

as a direct consequence of e!
e
0, and

F2 � C[lamx ��:e0] !
 C[��:�x:e0] � F3

by contracting the redex lamx ��:e0.



57

(b) F one-step 
-reduces to F2 � C 0[lamx ��:e] because of the one-step 
-reduction

of some redex in C[] that is disjoint from the redex lamx ��:e. Then, F3 �
C 0[��:�x:e0] is the common one-step 
-reduct of F1 and F2:

F1 � C[��:�x:e] !
 C 0[��:�x:e] � F3

as a direct consequence of contracting the same redex in C[], and

F2 � C 0[lamx ��:e] !
 C 0[��:�x:e] � F3

by contracting the redex lamx ��:e.

(c) F one-step 
-reduces to F2 � C 0[lamx ��:e] because of the one-step 
-reduction

of some load-redex in C[] that has the redex lamx ��:e as a subterm. The

notation e denotes the result of substituting some of the free variables of e with

unlinked identi�er indicators as a result of contracting the load-redex. Then,

F3 � C 0[��:�x:e] is the common one-step 
-reduct of F1 and F2:

F1 � C[��:�x:e] !
 C 0[��:�x:e] � F3

as a direct consequence of contracting the same redex in C[], and

F2 � C 0[lamx ��:e] !
 C 0[��:�x:e] � F3

by contracting the redex lamx ��:e.

The other two cases in which the 
-redex of concern in F is either an app-redex,

F � C[app ��1:e1 ��2:e2], or a load-redex, F � C[load ��:e]. Their analyses can

be handled in a similar fashion and are therefore omitted.

The second step of Hindley-Rosen Lemma requires us to show that!!
 commutes

with !!�. We �rst prove the following intermediate result:

Lemma 3.3 Let F , F1, and F2 be ���C-terms such that F!�F1 and F!
F2. Then,

there is a ���C-term F3 such that F1!!
F3 and F2!�F3.



58

Proof: Let F � C[(�x:e1) e2] and F1 � C[[e2=x]e1]. There are four cases for F!
F2:

(a) F2 � C[(�x:e01) e2] and F!
F2 is a direct consequence of e1!
e
0

1. Then, the

choice of F3 is C[[e2=x]e
0

1]:

F1 � C[[e2=x]e1] !
 C[[e2=x]e
0

1] � F3

as a direct consequence of contracting the same 
-redex in e1, and

F2 � C[(�x:e01) e2] !� C[[e2=x]e
0

1] � F3

by contracting the �-redex (�x:e01) e2.

(b) F2 � C[(�x:e1) e
0

2] and F!
F2 is a direct consequence of e2!
e
0

2. Then, the

choice of F3 is C[[e
0

2=x]e1]:

F1 � C[[e2=x]e1] !!
 C[[e02=x]e1] � F3

as a direct consequence of contracting each occurrence of the same 
-redex in

e2, and

F2 � C[(�x:e1) e
0

2] !� C[[e02=x]e1] � F3

by contracting the �-redex (�x:e1) e
0

2.

(c) F2 � C 0[(�x:e1) e2] and F!
F2 is a direct consequence of C[]!
C
0[], reduction

of a 
-redex in C[] that is disjoint from the �-redex (�x:e1) e2. Then, the choice

of F3 is C
0[[e2=x]e1]:

F1 � C[[e2=x]e1] !
 C 0[[e2=x]e1] � F3

as a direct consequence of contracting the same 
-redex in C[], and

F2 � C 0[(�x:e1) e2] !� C 0[[e2=x]e1] � F3

by contracting the �-redex (�x:e1) e2.



59

(d) F2 � C 0[(�x:e1) e2] and F!
F2 is a direct consequence of C[]!
C
0[], reduction

of a load-redex inC[] that has the �-redex (�x:e1) e2 as a subterm. The notation

ei denotes the result of substituting some of the free variables of ei with unlinked

identi�er indicators as a result of contracting the load-redex. The choice of F3

is C 0[[e2=x]e1]:

F1 � C[[e2=x]e1] !
 C 0[[e2=x]e1] � F3

as a direct consequence of contracting the same load-redex in C[], and

F2 � C 0[(�x:e1) e2] !� C 0[[e2=x]e1] � F3

by contracting the �-redex (�x:e1) e2.

From Lemma 3.3 it is straightforward to show that!!
 commutes with!�. Thus,

with a simple diagram chase, the commutativity between !!
 and!!� follows imme-

diately:

Lemma 3.4 !!
 commutes with !!�.

Proof of Theorem 3.1:We already know that the �-reduction relation!!� satis�es

the diamond property, !!� j= 3. We also know that the notion of reduction c is the

union of � and 
. Thus, from Lemmas 3.2 and 3.4, and the Hindley-Rosen Lemma

(Lemma 2.1), the notion of reduction c is Church-Rosser.

We have thus far formally de�ned the context-enriched �-calculus ���C. The rest

of the chapter is dedicated to discussions on novel properties of compiled code ab-

stractions and programming examples using ���C.

3.5 Redundant Parameters

Although free identi�er abstractions are devised as a means to model the com-

piled code of evolved �-contexts, the correspondence is not one-to-one. A �-context

can have many �-abstraction representations. For instance, both �fg:�y:y and



60

�fy :yg:�y:y can serve as the compiled code of the �-context ���y:y. The reason

is that they are not distinguishable by the compiled code operators load, lamx, and

app of ���C.

In general, for any two free identi�er abstractions ��1:e and ��2:e that di�er only

in their parameter speci�cations �1 and �2, let ��1:e � ��2:e denote the following

condition:

for each free variable x of e, x :x 2 �1 if and only if x :x 2 �2 ( � )

That is, the two parameter speci�cations �1 and �2 agree on the free variables of e.

Then, the two abstractions ��1:e and ��2:e are indistinguishable by the compiled

code operations of ���C. In particular, we can show the following:

Theorem 3.5 (i) If ��1:e � ��2:e then load ��1:e = load ��2:e.

(ii) Let ��1:e � ��2:e and

lamx ��1:e ! ��1:�x1:e

lamx ��2:e ! ��2:�x2:e

Then, ��1:�x1:e � ��2:�x2:e.

(iii) Let ��1:e � ��2:e, ��
0

1:e
0 � ��02:e

0, and

app ��1:e ��
0

1:e
0 ! ��1]�01:(e e0)

app ��2:e ��
0

2:e
0 ! ��2]�02:(e e0)

Then, ��1]�01:(e e0) � ��2]�02:(e e0).

Proof: Part (i) is rather simple. Loading ��1:e a�ects only free occurrences of the

parameter variables of �1 in e. The result is therefore identical to the loading of ��2:e

because the two speci�cations �1 and �2 agree on exactly those parameters that are

of concern.

For part (ii), we need only show that �x1:e � �x2:e. Then, with the fact that �1

and �2 agree on the free variables of e, we can conclude that �1 and �2 agree on the

free variables of �x1:e as well. There are three cases to consider:



61

(a) x is not a parameter identi�er of �1 and therefore x1 is not a free variable of

e. Then, either x is not a parameter identi�er of �2 and so x2 is not free in e

or x :x2 is a parameter of �2 but x2 is not a free variable of e (otherwise x :x2

must be a parameter of �1 according to the de�nition of ��1:e � ��2:e). Hence,

�x1:e � �x2:e holds because neither x1 nor x2 occurs free in e.

(b) x :x1 is a parameter of �1 but x1 is not free in e. Then, either x :x2 is a parameter

of �2 but x2 is not a free variable of e or x is not a parameter identi�er of �2

and so x2 does not occur free in e. Again, in both cases �x1:e � �x2:e is valid

since neither x1 nor x2 is a free variable of e.

(c) x :x1 is a parameter of �1 and x1 is free in e. Then x :x1 must be a parameter of

�2 as well. Hence x2 must be the same variable name as x1 and so �x1:e � �x2:e.

The validity of part (iii) is obvious. The compiled code constructor app does

not involve the relinking or substitution of parameter variables. Hence, it can detect

neither the distinction between ��1:e and ��2:e nor between ��01:e
0 and ��02:e

0.

To illustrate, the �-abstractions �fg:�y:y and �fy :yg:�y:y are indistinguishable
in ���C:

load �fg:�y:y

� �y:y =

load �fy :yg:�y:y
! [~y=y]�y:y

� �y:y

and

lamy �fg:�y:y
! �fg:�y:�y:y �

lamy �fy :yg:�y:y
! �fy :yg:�y:�y:y

and for any ��1:e � ��2:e,

app �fy :yg:�y:y ��1:e
! �fy :yg]�1:((�y:y) e) �

app �fg:�y:y ��2:e
! ��2:((�y:y) e)



62

We have actually employed the term indistinguishability relation � in the reduc-

tion rule for operators lamx:

lamx ��:e ! ��:�x:e

The contractum always retains the parameter speci�cation � intact. We could have

opted to remove the element x :x, if there is any, from � since x is no longer free in

�x:e. The decision is immaterial because the choices are indistinguishable in ���C.

In summary, for any free identi�er abstraction ��:e we can remove from or add to

� parameters that are not referenced in e without changing the abstraction's behavior.

Moreover, as ��:e optimizes to ��:e0 because of the reduction of e to e0, we can further

remove from ��:e0 the parameters eliminated in the optimization process. Indeed, for

each free identi�er abstraction ��:e, there is a canonical form ��0:e that satis�es the

following condition:

��0:e � ��:e such that for each x :x 2 �0, x 2 fv(e)

It is the indistinguishable free identi�er abstraction of ��:e that has no redundant

parameters.

It is conceivable to add as a new notion of reduction to the ���C-calculus to reduce

every free identi�er abstraction to its canonical form. We have opted not to do so,

but to state the equivalence relation on free identi�er abstractions strictly beyond

the ���C-calculus for one subjective reason. Such a notion of equivalence has more

to do with the optimization of compiled code, but very little to do with incremental

compiled code construction, the theme of our work.

Either way, when we add new compiled code operations to ���C in the future, we

must carefully maintain the indistinguishability property of free identi�er abstrac-

tions. That means there are some seemingly harmless operations that we must reject.

A counterexample is the addition of the following predicate that tells whether some

identi�er x is speci�ed in a free identi�er abstraction:

x? ��:e !
8><
>:

T if x :x 2 �

F otherwise



63

With it, �fg:�y:y and �fy :yg:�y:y would no longer be indistinguishable since we

would have the following incompatible behavior:

y? �fg:�y:y
! F

y? �fy :yg:�y:y
! T

3.6 Transparency

Another novelty of ���C is the transparency of free identi�er abstractions. A function

abstraction �x:e is opaque in the sense that there is no way to access its body e until

the abstractor �x is peeled o� via function invocation. In contrast, a compiled code

abstraction ��:e is transparent. We can operate on its body e without having to

load the compiled code �rst. That is, the barriers set up by free identi�er abstractors

are not as rigid as �-abstractors. Metaphorically speaking, functions are running

machine code; they should therefore be treated as black boxes. In contrast, free

identi�er abstractions model compiled code; to link them together, we should have

access to their \representation."

As an example showing the distinction between opaque �-abstractions and trans-

parent �-abstractions, consider taking the sum of two binary functions(we use in�x

notation for arithmetic operations):

f + g where
f � �xy:

p
x � y

g � �xy:
p
x2 + y2

It makes no sense since the arguments to + are of the wrong type. A quick �x is to

de�ne a new addition operator

+̂ � �fg:�xy:((f x y) + (g x y))

so that

f +̂ g !! �xy:(((�xy:
p
x � y) x y) + ((�xy:

p
x2 + y2) x y))

!! �xy:(
p
x � y +p

x2 + y2)



64

The solution is not universal. +̂ does not work with functions of di�erent numbers

of parameters such as �xy:
p
x � y and �x:

p
x + 3. Indeed, each of the many possible

combinations would require a distinct version of +̂.

Transparency does not allow us to take the sum of two �-abstractions either:

f + g where
f � �fx :x;y :yg:px � y
g � �fx :xg:px2 + y2

The arguments to + are still of the wrong type. We can de�ne on top of + an

operator +1 to compute the sum of the bodies of its �-abstraction arguments as

follows, however:

+1 � �fg:(app (app �fg:�xy:(x + y) f) g)

so that

f +1 g

!! app (app �fg:�xy:(x+ y) �fx :x;y :yg:px � y) �fx :xg:px2 + y2 (3.1)

! app �fx :x;y :yg:((�xy:(x+ y))
p
x � y) �fx :xg:px2 + y2 (3.2)

! �fx :x;y :zg:((�xy:(x+ y))
p
x � z px2 + y2)

!! �fx :x;y :zg:(px � z +p
x2 + y2)

The key to transparent free identi�er abstractions is the compiled code operator

app. We can use it to \skip over" free identi�er abstractors, as exempli�ed by the two

reduction steps 3.1 and 3.2 above. Unlike +̂, +1 works for free identi�er abstractions

with an arbitrary number of parameters. In addition, it has no dependency on the

orientation of the parameters.

Thus far, we have focused on making operators transparent. The same technique

can also be used to make operands transparent. In particular, to supply e as an

argument to the operator f embedded in a free identi�er abstraction, ��:f , we may

�rst embed e in a free identi�er abstraction with an arid parameter speci�cation,

�fg:e, and then use app to construct the desired application:

app ��:f �fg:e ! ��:(f e)



65

To illustrate, we can de�ne for each identi�er x a binding operator betax as follows:

betax � �xy:(app (lamx y) �fg:x)

It binds the parameter x of the free identi�er abstraction denoted by y to the deno-

tation referred to by x. Hence,

betax e1 ��:e2 !! app (lamx ��:e2) �fg:e1
! app ��:�x:e2 �fg:e1 [x :x 2 � or else x is fresh]

! ��:((�x:e2) e1)

! ��:[e1=x]e2

That is, each parameter variable of x in e2 gets the denotation e1.

Since betax is an operator, we can make it transparent by de�ning on top of it the

following operator:

beta1
x

� �xy:(app (app �fg:betax x) y)

such that

beta1
x
��1:e1 ��2:e2 !! app (app �fg:betax ��1:e1) ��2:e2

! app ��1:(betax e1) ��2:e2

! ��1]�2:(betax e1 e2)

In general, we can de�ne for any operator fn of arity n a version f 1n that is

transparent to one level of free identi�er abstractors. But since f 1n itself is an operator,

we can apply the same technique to yield a version f 2n that is transparent to two levels

of free identi�er abstractors, and so forth.

3.7 Additional Non-Binding Constructs

The applicability of our incremental compiled code construction capability enhancing

schema can be easily extended to additional language constructs that do not involve

variable binding semantics.



66

For instance, we may decide to add conditionals to the pure �-calculus later on:

e ::= x j �x:e j e e j if e then e else e

The contexts of the above extended �-calculus are:

C ::= h j x j �x:C j C C j if C then C else C

The context-enriched version of the extended �-calculus is ���C extended with the

same conditionals and a new compiled code construction operator if:

e ::= x j �x:e j e e j if e then e else e j ��:e j ���
��� ::= load j ~x j lamx j app j if

The new operator if models the incremental construction of the compiled code of

if e1 then e2 else e3 from the compiled code of e1, e2, and e3. The reduction rule is:

if ��1:e1 ��2:e2 ��3:e3 ! ��1]�2]�3:(if e1 then e2 else e3)

Analogous to the app-rule for constructing application terms, the union �1]�2]�3
ensures that the same free identi�er in e1, e2, and e3 is given the same temporary

placeholder in if e1 then e2 else e3. Hence, new compilation constructs can be added

to the ���C-calculus in a modular fashion to accommodate additional non-variable

binding �-terms.

As another example, we may extend the pure �-calculus with sequences (lists):

e ::= x j �x:e j e e j s j cons j hd j tl
s ::= [e1; : : : ; en]

The notation [e1; : : : ; en] denotes a sequence whose �rst element is e1 and whose last

element is en. The empty sequence is []. The operation cons e s builds a new sequence

whose �rst element is e and the rest is the same as the sequence s. The operation

hd s yields the �rst element of the non-empty sequence s. The other operation tl s

yields the non-empty sequence s excluding its �rst element.



67

The contexts of the above extended �-calculus are:

C ::= h j x j �x:C j C C j s j cons j hd j tl
s ::= [C1; : : : ;Cn]

The context-enriched version of the extended �-calculus is ���C extended with the

same sequence operations:

e ::= x j �x:e j e e j s j cons j hd j tl j ��:e j ���
��� ::= load j ~x j lamx j app

The compiled code of the contexts cons, hd, and tl are �fg:cons, �fg:hd , and
�fg:tl . The compiled code of cons e s can be incrementally constructed out of the

compiled code ��:e of e and the compiled code ��0:s of s using the transparent

cons-operator as follows:

app (app �fg:cons ��:e) ��0:s = app ��:(cons e) ��0:s

= ��]�0:(cons e s)

The incremental construction of the other categories of sequence operation can be

handled in a similar fashion.

Hence, we have shown that adding sequences before or after the application of our

schema to the pure �-calculus produces the same result. In other words, our context-

enriching schema is orthogonal to the enrichment introduced by applied �-calculi. In

particular, for whatever basic constants and datatype constructors we may add to the

�-calculus, we have their transparent versions for free, which is intuitively sensible

since contexts are a notion orthogonal to basic constants and datatype constructors,

which have no free variables. Indeed, transparency is what allows us to focus our

schema on the three basic �-terms of the pure �-calculus without worrying about its

applicability to any additional constructs introduced by applied �-calculi.



68

3.8 Programming Examples

The incremental compiled code construction capabilities of ���C allow us to express

many practical programming mechanisms more intuitively than the �-calculus. In

this section we describe two, namely, program symbols and �rst-class environments.

3.8.1 Program Symbols

Program symbols are names used in source code; variables are names used in machine

code; identi�ers are names used in compiled code to relate variables to program

symbols. Although we do not include identi�ers x as proper terms of �C, we can

simulate their behavior when used as program symbols.

A program symbol x can be encoded as the following pair:

hlamx;�fx :xg:xi

Intuitively, we use a program symbol x either as the syntactic representation of the

parameter of a �-abstraction or as the syntactic representation of a variable reference.

The functionalities are covered by lamx and �fx :xg:x, explaining our choice. In the

following we write x for the program symbol represented by such a pair and denote

the two components lamx and �fx :xg:x as lam(x) and phi(x), respectively.

The predicate eq? that determines the equality of two such program symbols is

�C-de�nable as follows:

eq? � �xy:(load (lam(x) (lam(y) phi(x))) F T )

where T � �x:�y:x and F � �x:�y:y are the boolean values of true and false,

respectively. When x and y are distinct program symbols, we have

eq? x y !! load (lam(x) (lam(y) phi(x))) F T

!! load (lamx (lamy �fx :xg:x)) F T

! load (lamx �fx :xg:�y:x) F T [x 6� y]

! load �fx :xg:�x:�y:x F T



69

! (�x:�y:x) F T

!! F

On the other hand,

eq? x x !! load (lam(x) (lam(x) phi(x))) F T

!! load (lamx (lamx �fx :xg:x)) F T

! load (lamx �fx :xg:�x:x) F T

! load �fx :xg:�x:�x:x F T

! (�x:�x:x) F T

!! T

With program symbols, many common symbol-related programming mechanisms

can be encoded in ���C. In the following section we demonstrate one such programming

mechanism, namely, �rst-class environments [47].

3.8.2 First-Class Environments

Our notion of an environment is a �nite function mapping program symbols x to

compiled code ��:e represented as the sequence

[hx1;��1:e1i; : : : ; hxn;��n:eni]

where each pair hxi;��i:eii models the binding of the symbol xi with its denotation

��i:ei.

The bindings of an environment can be imported into a piece of compile code ��:e

using an operator link with the following behavior:

link [hx1;��1:e1i; : : : ; hxn;��n:eni] ��:e
= ��]�1]� � �]�n:((�xn � � �x1:e) en � � � e1)
= ��]�1]� � �]�n:[en=xn] � � � [e1=x1]e



70

where each xi is the parameter variable corresponding to xi speci�ed in � or else it

is fresh. Hence, we can de�ne a run-time evaluator eval in the style of Lisp [66] and

MIT Scheme [47] as follows:

eval � �xy:(load (link y x))

where the arguments x and y should denote a piece of compiled code and a �rst-class

environment, respectively.

The environment importing operator link has a straightforward recursive de�nition

(pattern matching is used to simplify the presentation):

link [] e0 = e0

link hx; ei :: s e0 = app (link s (lam(x) e0)) e

The notation [] denotes the empty sequence; hx; ei :: s is the sequence whose �rst

element is hx; ei and the remainder of the sequence is s.

The operator link provides a means to use the bindings of an environment. There

should also be mechanisms to construct environments. In Lisp's terminology, our en-

vironments are association lists whose keys are program symbols and whose data are

compiled code. Once we realize the analogy, there are more ways to build environ-

ments than we have room to describe. Here, we sketch just one such operator rec that

constructs recursive environments. The de�nition of rec is given in Figure 3.3. We

have omitted the derivation of the combinators An and Bn to make the complexity

of the de�nition more manageable.

The behavior of rec is explained below. (The following derivations are routine

examples involving list processing; the reader who is comfortable with transparent

free identi�er abstraction operations may wish to skip to the end of the section.) Let

D = [hx1;��1:e1i; : : : ; hxn;��n:eni]

be an environment such that � � �1]� � �]�n is well-formed. (If not, one can always

use �-conversion to rename the parameter variables of �1; : : : ; �n so that � meets the



71

rec D = H D (Bn (app �fg:An (G (E D) D)))

with

An = �f:(�x �s:(f (�n s) � � � (�1 s)))
where �i = hd � tl � � � � � tl| {z }

i�1

Bn = �s:[(�11 s); : : : ; (�
1
n s)]

where �1i � �x:(app �fg:�i x)

E [] = �fg:[]
E hx; ei :: s = app (app �fg:cons e) (E s)

G e0 [] = e0

G e0 hx; ei :: s = G (lam(x) e0) s

H [] [] = []

H hx; ei :: s e0 :: s0 = hx; e0i :: (H s s0)

Figure 3.3: Constructing recursive �rst-class environments



72

requirement.) Then, we can show by induction that

E D = ��:[e1; : : : ; en] (3.3)

Speci�cally,

E D = app (app �fg:cons ��1:e1) (E [hx2;��2:e2i; : : : ; hxn;��n:eni])
= app ��1:(cons e1) ��2]� � �]�n:[e2; : : : ; en] [induction hypothesis]

= ��1]�2]� � �]�n:(cons e1 [e2; : : : ; en])
= ��1]�2]� � �]�n:[e1; e2; : : : ; en]

With Equality 3.3, we can next verify that

G (E D) D = lam(xn) (� � � (lam(x1) (E D)))

= lamxn (� � � (lamx1 ��:[e1; : : : ; en]))

= ��:�xn � � �x1:[e1; : : : ; en] (3.4)

where x1; : : : ; xn are the parameter variables of x1; : : : ;xn in �. That is, for each xi,

either xi :xi 2 � or else xi is fresh with respect to [e1; : : : ; en].

With Equality 3.4, we have the following derivation:

app �fg:An (G (E D) D) = app �fg:An ��:�xn � � �x1:[e1; : : : ; en]
= ��:(An �xn � � �x1:[e1; : : : ; en])
= ��:(�x �s:((�xn � � �x1:[e1; : : : ; en]) (�n s) � � � (�1 s)))
= ��:S (3.5)

where S is the following recursively de�ned sequence:

S = �x �s:((�xn � � �x1:[e1; : : : ; en]) (�n s) � � � (�1 s))
= (�xn � � �x1:[e1; : : : ; en]) (�n S) � � � (�1 S)
= [([(�1 S)=x1] � � � [(�n S)=xn]e1); : : : ; ([(�1 S)=x1] � � � [(�n S)=xn]en)]

Hence, we have the elements of the environment D recursively available to one an-

other.



73

With Equality 3.5, next we form the sequence

Bn (app �fg:An (G (E D) D)) = [(�11 ��:S); : : : ; (�
1
n ��:S)]

= [��:(�1 S); : : : ;��:(�n S)] (3.6)

where �i S = [(�1 S)=x1] � � � [(�n S)=xn]ei is the ith element of S. Using the se-

quence of Equality 3.6 and the symbols of the environment D, the desired recursive

environment can be constructed as follows:

rec D = H D (Bn (app �fg:An (G (E D) D)))

= H [hx1;��1:e1i; : : : ; hxn;��n:eni] [��:(�1 S); : : : ;��:(�n S)]
= [hx1;��:(�1 S)i; : : : ; hxn;��:(�n S)i]

Put together, the above de�nition of rec is apparently way too complicated to

be desirable. Programming language design is about giving a clean and straightfor-

ward description for recurring programming idioms. In Chapter 6 we present a more

intuitive view of �rst-class environments.



74



Chapter 4

Simulations of Lambda Contexts

We have argued that our schema is a framework for enhancing a calculus with the

expressiveness of contexts. It is time to verify that ���C is indeed su�cient to simulate

the behavior of �-contexts. We show two simulations. The �rst simulation is an

incremental compiler for the �-calculus. An evolved �-context, which is the source

code of a �-calculus program, is translated into a free identi�er abstraction, our rep-

resentation of compiled code. A partially-evolved �-context, on the other hand, is

an incremental compilation operator. It is encoded as the composition of the two

compiled code construction operators of ���C, namely, lamx and app. The second

simulation is an incremental linker for compiled code. It does not distinguish between

evolved and partially-evolved �-contexts. Both are encoded as free identi�er abstrac-

tions, i.e., they are fully compiled. The simulation then relies on annotating each hole

with a linker that maps identi�ers (source code symbols) to variables (machine code

locations) to model the identi�er capture capabilities of hole �lling. Together, the

simulations ful�ll our promise that adding the notion of contexts enhances a language

with incremental compiled code construction capabilities.

75



76

4.1 Notions and Notations

We begin with notions and notations used in the simulations. To simplify the presen-

tation, we assume that there is a one-to-one function q that assigns a distinct variable

name q(n) to each name n, which is either a hole h or an identi�er x.

The �-contexts C are:

C ::= h j x j ���x:C j C C

They are either evolved e or partially-evolved C+:

e ::= x j ���x:e j e e
C+ ::= h j ���x:C+ j e C+ j C+ e j C+ C+

The image of a �-context C is a �-term im(C) de�ned inductively on the structure

of C as follows:

im(h) � q(h)

im(x) � q(x)

im(���x:C) � �q(x):im(C)

im(C1 C2) � im(C1) im(C2)

That is, im(C) has the same structure as C but with each name n replaced by q(n).

The set of holes occurring in a �-context C, oh(C), is de�ned inductively on the

structure of C as follows:

oh(h) = fhg
oh(x) = ;

oh(���x:C) = oh(C)

oh(C1 C2) = oh(C1)[ oh(C2)

Let fh1; : : : ;hng = oh(C) and hi = q(hi) be the unique variable name of hi. We write

�h
c
, f�hc :q(�hc)g, or f�hc : �hcg for the free identi�er abstraction parameter speci�cation

fh1 :h1; : : : ;hn :hng generated from the holes oh(C) occurring in the context C.



77

The set of applied identi�ers of a �-context C, ai(C), is de�ned inductively on the

structure of C as follows:

ai(h) = ;
ai(x) = fxg

ai(���x:C) = ai(C)

ai(C1 C2) = ai(C1)[ ai(C2)

Let ai(C) be fx1; : : : ;xng and xi = q(xi) be the unique variable name of xi. We then

write �a
c
for the free identi�er abstraction parameter speci�cation fx1 :x1; : : : ;xn :xng.

The set of free identi�ers in a �-context C, �(C), is de�ned inductively on the

structure of C as follows (�(C) is always a subset of ai(C)):

�(h) = ;
�(x) = fxg

�(���x:C) = �(C) n fxg
�(C1 C2) = �(C1)[ �(C2)

Let fx1; : : : ;xng = �(C) and xi = q(xi) be the unique variable name of xi. We write

�x
c
, f�xc :q(�xc)g, or f�xc : �xcg for the free identi�er abstraction parameter speci�cation

fx1 :x1; : : : ;xn :xng generated from �(C).

De�ne for each hole h a binding operator bindh

bindh � �xy:(app (lamh y) x) (4.1)

with the following intended behavior:

bindh ��1:e1 ��2:e2 !! app (lamh ��2:e2) ��1:e1

!! ��1]�2:((�h:e2) e1) [h :h 2 �2 or else h is fresh]

! ��1]�2:[e1=h]e2

That is, each free occurrence of the parameter variable h corresponding to h in e2 is

replaced by the denotation e1.



78

4.2 First Simulation

The �rst encoding of �-contexts R1 is de�ned as follows:

R1(C) � ��h
c
:T (C)

A �-context C is represented as the free identi�er abstraction ��h
c
:T (C) where �h

c
is

the �-parameterization of the holes occurring in C and the transformation T (C) is
de�ned inductively on the structure of C as follows:

T (h) � q(h)

T (x) � �fx :q(x)g:q(x)
T (���x:C) � lamx T (C)
T (C1 C2) � app T (C1) T (C2)

For instance, the �-context ���x:(h (x y)) is encoded as

�fh :q(h)g:(lamx (app q(h) (app �fx :q(x)g:q(x) �fy :q(y)g:q(y)))) (4.2)

The use of the function q in the de�nition of R1 is just a matter of convenience.

The unique variable names that it produces are always bound in the resulting ���C-term

R1(C). They are therefore subject to �-conversion. Thus, the following encoding of

���x:(h (x y)) is just as good:

�fh :hg:(lamx (app h (app �fx :xg:x �fy :yg:y)))

Indeed, any ��:e that is indistinguishable from ��h
c
:T (C) with respect to the compiled

code operations of ���C, ��:e � ��h
c
:T (C), can serve as an encoding of C.

The following theorem, whose proof is a straightforward induction on the structure

of e, shows that T transforms an evolved �-context into its image:

Theorem 4.1 T (e) !! ��a
e
:im(e).



79

In other words, T compiles evolved �-contexts. As an example, let e be ���x:(x y).

Then,

T (e) � lamx (app �fx :q(x)g:q(x) �fy :q(y)g:q(y))
� lamx (app �fx :xg:x �fy :yg:y)
! lamx �fx :x;y :yg:(x y)

! �fx :x;y :yg:�x:(x y)

� �fx :q(x);y :q(y)g:�q(x):(q(x) q(y))
� ��a

e
:im(e)

Based on Theorem 4.1 and that �-contexts are either evolved or partially-evolved,

we can rede�ne the transformation T as follows to emphasize that evolved �-contexts

can be compiled by the transformation:

T (e) � ��a
e
:im(e)

T (h) � q(h)

T (���x:C+) � lamx T (C+)

T (C+ e) � app T (C+) ��a
e
:im(e)

T (e C+) � app ��a
e
:im(e) T (C+)

T (C+

1 C
+

2 ) � app T (C+

1 ) T (C+

2 )

4.2.1 Simulating Hole Filling

Let C00 be the result of �lling the holes named h in the �-context C with another

�-context C0, C00 � [C0=h]C. Then, the holes occurring in C00 are a subset of the

holes occurring in C and C0 together, oh(C00) � oh(C)[ oh(C0). As a result, we have

�h
c
00 � �h

c
]�h

c
0 , a fact needed below.

With the R1-encoding of �-contexts, hole �lling can be accomplished as follows:

Theorem 4.2 Let ��h
c
:T (C), ��h

c
0 :T (C0), and ��h

c
00 :T (C00) be the encoding of C, C0,



80

and C00, respectively. Then,

bindh ��h
c
0 :T (C0) ��h

c
:T (C) � ��h

c
00 :T (C00)

Proof: Let h :h 2 �h
c
or else h is fresh. Then,

bindh ��h
c
0:T (C0) ��h

c
:T (C) !! app (lamh ��h

c
:T (C)) ��h

c
0 :T (C0)

! app ��h
c
:�h:T (C) ��h

c
0 :T (C0)

! ��h
c
]�h

c
0 :((�h:T (C)) T (C0))

! ��h
c
]�h

c
0 :[T (C0)=h]T (C)

� ��h
c
]�h

c
0 :T ([C0=h]C) (4.3)

� ��h
c
]�h

c
0 :T (C00)

� ��h
c
00 :T (C00) (4.4)

Equality 4.3 follows from T ([C0=h]C) � [T (C0)=q(h)]T (C), whose proof is a straight-
forward induction on the structure ofC. Equivalence 4.4 is valid since ��h

c
]�h

c
0:T (C00)

and ��h
c
00:T (C00) are indistinguishable in ���C when the redundant parameters are re-

moved from �h
c
]�h

c
0.

4.2.2 Compiling Lambda Contexts

Following our intuition that contexts are source code and terms are machine code,

the transformation T quali�es as a compiler for evolved �-contexts as is shown by

Theorem 4.1. So, to express in ���C a compiler for the �-calculus, all we need then is

an abstract source code representation [44] for �-contexts:

� for the source code encoding of e, there are predicates to tell whether e is an

identi�er, an abstraction, or an application;

� there are mechanisms to break the encoding of each composite evolved �-context

e down to (the encoding of) its components; and

� there is a predicate to determine the equality of identi�ers via their encoding.



81

Based on the simulation of a program symbol x as the pair hlamx;�fx :xg:xi
de�ned in Section 3.8.1, we can represent evolved �-contexts e in ���C as follows:

[[x]]c � h0;xi
[[���x:e]]c � h1; hx; [[e]]cii
[[e1 e2]]c � h2; h[[e1]]c; [[e2]]cii

An evolved �-context e is encoded as the ���C-term [[e]]c. The representation schema

[[ ]]c is abstract. For the encoding [[e]]c, we can tell from the tag of 0, 1, or 2 whether e

is an identi�er, an abstraction, or an application. (The tags 0{2 can be any program

symbols as long as they are pairwise distinct.) Moreover, we have the tools to take

[[e]]c apart to get to its components. Last but not least, we can determine if x and

y are the same identi�er by comparing their encodings [[x]]c and [[y]]c using the pred-

icate eq? de�ned in Section 3.8.1. The representation schema [[ ]]c is also generative

[67], the representation of an evolved �-context is constructible from the encodings

of the context's components. A generative encoding schema allows for incremental

construction of source code.

The companion compilation function C for the above encoding schema [[ ]]c is

de�ned as follows (again, pattern matching is used to simplify the presentation):

C h0; ei = phi(e)

C h1; he1; e2ii = lam(e1) (C e2)

C h2; he1; e2ii = app (C e1) (C e2)

It is merely an adaptation of the transformation T to the speci�c representation

schema [[ ]]c. Indeed, we may devise other abstract source code representations for

evolved �-contexts. All that is required to de�ne their companion compilers are

mechanisms to derive the pair lamx and �fx :xg:x from the representation of a

program symbol x.



82

4.3 Second Simulation

The transformation T given in the �rst simulation is rather conservative. It translates

a �-context C to its image im(C) when the context is evolved. On the other hand, a

partially-evolved �-context C+ is transformed into the composition of compiled code

construction operators. Hence, the transformation of (���x:C1) C2, where either C1 or

C2 is partially-evolved, is not a �-redex. For example,

T ((���x:x) h) � app �fx :xg:�x:x q(h)

T ((���x:h) y) � app (lamx q(h)) �fy :yg:y

In this section we give another simulation showing that it is possible to transform

any �-context C into its image im(C), except for its holes. In particular, the new

transformation S translates �-contexts in �-redex form into �-redexes of ���C, hence

allowing the reduction of (���x:C1) C2 without any preconditions. For comparison,

S((���x:x) h) � (�x:x) S(h)
! S(h)

and

S((���x:h) y) � (�x:S(h)) S(y)
! [S(y)=x]S(h)

4.3.1 Binding Structures

The second simulation of �-contexts is based on Talcott's binding structures [70, 71],

which combine �-contexts and �-terms at the meta-langauge level. The binding

structures have the following abstract syntax (using our notation):

e ::= x j �x:e j e e j x j h :fx1 :e; : : : ;xn :eg

In addition to the three �-terms, there are the identi�ers x and the annotated holes

h :fx1 :e; : : : ;xn :eg where x1; : : : ;xn are pairwise distinct identi�ers.



83

An annotated hole h :fx1 :e1; : : : ;xn :eng denotes \suspended" hygienic substitu-

tions of ei for xi that are activated when h is �lled. The identi�ers x1; : : : ;xn are

the capturing identi�ers of the hole. They are the ones that the suspended substi-

tutions intend to replace when the hole is �lled. For instance, �lling h :fx :yg with

�y:(x x) initiates the substitution of y for x in �y:(x x), denoted as [y=x]�y:(x x),

thus yielding �y0:(x y). Notice that the �-parameter y is renamed to a fresh y0 to

avoid inadvertent variable capture.

By associating a hole with the identi�ers it intends to capture and by associating

the capturing identi�ers with their replacement terms, �-conversion is valid:

�x:e ! �y:hy=xie
where y 6� x and y =2 fv(e)

(�)

The necessary �-substitution meta-operation hy=xie is a conservative extension of

that for the �-calculus (assuming the variable conventions):

hy=xiz �
8><
>:

y if x � z

z otherwise

hy=xi�z:e � �z:hy=xie
hy=xi(e1 e2) � hy=xie1 hy=xie2

hy=xiz � z

hy=xih :fx1 :e1; : : : ;xn :eng � h :fx1 :hy=xie1; : : : ;xn :hy=xieng

Thus, �xy:h :fx :xg is �-equivalent to �wz:h :fx :wg
For the same reason, �-reduction is also valid:

(�x:e) e0 ! [e0=x]e (�)

where �-substitution [e0=x]e is conservatively extended as follows:

[e0=x]z �
8><
>:

e0 if x � z

z otherwise

[e0=x]�z:e � �z:[e0=x]e



84

[e0=x](e1 e2) � [e0=x]e1 [e
0=x]e2

[e0=x]z � z

[e0=x]h :fx1 :e1; : : : ;xn :eng � h :fx1 : [e0=x]e1; : : : ;xn : [e
0=x]eng

Thus, (�xy:h :fx : (x y)g) (y y) one-step �-reduces to �y0:h :fx : (y y y0)g.
The hole �lling operation [e0=h]e is de�ned inductively on the structure of e:

[e0=h]z � z

[e0=h]�z:e � �z:[e0=h]e

[e0=h](e1 e2) � [e0=h]e1 [e
0=h]e2

[e0=h]z � z

[e0=h]h0 :fx1 :e1; : : : ;xn :eng �
8><
>:

[[e0=h]e1=x1; : : : ; [e
0=h]en=xn]e

0 if h � h0

h :fx1 : [e0=h]e1; : : : ;xn : [e
0=h]eng otherwise

There are two cases when such an h-substitution is carried out on an annotated

hole h0 :fx1 :e1; : : : ;xn :eng. In both cases, the substitution is �rst distributed to the

replacement terms e1; : : : ; en of the capturing identi�ers x1; : : : ;xn. If the name h
0 of

the annotated hole is h, the annotated hole is �lled with e0. Hence, the suspended

substitutions encoded in the annotation are activated upon the �ller e0. When the

holes do not match, the hole h0 keeps its revised annotation.

The meta-operation [e01=x1; : : : ; e
0

n=xn]e simultaneously substitutes e
0

i for the cap-

turing identi�er xi in e. To simplify the presentation, we show the case for a single

capturing identi�er:

[e0=x]z � z

[e0=x]�z:e � �z:[e0=x]e

[e0=x](e1 e2) � [e0=x]e1 [e
0=x]e2

[e0=x]z �
8><
>:

e0 if x � z

z otherwise

[e0=x]h :fx1 :e1; : : : ;xn :eng �
8><
>:
h :fx1 : [e0=x]e1; : : : ;xn : [e

0=x]eng if x � xi

h :fx1 : [e0=x]e1; : : : ;xn : [e
0=x]en;x :e

0g otherwise



85

In the clause for annotated holes, the x-substitution is �rst distributed to the re-

placement terms e1; : : : ; en. The identi�er x then becomes a capturing identi�er of

the annotated hole unless the hole already has x as one of its capturing identi�ers. In

other words, the x-substitution is suspended at the hole h so that it can be resumed

when the hole is �lled later.

There is no syntax in the binding structures for expressing hole �lling. It remains

strictly as a meta-theory operation. There is a good reason that hole �lling is de-

scribed at the meta-theory level only. Let us add new terms �llh e1 e2 to the binding

structures and de�ne their reduction rule as follows:

�llh e1 e2 ! [e2=h]e1

That is, �llh e1 e2 denotes the �lling of the occurrences of the hole h in the term e2

with the term e1. Then, by contracting the redexes of the following term in di�erent

orders, we can show that the system is inconsistent:

(�x:(�llh x h :fx :yg)) (x h0 :fy :yg)

In particular, when the �ll -redex is contracted before the �-redex, we have:

(�x:(�llh x h :fx :yg)) (x h0 :fy :yg)
! (�x:[x=h]h :fx :yg) (x h0 :fy :yg)
� (�x:[y=x]x) (x h0 :fy :yg)
� (�x:x) (x h0 :fy :yg)
! x h0 :fy :yg

But, when we swap the order in which the two redexes are contracted, we get a

di�erent result:

(�x:(�llh x h :fx :yg)) (x h0 :fy :yg)
! [x h0 :fy :yg=x](�llh x h :fx :yg)
� �llh (x h0 :fy :yg) h :fx :yg



86

� [x h0 :fy :yg=h]h :fx :yg
� [y=x](x h0 :fy :yg)
� y h0 :fy :y;x :yg

The discrepancy is caused by the fact that the suspended substitution [y=x] as-

sociated with the hole h is activated as soon as the hole is �lled, even though the

�ller x has yet to gather its to-be-captured free identi�ers and annotated holes in the

former case. Hence, to adapt binding structures to a programming language calculus,

we must pin down what the to-be-captured identi�ers and annotated holes of a �ller

term are; short of it, the system is not Church-Rosser.

In summary, to simulate the behavior of �-contexts using the notion of annotated

holes, we must devise a suitable ���C-encoding of annotations. Furthermore, we must

have a representation schema for contexts that satis�es these three constraints:

� When a hole h of a context C1 is �lled with another context C2, the annotation

of the �lled hole h must clearly specify the hole's capturing identi�ers. More-

over, the �ller context C2 must clearly specify its to-be-captured free identi�ers

and holes.

� Any to-be-captured free identi�er of the �ller context C2 that is not captured

by the annotation of h must remain a to-be-captured free identi�er.

� Similarly, the holes of C2 must be retained in the result of the hole �lling

operation. Moreover, the capturing identi�ers of the �lled hole h must be

propagated to the holes of C2, provided that they are not shadowed by the

holes' annotation.

4.3.2 Encoding Annotations

Let n1; : : : ;nn be pairwise distinct identi�er names or holes. We de�ne an annotation

fn1 :e1; : : : ;nn :eng�, abbreviated as f�n : �eg�, to be the following syntactic sugar:

fn1 :e1; : : : ;nn :eng� � [hn1;�fg:e1i; : : : ; hnn;�fg:eni]



87

It is the encoding of an environment associating the identi�er ni with the denotation

�fg:ei (cf. Section 3.8.2 on �rst-class environments). The arid annotation is the

arid environment []. The annotation linking operator is the environment importing

operator link whose de�nition is repeated below:

link [] e0 = e0

link hx; ei :: s e0 = app (link s (lam(x) e0)) e

The notation hx; ei :: s denotes the sequence whose �rst element is hx; ei and the

remainder of the sequence is s. Hence, linking an annotation f�n : �eg� to a free identi�er
abstraction ��:e exhibits the following behavior:

link f�n : �eg� ��:e = ��:[en=xn] � � � [e1=x1]e

where either ni :xi 2 � or else xi is fresh. That is, it substitutes ei for free occurrences

of xi in e.

De�ne the annotation combining operator combine as follows:

combine [] s = s

combine hx0; e0i :: s0 s = if (member x0 s) then (combine s0 s)

else (cons hx0; e0i (combine s0 s))

where the predicate member that tells whether x0 is an identi�er of the annotation s

is de�ned inductively as follows:

member x0 [] = F

member x0 hx; ei :: s = if (eq? x0 x) then T else (member x0 s)

Thus, combine f�n : �eg� f�n0 : �e0g� combines the annotations f�n : �eg� and f�n0 : �e0g�, with
the bindings of f�n0 : �e0g� preceding the bindings of f�n : �eg� in the event of con
icts.

A degenerate case of annotations is fn1 :x1; : : : ;nn :xng� where x1; : : : ; xn are pair-
wise distinct variables. In such a case, fn1 :x1; : : : ;nn :xng quali�es as a free identi�er
abstraction parameter speci�cation. Hence, we write �� for f�n : �xg� when � is f�n : �xg.



88

4.3.3 Encoding Contexts

The second encoding of �-contexts R2 is de�ned as follows:

R2(C) � hEc; Ic; Hci

The elements of the triple hEc; Ic; Hci are de�ned as follows:

Ec � ��x
c
:��h

c
:Sfg�(C) � �f�xc : �xcg:�f�hc : �hcg:Sfg�(C)

Ic � ��x
c
:f�xc : �xcg� � �f�xc : �xcg:f�xc : �xcg�

Hc � ��h
c
:�g:f�hc : (g �hc)g� � �f�hc : �hcg:�g:f�hc : (g �hc)g�

The �rst element Ec is the transformation Sfg�(C) of C with the to-be-captured

free identi�ers �(C) and holes oh(C) �-bound. The transformation S��(C) is de�ned
inductively on the structure of C as follows:

S��(h) � q(h) ��

S��(x) � q(x)

S��(���x:C) � �q(x):S��1(C)
where ��1 is (combine �� fx :q(x)g�)

S��(C1 C2) � S��(C1) S��(C2)

That is, each �-context C, which can be either evolved or partially-evolved, is fully

compiled into its image im(C) where each hole h is encoded as the application q(h) ��,

which is our way of annotating h with its capturing identi�ers encoded as the anno-

tation ��.

The second element

Ic � �f�xc : �xcg:f�xc : �xcg�

records the to-be-captured free identi�ers �(C) of C. When C is used to �ll the hole

h0 of some context C0, [C=h0]C0, the annotated hole h0 may not capture all the free

identi�ers of C. The second element Ic is then used to keep the free identi�ers of C

not captured by h0 remain as to-be-captured free identi�ers of [C=h0]C0.



89

The third element

Hc � �f�hc : �hcg:�g:f�hc : (g �hc)g�

serves a similar purpose as Ic. It records the free holes oh(C) of C. When C is

used to �ll the hole h0 of some context C0, [C=h0]C0, Hc helps to propagate the

capturing identi�ers of the hole h0 to the holes of C. The notation �g:f�hc : (g �hc)g�

is an abbreviation of �g:fh1 : (g h1); : : : ;hn : (g hn)g� with hi = q(hi).

As an example, let C1 be the �-context:

C1 � (���x:h1) (y h2)

The components of the encoding hEc1 ; Ic1 ; Hc1i of C1 are:

Ec1 � �fy :yg:�fh1 :h1;h2 :h2g:((�x:(h1 fx :xg�)) (y (h2 fg�)))
Ic1 � �fy :yg:fy :yg�

Hc1 � �fh1 :h1;h2 :h2g:�g:fh1 : (g h1);h2 : (g h2)g�

The hole h1 is in the scope of the bound identi�er x; hence, the corresponding variable

h1 of h1 is \annotated" with the annotation fx :xg�. In contrast, the hole h2 is not

in the scope of any bound identi�ers; hence, it has an arid annotation fg�. We

should emphasize that in the encoding Ec1 , the application �-context (���x:h1) (y h2)

is translated into a �-redex. Thus,

Ec1 � �fy :yg:�fh1 :h1;h2 :h2g:((�x:(h1 fx :xg�)) (y (h2 fg�)))
! �fy :yg:�fh1 :h1;h2 :h2g:(h1 fx : (y (h2 fg�))g�)

Again, the representation R2(C) of C is not unique. In particular, we can always

add redundant parameters to �x
c
and �h

c
without a�ecting the behavior of the sim-

ulation. Hence, let �x
c
� �1 and �h

c
� �2 � f�h : �hg and the components of a triple

hE; I;Hi be de�ned as follows:

E � ��1:��2:Sfg�(C)
I � ��1:�

�

1

H � ��2:�g:f�h : (g �h)g�



90

Then, I and H cover the free identi�ers and holes of E just like the way Ic and Hc

cover Ec. The triple hE; I;Hi therefore quali�es as a representation of C as well.

4.3.4 Simulating Hole Filling

Filling the hole h of an (encoded) �-context hEc; Ic; Hci with another (encoded)

�-context hEc0; Ic0 ; Hc0i can be accomplished using the �llh operator de�ned below:

�llh hEc0 ; Ic0 ; Hc0i hEc; Ic; Hci
= h(F1 bindh Ec0 Ic0 Hc0 Ec); (F2 Ic0 Ic); (F3 Hc0 Hc)i

where the combinators F1, F2, and F3 are de�ned as follows:

F1 = �fabcd:(app (app �fg:(F 0

1 f a c) b) d)

F 0

1 = �fabcd:(f (app �fg:(F 00

1 a c) b) d)

F 00

1 = �abcy:(load (link (c (�xy0:(x (combine y y0))))

(load (link (combine b y) a))))

F2 = �ab:(app (app �fg:combine a) b)

F3 = �ab:(app (app �fg:�abg:(combine (a g) (b g)) a) b)

Let C3 be the result of �lling the holes named h of the �-context C1 with another

�-context C2, C3 � [C2=h]C1. Then, with the second encoding of �-contexts R2 that

represents each �-context C as the triple hEc; Ic; Hci, hole �lling can be accomplished
as follows:

Theorem 4.3 Let hEc1 ; Ic1 ; Hc1i and hEc2 ; Ic2 ; Hc2i be the encoding of C1 and C2,

respectively. Then,

�llh hEc2 ; Ic2 ; Hc2i hEc1 ; Ic1 ; Hc1i

is an encoding of C3.

Proof by example: A complete proof is quite involved; we demonstrate the inner

workings of the �lling operation through a concrete example, instead.



91

Let C1 and C2 be these �-contexts:

C1 � (���x:h1) (y h2)

C2 � x y ���y:h2

The encoding hEc1 ; Ic1 ; Hc1i of C1 has these components:

Ec1 � �fy :yg:�fh1 :h1;h2 :h2g:((�x:(h1 fx :xg�)) (y (h2 fg�)))
Ic1 � �fy :yg:fy :yg�

Hc1 � �fh1 :h1;h2 :h2g:�g:fh1 : (g h1);h2 : (g h2)g�

The components of the encoding hEc2 ; Ic2 ; Hc2i of C2 are:

Ec2 � �fx :x;y :yg:�fh2 :h2g:(x y �y:(h2 fy :yg�))
Ic2 � �fy :y;x :xg:fx :x;y :yg�

Hc2 � �fh2 :h2g:�g:fh2 : (g h2)g�

Let C3 be the result of �lling the hole h1 of C1 with C2:

C3 � [C2=h1]C1

� (���x:(x y ���y:h2)) (y h2)

The components of the encoding hEc3 ; Ic3 ; Hc3i of C3 are:

Ec3 � �fy :yg:�fh2 :h2g:((�x:(x y �y:(h2 fx :x;y :yg�))) (y (h2 fg�)))
Ic3 � �fy :yg:fy :yg�

Hc3 � �fh2 :h2g:�g:fh2 : (g h2)g�

By the de�nition of �llh, we have

�llh1 hEc2; Ic2; Hc2i hEc1 ; Ic1 ; Hc1i = hE; I;Hi

where

E = �fx :x;y :yg:�fh1 :h1;h2 :h2g:



92

[G=h1]((�x:(h1 fx :xg�)) (y (h2 fg�)))
= �fx :x;y :yg:�fh1 :h1;h2 :h2g:((�x0:(G fx :x0g�)) (y (h2 fg�))) (4.5)

I = �fx :x;y :yg:(combine fx :x;y :yg� fy :yg�)
= �fx :x;y :yg:fx :x;y :yg�

H = �fh1 :h1;h2 :h2g:�g:(combine fh2 : (g h2)g� fh1 : (g h1);h2 : (g h2)g�)
= �fh1 :h1;h2 :h2g:�g:fh1 : (g h1);h2 : (g h2)g�

with

G = �w:(Gh w (Gx w Ec2))

Gh = �wz:(load (link fh2 :�y0:(h2 (combine w y0))g� z))
Gx = �wz:(load (link (combine fx :x;y :yg� w) z))

The subterm G fx :x0g� of Equation 4.5 encodes the e�ect on the �ller context C2

when it replaces the hole h1 of C1. Its simpli�cation is

G fx :x0g�

= Gh fx :x0g� (Gx fx :x0g� Ec2)
= Gh fx :x0g� (load (link (combine fx :x;y :yg� fx :x0g�) Ec2))
= Gh fx :x0g� (load (link fx :x0;y :yg� Ec2))
= Gh fx :x0g� �fh2 :h2g:(x0 y �y:(h2 fy :yg�)) (4.6)

= load (link fh2 :�y0:(h2 (combine fx :x0g� y0))g�

�fh2 :h2g:(x0 y �y:(h2 fy :yg�)))
= x0 y �y:(h2 (combine fx :x0g� fy :yg�))
= x0 y �y:(h2 fx :x0;y :yg�) (4.7)

The hole h1 of C1 has only one capturing-identi�er x whose associated variable is x0.

The subterm �fh2 :h2g:(x0 y �y:(h2 fy :yg�)) in Equation 4.6 is the result of linking

free occurrences of the identi�er x in C2 (encoded as Ec2) to the capturing-identi�er

of h1. The �-context C2 has a hole h2 with a single capturing-identi�er y. In the



93

resulting C3, the hole has two capturing-identi�ers x and y. The additional x comes

from the capturing-identi�er of h1. The propagation of the capturing-identi�er of h1

to h2 is realized in Equation 4.7 with the annotated hole h2 fx :x0;y :yg�.
So, by replacing x0 y �y:(h2 fx :x0;y :yg�) for G fx :x0g� in Equation 4.5, we get

E = �fx :x;y :yg:�fh1 :h1;h2 :h2g:
((�x0:(x0 y �y:(h2 fx :x0;y :yg�))) (y (h2 fg�)))

� �fy :yg:�fh2 :h2g:((�x0:(x0 y �y:(h2 fx :x0;y :yg�))) (y (h2 fg�)))
� Ec3

thus concluding the demonstration.



94



Chapter 5

Twice Context-Enriched Lambda

Calculus

We have shown how our context-enriching schema conservatively extends the �-

calculus with incremental compilation and linking capabilities. Curious as we always

are, it is fair to ask what e�ect the schema has on the enriched calculus ���C. We thus

give a second demonstration of our context-enriching schema by applying it to ���C,

yielding an extension of the �-calculus that is enriched with the notion of contexts

twice. Interestingly, we can show that the twice context-enriched �-calculus ���CC

is a \�xpoint" of our schema. That is, applying the schema to ���CC yields ���CC

itself. We have shown previously that ���C is capable of compiling the �-calculus. We

demonstrate here that ���CC is capable of compiling itself metacircularly. The second

part of this chapter is devoted to the analysis and re�nement of the new mechanisms

introduced by the ���CC-calculus. The discussion focuses on the pursuit of simple,

elegant, yet powerful language features. Their usefulness will become apparent in the

forthcoming chapters.

95



96

Contexts:

C ::= h j x j ���x:C j C C j ������:C j ���
��� ::= load j ~x j lamx j app
��� ::= fx1 :y1; : : : ;xn :yng

x1; : : : ;xn pairwise distinct,

y1; : : : ;yn pairwise distinct

Evolved Contexts:

e ::= x j ���x:e j e e j ������:e j ���

Figure 5.1: Contexts of context-enriched �-calculus ���C

5.1 Term Language

Our schema of enriching a �-calculus with incremental program construction capa-

bilities is founded on the notion of contexts. The contexts C of the ���C-calculus

are shown in Figure 5.1. In addition to the �-contexts, there are the free identi�er

abstraction contexts ������:C and the constant contexts ���.

The �rst step of our schema is to devise a compiled code representation for the

evolved ���C-contexts e. Again, an evolved ���C-context e can be represented as the

free identi�er abstraction (q is a one-to-one function that assigns a distinct variable

name q(x) to each identi�er x)

�fx1 :q(x1); : : : ;xn :q(xn)g:im(e)

where x1; : : : ;xn are the free identi�ers of e and the image im(e) is de�ned inductively

as follows:

im(x) � q(x)

im(���x:e) � �q(x):im(e)



97

im(e1 e2) � im(e1) im(e2)

im(���fx1 :y1; : : : ;xn :yng:e) � �fx1 :q(y1); : : : ;xn :q(yn)g:im(e)

im(���) � ���

The ���C-contexts ��� are constants. We can therefore express their compiled code

as �fg:���. An evolved free identi�er abstraction context ���fx1 :y1; : : : ;xn :yng:e can

be compiled into the following nested free identi�er abstractions:

�fz1 :q(z1); : : : ; zm :q(zm)g:�fx1 :q(y1); : : : ;xn :q(yn)g:im(e)

where z1; : : : ; zm are the free identi�ers of ���fx1 :y1; : : : ;xn :yng:e. The machine code
im(e) is the image of the source code e. Free occurrences of the identi�ers y1; : : : ;yn

in the source code e are replaced by their respective placeholders q(y1); : : : ; q(yn) in

the machine code im(e). Similarly, the free identi�ers z1; : : : ; zm are compiled into

their respective placeholders q(z1); : : : ; q(zm) in the machine code im(e).

In addition to the two constructors lamx and app of ���C, we need a new category

of constructors phi���, one for each ���, to incrementally build the compiled code of

���C-contexts ������:e out of the compiled code of e. Collectively, the syntax of the

twice context-enriched �-calculus ���CC is presented in Figure 5.2. It extends the

���C-calculus with only one additional category of syntax, namely, the incremental

free identi�er abstraction compiled code construction operators phi���. We abbreviate

phifx1 :y1; : : : ;xn :yng as phif�x : �yg at times.

5.2 Calculus of Compiled Code

The �- and �-substitutions of ���C can be easily extended to ���CC since we have added

only constants to ���C. The four reduction rules of ���C (cf. Figure 3.2) also carry over

to ���CC without any changes. The additional operators phi��� introduced by ���CC

are a means to construct compiled compiled code, so to speak. Their reduction rule

is:

phifx1 :y1; : : : ;xn :yng ��:e ! ��:�fx1 :y1; : : : ;xn :yng:e (phi���)



98

Syntactic Domains:

x 2 Vars (Variables)

x;y 2 Idents (Identi�ers)

~x 2 Unlnks (Unlinked Identi�er Indicators)

Abstract Syntax:

e ::= x j �x:e j e e j ��:e j ���
��� ::= load j ~x j lamx j app j phi���
� ::= fx1 :x1; : : : ;xn :xng
��� ::= fx1 :y1; : : : ;xn :yng

Figure 5.2: Term language of twice context-enriched �-calculus ���CC

The variable yi of each parameter xi :yi is the parameter variable of yi speci�ed by

�; if yi is not a parameter identi�er of �, yi is chosen to be a fresh variable name.

The contraction thus relinks the free variables y1; : : : ; yn of e to the newly constructed

speci�cation fx1 :y1; : : : ;xn :yng. Again, this is possible since the parameter variables
of � are quasi-statically scoped (cf. the lam-reduction rule of Section 3.3.4).

Metaphorically speaking, each operator phi��� models the �lling of the hole h of

the context ������:h with the evolved context e. It yields the compiled code ��:��0:e

of ������:e from the compiled code ��:e of e. To illustrate, let the compiled code

of ���fx :xg:(x (y z)) be the free identi�er abstraction �fy :y; z :zg:�fx :xg:(x (y z)).

Then,

phifw :yg �fy :y; z :zg:�fx :xg:(x (y z))

! �fy :y; z :zg:�fw :yg:�fx :xg:(x (y z))

� �fz :zg:�fw :yg:�fx :xg:(x (y z))

The contractum is a compiled version of the ���C-context ���fw :yg:���fx :xg:(x (y z)),

the result of �lling ���fw :yg:h with ���fx :xg:(x (y z)).



99

(�x:e) e0 ! [e0=x]e

load �fx1 :x1; : : : ;xn :xng:e ! [~xn=xn] � � � [~x1=x1]e
app ��1:e1 ��2:e2 ! ��1]�2:(e1 e2)

lamx ��:e ! ��:�x:e

where x :x 2 �

or else x is fresh

phifx1 :y1; : : : ;xn :yng ��:e ! ��:�fx1 :y1; : : : ;xn :yng:e
where yi :yi 2 �

or else yi is fresh

(�)

(load)

(app)

(lam)

(phi���)

Figure 5.3: Reduction rules of twice context-enriched �-calculus ���CC

The notion of reduction cc underlying the extended calculus ���CC is the union of

the �ve reduction relations collectively shown in Figure 5.3:

cc = � [ lam[ app[ load[phi���

We continue to use ! to denote the one-step reduction relation induced by cc and

!! to denote the re
exive and transitive closure of !. Again, the least equivalence

relation generated by !! is the equational theory ���CC and equivalence under ���CC

is written as e1 = e2.

Intuitively, the additional compiled code operations of ���CC are orthogonal to the

compiled code operations of ���C as well as the �-reduction. Hence, by the Hindley-

Rosen Lemma, the notion of reduction cc is Church-Rosser:

Theorem 5.1 The cc-reduction relation !! satis�es the diamond property.

Moreover, free identi�er abstractions indistinguishable by the compiled code operators

of ���C (cf. Theorem 3.5) are not distinguishable to the new operators phi��� either:



100

Theorem 5.2 Let ��1:e � ��2:e and

phi��� ��1:e ! ��1:��
0

1:e

phi��� ��2:e ! ��2:��
0

2:e

Then, ��01:e � ��02:e and so ��1:��
0

1:e � ��2:��
0

2:e.

5.3 Thrice Context-Enriched Lambda Calculus

So far, using the context-enriching schema, we have derived from the �-calculus the

once context-enriched calculus ���C and the twice context-enriched calculus ���CC. It

is quite natural to ponder what the thrice context-enriched calculus ���CCC and so

forth would be.

The contexts C of the twice context-enriched �-calculus ���CC are (cf. Figure 5.2

for the de�nition of ���CC-terms):

C ::= h j x j ���x:C j C C j ������:C j ���
��� ::= load j ~x j lamx j app j phi���

Compared to the ���C-contexts of Figure 5.1, the only added contexts are the operators

phi���. But since phi��� have no free identi�ers, we can represent their compiled code

simply as �fg:phi���. The thrice context-enriched �-calculus therefore requires no

new incremental compiled code constructors. It is thus exactly the same as the

twice context-enriched �-calculus ���CC. In other words, our repeated application of

the context-enriching schema to the �-calculus has converged to the twice context-

enriched �-calculus ���CC. That is, ���CC is a \�xpoint" of our design methodology.

5.4 Metacircular Self-Compilation

As shown in Chapter 4, the context-enriched version of a calculus is capable of com-

piling the original calculus. Here, we demonstrate the compilation of ���CC in the



101

���CC-calculus itself, thus yielding a self-compiler for ���CC [8, 52]. The evolved ���CC-

contexts (source code) e can be represented in ���CC as follows (recall that a program

symbol x is represented as the pair hlamx;�fx :xg:xi whose components are denoted
as lam(x) and phi(x)):

[[x]]c � h0;xi
[[���x:e]]c � h1; hx; [[e]]cii
[[e1 e2]]c � h2; h[[e1]]c; [[e2]]cii (5.1)

[[������:e]]c � h3; hphi���; [[e]]cii
[[���]]c � h4; ���i

The companion compilation function C of the above representation schema [[ ]]c is:

C h0; ei = phi(e)

C h1; he1; e2ii = lam(e1) (C e2)

C h2; he1; e2ii = app (C e1) (C e2)

C h3; he1; e2ii = e1 (C e2)

C h4; ei = �fg:e

An interpreter M for ���CC-programs, which are evolved ���CC-contexts without free

identi�ers, is then the composition of the compilation function C and the free identi�er
abstraction loading operator load:

M � load � C

The compiler C is both compositional and metacircular. It is compositional since

the compilation of each ([[ ]]c-encoded) composite evolved ���CC-context is a function

of the compilation of the context's ([[ ]]c-encoded) components:

C [[���x:e]]c = lamx (C [[e]]c)

C [[e1 e2]]c = app (C [[e1]]c) (C [[e2]]c)

C [[������:e]]c = phi��� (C [[e]]c)



102

The compiler C is metacircular since it translates each category of evolved ���CC-

contexts into the same category of ���CC-terms [45]:

Theorem 5.3 Let e be an evolved ���CC-context and z1; : : : ; zm be the applied iden-

ti�ers of e. Then,

C [[e]]c = �fz1 :q(z1); : : : ; zm :q(zm)g:im(e)

Proof: This theorem is a repeat of Theorem 4.1 for evolved ���CC-contexts. The

proof is a straightforward induction on the structure of e. Here, we show only the

case for free identi�er abstraction contexts. Let f�x : �yg and f�x :q(�y)g abbreviate

fx1 :y1; : : : ;xn :yng and fx1 :q(y1); : : : ;xn :q(yn)g, respectively. Then,

C [[���f�x : �yg:e]]c � C h3; hphif�x : �yg; [[e]]cii
= phif�x : �yg (C [[e]]c)

= phif�x : �yg �f�z :q(�z)g:im(e) [induction hypothesis]

= �f�z :q(�z)g:�f�x :q(�y)g:im(e)

To conclude, enriching a �-calculus with the notion of contexts once gives us an

extended calculus that is capable of constructing, compiling, and linking programs

of the given calculus incrementally. Enriching the given calculus with the notion of

contexts twice gives us an extended calculus that is expressive enough to incrementally

construct, compile, and link programs of the extended calculus metacircularly. From

now on, when we enrich a calculus with contexts, it will always be done twice.

In the rest of this chapter we focus on re�ning the compiled code operators phi���

introduced by the ���CC-calculus. In particular, the operators have a rather complex

reduction rule. It is bene�cial to break it down to more manageable parts. From the

standpoint of language design, the advantages of doing so include a better understand-

ing of the nature of the operators and perhaps the uncovering of other fundamental

compiled code operations.



103

5.5 Renaming Free Identi�ers

Let us repeat the reduction rule for the compiled code constructors phif�x : �yg:

phif�x : �yg ��:e ! ��:�f�x : �yg:e
yi :yi 2 � or else yi is fresh

(phi���)

In general, the operators phif�x : �yg involve pairs of not necessarily distinct identi�ers
xi and yi. A degenerate case is when each yi is the same identi�er as xi. Compared

to phi���, the degenerate operators phif�yg have a slightly simpler reduction rule:

phif�yg ��:e ! ��:�f�y : �yg:e
yi :yi 2 � or else yi is fresh

(phi�x)

It is the goal of this section to take the operators phif�yg as given and add the

necessary capabilities to recover the full functionality of phi���.

What we need is a means to rename the identi�ers �y of �f�y : �yg:e to �x. For

that, we add a new class of operators renamefy1 :x1; : : : ;yn :xng, abbreviated as

renamef�y : �xg, We can then de�ne phif�x : �yg as derived forms:

phif�x : �yg � �x:(app �fg:renamef�y : �xg (phif�yg x)) (5.2)

To illustrate,

phifw :x; z :yg �fy :y; z :zg:�x:(y z)
! app �fg:renamefx :w;y :zg (phifx;yg �fy :y; z :zg:�x:(y z))
! app �fg:renamefx :w;y :zg �fy :y; z :zg:�fx :w;y :yg:�x:(y z)
! �fy :y; z :zg:(renamefx :w;y :zg �fx :w;y :yg:�x:(y z))
! �fy :y; z :zg:�fw :w; z :yg:�x:(y z)

The last reduction step shows the e�ect of the renaming operator renamefx :w;y :zg
on the free identi�er abstraction �fx :w;y :yg:�x:(y z). The parameter identi�ers x
and y are renamed to w and z, respectively.



104

Metaphorically speaking, the new operators model the renaming of free identi�ers

of contexts. Their reduction rule might be:

renamef�x : �yg �f�z : �zg:e ! �f �w : �zg:e

where each wi is some yj when zi is the same identi�er as xj; otherwise, wi is zi.

That is, the contractum �f �w : �zg:e is similar to the given �f�z : �zg:e except that each
zi � xj is renamed to yj.

There is just one problem|the resulting free identi�er abstraction parameter spec-

i�cation f �w : �zg may not be well-formed. Indeed, there is no guarantee that the iden-
ti�ers �w are pairwise distinct. The cause of the problem is that the pool from which

the identi�ers �w are drawn, which comprises the identi�ers �y and �z, does not neces-

sarily form a set. That is, either �y are not pairwise distinct or �z are not distinct from

�y.

Adding the constraint that the replacement identi�ers �y of a renaming opera-

tor renamef�x : �yg must be pairwise distinct does not solve the problem. There is

still the possibility that �y and �z may not be disjoint. An instinctive approach is to

prohibit such a reduction whenever the resulting speci�cation f �w : �zg is ill-formed.

It is not compatible with our notion of free identi�er abstraction indistinguishabil-

ity, however. Two previously indistinguishable abstractions such as �fg:�x:x and

�fx :x;y :yg:�x:x would be distinguishable by the renaming operator renamefx :yg:

renamefx :yg �fg:�x:x ! �fg:�x:x

but

renamefx :yg �fx :x;y :yg:�x:x 6! �fy :x;y :yg:�x:x

since the term on the left hand side is not a redex.

A proper solution can be obtained via parameter renaming. When two identi�ers

wi and wj of f �w : �zg are the same, we can identify their corresponding parameter

variables zi and zj by renaming them to the same variable. This is consistent with



105

our intuition that both zi and zj in e denote the placeholder for the same free identi�er

and so they should be the same variable. Thus, the reduction rule for the identi�er

renaming operators renamef�x : �yg is:

renamef�x : �yg �f�z : �zg:e ! �wf f �w : �wg:h �w=�zie

where wi �
8><
>:
yj if zi � xj

zi otherwise

and �w are not necessarily distinct

fresh variables with respect to e such

that wi � wj if and only if wi � wj

(ren)

The notation h �w=�zie simultaneously renames the parameter variables �z in e to �w,

respectively. The new variables �w may not be pairwise distinct. Whenever wi and

wj are the same identifeir, so are their respective variables wi and wj. Consequently,

the parameter speci�cation f �w : �wg may not be well-formed. The notation wf f �w : �wg
denotes the well-formed version of f �w : �wg by removing any duplicates. Formally,

wf fw1 :w1; : : : ;wm :wmg � fwa1 :wa1 ; : : :wak :wakg

where 1 � ai � m for all 1 � i � k and for each 1 � j � m there is exactly one ai

such that wj � wai and wj � wai .

As an example,

renamefx :y; z :xg �fx :x;y :y; z :zg:(x y z)

! �wf fy :w;y :w;x :vg:hw=x; w=y; v=zi(x y z) (5.3)

� �fx :v;y :wg:(w w v)

Intuitively, the argument �-abstraction �fx :x;y :y; z :zg:(x y z) represents the con-

text C1 � x y z and the contractum �-abstraction �fx :v;y :wg:(w w v) models the

context C2 � y y x, the result of simultaneously renaming the identi�ers x and z of

C1 to y and x, respectively.

This concludes the �rst part of the thesis. We have demonstrated the techniques

involved in applying our context-enriching schema to the �-calculus to yield a cal-

culus that is capable of expressing the incremental construction of its own programs



106

metacircularly. The transparency of our compiled code abstractions shows that it

is straightforward for our design methodology to deal with programming languages

with additional special forms that do not introduce variable linking relations. In the

second part of our work, we focus on extending our schema to deal with more de-

scriptive variable binding forms. In particular, we apply the techniques learned so

far to more elaborate versions of the �-calculus with fancier variable de�ning and

referencing mechanisms. The resulting context-enriched �-calculi have incremental

program construction capabilities that are not only more expressive, but also more

intuitive.



Chapter 6

Context-Enriched Calculus of

De�nitions

We have demonstrated in the previous chapters the basic techniques underlying our

context-enriching schema. In this and the next chapters we apply them to more

elaborate variable de�ning and referencing mechanisms. The results are twofold:

� We show that the schema can be easily extended to more descriptive versions

of the �-calculus that are not far removed from most high-level programming

languages in practice.

� The context-enriched �-calculi are expressive enough to capture the essence of

advanced linking mechanisms fundamental to modules and objects in a very

intuitive manner. Hence, the schema can serve as a simple means to enhance

existing languages with modular and object-oriented programming capabilities.

Together, they further support our claim that enriching a programming language with

the behavior of contexts is a useful language design methodology.

In this chapter we extend the �-calculus with more intricate variable de�ning

mechanisms and then apply our context-enriching schema to the extended calculus.

It is motivated by our inability to give a clean description of �rst-class environments

using the ���C-calculus; see Section 3.8.2. Here, by abstracting over some common

107



108

programming idioms about variable de�nition, we arrive at an elegant and extensible

alternative that is a module manipulation calculus in which linking is modeled by, as

expected, variable capture.

6.1 De�nitions

The variable de�ning mechanisms of concern are adapted from Plotkin's work in which

he uses them to illustrate his structural approach to operational semantics [59]. The

�-calculus extended with de�nitions has the following abstract syntax:

e ::= x j �x:e j e e j let d in e

d ::= fx1 = e; : : : ; xn = eg
x1; : : : ; xn pairwise distinct

(�d)

A de�nition fx1 = e1; : : : ; xn = eng is a set of independent bindings xi = ei that asso-

ciate the de�ning variables x1; : : : ; xn with their denotation terms e1; : : : ; en, respec-

tively. The semantics of de�nitions can be best understood through the following

syntactic expansion:

let fx1 = e1; : : : ; xn = eng in e �
8><
>:

(�x1 � � �xn:e) e1 � � � en if n > 0

e otherwise

Hence, de�nitions are merely a convenient notation for expressing some frequently

used programming idioms.

There are compelling reasons to take de�nitions as core constructs of a program-

ming language, however. They are more e�cient to implement directly than their

syntactically expanded counterparts [56]. Furthermore, in a statically-typed lan-

guage, they are essential to polymorphic type inference because the scope of each

denotation term is known statically [49]. Most importantly, they occur so often in

programs that they deserve a special status. In our work, we take the best of both

views. Semantically, we regard de�nitions as syntactic sugar to avoid introducing

additional mechanisms to explain their computational behavior. Syntactically, we



109

treat them as core constructs to demonstrate the incremental program construction

capabilities induced by our context-enriching schema.

6.2 Context-Enriched De�nition Calculus

Our context-enriching schema adds these mechanisms to a calculus to simulate the

notion of contexts:

� compiled code abstractions to simulate evolved contexts,

� a compiled code loading operation to assimilate compiled code into machine

code, and

� a compiled code construction operator for each category of composite contexts.

In enhancing the de�nition calculus �d with the behavior of contexts, the �rst

task is therefore to de�ne the notion of �d-contexts. One obvious possibility is shown

in Figure 6.1. Another is to instantiate the D-part of let D in C, hence rendering

D-contexts unnecessary:

C ::= h j x j ���x:C j C C j let fx1 = C; : : : ;xn = Cg in C

We do not give preference to the latter because it would require a separate compiled

code constructor for each let-context with a distinct set of identi�ers fx1; : : : ;xng. In
contrast, the former needs only a single (polymorphic) let-context constructor. More

importantly, by identifying D as a distinct category of contexts, we can replace them

with holes. Indeed, a �d-context let h in C expresses

(��� :C)

where the hole h actually consists of the two underscored parts. The latter is clearly

not a legal �-context, hence the increased expressiveness of �d-contexts. Moreover,

we can add D-context manipulation operations in the future in a modular fashion,

as we will see in the second half of this chapter.



110

Contexts:

C ::= h j x j ���x:C j C C j let D in C

D ::= h j fx1 = C; : : : ;xn = Cg

Evolved Contexts:

e ::= x j ���x:e j e e j let d in e

d ::= fx1 = e; : : : ;xn = eg

Figure 6.1: Contexts of de�nition calculus

There are now two categories of evolved �d-contexts, namely, the evolved term-

contexts e and the evolved de�nition-contexts d; see Figure 6.1. As usual, we continue

to use free identi�er abstractions ��:e to play the role of compiled evolved term-

contexts e. We also need a second category of abstractions to model the compiled code

of evolved de�nition-contexts d. One reason for the new compiled code abstractions

dedicated to de�nitions is that the body of a free identi�er abstraction ��:d would

be a de�nition d, which is not a proper �d-term. Hence, the compiled code loading

operation load ��:d would introduce de�nitions d as proper terms into the context-

enriched calculus. Furthermore, a free identi�er abstraction ��:d can only model the

free identi�ers of a d-context but not its de�ning identi�ers.

A new category of compiled code for the d-contexts is essential. We thus introduce

de�nition abstractions (	-abstractions)

	hfx1 :x1; : : : ;xm :xmg; fy1 :y1; : : : ;yn :yngi:fz1 = e1; : : : ; zk = ekg

which we often abbreviate as 	hf�x : �xg; f�y : �ygi:f�z = �eg or simply as 	h"; �i:d. They
are conceptual substitutes for de�nitions d as �rst-class citizens. The parameters

f�y : �yg serve the same purpose as the �-parameters of a �-abstraction ��:e. They

specify the free identi�ers �y whose corresponding placeholders in the machine code

�e are the variables �y. The parameters f�x : �xg identify the de�ning variables �z of the



111

e ::= x j �x:e j e e j ��:e j 	h"; �i:d j ���
��� ::= load j ~x j lamx j app j let j dfnx
d ::= fx1 = e; : : : ; xn = eg

x1; : : : ; xn pairwise distinct

"; � ::= fx1 :x1; : : : ;xn :xng

Figure 6.2: Term language of context-enriched de�nition calculus ���D

de�nition f�z = �eg externally as the identi�ers �x, which are the de�ning identi�ers of

the 	-abstraction.

Similar to �-abstractions, the �-parameters of 	h"; �i:d need not coincide with the
free variables of d. The "-parameters must be a subset of the de�ning variables of d,

however. That is, for any 	hf�x : �xg; f�y : �ygi:f�z = �eg, f�xg � f�zg must hold. If " were
allowed to specify more parameters than are de�ned by d, there would be de�ning

identi�ers with vacuous denotations. The correctness of code that depends on their

existence would be jeopardized. On the other hand, if d de�nes more variables than

are speci�ed by ", the bindings of the extraneous de�ning variables can always be

considered hidden.

The syntax of the once context-enriched �d-calculus ���D is summarized in Figure

6.2. In addition to 	-abstractions, ���D requires two more compiled code operators

than ���C. There is the binary operator let that constructs the compiled code of

let d in e from the compiled code of d and e. There are also the unary operators

dfnx, one for each identi�er x, that build the compiled code of fx = eg from the com-

piled code of e. (Compiled code construction of multiple binding de�nition-contexts

f�x = �eg is deferred to Section 6.5.1.) The operator let serves as a mechanism that

converts 	-abstractions to �-abstractions. In contrast, dfnx converts �-abstractions

to 	-abstractions.



112

Contexts:

C ::= h j x j ���x:C j C C j let D in C j ������:C j 			h"""; ���i:D j ���
D ::= h j fx1 = C; : : : ;xn = Cg

Evolved Contexts:

e ::= x j ���x:e j e e j let d in e j ������:e j 			h"""; ���i:d j ���
d ::= fx1 = e; : : : ;xn = eg

Figure 6.3: Contexts of ���D-calculus

6.3 Twice Context-Enriched De�nition Calculus

Following the development of the twice context-enriched �-calculus ���CC, we look for

a �xpoint of our schema. Hence, rather than giving a full description of the once

context-enriched de�nition calculus ���D, we proceed directly to the twice context-

enriched de�nition calculus ���DD. The derivation of ���DD parallels the development

of ���CC. The goal is to incorporate enough compilation mechanisms to express a

metacircular self-compiler of ���DD.

6.3.1 Term Language

The ���D-contexts are shown in Figure 6.3. The syntax of the twice context-enriched

de�nition calculus ���DD is given in Figure 6.4.

The twice context-enriched calculus ���DD conservatively extends ���D. In addition

to the compiled code operators of ���D, we need mechanisms to simulate the �lling

of these two categories of ���D-contexts: ������:h and 			h"""; ���i:h. For the former, there

are the operators phi��� introduced by ���CC; see Chapter 5. They build the compiled

code of ������:e from the compiled code of e. For the latter, we need a new category

of operators psi""";���, one for each pair of """ and ���, to construct the compiled code of



113

e ::= x j �x:e j e e j ��:e j 	h"; �i:d j ���
��� ::= load j ~x j lamx j app j let j dfnx j phi��� j psi��� j eps"""
d ::= fx1 = e; : : : ; xn = eg

"; � ::= fx1 :x1; : : : ;xn :xng
"""; ��� ::= fx1 :y1; : : : ;xn :yng

Figure 6.4: Term language of twice context-enriched de�nition calculus ���DD

			h"""; ���i:d from the compiled code of d. For reasons to be explained later, we further

split the operators psi""";��� into two categories of more primitive operation: psi��� and

eps""". Conceptually, the degenerate operators psi��� simulate the �lling of the hole h1

of the context 			hh2; ���i:h1 with the context d, yielding the partially complete context
			hh2; ���i:d. There are then the new operators eps""" to simulate the �lling of the

remaining hole h2 of 			hh2; ���i:d with """.

The twice context-enriched de�nition caluclus ���DD is a conservative extension

of the ���CC-calculus (cf. Figure 5.2). It adds to ���CC these new compilation mech-

anisms: 	-abstractions 	h"; �i:d and 	-abstraction operators let, dfnx, psi���, and

eps""".

6.3.2 Alpha Convertibility

The �rst step toward de�ning the twice context-enriched de�nition calculus ���DD is

the formalization of its �-conversion rule. As before, a fundamental syntactic notion

needed in formalizing the �-equivalence relation among ���DD-terms is the set of free

variables. Intuitively, an occurrence of a variable x is free in a term e if it does not

refer to a �-, �-, or 	-parameter. The set of free variables occurring in a term e is

denoted as fv(e). Its de�nition extends the counterpart of ���CC with the following



114

clause for the newly introduced de�nition abstractions:

fv(	h"; f�x : �xgi:d) = fv(d) n f�xg

where the set of free variables occurring in a de�nition d, denoted as fv(d), consists

of the free variables occurring in the denotation terms:

fv(fx1 = e1; : : : ; xn = eng) = fv(e1)[ � � � [ fv(en)

The parameters of �-, �-, and 	-abstractions, and the de�ning variables of 	-

abstractions are �-convertible. Their reduction rules are:

�x:e ! �y:hy=xie
�f�x : �xg:e ! �f�x :hy=xi�xg:hy=xie

	h"; f�x : �xgi:f�z = �eg ! 	h"; f�x :hy=xi�xgi:f�z = hy=xi�eg
	hf�x : �xg; �i:f�z = �eg ! 	hf�x :hy=xi�xg; �i:fhy=xi�z = �eg
	hf�x : �xg; �i:f�z = �eg ! 	hf�x : �xg; �i:fhy=xi�z = �eg where x =2 f�xg

(�-�)

(�-�)

(�-	�)

(�-	")

(�-	d)

In each of the �ve rules, the new variable y is not the same as the parameter variable

or the de�ning variable it replaces, i.e., y 6� x. Furthermore, it is fresh in the following

sense:

(�-�) The variable y is not a free variable of e. The notation hy=xie denotes the

renaming of all free occurrences of x in e to y. Its de�nition is given below.

(�-�) The variable y is not a free variable of e. It is not one of the parameter

variables �x either. The notation hy=xi�x denotes the renaming of the binding

occurrence of x in �x to y.

(�-	�) The variable y is not a free variable of the denotation terms �e. It is not one

of the parameter variables �x either. The notation hy=xi�e denotes the renaming
of all free occurrences of x in �e to y.

(�-	") The variable y is not one of the de�ning variables �z.

(�-	d) The variable y is not one of the de�ning variables �z.



115

The notion of reduction � underlying the �-convertibility among ���DD-terms is the

union of the above �ve renaming rules:

� = �-�[�-�[�-	�[�-	"[�-	d (�)

The �-substitution meta-operation hy=xie that replaces y for the free occurrences
of x in e extends the same operation for the ���CC-terms with the following clause:

hy=xi	h"; �i:f�z = �eg � 	h"; �i:f�z = hy=xi�eg

The parameter variables of � are assumed to be distinct from x and y. This is made

possible by the hygiene variable convention.

6.3.3 Reduction Rules

The twice context-enriched de�nition calculus ���DD has nine reduction rules. The

four reduction rules for compiled code construction operators load, lamx, app, and

phi��� carry over from ���CC without changes; see Section 5.2. They continue to work

on �-abstractions only, however. The other �ve reduction rules are described below.

Function Invocation

The �-reduction rule that models function invocation is still of the form:

(�x:e) e0 ! [e0=x]e (�)

The �-substitution meta-operation [e0=x]e is extended with the following clause for

de�nition abstractions:

[e0=x]	h"; �i:f�z = �eg � 	h"; �i:f�z = [e0=x]�eg

Again, we have used the variable hygiene convention to ensure that �-substitution

does not cause inadvertent variable capture. Hence, x is not one of the parameter

variables of � and none of the parameter variables of � are free in e0.



116

Constructing Compiled Let

The incremental compiled code construction operator let models the �lling of the

context let h1 in h2 with the contexts d and e. Its reduction rule is:

let 	h"1; �1i:d ��2:e ! ��1]�2:(let d in e)

where "1]�2
(let)

It yields the compiled version of let d in e expressed as ��1]�2:(let d in e) from the

compiled code 	h"1; �1i:d of d and the compiled code ��2:e of e. Similar to the

app-rule, the constraint �1]�2 ensures the well-formedness of the union of the two

parameter speci�cations �1 and �2. It states that:

(x :x1 2 �1 & x :x2 2 �2) if and only if x1 � x2

and

(x1 :x 2 �1 & x2 :x 2 �2) if and only if x1 � x2

The other constraint "1]�2 means

(x :x1 2 "1 & x :x2 2 �2) if and only if x1 � x2

and

(x1 :x 2 "1 & x2 :x 2 �2) if and only if x1 � x2

The de�ning variables of d speci�ed in "1 capture the free variables of e speci�ed in

�2 only when their identi�ers match. Intuitively, it models the linking of the free

identi�ers of �2 to the de�ning identi�ers of "1.

We have learned from the reduction rule for the compiled code constructor app

that the �rst constraint �1]�2 can be met by renaming the parameter variables of

�1 and �2 (cf. Section 3.3). Likewise, the second constraint "1]�2 can also be met

by renaming the parameter variables of "1 and �2. Furthermore, since the parameter

speci�cations "1 and �1 have no correlations, the two constraints �1]�2 and "1]�2
are satis�able at the same time by appropriate renaming of the parameter variables

of "1, �1, and �2.



117

For instance, consider contracting the following let-redex:

let 	hfx :xg; fx :x0; z :zgi:fx = x0; y = zg �fx :x00; z :z0g:(x00 z0 y)

Here, "1 is fx :xg, �1 is fx :x0; z :zg, and �2 is fx :x00; z :z0g. To form the union �1]�2
of the two sets �1 and �2, we must identify x0 with x00 and z with z0. Moreover, the

constraint "1]�2 requires us to identify x with x00 as well. Hence, we rename x, x0,

and x00 to the same fresh w; similarly, z and z0 are renamed to the same fresh v. Other

than that, according to the variable hygiene convention, no variable capture should

occur; hence, the de�ning variable y of the 	-abstraction is renamed to a fresh y0 so

that it is di�erent from the free variable y of the �-abstraction. We thus have

let 	hfx :xg; fx :x0; z :zgi:fx = x0; y = zg �fx :x00; z :z0g:(x00 z0 y)
� let 	hfx :wg; fx :w; z :vgi:fw = w; y0 = vg �fx :w; z :vg:(w v y)

! �fx :w; z :vg:(let fw = w; y0 = vg in (w v y))

In terms of contexts, the �rst argument 	hfx :xg; fx :x0; z :zgi:fx = x0; y = zg
is the compiled code of the context d � fx = x; y = zg and the second argument

�fx :x00; z :z0g:(x00 z0 y) is the compiled version of the context e � x z y. The contrac-

tum �fx :w; z :vg:(let fw = w; y0 = vg in (w v y)) is the compiled code of the context

let fx = x; y0 = zg in (x z y), the result of �lling let h1 in h2 with d and e.

Constructing Compiled De�nition

The incremental compiled code constructors dfnx, one for each identi�er x, model

the �lling of the context fx = hg with the context e. Their reduction rule is:

dfnx ��:e ! 	hfx :xg; �i:fx = eg (dfn)

where the choice of the de�ning variable x is arbitrary. It constructs the compiled code

of fx = eg modeled as the de�nition abstraction 	hfx :xg; �i:fx = eg when given the

compiled code ��:e of e.



118

To illustrate, the following contraction represents the �lling of fx = hg with x z:

dfnx �fx :x; z :zg:(x z) ! 	hfx :xg; fx :x; z :zgi:fx = (x z)g
� 	hfx :wg; fx :x; z :zgi:fw = (x z)g

Constructing Compiled De�nition Abstraction

The reason to include the operators psi""";���, one for each pair of """ and ���, resembles

that for the operators phi��� introduced by the twice context-enriched �-calculus ���CC.

They make ���DD the �xpoint of the repeated applications of our context-enriching

schema to the �d-calculus.

Each operator psi""";��� is intended to model the �lling of the hole h of the context

			h"""; ���i:h with the context d represented by 	h"; �i:d. It yields a �-abstraction

��:	h"0; �0i:d representing the compiled code of the context 			h"""; ���i:d. The reduction
rule for psi""";��� is quite complicated:

psif �w : �zg;f�x : �yg 	h"; �i:d ! ��:	hf �w : �zg; f�x : �ygi:d

The variable zi of each wi :zi is the parameter variable of zi in ". The identi�ers �z

must therefore be speci�ed in "; otherwise, the term psif �w : �zg;f�x : �yg 	h"; �i:d is not
a redex. The variable yi of each xi :yi is the parameter variable of yi in �, provided

that yi :yi is an element of �; otherwise, yi is a fresh variable. Intuitively, the behavior

of the f�x : �yg-part is similar to a phif�x : �yg operation on �-abstractions. The behavior
of the f �w : �zg-part is to hide away de�ning identi�ers of " not speci�ed in �z and to

rename the de�ning identi�ers �z to �w.

The operators psi""";��� not only have complex semantics, they are also too restric-

tive. It is necessary to fully specify the ���-part even if we are only interested in

carrying out the """-part, and vice versa. We therefore split the two functionalities into

two independent operations.

For the """-part, we introduce the operators eps""" with the following reduction rule:

epsf�x : �yg 	h"; �i:d ! 	hf�x : �yg; �i:d
where yi :yi 2 "

(eps""")



119

The variable yi of each xi :yi is the parameter variable of yi in ". Thus, the identi�ers

�y must be speci�ed in "; otherwise, the term epsf�x : �yg 	h"; �i:d is not a redex.

For the ���-part, we introduce the operators psi��� with the following reduction rule:

psif�x : �yg 	h"; �i:d ! ��:	h"; f�x : �ygi:d
where yi :yi 2 �

or else yi is fresh

(psi���)

The variable yi of each xi :yi is the parameter variable of yi in �, provided that yi :yi

is an element of �; otherwise, yi is a fresh variable.

Put together, the operators psi""";��� can be de�ned as follows:

psi""";��� � psi��� � eps"""

since we have

psif �w : �zg;f�x : �yg 	h"; �i:d = psif�x : �yg (epsf �w : �zg 	h"; �i:d)
! psif�x : �yg 	hf �w : �zg; �i:d
! ��:	hf �w : �zg; f�x : �ygi:d

6.3.4 Calculus of Compiled Code

The notion of reduction dd underlying the extended calculus ���DD is the union of

the nine reduction rules collectively displayed in Figure 6.5. We continue to use! to

denote the one-step reduction relation induced by dd and !! to denote the re
exive

and transitive closure of !. The least equivalence relation generated by !! is the

equational theory ���DD and equivalence under ���DD is written as e1 = e2.

The compiled code operators introduced by ���DD operate orthogonally to one

another and are independent of the �-abstraction operations of ���CC. Hence, by the

Hindley-Rosen Lemma, it is straightforward to show that the notion of reduction dd

is Church-Rosser:

Theorem 6.1 The dd-reduction relation !! satis�es the diamond property.



120

(�x:e) e0 ! [e0=x]e

load �fx1 :x1; : : : ;xn :xng:e ! [~xn=xn] � � � [~x1=x1]e
app ��1:e1 ��2:e2 ! ��1]�2:(e1 e2)

lamx ��:e ! ��:�x:e

where x :x 2 �

or else x is fresh

phifx1 :y1; : : : ;xn :yng ��:e ! ��:�fx1 :y1; : : : ;xn :yng:e
where yi :yi 2 �

or else yi is fresh

let 	h"1; �1i:d ��2:e ! ��1]�2:(let d in e)

where "1]�2
dfnx ��:e ! 	hfx :xg; �i:fx = eg

where x is arbitrary

psifx1 :y1; : : : ;xn :yng 	h"; �i:d ! ��:	h"; fx1 :y1; : : : ;xn :yngi:d
where yi :yi 2 �

or else yi is fresh

epsfx1 :y1; : : : ;xn :yng 	h"; �i:d ! 	hfx1 :y1; : : : ;xn :yng; �i:d
where yi :yi 2 "

(�)

(load)

(app)

(lam)

(phi���)

(let)

(dfn)

(psi���)

(eps""")

Figure 6.5: Reduction rules of twice context-enriched de�nition calculus ���DD



121

The free identi�er abstractions indistinguishable by the compiled code operators

of ���CC (cf. Theorems 3.5 and 5.2) remain indistinguishable by the new operators of

���DD. Moreover, the same notion of indistinguishability applies to 	-abstractions as

well. Formally, any two de�nition abstractions 	h"; �1i:d and 	h"; �2i:d that di�er

only in their parameter speci�cations �1 and �2 are indistinguishable to the com-

piled code operators of ���DD, denoted as 	h"; �1i:d � 	h"; �2i:d, when the following

condition holds:

for each free variable x of d, x :x 2 �1 if and only if x :x 2 �2 ( � )

That is, the two parameter speci�cations �1 and �2 agree on the free variables of d.

6.3.5 Metacircular Self-Compilation

As shown in Chapter 5, the twice context-enriched version of the �-calculus ���CC is

capable of compiling itself metacircularly. Here, we demonstrate the same behavior

for ���DD, but only for single binding de�nitions (the metacircular compilation can be

easily generalized to multiple binding de�nitions after a mechanism for constructing

such de�nitions is introduced in Section 6.5.1).

The abstract source code representation schema [[ ]]c for evolved ���DD-contexts

and its companion compilation function C extend their ���CC-counterparts with the

following clauses:

[[			h"""; ���i:d]]c � h5; hpsi""";���; [[d]]cii
[[fx = eg]]c � h6; hdfnx; [[e]]cii

[[let d in e]]c � h7; h[[d]]c; [[e]]cii

C h5; he1; e2ii = e1 (C e2)

C h6; he1; e2ii = e1 (C e2)

C h7; he1; e2ii = let (C e1) (C e2)

The compiler is compositional since the compilation of each ([[ ]]c-encoded) com-

posite evolved ���DD-context is a function of the compilation of the context's ([[ ]]c-

encoded) components. It is metacircular since it translates each category of evolved

���DD-contexts into the same category of ���DD-terms.

To summarize, we have demonstrated that our context-enriching schema can be

easily adapted to more sophisticated variable de�ning mechanisms. It is the case



122

that as the number of variable de�ning constructs grows, more compiled code ab-

stractions and compiled code operators are needed. The linking device at the heart

of incremental program construction is still the same old variable capture, however.

6.4 Modules

As mentioned before, de�nition abstractions 	h"; �i:d are substitutes for de�nitions

d as �rst-class citizens. They are modules [55, 73] represented as a distinct category

of compiled code. The de�ning variables of d are exported via the parameter speci-

�cation "; the parameters speci�ed in � are the import variables of d. The compiled

code operator let is the means to express module importation. The operators dfnx

are module constructors. In the rest of this chapter we extend ���DD with operations

that combine and link modules to form new modules. These operations are explained

in terms of context hole �lling. The point to stress here is that the linking between

import and export variables can be modeled strictly with variable capture.

Before presenting the module operators, we introduce some meta-operations on

de�nitions and de�nition abstractions. Let d � fx1 = e1; : : : ; xm = emg and d0 �
fx01 = e01; : : : ; x

0

n = e0ng be two de�nitions. We then de�ne d� d0 to be the disjoint

union of d and d0:

d� d0 � fx1 = e1; : : : ; xm = em; x
0

1 = e01; : : : ; x
0

n = e0ng

provided that the de�ning variables of d are distinct from the de�ning variables of d0,

i.e., xi 6� x0j for any i and j. Analogously, let " and "0 be the parameter speci�cations

fx1 :x1; : : : ;xm :xmg and fx01 :x01; : : : ;x0n :x0ng. We then de�ne "� "0 to be the disjoint

union of " and "0:

"� "0 � fx1 :x1; : : : ;xm :xm;x
0

1 :x
0

1; : : : ;x
0

n :x
0

ng

provided that xi 6� x0j and xi 6� x0j for any i and j. The constraint is notated as

"\ "0 = ;.



123

6.5 Combining Modules

In this section we combine modules to form new modules. Each of the module com-

bination operators introduced here is the context-enriched version of a corresponding

de�nition combination construct whose semantics can be easily understood via syn-

tactic expansion. Again, our emphasis is not on the semantic description of each

de�nition combination construct; rather, it is on showing how straightforward it is to

add a corresponding context-enriched module operator to the ���DD-calculus.

For each de�nition combination construct that combines two de�nitions f�x = �eg
and f�y = �e0g to form a new de�nition, we consider two fundamental issues:

override Are the bindings of f�x = �eg included in the new de�nition? Similarly,

are the bindings of the other constituent de�nition f�y = �e0g part of the new

de�nition? If both are included, the bindings of which constituent de�nition

take precedence in case of con
icts?

linking In the new de�nition, what is the scope of the de�ning variables �x and �y?

Are the bindings of �x and �y visible to the denotation terms �e and �e0?

We choose the following derived forms of de�nition along with their induced mod-

ule combination operators to demonstrate our point that module linking can be mod-

eled by coordinated renaming of import and export variables:

d ::= � � �
j sim d d

j priv d d

j override d d
j moverride d d

d ::= � � �
j sim d d

j priv d d

j override d d

jmoverride d d

��� ::= � � �
j sim
j priv
j override
jmoverride

The left hand column shows the syntax of the de�nition combination constructs; the

middle column consists of their respective evolved contexts; and the right hand col-

umn depicts the induced module operators. The �rst de�nition combination sim d d

involves no override nor linking. The second combination priv d d entails linking but



124

not override. The third construct override d d exhibits override but not linking. The

last form moverride d d has both override and linking.

6.5.1 Simultaneous De�nitions

The derived de�nition sim d1 d2, where the de�ning variables of d1 and d2 are disjoint,

denotes the simultaneous combination of d1 with d2. It is the disjoint union of the

bindings of d1 and d2:

sim d1 d2 � d1 � d2

There is no linking nor override involved; neither d1 nor d2 is in the scope of the other.

The module combining operator that corresponds to the construction of simul-

taneous de�nitions is sim. It models the construction of the compiled code of the

context sim d1 d2 from the compiled code of the contexts d1 and d2:

sim 	h"1; �1i:d1 	h"2; �2i:d2 ! 	h"1 � "2; �1]�2i:(sim d1 d2)

where "1 \ "2 = ;
(sim)

The condition "1 \ "2 = ; expresses the constraints that the export identi�ers of "1

must be distinct from those of "2 and that the variables of "1 are distinct from the

variables of "2. Without them, neither the disjoint union "1 � "2 nor the simultaneous

de�nition sim d1 d2 would make sense. This rule, like all the other compiled code

construction rules, relies on renaming the variables of "1, �1, "2, and �2 to meet the

constraints as well as to ensure the absence of inadvertent variable capture.

As an example, let Ax and Ay be de�ned as follows:

Ax = 	hfxcor :wg; fgi:fw = 3g
Ay = 	hfycor :wg; fgi:fw = 4g

Then,

A = sim Ax Ay

� sim 	hfxcor :xg; fgi:fx = 3g 	hfycor :yg; fgi:fy = 4g



125

! 	hfxcor :x;ycor :yg; fgi:(sim fx = 3g fy = 4g)
= 	hfxcor :x;ycor :yg; fgi:fx = 3; y = 4g

6.5.2 Private De�nitions

In the derived de�nition priv d1 d2, the bindings of d1 are privately available to the

denotation terms of d2:

priv d1 fx1 = e1; : : : ; xn = eng � fx1 = (let d1 in e1); : : : ; xn = (let d1 in en)g

There is therefore the linking of the de�ning variables of d1 with their free occurrences

in the denotation terms e1; : : : ; en. No override is involved since the bindings of d1

are not carried over to the new de�nition.

The module constructor that corresponds to private de�nitions is priv. It models

the construction of the compiled code of the context priv d1 d2 using the compiled

code of the contexts d1 and d2:

priv 	h"1; �1i:d1 	h"2; �2i:d2 ! 	h"2; �1]�2i:(priv d1 d2)

where "1]�2
(priv)

The constraint "1]�2 expresses the linking of the import variables of �2 to the export
variables of "1 when they have identical identi�ers. The new module has the same

exports as "2 since the bindings of d1 are private to d2 only.

To illustrate, let A be the module de�ned in the last section and let B be the

following module:

B = 	hfdist :dg; fxcor :x;ycor :ygi:fd = p
x2 + y2g

Then,

C = priv A B

! 	hfdist :dg; fxcor :x;ycor :ygi:(priv fx = 3; y = 4g fd = p
x2 + y2g)

� 	hfdist :dg; fxcor :x;ycor :ygi:fd = let fx = 3; y = 4g in px2 + y2g
= 	hfdist :dg; fxcor :x;ycor :ygi:fd = p

32 + 42g



126

6.5.3 Overriding De�nitions

The derived de�nition override d1 d2 denotes the combination of d1 and d2 such that

the bindings of d2 override the bindings of d1 in case of con
icts:

override d1 d2 � (d1 n dv(d2))� d2

where dv(d2) denotes the set of de�ning variables of de�nition d2 and d1 n dv(d2)
removes from d1 bindings whose de�ning variables are also speci�ed by d2. There is

override, but no linking; the de�nitions are not in the scope of each other.

The corresponding module operator is override. It models the construction of the

compiled code of the context override d1 d2 from the compiled code of the contexts

d1 and d2:

override 	h"1; �1i:d1 	h"2; �2i:d2
! 	h"1]"2; �1]�2i:(override d1 d2)

(override)

The constraint "1]"2 ensures that the export variables of "2 are identical to the export
variables of "1 only when they have the same export identi�ers.

For instance, let C be the module de�ned in the last section and let D be the

module de�ned below:

D = 	hfdist :dg; fdist :dgi:fd = d+ 5g

Then,

override C D

! 	hfdist :dg; fdist :dgi:(override fd = p
32 + 42g fd = d+ 5g)

� 	hfdist :dg; fdist :dgi:fd = d+ 5g

6.5.4 Mutually-Linked Overriding De�nitions

The derived de�nition moverride d1 d2 is similar to override d1 d2 except that the

de�nitions d1 and d2 are in the scope of each other. Hence, in addition to override,



127

the two de�nitions are mutually linked. The syntactic expansion of moverride d1 d2

is a little bit more complicated:

moverride fx1 = e1; : : : ; xm = emg fx01 = e01; : : : ; x
0

n = e0ng
� override fx1 = (�m

1 (�21 P )); : : : ; xm = (�m
m (�21 P ))g

fx01 = (�n
1 (�22 P )); : : : ; x

0

n = (�n
n (�22 P ))g

where �n
i is the ith selector of n-tuples and P is the pair de�ned recursively as follows:

P = hlet fx01 = (�n
1 (�

2
2 P )); : : : ; x

0

n = (�n
n (�22 P ))g in he1; : : : ; emi;

let fx1 = (�m
1 (�21 P )); : : : ; xm = (�m

m (�21 P ))g in he01; : : : ; e0nii

The operator moverride that constructs mutually linked overriding modules

models the construction of the compiled code of moverride d1 d2 from the com-

piled code of d1 and d2 as follows:

moverride 	h"1; �1i:d1 	h"2; �2i:d2
! 	h"1]"2; �1]�2i:(moverride d1 d2)

where "1]�2 and "2]�1

(moverride)

In addition to the constraint "1]"2 of the override-rule, it requires that the import
variables of �1 be linked to the export variables of "2 when their identi�ers match;

hence, "2]�1. Similarly, "1]�2 means that the export variables of "1 are linked with

the import variables of �2. Again, all the constraints can be satis�ed at once by the

appropriate renaming of the parameter variables of "1, �1 "2, and �2.

To illustrate, let modules A and B be de�ned as follows:

A = 	hfodd :fg; feven :xgi:ff = �n:if n = 0 then F else (x (n� 1))g
B = 	hfeven :gg; fodd :ygi:fg = �n:if n = 0 then T else (y (n� 1))g

Then,

moverride A B

= 	hfodd :f; even :gg; fodd :f; even :ggi:



128

(moverride ff = �n:if n = 0 then F else (g (n� 1))g
fg = �n:if n = 0 then T else (f (n� 1))g)

where the two functions f and g are mutually dependent on each other.

In summary, we have shown through the above exercises that it is easy to extend

the ���DD-calculus with additional module operations. The extensions themselves can

be done in a modular fashion. More importantly, the complexities involved in the

process stem mainly from the syntactic expansion of the derived de�nition constructs.

Their induced module operators actually have relatively straightforward reduction

rules that incur only simple identi�cation of import and export variables. Additional

examples of incremental module constructions can be found in Chapter 8.



Chapter 7

Context-Enriched Calculus of

Relinkables

In the last chapter we have seen the enhancement of expressiveness achieved by en-

riching elaborate variable de�ning mechanisms with the notion of contexts. Here we

explore the possibilities associated with the 
ip side of the coin. We show that expres-

siveness can also be enhanced by enriching intricate variable referencing mechanisms.

The fancier variable referencing mechanisms of interest are the relinkable variable

references, which are simply called relinkables from here on. A relinkable is a variable

reference that can be linked to di�erent function parameters as its enclosing context

grows. For instance, we can have a relinkable r such that in the following terms the

same relinkable is bound by the di�erent underlined �-parameters:

�x:�x:r

�y:�x:�x:r

�x:�x:�x:�y:�x:�x:r

It refers to the second innermost �-parameter x, the one underlined, in the �rst term.

In the second term, the same relinkable r refers to the innermost �-parameter y. Still,

in the third term, it is bound by the fourth innermost �-parameter x. The variable

reference r is therefore said to be relinked according to its surrounding context.

129



130

Since relinkables can be redirected to mean di�erent things in di�erent contexts,

they provide a very 
exible means for modeling code reuse, a notion crucial to in-

cremental program development. Indeed, the notion of relinkables covers many com-

monly found variable referencing mechanisms. For instance, a statically-scoped vari-

able reference can be seen merely as a degenerate relinkable that cannot be relinked.

A Common Lisp optional keyword parameter [66] is a relinkable that has been asso-

ciated with a default denotation and can be relinked once to its optional denotation.

A late binding C++ virtual reference [68] is a relinkable that can be relinked an

arbitrary number of times.

Relinkables may seem counterintuitive to static scope. Indeed, as indicated above,

relinkables exhibit behavior that strongly resembles dynamically-scoped variables

since their linking relation does not appear to be �xed. In this chapter we show

that the �-calculus can be generalized to incorporate relinkables without jeopardizing

static scope, however. Our calculus of relinkables is based on Berkling and Fehr's

�-calculus, which is reviewed in Section 7.1. In Section 7.2 we formalize the intuition

behind relinkables into a �-calculus. The context-enriched calculus of relinkables is

presented in Section 7.3. The twice context-enriched calculus of relinkables is de-

scribed in Section 7.4. It is then used in the next chapter to express the fundamental

adaptive behavior inherently associated with object-oriented and interactive program-

ming, two of the most prominent incremental programming paradigms in practice.

7.1 Berkling and Fehr's Lambda Calculus

The �-calculus as we know it is not very well suited for mechanical implementation.

The reason is that each �-substitution operation incurs potentially many �-conversion

steps to avoid variable capture. Many have come up with variations of the �-calculus

to facilitate e�cient implementation [1, 14, 41, 56, 72]. In particular, in his AU-

TOMATH project [15], de Bruijn uses a version of the �-calculus in which each

variable reference is replaced by its lexical address, which is the distance between the



131

variable reference and its binding �-parameter. An immediate consequence is that

the calculus employs no variable names. There is therefore no need for �-conversion.

Motivated by the same e�ciency concerns, Berkling and Fehr [9, 10] propose

independently a �-calculus that can be characterized as an integration of de Bruijn's

nameless �-calculus with the standard nameful version of the �-calculus. The terms

of their calculus have the following abstract syntax (using our notation):

k 2 Dists = f1; 2; : : :g
e ::= xk j �x:e j e e

(�bf)

Each variable reference xk consists of a variable name x and a distance (lexical ad-

dress) k. It refers to the kth nearest enclosing �-parameter named x. For example,

the reference x2 in �x:�y:(y1 �x:x2) is bound by the underlined parameter, which is

the second nearest enclosing x-parameter with respect to the variable reference x2.

Conceptually, the variable references of �bf are lexical addresses partitioned ac-

cording to their names. During �-substitution, their lexical addresses, but not their

names, are adjusted to avoid inadvertent capture. Hence, no �-conversion is neces-

sary. Below is a description of how this is accomplished.

The �-reduction rule for the �bf -calculus relies on two distance adjusting opera-

tions "nx(e) and #nx(e). Every free variable reference xk in e with k � n has its distance

incremented by one under "nx(e) and decremented by one under #nx(e). These opera-
tions are needed to compensate for the addition or removal of an x-parameter from

the enclosing context of e. Formally, the two operations "nx(e), where n � 1, and

#nx(e), where n � 2, are de�ned inductively on the structure of e as follows:

"nx(zk) �
8><
>:

zk+1 if x � z, k � n

zk otherwise

"nx(�z:e) �
8><
>:

�z:"n+1x (e) if x � z

�z:"nx(e) otherwise

"nx(e1 e2) � "nx(e1) "nx(e2)

#nx(zk) �
8><
>:

zk�1 if x � z, k � n

zk otherwise

#nx(�z:e) �
8><
>:

�z:#n+1x (e) if x � z

�z:#nx(e) otherwise

#nx(e1 e2) � #nx(e1) #nx(e2)
Intuitively, for a free variable reference occurring in the body e of a function �x:e to

refer to the nth nearest �-parameter named x enclosing the function, it must have a



132

distance of n+1. Hence, the superscript n is incremented in the �-abstraction clause

when x is the name of the �-parameter.

The �-reduction rule for the �bf -calculus is:

(�x:e) e0 ! #2x(["1x(e0)=x1]e) (�)

Every free variable reference in the function body e that refers to the parameter of

the function �x:e is substituted with the term e0, which is notated as [e0=x1]e. Every

free variable reference in e with the name x and a distance k greater than 1 must have

its distance decremented by one, #2x([e0=x1]e), since one of its enclosing x-parameter is
removed. This decrement operation should not apply to occurrences of the argument

term e0, however, since e0 was not in the scope of the removed x-parameter. So, based

on the fact that #2x("1x(e0)) is identical to e0, the e�ect of the decrement operation

can be cancelled out if the distance of every free variable reference in e0 with the

name x is incremented before performing the substitution, hence the contractum

#2x(["1x(e0)=x1]e).
The �-substitution meta-operation [e0=xn]e has the following inductive de�nition:

[e0=xn]zk �
8><
>:

e0 if x � z and k = n

zk otherwise

[e0=xn]�z:e �
8><
>:

�z:["1z(e0)=xn+1]e if x � z

�z:["1z(e0)=xn]e otherwise

[e0=xn](e1 e2) � [e0=xn]e1 [e
0=xn]e2

Again, the most interesting clause is the one for �-abstractions. The replacement term

e0 has the distance of its free variable references with the name z incremented by one,

notated as "1z(e0), to avoid inadvertent capture since the substitution is in the scope

of one more �-parameter named z. When the name x of the to-be-replaced variable

references xn is the same as the parameter z of the �-abstraction �z:e, the distance

of xn is incremented by one to account for the fact that a free variable reference in

�z:e with the name z must have a distance of n+ 1 in the function body e.



133

Notice that there is no need for parameter renaming in the above de�nition of �-

substitution. In its place are distance adjustment operations. The advantage of doing

so is a simpler machine implementation because the complicated task of choosing

new variable names for �-conversion steps is replaced by simple integer arithmetic on

lexical addresses.

We conclude this section by showing that the context-enriched version of �bf is

more expressive than ���C, the context-enriched �-calculus. Consider the following

derivation:

lamx (lamx �fx :xg:x2) = lamx �fx :xg:�x:x2

= �fx :xg:�x:�x:x2

The distance 2 of the variable reference x2 provides a way for us to \ignore" the pa-

rameter of the �rst incrementally constructed �-abstraction. Instead, x2 refers to the

parameter of the second incrementally constructed �-abstraction, the one underlined.

Such behavior is clearly not expressible in ���C. Still, enhancing �bf with contexts

alone does not provide the adaptive behavior promised at the beginning of the chap-

ter. We therefore introduce relinkables, which are a generalization of �bf variable

references.

7.2 Relinkables

A relinkable is a sequence of �bf variable references [x
k1
1 ; x

k2
2 ; : : :], e.g., [x

2; y3; z1]. Such

a sequence can be conceptually in�nite. (Of course, we must then �nd a �nite syntac-

tic representation for such sequences. Doing so would certainly limit the sequences

that are expressible. Fortunately, many of the interesting applications of relinkables

do have a �nite representation; see Section 7.2.4.) Each constituent xkii of a relinkable

[: : : ; xkii ; : : : ; x
kj
j ; : : :] conditionally dominates x

kj
j , where j > i, in the sense that when

xkii is known to be bound by some �-parameter, its link takes precedence over that of

x
kj
j . Hence, the denotation of xkii is favored over the denotation of x

kj
j . A relinkable



134

[xk11 ; x
k2
2 ; : : :] is thus semantically equivalent to

if xk11 is bound then xk11

else if xk22 is bound then xk22
. . .

else [xk11 ; x
k2
2 ; : : :] is unbound

In other words, a relinkable is equivalent to its constituent variable reference xkii

with the smallest i such that xkii is known to be linked. Such a constituent is called

dominant.

Relinkables are so called since they can be relinked to di�erent �-parameters as

their enclosing context grows. For instance, the same relinkable [x2; y1; x1; x3] in

the following successive terms changes its link to refer to outer �-parameters (the

dominant constituent and the parameter to which it refers are underlined):

�x:[x2; y1; x1; x3]

�y:�x:[x2; y1; x1; x3]

�x:�y:�x:[x2; y1; x1; x3]

�x:�x:�y:�x:[x2; y1; x1; x3]

The semantics of the relinkable [x2; y1; x1; x3] is therefore sensitive to its surrounding

context.

7.2.1 Provisionally-Instantiated Relinkables

Relinkables pose a problem for �-reduction. Consider the �-redex

(�x:�x:[x2; x1]) �y:y

The to-be-replaced variable reference x2 of [x2; x1] is dominant; its denotation precedes

that of the other constituents. We can therefore substitute �y:y for the relinkable

[x2; x1], yielding �x:�y:y. The situation gets murkier when we try to reduce the



135

�-redex

(�x:�x:[x3; x2; x1]) �y:y

where the to-be-substituted x2 is not guaranteed to be dominant. Since we do not

know whether there is a denotation for x3, it is wise for us to keep the denotation of x2

around. We thus retain �y:y as a provisional denotation for the relinkable [x3; x2; x1].

Clearly, the reduction should remove x2 from [x3; x2; x1] since we already have a de-

notation for it. It should also remove x1 since we already have a denotation for a

more dominating x2. Thus, only x3 should remain in the result of the substitution.

But since a binding occurrence of x has been removed by the �-reduction, the dis-

tance of x3 should be decremented accordingly. We thus arrive at the relinkable [x2]

and the result of the �-reduction is �x:[x2]��y:y, where r�e is our notation for a

provisionally-instantiated relinkable, r being the relinkable and e being its provisional

denotation.

Intuitively, a provisionally-instantiated relinkable [xk11 ; x
k2
2 ; : : :]�e is semantically

equivalent to

if xk11 is bound then xk11

else if xk22 is bound then xk22
. . .

else e

where e is interpreted as the \default" denotation of [xk11 ; x
k2
2 ; : : :].

7.2.2 Variable Name Delimitation

Another problem concerning relinkables has to do with the scope of a variable name.

It is particularly crucial to relinkables with an in�nite number of constituents such as

[x1; : : : ; x1]. The denotation of each of its constituents is destined to be provisional

only. We would never know which is the denotation of the relinkable. We thus

incorporate variable name delimitation terms �x:e to con�ne the scope of the name



136

x to the term e. Any variable reference in e with the name x cannot have its binding

�-abstractor beyond the term �x:e. Thus, in the term

�x:�x:�x:�x:[x3; y1; x2; x1]

the reference x3 does not refer to the underlined x even though its distance from x3 is

3, discounting the delimiter �x. We can therefore rename the x's in the �x-delimited

term to a fresh name, say w, thus yielding an �-equivalent term

�x:�w:�w:�w:[w3; y1; w2; w1]

It is now clear that the scope of the underlined x does not extend beyond the �v-

delimiter.

Indeed, the relinkable [x3; y1; x2; x1] in �x:�x:�x:�x:[x3; y1; x2; x1] is semantically

equivalent to [y1; x2; x1]. We can remove its constituent variable reference x3 since it

is certain to be unlinked. In general, for each �x:e, we can �nalize every relinkable in

e with respect to the name x by removing its constituents of the form xk that are not

bound by �-parameters within �x:e. Intuitively, the number n of binding occurrences

of x (the number of �-parameters named x) in between a relinkable r and the closest

�x-delimiter is known statically. Any variable reference xk in r with a distance k

greater than n can be removed from r, since it is not bound by any �-parameter

within the boundary of �x:e. If the �nalization of r yields the arid relinkable [], r is

unbound. Likewise, we can �nalize every provisionally-instantiated relinkable r�e0

in the scope of a name-delimitation term �x:e. If the �nalization of r yields [], e0

is the denotation of r; hence, we can replace r�e0 with the �nalized version of e0.

Otherwise, the result is a provisionally-instantiated relinkable associating the �nalized

r with the �nalized e0. This can be summarized as the following reduction rule where

�1
x(e) is a notation for such a variable reference removal process:

�x:e ! �1
x(e) (�x)



137

7.2.3 Calculus of Relinkables

To summarize, we have generalized Berkling and Fehr's �bf -calculus to a new calcu-

lus with relinkables r, provisionally-instantiated relinkables r�e, and variable name

delimitation terms �x:e:

r ::= [xk11 ; x
k2
2 ; : : :]

e ::= r j �x:e j e e j r�e j �x:e

It is clear that �bf is a special case of our calculus of relinkables in which every

relinkable is a singleton sequence and therefore there is no need for provisionally-

instantiated relinkables nor name delimitations.

We must point out that the relinkables as presented above are still statically

scoped in the sense that given any program, which is a term with every one of its

names �-delimited, we can statically determine the dominant constituent of each of

its relinkables. Hence, every relinkable can be reduced to a singleton sequence con-

sisting solely of its dominant constituent. Moreover, the link between the dominant

constituent of each relinkable and its binding �-parameter is consistently maintained

by the �-reduction rule. The calculus of relinkables is therefore only as expressive

as the �-calculus. The new relinkable variable references themselves do not provide

the 
exibility alluded to at the beginning of this chapter. Their potential will be

unleashed when they are enriched with contexts, however.

7.2.4 A Concrete Representation of Relinkables

Before continuing onto the enrichment of the calculus of relinkables with the notion

of contexts, we give a concrete �nite representation for relinkables. The very �rst

limitation imposed by such a representation is that it cannot include all possible

relinkables. Fortunately, it is general enough to express many interesting applications;

see Chapter 8 for examples.

The �nite representation uses the notation x(u;l], where l; u 2 f1; 2; : : : ;1g are two
numbers such that u > l, to denote the possibly in�nite series of variable references



138

xu�1; : : : ; xl of the same name x. For instance, x(4;1] denotes the �nite series x3,x2,x1

and x(1;1] means the in�nite series x1, : : :, x1. A relinkable is then represented as a

sequence of such series. Formally,

l; u 2 f1; 2; : : : ;1g
t ::= x(u;l] where u > l

r ::= [t1; : : : ; tn] where n � 0

As an example, [x(4;1]; y(2;1]; x(1;3]] is a �nite representation of the in�nite relinkable

[x3; x2; x1; y1; x1; : : : ; x3].

We further require the following constraint to guarantee that the representation

[t1; : : : ; tn] of each relinkable, if there is one, is unique:

For any two adjacent series ti � x(u;l] and ti+1 � x(u0;l0] of the same variable

name x, the interval (u; l] is not downwardly adjacent to the interval (u0; l0],

i.e., l 6= u0.

Without the constraint, the �nite relinkable [x3; x2; x1] has these four possible di�erent

concrete representations:

[x(4;3]; x(3;2]; x(2;1]]

[x(4;2]; x(2;1]]

[x(4;3]; x(3;1]]

[x(4;1]]

With the constraint, only the last one [x(4;1]] is admissible.

7.3 Context-Enriched Calculus of Relinkables

Recall that our schema for incorporating the notion of contexts into a calculus is to

extend the calculus with these mechanisms:

� compiled code abstractions to simulate evolved contexts,



139

Contexts:

r ::= [xk1
1 ;x

k2
2 ; : : :]

C ::= h j r j ���x:C j C C j r�C j ���x:C

Evolved Contexts:

e ::= r j ���x:e j e e j r�e j ���x:e

Figure 7.1: Contexts of �-calculus with relinkables

� a compiled code loading operation to assimilate compiled code into machine

code, and

� a compiled code construction operator for each category of composite contexts.

The contexts of the �-calculus with relinkables are de�ned in Figure 7.1. To enrich

the calculus of relinkables, we extend it with:

� free identi�er abstractions ��:e to model compiled code,

� a free identi�er abstraction loading operator load and unlinked identi�er indi-

cators ~x, and

� an incremental compiled code construction operator for each of the four com-

posite contexts:

{ lamx for constructing compiled �-abstractions,

{ app for constructing compiled applications,

{ pro for constructing compiled provisionally-instantiated relinkables, and

{ delx for constructing compiled name delimitations.



140

The operators lamx and app are the familiar ones described in Chapter 3. The

behavior of the operator pro is characterized by the following reduction rule:

pro ��1:r ��2:e ! ��1]�2:(r�e)

It constructs the compiled code ��1]�2:(r�e) of a provisionally-instantiated relink-

able r�e out of the compiled code ��1:r of the relinkable r and the compiled code

��2:e of the provisional denotation e. There is one problem with the above reduction

rule, however. It requires the rule to \peek" into the body of the �rst free identi�er

abstraction argument ��1:r to ensure that it is a relinkable.

An alternative is to introduce a speci�c category of compiled code abstraction

��:r whose body is always a relinkable:

pro ��1:r ��2:e ! ��1]�2:(r�e)

The behavior of ��:r can be achieved without a dedicated category of compiled code,

however. We can treat ��:r as the following syntactic sugar:

��:[xk11 ; x
k2
2 ; : : : ; ] � ��:�y:[xk11 ; x

k2
2 ; : : : ; y

1]

where y is a variable name distinct from the variable names of � and the names x1,

x2, : : : of the relinkable [x
k1
1 ; x

k2
2 ; : : : ; ]. We may then replace the operator pro with

app:

app ��1:[x
k1
1 ; x

k2
2 ; : : : ; ] ��2:e � app ��1:�y:[x

k1
1 ; x

k2
2 ; : : : ; y

1] ��2:e

! ��1]�2:((�y:[xk11 ; xk22 ; : : : ; y1]) e)
! ��1]�2:([xk11 ; xk22 ; : : :]�e)

Hence, we can do without the operator pro and its reduction rule.

We have argued previously that a free identi�er abstraction ��:e models a piece

of separately compiled but yet to be fully linked code and that the set of variables

speci�ed in � are the unlinked variables of the compiled code. Since our intention

is to link these unlinked variables explicitly through incremental compiled code con-

structions, a �-abstraction ��:e should con�ne the variable names of � to e. In other



141

words, the abstractor �� should also serve as a delimiter for the variable names of �.

Thus, the name x of the variable x3 in �fx :xg:[x3] is con�ned by the �-abstractor

�fx :xg. It can therefore be renamed to some fresh y to yield the �-equivalent term

�fx :yg:[y3].
Anomalies could occur without the above interpretation. Consider the term

�x:(y �fx :xg:[x1])

Had we allowed the variable reference x1 to \see" beyond the �-abstractor �fx :xg,
it would be linked to the underlined �-parameter. Suppose that the denotation of the

free variable y is determined later to be lamx. We would then have

[lamx=y]�x:(y �fx :xg:[x1]) � �x:(lamx �fx :xg:[x1])
! �x:�fx :xg:�x:[x1]

and the variable reference x1 would be relinked to the underlined newly introduced

�-parameter. This kind of behavior clearly violates the spirit of static scope.

With �-abstractors also playing the role of variable name delimiters, the operation

load ��:e must activate the implicit name delimitation associated with every variable

of � and thus �nalize its references in e as discussed in Section 7.2.2. Thus, contracting

the redex load �fx :xg:e should yield the term �1
x(e) that is e but with every variable

reference to the name x �nalized, which is exactly the expected e�ect of �x:e. It is

therefore unnecessary for us to include �x:e as a distinct term in the context-enriched

calculus. Removing �x:e means that there is no need for the name delimitation term

construction operators delx either. The would-be reduction rule for delx is

delx ��:e ! ��:�x:e

where either x :x 2 � or else x is fresh. It can be simulated as follows (the operator

phifxg is de�ned in Chapter 5):

delx � �x:(app �fg:load (phifxg x))



142

since

delx ��:e = app �fg:load (phifxg ��:e)
= app �fg:load ��:�fx :xg:e

[where either x :x 2 � or else x is fresh]

= ��:(load �fx :xg:e)
= ��:�1

x(e)

To summarize, the syntax of the context-enriched calculus of relinkables ���R is:

e ::= r j r�e j �x:e j e e j ��:e j ���
��� ::= load j ~x j lamx j app

The new mechanisms introduced are exactly those added to the �-calculus by ���C.

The only major change is in the transformation of compiled code into machine code.

The load-reduction rules used by ���C and ���R are:

load �fx1 :x1; : : : ;xn :xng:e ! [~xn=xn] � � � [~x1=x1]e
load �fx1 :x1; : : : ;xn :xng:e ! �1

x(� � � (�1
x(e)) � � �)

(���C)

(���R)

In ���C, the variable xi of an unlinked free identi�er xi is assigned the indicator ~xi,

e.g.,

load �fx :xg:x = [~x=x]x

= ~x

The same behavior can be achieved in ���R by manually associating the equivalent of

the variable x with the unlinked identi�er indicator ~x as its default denotation:

load �fx :xg:[x1]� ~x = �1
x([x

1]� ~x)

= ~x

The �nalization of [x1]� ~x with respect to the name x, denoted as �1
x([x

1]� ~x), means

that the only constituent x1 of the relinkable [x1] is not to be bound; hence the

�nalization of [x1] is the arid sequence []. The provisional denotation ~x therefore

becomes the denotation of [x1]� ~x



143

Syntactic Domains:

x 2 Vars (Variable Names)

k 2 Dists (Distances)

xk 2 Refs (Variable References)

r 2 Relnks � Refs� (Relinkables)

x 2 Idents (Identi�ers)

~x 2 Unlnks (Unlinked Identi�er Indicators)

Abstract Syntax:

r ::= [xk11 ; x
k2
2 ; : : :]

e ::= r j r�e j �x:e j e e j ��:e j ���
��� ::= load j ~x j lamx j app j phi���
� ::= fx1 :x1; : : : ;xn :xng
��� ::= fx1 :y1; : : : ;xn :yng

Figure 7.2: Term language of twice context-enriched calculus of relinkables ���RR

7.4 Twice Context-Enriched Calculus of Relink-

ables

Once again, we skip the presentation of the once context-enriched calculus ���R and

proceed directly to the formal description of the twice context-enriched calculus in-

stead. The syntax of the twice context-enriched calculus of relinkables ���RR is sum-

marized in Figure 7.2. The new compiled code mechanism it adds to ���R are the

constructors phi��� that build compiled �-abstraction code (cf. Chapter 5 for the de-

velopment of ���CC from ���C). As usual, the description of ���RR consists of the

formal de�nition of the notion of free variables, the �-equivalence relation among

���RR-terms, and the reduction rules underlying ���RR.



144

In the following, we take the notational liberty of treating the representation of

each relinkable r as if it were the (possibly in�nite) sequence [xk11 ; x
k2
2 ; : : :] that it

denotes. We use the notation �xk to abbreviate a (possibly in�nite) series of variable

references xk11 ; x
k2
2 ; : : :. The notation [�xk] denotes a relinkable whose constituents are

xk11 ; x
k2
2 ; : : :. We also write f(�xk), where f is one of the meta-operations to be de�ned,

for the distribution of f over �xk, i.e., f(xk11 ); f(x
k2
2 ); : : :. Likewise, when �e is a series

of terms e1; : : : ; en, f(�e) denotes f(e1); : : : ; f(en). Another notational convention we

employ in this section is xk :: r. It denotes a relinkable whose �rst constituent is xk

and the rest is the sequence r.

7.4.1 Free Variables and Free Variable Names

A variable reference xk is free in a ���RR-term e if it is linked to some �- or �-

parameter. The set of free variable references occurring in a term e is denoted as

fv(e). It is de�ned inductively on the structure of e as follows:

fv([�xk]) = f�xkg (7.1)

fv(r�e) = fv(r)[ fv(e) (7.2)

fv(�x:e) = fyk 2 fv(e) j y 6� xg[ fxk�1 j xk 2 fv(e); k > 1g (7.3)

fv(e1 e2) = fv(e1)[ fv(e2)
fv(�f�x : �xg:e) = fxk 2 fv(e) j x =2 f�xgg (7.4)

fv(���) = ;

The free variables of a relinkable [�xk] are the variable references �xk (Clause 7.1). The

free variables of a provisionally-instantiated relinkable [�xk]�e are the free variables of

[�xk] and e combined (Clause 7.2). For a �-abstraction , every free variable of the body

term e with the same name x as the �-parameter has its distance decremented by one

to compensate for the binding occurrence introduced by the abstractor (Clause 7.3).

In the �-abstraction clause (Clause 7.4), the �-parameters serve as name delimiters;

hence, no variables bearing the same names are free beyond the abstraction.



145

The set of names of the free variable references occurring in a ���RR-term e is

denoted as fvn(e). Formally,

fvn(e) = fx j xk 2 fv(e)g

7.4.2 Distance Adjustments

The meta-operation "nx(e), where n � 1, increments the distance of every free variable

reference in e with name x and a distance not less than n. It is de�ned inductively

on the structure of e as follows:

"nx([�zk]) � ["nx(�zk)]

where "nx(zk) �
8><
>:

zk+1 if x � z and k � n

zk otherwise

"nx(r�e) � "nx(r)�"nx(e)

"nx(�z:e) �
8><
>:

�z:"n+1x (e) if x � z

�z:"nx(e) otherwise

"nx(e1 e2) � "nx(e1) "nx(e2)

"nx(�f�x : �xg:e) �
8><
>:

�f�x : �xg:e if x 2 f�xg
�f�x : �xg:"nx(e) otherwise

"nx(���) � ���

As its counterpart for the �bf -calculus, the operation traverses down a term while

keeping track of the number of �-parameters named x encountered, which is n. It

looks for variables of the form xk and increases the distance k by one if k is not less

than n. The traversal ends at a �-abstraction that has x as a parameter variable,

since any reference to x in the abstraction's body is not free beyond the abstraction.

Analogously, the meta-operation #nx(e), where n � 2, decrements the distance of

every variable reference in e with the name x and a distance not less than n:

#nx([�zk]) � [#nx(�zk)]

where #nx(zk) �
8><
>:

zk�1 if x � z and k � n

zk otherwise



146

#nx(r�e) � #nx(r)�#nx(e)

#nx(�z:e) �
8><
>:

�z:#n+1x (e) if x � z

�z:#nx(e) otherwise

#nx(e1 e2) � #nx(e1) #nx(e2)

#nx(�f�x : �xg:e) �
8><
>:

�f�x : �xg:e if x 2 f�xg
�f�x : �xg:#nx(e) otherwise

#nx(���) � ���

7.4.3 Alpha Convertibility

The renaming of a �-abstraction parameter variable is de�ned by the following re-

duction rule:

�f�x : �xg:e ! �f�x :hy=xi�xg:hhy1=x1iie
where x 2 f�xg, y =2 f�xg, y =2 fvn(e)

(�-�)

It replaces the name x of one of the parameter variables �x with y, hence the notation

hy=xi�x. The new variable name y is neither one of �x nor the name of any free variable

occurring in the body e. The former ensures the well-formedness of f�x :hy=xi�xg. The
latter avoids inadvertent capture.

The �-parameter variable renaming meta-operation hhyn=xmiie, where x 6� y, re-

places free occurrences of xm, xm+1, xm+2, : : : in e with yn, yn+1, yn+2 : : :, respectively.

It is de�ned by induction on the structure of e as follows:

hhyn=xmii[�zk] � [hhyn=xmii�zk]

where hhyn=xmiizk �
8><
>:

yn+k�m if x � z and k � m

zk otherwise

hhyn=xmii(r�e) � hhyn=xmiir�hhyn=xmiie
hhyn=xmii�z:e � �z:hh"1z(yn)="1z(xm)iie

hhyn=xmii(e1 e2) � hhyn=xmiie1 hhyn=xmiie2



147

hhyn=xmii�f�x : �xg:e �

8>>>>><
>>>>>:

�f�x : �xg:e if x 2 f�xg
�f�x :hz=yi�xg:hhyn=xmiihhz1=y1iie if x =2 f�xg, y 2 f�xg
�f�x : �xg:hhyn=xmiie otherwise

hhyn=xmii��� � ���

In the second case of the �-abstraction clause, where x =2 f�xg and y 2 f�xg, the new
variable name z to which y is renamed is fresh. It is not x, nor one of �x, nor a free

variable name of e.

Although there is no more need for �-parameter renaming in the de�nition of

�-reduction, we are obliged to present such an �-conversion rule, however, since the

calculus employs names:

�x:e ! �y:#2x(hy1=x1i"1y(e)) where x 6� y (�-�)

The distance of every free variable yk with k � 1 in e is incremented, "1y(e), since
it is in the scope of one more �-parameter named y. The references to the original

�-parameter x in "1y(e) are then renamed to y1, which is denoted as hy1=x1i"1y(e).
Finally, the distance of every free variable xk with k � 2 in e is decremented because

it is in the scope of one less �-parameter named x. Now, there is no provision that

the new name y must not be a free variable of e. Indeed, the only constraint on the

choice of y is that it is not the same as x, the one to be replaced. Otherwise, the

renaming would be unnecessary since we can show that #2x(hx1=x1i"1x(e)) is identical
to e. Intuitively, there are no free occurrences of x1 after "1x(e); hence the result of
hx1=x1i"1x(e) is identical to "1x(e). But then #2x("1x(e)) is identical to e.

The meta-operation hyn=xmie that replaces each free variable xm in e with yn is

de�ned inductively as follows:

hyn=xmi[�zk] � [hyn=xmi�zk]

where hyn=xmizk �
8><
>:

yn if x � z and k = m

zk otherwise

hyn=xmi(r�e) � hyn=xmir�hyn=xmie
hyn=xmi�z:e � �z:h"1z(yn)="1z(xm)ie



148

hyn=xmi(e1 e2) � hyn=xmie1 hyn=xmie2

hyn=xmi�f�x : �xg:e �

8>>>>><
>>>>>:

�f�x : �xg:e if x 2 f�xg
�f�x :hz=yi�xg:hyn=xmihhz1=y1iie if x =2 f�xg, y 2 f�xg
�f�x : �xg:hyn=xmie otherwise

hyn=xmi��� � ���

In the second case of the �-abstraction clause, where x =2 f�xg and y 2 f�xg, the new
variable name z to which y is renamed is fresh. It is not x, nor one of �x, nor a free

variable name of e.

7.4.4 Reduction Rules

The three compiled code related reduction rules of ���CC, namely, lam, app, and

phi���, carry over unchanged to the twice context-enriched calculus of relinkables ���RR.

The other two rules � and loadmust be adapted to the new form of variable reference.

Function Invocation

The �-reduction rule of ���RR is of the same form as the one for �bf :

(�x:e) e0 ! #2x(["1x(e0)=x1]e) (�)

Every free variable x1 in e refers to the parameter x of the �-abstraction to be applied.

It should therefore be substituted with the term e0, [e0=x1]e. Every free variable xk of a

distance k greater than 1 in e must have its distance decremented by one, #2x([e0=x1]e),
since one of its enclosing �-abstractors is removed. This decrement operation should

not apply to occurrences of e0, however, since e0 was not originally in the scope

of the �-abstraction to be applied. To compensate for the e�ect of the decrement

operation, every free variable of the name x in e0 is incremented before performing

the substitution; hence, #2x(["1x(e0)=x1]e).



149

Let ](xn; r) denote the pre�x of r up to, but not including, the constituent variable

reference xn:

](xn; zk :: r) �
8><
>:

[] if x � z and k = n

zk :: ](xn; r) otherwise

Then, the �-substitution meta-operation [e0=xn]e that provides every free variable xn

in e with the denotation e0 is de�ned by induction on the structure of e as follows:

[e0=xn][�zk] �

8>>>>><
>>>>>:

e0 if xn 2 f�zkg and ](xn; [�zk]) � []

r�e0 if xn 2 f�zkg and ](xn; [�zk]) � r 6� []

[�zk] otherwise

[e0=xn]([�zk]�e) �

8>>>>><
>>>>>:

e0 if xn 2 f�zkg and ](xn; [�zk]) � []

r�e0 if xn 2 f�zkg and ](xn; [�zk]) � r 6� []

[�zk]� [e0=xn]e otherwise

[e0=xn]�z:e � �z:["1z(e0)="1z(xn)]e
[e0=xn](e1 e2) � [e0=xn]e1 [e

0=xn]e2

[e0=xn]��:e � ��:[e0=xn]e

[e0=xn]��� � ���

In the clause for provisionally-instantiated relinkables, when xn is one of the variables

in [�zk], the result of the substitution is either the denotation e0, provided that xn is

the dominant constituent of [�zk], or a provisionally-instantiated relinkable r�e0 in

which r consists of the variables of [�zk] that are more dominating than xn. A similar

reasoning applies to the clause for relinkables. We have used the variable conventions

in the �-abstraction clause. In particular, we have assumed that x is not one of the

variables of � and none of the variables of � occur free in e0.

Loading Compiled Code

The revised reduction rule for load is:

load �fx1 :x1; : : : ;xn :xng:e ! �1
x1(� � � (�1

xn(e)) � � �) (load)



150

It loads the compiled code �fx1 :x1; : : : ;xn :xng:e by removing the parameter speci-

�cation fx1 :x1; : : : ;xn :xng after �nalizing the names x1; : : : ; xn occurring in e.

Let �̂n
x(r) denote the �nalization of a relinkable reference r with respect to the

variable name x:

�̂n
x([]) � []

�̂n
x(z

k :: r) �
8><
>:

�̂n
x(r) if x � z and k � n

zk :: �̂n
x(r) otherwise

That is, it removes from r any constituent xk with a distance k � n. Then, the

�nalization meta-operation �n
x(e) that removes from e free variable references xk with

a distance k not less than n is de�ned by induction on the structure of e as follows:

�n
x(r) � �̂n

x(r)

�n
x(r�e) �

8><
>:

�n
x(e) if �̂n

x(r) � []

�̂n
x(r)��n

x(e) otherwise

�n
x(�z:e) �

8><
>:

�z:�n+1
x (e) if x � z

�z:�n
x(e) otherwise

�n
x(e1 e2) � �n

x(e1) �
n
x(e2)

�n
x(�f�x : �xg:e) �

8><
>:

�f�x : �xg:e if x 2 f�xg
�f�x : �xg:�n

x(e) otherwise

�n
x(���) � ���

The operation keeps a count n of the number of �-bound x's as it traverses down a

term until it encounters a relinkable variable r or a provisionally-instantiated relink-

able r�e. At that point, it is clear that a variable xk whose distance k is less than

n is bound by one of the �-parameters encountered in the traversal and thus has a

denotation. Otherwise, the variable xk does not have a denotation and is therefore

discarded.



151

(�x:e) e0 ! [e0=x]e

load �fx1 :x1; : : : ;xn :xng:e ! �1
x1(� � � (�1

xn(e)) � � �)
app ��1:e1 ��2:e2 ! ��1]�2:(e1 e2)

lamx ��:e ! ��:�x:e

where x :x 2 �

or else x is fresh

phifx1 :y1; : : : ;xn :yng ��:e ! ��:�fx1 :y1; : : : ;xn :yng:e
where yi :yi 2 �

or else yi is fresh

(�)

(load)

(app)

(lam)

(phi���)

Figure 7.3: Reduction rules of twice context-enriched calculus of relinkables ���RR

7.4.5 Calculus of Compiled Code

The notion of reduction rr underlying the twice context-enriched calculus of relink-

ables ���RR is the union of the reduction rules collectively displayed in Figure 7.3:

rr = � [ load[ lam[ app[phi���

A term e1 one-step rr-reduces to a term e2, written as e1!e2, if e2 is the result of

replacing an rr-redex subterm of e1 with its contractum. The re
exive and transi-

tive closure of ! is the rr-reduction relation !!. The least equivalence relation =

generated by !! is the calculus of relinkable variables ���RR. Again, ���RR preserves

the Church-Rosser property as well as the indistinguishability relation � among free

identi�er abstractions.

This ends the formal description of the twice context-enriched calculus of relink-

ables. In the next chapter we present two applications that rely heavily on relinkable

variable references, namely, object-oriented programming and interactive program

development. Before that, we explore the possibilities of a more 
exible notion of

compiled code optimization.



152

7.5 Optimizing Compiled Code

The only means we have so far for \executing" compiled code is the operator load.

Its associated �nalization functionality is quite eager:

load �f�x : �xg:e ! �1

�x(e)

All free references to the parameter variables �x are removed from e, which is in-

adequate for some applications. For instance, it is often the case that we wish to

optimize the body e of some compiled code ��:e to a certain kind of value v such as

an abstraction without �nalizing all of its relinkables and provisionally-instantiated

relinkables (computation within the body of compiled code is classi�ed as compiled

code optimization). For example, we might want to optimize

A = �fx :xg:[x2]��y:(y [x1]�app)

to

B = �fx :xg:�y:(y [x1]�app)

Only the provisionally-instantiated relinkable [x2]��y:(y [x1]�app) is �nalized; the
other provisionally-instantiated relinkable [x1]�app is left untouched so that it can

be relinked later. Such behavior is not expressible using load:

load A = �y:(y app)

It would �nalize both relinkables.

We therefore introduce in this section a special compiled code optimization mech-

anism for such occasions. Let us reclassify the ���RR-terms by singling out terms that

we consider as values:

e ::= v j r j r�e j e e

A value is anything but an application, a relinkable, or a provisionally-instantiated

relinkable. An application may be a redex representing a computational step. It



153

> ��:v ! ��:v

> �f�x : �xg:r ! �f�x : �xg:[] if �1

�x(r) � []

> �f�x : �xg:(r�e) ! > �f�x : �xg:e if �1

�x(r) � []

> ��:(e1 e2) ! > (app (> ��:e1) ��:e2)

if e1 e2 is not a redex

and e1 is not a value

> ��:(f e) ! > (app ��:f (> ��:e))

if f e is not a redex

and e is not a value

(>v)

(>r)

(>�)

(>f )

(>a)

Figure 7.4: Compiled code optimization rules

is therefore not considered a value. A relinkable can denote anything, including an

application, and so can a provisionally-instantiated relinkable. They are thus not

values either. We further classify value terms v into two categories: those that can

serve as the operator of a redex, denoted as f , and those that cannot, denoted as a:

v ::= f j a
f ::= �x:e j load j lamx j app j phi��� j app ��:e

a ::= ��:e j ~x

The application term app ��:e is considered equivalent to �x:(app ��:e x) and

therefore quali�es as the operator of a redex.

With the above classi�cation, we can characterize the optimization of compiled

code ��:e to compiled value ��:v by introducing a new compiled code operator >

with the reduction rules shown in Figure 7.4. Intuitively, > ��:e attempts to reduce

the body term e to a value, if there is one. In the process, relinkables are �nalized on

a by-need basis. The �rst three optimization rules handle the base cases:

(>v) Optimization stops if the body term is already a value.



154

(>r) When the body term is a relinkable, it is �nalized with respect to the parameter

variables of the compiled code to �nd out if the relinkable is unbound. If so,

optimization stops at an unbound value; otherwise, the process hangs.

(>�) Similarly, when the body term is a provisionally-instantiated relinkable, �nal-

ization is used to determine if the provisional denotation is the denotation of

the relinkable.

When the body term is an application, the compiled code ��:(e1 e2) can be de-

constructed into the function part ��:e1 and the argument part ��:e2 from which the

original compiled code can be easily reconstructed using the operator app:

��:(e1 e2) = app ��:e1 ��:e2

If the application e1 e2 is a redex, the redex should be kept intact so that it can be

contracted. Otherwise, the application is deconstructed and the two parts are opti-

mized, hoping that the reconstructed application will be a redex. They are modeled

by the other two optimization rules:

(>f) For the reconstructed application to be a redex, the function part must be

optimized to a value that can serve as the operator of a redex.

(>a) If the application is not a redex but its function part is already an operator, the

argument part must be optimized to a value.

Again, the new reduction rules for compiled code optimization function orthogo-

nally to the existing rule of the ���RR-calculus. Their inclusion into ���RR therefore

does not upset the Church-Rosser or the free identi�er indistinguishability property.

Uses of such a compiled code optimization mechanism can be found in the following

chapter.



Chapter 8

Incremental Programming

We employ the two context-enriched calculi ���RR and ���DD combined to model

object-oriented and interactive programming paradigms. It is not our intention here

to describe a complete programming system for each paradigm. The emphasis, in-

stead, is on the use of modules and relinkables to express the incremental nature of

their linking needs.

8.1 Object-Oriented Programming

We focus on using our context-enhanced calculi to express these three fundamental

notions of object-oriented programming: object encapsulation, object inheritance,

and late binding. Object encapsulation achieves information hiding and modularity.

Objects interact with one another only through clearly speci�ed import and export

interfaces. Object inheritance implements code reuse and code organization. It is the

mechanism by which new and enhanced objects can be de�ned in terms of existing

objects. Late binding provides the necessary means for existing objects to adapt to

their ever-changing surroundings.

We employ the following notational shorthands to enhance the readability of the

examples. A simple variable reference x is an abbreviation of the one-element relink-

able [x1]. A relinkable [x1; : : : ; x1] with an in�nite number of constituents is notated

155



156

as �x. The notation �x[y] denotes the relinkable [x1; : : : ; x1; y1] where the name y is

distinct from the name x. The least dominating variable reference y1 is linked; the

other constituents x1; : : : ; x1 are yet unbound.

8.1.1 Object Representation

An object is a module 	h"; �i:d. The identi�ers speci�ed by the export interface "

are the object's public attributes (an attribute can be either a method or an instance

variable). Bindings of d not speci�ed by " are privately available to the object only.

The import interface � speci�es the object's dependency on other objects. As an ex-

ample, the object aCP below is a two-dimensional Cartesian point whose coordinates

are 3 and 4:

aCP � 	hfxcor :x;ycor :y;dist :d; closer :cg;
fxcor :x;ycor :y;dist :dgi:
(rec fx = 3; y = 4;

d =
q
�x2 + �y2;

c = �p:( �d < dist@p)g)

It exports four de�ning variables x, y, d, and c known externally as xcor, ycor, dist,

and closer. The �rst two hold the coordinates. The third one denotes the Cartesian

distance of the point from origin. The fourth attribute is a predicate measuring

which point is closer to origin, the object aCP itself or the point object denoted by

the parameter p. The notation dist@p selects the dist-attribute of the point object

denoted by p. The object uses three late binding virtual references, namely, �x, �y, and

�d. They are known externally as the import attributes xcor, ycor, and dist.

The four bindings of aCP depend on one another. They are therefore expressed

as a recursive de�nition:

rec fx = : : :; y = : : :; d = : : :; c = : : :g



157

The linking relations among the bindings can be more succintly expressed as follows:

aCP � 	hfxcor :x0;ycor :y0;dist :d0; closer :c0g;
fxcor :x;ycor :y;dist :dgi:
(rec fx0 = 3; y0 = 4;

d0 =
q
�x[x0]2 + �y[y0]2;

c0 = �p:( �d[d0] < dist@p)g)

The virtual reference �d has been revised to depict its latest linking relation. The

least dominating constituent d1 of �d � [d1; : : : ; d1] is bound by the object's de�ning

variable d. It is the only constituent of �d that is linked. To highlight the linking

relation, we therefore rename the de�ning variable d to a fresh name d0. Accordingly,

the virtual reference �d becomes [d1; : : : ; d1; d01], hence the abbreviation �d[d0]. In a

similar fashion, the other two virtual references �x and �y become �x[x0] and �y[y0] to

illustrate that they are linked to the de�ning variables x0 and y0.

The above view of aCP stresses the linking e�ect among the object's attributes.

Alternatively, we can illustrate its computational e�ect through �-substitutions, hence

yielding the following simple de�nition representation of the same object aCP:

aCP = 	hfxcor :x;ycor :y;dist :d; closer :cg;
fxcor :x;ycor :y;dist :dgi:
fx = 3; y = 4;

d =
q
(�x�3)2 + (�y�4)2;

c = �p:(( �d�
q
(�x�3)2 + (�y�4)2) < dist@p)g

The denotation 3 of the de�ning variable x is substituted for the variable reference

x1 of the relinkable �x � [x1; : : : ; x1] of
q
�x2 + �y2. Since x1 is not the dominant con-

stituent of �x, 3 is only a provisional denotation. The substitution therefore results in

a provisionally-instantiated relinkable [x1�1; : : : ; x2�1]�3, or simply �x�3. Similarly,

the relinkable �y of
q
�x2 + �y2 is replaced with the provisionally-instantiated relinkable



158

�y�4. Likewise, the virtual reference �d of �p:( �d < dist@p) is provisionally-instantiated

to �d�
q
(�x�3)2 + (�y�4)2. That is, the latest meaning of �d is the latest denotation

of the de�ning variable d, which is
q
(�x�3)2 + (�y�4)2. All in all, the three virtual

references �x, �y, and �d of aCP each not only gets an up-to-date denotation but also

remains responsive to future overrides, as shown in the next section.

8.1.2 Object Inheritance

The essence of object-oriented programming is the ability to incrementally create

new objects by modifying existing objects. The underlying mechanism is object

inheritance, which changes the behavior of an existing object by extending the object

with new attributes or by providing new denotations for the object's virtual references.

To illustrate, we modify the Cartesian point object aCP of the last section to

obtain a Manhattan point object aMP. The only change is the distance measured

from origin, which is encoded as the following module

deltaM � 	hfdist :dg; fxcor :x;ycor :ygi:fd = �x + �yg

The dist-attribute is now calculated as the sum of the coordinates. The new object

aMP is then the following combination of the existing object aCP and the modi�er

deltaM:

aMP = moverride aCP deltaM

The module combination constructor moverride links the imports of aCP to the

exports of deltaM and the imports of deltaM to the exports of aCP; moreover, the

dist-binding of deltaM overrides the dist-binding of aCP (cf. Section 6.5.4). Hence,

aMP = moverride aCP deltaM

= 	hfxcor :x;ycor :y;dist :d; closer :cg;
fxcor :x;ycor :y;dist :dgi:
(moverride fx = 3; y = 4;



159

d =
q
(�x�3)2 + (�y�4)2;

c = �p:(( �d�
q
(�x�3)2 + (�y�4)2) < dist@p)g

fd = �x + �yg)
= 	hfxcor :x;ycor :y;dist :d; closer :cg;

fxcor :x;ycor :y;dist :dgi:
fx = 3; y = 4;

d = (�x�3) + (�y�4);

c = �p:(( �d�((�x�3) + (�y�4))) < dist@p)g

The virtual references �x and �y of the modi�er fd = �x+ �yg get their denotation

from aCP, resulting in fd = (�x�3) + (�y�4)g. The d-binding of deltaM overrides

the one in aCP. It is also the denotation for the virtual reference �d mentioned in

the closer-attribute of aCP. Thus, the provisionally-instantiated virtual reference

�d�
q
(�x�3)2 + (�y�4)2 is replaced by �d�((�x�3) + (�y�4)). From the standpoint of

inheritance, the virtual references �x and �y of deltaM inherit their denotation from the

object aCP. Furthermore, the virtual reference �d of aCP inherits the latest denotation

provided by the modi�er deltaM.

Alternatively, the linking relations of the new object aMP can be expressed as

follows:

aMP = moverride aCP deltaM

= 	hfxcor :x;ycor :y;dist :d; closer :cg;
fxcor :x;ycor :y;dist :dgi:
(moverride (rec fx = 3; y = 4;

d =
q
�x2 + �y2;

c = �p:( �d < dist@p)g)
fd = �x + �yg)

= 	hfxcor :x0;ycor :y0;dist :d0; closer :c0g;



160

fxcor :x;ycor :y;dist :dgi:
(moverride (rec fx0 = 3; y0 = 4;

z =
q
�x[x0]2 + �y[y0]2;

c0 = �p:( �d[d0] < dist@p)g)
fd0 = �x[x0] + �y[y0]g)

Notice that the overridden de�ning variable of the dist-attribute of aCP is given a

fresh name z that is no longer speci�ed in the export interface; hence it becomes a

hidden (private) attribute of aMP. Meanwhile, the latest link of the virtual reference �d

is updated to the de�ning variable d0 supplied by the modi�er deltaM, thus inheriting

the new dist-attribute.

So, similar to C++ [26], but unlike Smalltalk [30], the objects aCP and aMP

show that virtual references need not rely on some pseudo-variable such as self.

Their behavior can be more closely modeled as relinkable variable references whose

linking relations can be kept up to date in each incremental object construction stage

via simple variable capture.

8.1.3 Object Self-Reference

We have shown above that intra-object virtual attribute references can be modeled

with relinkables. In this section we tackle another form of self-reference needed in an

object system, namely, the capability for an object to refer to itself.

Let the necessary modi�cation for moving a two-dimensional point by the amount

speci�ed by the parameters x0 and y0 be de�ned as follows:

deltaP = �x0y0:	hfxcor :x;ycor :yg; fxcor :x;ycor :ygi:
fx = x + x0; y = y + y0g

Then, the following module combination operation moves the Manhattan point object

aMP from (3; 4) by a vector of (7; 9) to (10; 13):

moverride aMP (deltaP 7 9)



161

Ideally, a point object should include a move-attribute for moving itself around.

Hence, a movable Manhattan point object aMMP should look something like:

aMMP = 	hfxcor :x;ycor :y;dist :d; closer :c;move :mg;
fxcor :x;ycor :y;dist :dgi:
fx = 3; y = 4; d = : : :; c = : : :;

m = �x0y0:(moverride aMMP (deltaP x0 y0))g

Notice that there is a self-reference to aMMP in the move-attribute. Consequently,

to move aMMP by a vector of (7; 9), we can simply select its move-attribute using

move@aMMP and then apply it to 7 and 9:

bMMP = move@aMMP 7 9

= (�x0y0:(moverride aMMP (deltaP x0 y0))) 7 9

= moverride aMMP (deltaP 7 9)

= 	hfxcor :x;ycor :y;dist :d; closer :c;move :mg;
fxcor :x;ycor :y;dist :dgi:
fx = 10; y = 13; d = : : :; c = : : :;

m = �x0y0:(moverride aMMP (deltaP x0 y0))g

There is just one problem with our de�nition of the move-attribute above. It does

not respond to future modi�cations. In particular, the move-attribute of bMMP

refers to aMMP. A future move from bMMP therefore starts at (3; 4), not (10; 13)!

A correct de�nition of aMMP is to make the necessary self-reference a virtual

reference so that its link changes accordingly as the point moves:

aMMP = 	hfxcor :x;ycor :y;dist :d; closer :c;move :mg;
fxcor :x;ycor :y;dist :d; self :sgi:
(priv fs0 = aMMPg

fx = 3; y = 4; d = : : :; c = : : :;

m = �x0y0:(�xself (moverride �s[s0] (deltaP x0 y0)))g)



162

The relinking of the self-attribute is accomplished using the following operator

�xself � �x:(�x �y:(priv 	hfself :sg; fgi:fs = yg x))

The behavior of �xself when it is applied to an object 	h"; �i:d with a virtual self-

attribute is as follows:

S = �xself 	h"; �i:d
= �x �y:(priv 	hfself :sg; fgi:fs = yg 	h"; �i:d)
= �x �y:	h"; �i:(priv fs0 = yg d)

[self :s0 2 � or else s0 is fresh to d]

= 	h"; �i:(priv fs0 = Sg d)

Thus, any virtual reference to self in the de�nition d denotes the object S.

Now, the new object bMMP refers to itself instead of aMMP:

bMMP = move@aMMP 7 9

= �xself (moverride aMMP (deltaP 7 9))

= �xself 	hfxcor :x;ycor :y;dist :d; closer :c;move :mg;
fxcor :x;ycor :y;dist :d; self :sgi:
(priv fs0 = aMMPg

fx = 10; y = 13; d = : : :; c = : : :;

m = �x0y0:(�xself (moverride �s[s0] (deltaP x0 y0)))g)
= 	hfxcor :x;ycor :y;dist :d; closer :c;move :mg;

fxcor :x;ycor :y;dist :d; self :sgi:
(priv fs00 = bMMPg

(priv fs0 = aMMPg
fx = 10; y = 13; d = : : :; c = : : :;

m = �x0y0:(�xself (moverride �s[s00] (deltaP x0 y0)))g))
= 	hfxcor :x;ycor :y;dist :d; closer :c;move :mg;



163

fxcor :x;ycor :y;dist :d; self :sgi:
fx = 10; y = 13; d = : : :; c = : : :;

m = �x0y0:(�xself (moverride (�s�bMMP) (deltaP x0 y0)))g

The virtual reference �s[s0] bound to the private de�ning variable s0 of aMMP has

been relinked to the private de�ning variable s00 of bMMP, hence �s[s00], or equivalently

�s�bMMP.

8.1.4 Attribute Selection and Sealing

The notation x@e selects the denotation of the x-attribute from the object denoted

by the term e. Formally,

x@e � load (let e �fx :xg:x)

For example,

dist@aMP = load (let aMP �fdist :dg:d)
= load �fxcor :x;ycor :y;dist :dg:

(let f: : : ; d = (�x�3) + (�y�4); : : :g in d)

= load �fxcor :x;ycor :y;dist :dg:((�x�3) + (�y�4))

= �1
x(�

1
y(�

1

d((�x�3) + (�y�4)))) (8.1)

= 3 + 4

= 7

Equation 8.1 �nalizes the �-parameters x and y mentioned in (�x�3) + (�y�4), thus

making the provisional denotations 3 and 4 the �nal values of the relinkables �x and

�y.

In essence, to accommodate future changes, an object is kept \open" via its virtual

references. During the selection of an attribute from an object, the open references

are \sealed" o� to determine their �nal values. This sealing process can also be



164

performed at the object level using the following derived object operator:

seal � load � psifg

It �nalizes all the import attributes of an object. The module operator psifg that

converts 	-abstraction to �-abstraction is de�ned in Section 6.3.3.

For instance, the following operation seals the entire object aMP by cementing

the links of virtual references to xcor, ycor, and dist:

seal aMP = load (psifg aMP)

= load �fxcor :x;ycor :y;dist :dg:
	hfxcor :x0;ycor :y0;dist :d0; closer :c0g; fgi:
(moverride (rec fx0 = 3; y0 = 4;

z =
q
�x[x0]2 + �y[y0]2;

c0 = �p:( �d[d0] < dist@p)g)
fd0 = �x[x0] + �y[y0]g)

= 	hfxcor :x0;ycor :y0;dist :d0; closer :c0g; fgi:
(moverride (rec fx0 = 3; y0 = 4;

z =
q
x02 + y02;

c0 = �p:(d0 < dist@p)g)
fd0 = x0 + y0g)

As we can see in the resulting object, the virtual references �x[x0], �y[y0], and �d[d0] are

replaced by their respective latest linked constituents x0, y0, and d0. The sealed object

is therefore not sensitive to future changes to the import attributes xcor, ycor, and

dist. Indeed, they are no longer part of the import speci�cation of the sealed object.

The attribute sealing operator de�ned above works from the outside of an object.

Such a mechanism can be used to package up an object when its development has

been completed. We can also control the sealing process from within an object. The

necessary mechanisms are relinkables that can only be relinked a �nite number of



165

times. For instance, the following is a Cartesian point object bCP whose closer-

attribute is sensitive to one revision of dist only:

bCP = 	hfxcor :x;ycor :y;dist :d; closer :cg;
fxcor :x;ycor :y;dist :dgi:
(rec fx = 3; y = 4;

d =
q
�x2 + �y2;

c = �p:([d2; d1] < dist@p)g)

The constituent variable reference d1 of [d2; d1] is linked to the de�ning variable d of

bCP. The variable reference d2 is the only other constituent left unbound. So,

bMP � moverride bCP deltaM

= 	hfxcor :x0;ycor :y0;dist :d0; closer :c0g;
fxcor :x;ycor :y;dist :dgi:
(moverride (rec fx0 = 3; y0 = 4;

z =
q
�x[x0]2 + �y[y0]2;

c0 = �p:(d0 < dist@p)g)
fd0 = �x[x0] + �y[y0]g)

The dominant variable reference d2 of [d2; d1] is now permanently linked to the de�n-

ing variable d0 of the modi�er bMP. Consequently, any future changes to the dist-

attribute of bMP does not have a rippling e�ect on the closer-attribute.

8.1.5 Discussions

To summarize, objects are modules with relinkables. Modules provide the information

hiding facilities needed for an object system [64, 65]. Incremental module combination

operations such asmoverride are the means for reusing existing objects to form new

objects. This style of inheritance is often referred to as mixin-based [11].



166

The feature unique to our object system is the incorporation of relinkables to

model late binding virtual references. Recall that a relinkable �x � [x1; : : : ; x1] is

semantically equivalent to

if x1 is bound then x1

. . .

else if x1 is bound then x1

else [x1; : : : ; x1] is unbound

It is reminiscent of a dispatch according to the boundness of the constituent variable

references x1; : : : ; x1. Using the same metaphor, a relinkable �x[y] � [x1; : : : ; x1; y1]

whose least dominating constituent y1 is known to be bound is therefore semantically

equivalent to the following dispatch:

if x1 is bound then x1

. . .

else if x1 is bound then x1

else y1

Hence, a relinkable such as �x is a good candidate for modeling the late binding

behavior required of a virtual variable reference.

In practice, a virtual table is associated with each object to help resolve the

object's virtual variable references. Conceptually, when the linking relation of a

virtual variable is altered during the construction of a new object, the variable's slot

in the virtual table is updated to re
ect the necessary change. A prominent example

using such a technique to implement late binding virtual references e�ciently is C++

[26]. In our system, a slot is associated with each individual virtual variable reference.

That is, �x[y] models a table entry for the virtual reference �x whose current contents

is the location of the variable y. Consequently, if the denotation of the variable y is

e, then the denotation of the virtual reference �x is also e, which is expressed in our

system as a provisionally-instantiated relinkable �x�e.



167

Our semantics of inheritance is the same �xpoint semantics of Kamin [37], Reddy

[60], and Cook and Palsberg [22]. In their descriptions of objects, late binding intra-

object virtual attribute references are modeled as run-time variable lookups from

the environment denoted by some pseudo-variable self. Moreover, the same pseudo-

variable self is overloaded to explain object self-reference as well. In our system,

such run-time lookup operations are replaced with compile-time linking operations

and the unnecessary overloading is removed from self. Clearly, we gain signi�cant

advantages in e�ciency, as discussed above. But more importantly, we have shown

that the essence of object-oriented programming can be explained directly in terms

of compilation and linking, instead of indirectly via complicated computational steps.

Furthermore, through the sealing of objects and attributes, we have shown that our

relinkables can provide a degree of 
exibility that has not been fully realized in other

object systems. To summarize, modeling virtual references as relinkables is desirable

because of the simplicity, clarity, and 
exibility they provide.

8.2 Interactive Programming

Lisp [66] and its dialects such as Scheme [4, 21] employ an interactive evaluator as a

means for incremental program development. Conceptually, an interactive evaluator

uses an ever-growing interactive environment to keep track of the results produced by

previously evaluated de�ne-expressions. Each de�ne-expression submitted to the

evaluator is evaluated in the scope of the current interactive environment to yield

a binding. The binding is then used to extend or override the existing interactive

environment to yield a new environment for the evaluation of the next expression.

The interactive environment thus constitutes an ever-expanding program in which

mutually dependent bindings are added in an incremental fashion.

We assume that when the interactive evaluator is ready to accept the next ex-

pression, it issues a prompt (>) preceded by a number that is added for reference

purposes. Here is a sample interactive programming session using our notation:



168

1> (de�ne foo ���n:(if (bar n) then 23 else 45))

2> (de�ne bar ���n:T)

3> (foo 3)

23

4> (de�ne bar ���n:F)

5> (foo 3)

45

Below is a description of what happens to each of the expressions (the expressions

issued to the evaluator are typeset in boldface to highlight the fact that they are

source code to the evaluator):

1> The interactive environment is extended with a function foo that depends on

the function bar to decide between returning 23 or 45.

2> The interactive environment is extended with the de�nition of another function

bar that always returns the boolean value T .

3> The function foo is invoked. Since the latest denotation of bar in the interactive

environment returns T , the function invocation (foo 3) yields 23, which the

evaluator prints below the prompt.

4> The function bar is rede�ned to always return the boolean value false instead.

The new de�nition becomes the latest denotation of bar in the interactive

environment.

5> The rede�nition of bar is seen by foo. Hence, invoking foo the second time

yields a di�erent result of 45.

The interactive session above demonstrates the fact that the function foo is re-

sponsive to the changes to the de�nition of bar. Traditionally, the adaptive behavior

of the reference bar used in foo is explained in terms of side e�ects [21]. That is,

during (or before) the evaluation of the de�nition of the function foo, a cell is al-

located in the interactive environment for the function bar. When bar is de�ned



169

or rede�ned, its latest denotation is deposited into the cell. Hence, each time the

function foo is invoked, it has access to the up-to-date denotation of bar.

Here, we show that the adaptive behavior associated with interactive programming

can also be modeled using relinkables. Indeed, the style of interactive programming

shown above closely resembles the style of object-oriented programming described in

the last section. An interactive environment is an object that exports the previously

evaluated de�ne-expressions. A de�ne-expression is evaluated in the scope of the

current interactive environment to yield an object modi�er that the evaluator then

uses to transform the current interactive environment to a new environment object.

An input expression that is not a de�ne-expression is evaluated in the scope of the

current interactive environment to a value that is then displayed by the evaluator.

We elaborate on the evaluation of these two categories of expression below.

8.2.1 Evaluating De�ne Expressions

To evaluate an input expression (de�ne x e) in an interactive environment 
 to yield

a new interactive environment 
0, the input e is �rst translated into the compiled

code

A = �f�x : �xg:e

where �x are the free identi�ers of e, �x � q(�x) are the unique variable names assigned to

�x by some one-to-one function q, and e is the image of e except that each occurrence

of the free identi�er xi in e is compiled into a virtual reference �xi in e. The new

interactive environment 
0 is then constructed as follows:


0 = G 
 delta


where the object constructor G and the object modi�er delta
 are de�ned as

G = �xy:(override (priv y x) y);

delta
 = dfnx (app �fg:�x (lamx (> (let 
 A))))



170

Let the interactive environment 
 be the object 	h"; �i:d. Then, the module

importation operation

let 
 A = let 	h"; �i:d �f�x : �xg:e
= ��]f�x : �xg:(let d in e)

= ��0:e0

links the free identi�ers of the compiled code A of e with the bindings of 
. The

resulting compiled code ��0:e0 is then passed to the evaluation function >, which

models the evaluation strategy employed by Lisp and Scheme. It optimizes the body

term e0 to a value term v:

> (let 
 A) = > ��0:e0

= ��0:v

Notice that the virtual references in the value term v are still sensitive to future

updates. The compiled value ��0:v is then made recursively available to itself:

app �fg:�x (lamx (> (let 
 A)))

= app �fg:�x (lamx ��0:v)

= app �fg:�x ��0:�x:v
[x :x 2 �0 or else x is fresh to v]

= ��0:(�x �x:v)

Next, the recursively de�ned compiled value ��0:(�x �x:v) is converted into a module

delta
 to be used as an environment modi�er:

delta
 = dfnx (app �fg:�x (lamx (> (let 
 A))))

= dfnx ��0:(�x �x:v)

= 	hfx :xg; �0i:fx = (�x �x:v)g

Finally, using G, we can construct the new interactive environment 
0 by modifying

the current environment object 
 as follows:


0 = G 
 delta




171

= override (priv delta
 
) delta


= 	h"]fx :xg; �]�0i:(override (priv fx = (�x �x:v)g d) fx = (�x �x:v)g)
= 	h"]fx :xg; �]�0i:(override [(�x �x:v)=x]d fx = (�x �x:v)g)

So, the new x-binding provided by the modi�er delta
 overrides any existing x-binding

of 
. Moreover, virtual x-references in 
 are relinked to the new x-binding.

To illustrate, let the interactive environment after evaluating the �rst expression

1> (de�ne foo ���n:(if (bar n) then 23 else 45))

be the object


 = 	hffoo :fg; fbar :xgi:ff = �n:(if (�x n) then 23 else 45)g

It exports the function foo and has a virtual bar-reference. The compiled code of

the denotation term of the second expression

2> (de�ne bar ���n:T)

is �fg:�n:T . The resulting environment modi�er delta
 is therefore

delta
 = dfnbar (app �fg:�x (lambar (> (let 
 �fg:�n:T ))))

= dfnbar (app �fg:�x (lambar (> �fg:�n:T )))

= dfnbar (app �fg:�x (lambar �fg:�n:T ))

= dfnbar �fg:(�x �x:�n:T )

= dfnbar �fg:�n:T
= 	hfbar :xg; fgi:fx = �n:Tg

Thus, the interactive environment 
0 after the evaluation of the second expression is:


0 = G 
 delta


= override (priv delta
 
) delta


= 	hfbar :x; foo :fg; fbar :xgi:



172

(override priv fx = �n:Tg ff = �n:(if (�x n) then 23 else 45)g
fx = �n:Tg)

= 	hfbar :x; foo :fg; fbar :xgi:
(override ff = �n:(if ((�x��n:T ) n) then 23 else 45)g

fx = �n:Tg)
= 	hfbar :x; foo :fg; fbar :xgi:

ff = �n:(if ((�x��n:T ) n) then 23 else 45);

x = �n:Tg

It exports both bar and foo. Furthermore, the free reference to bar in foo has the

latest denotation of bar as its provisional meaning.

8.2.2 Evaluating Non-De�ne Expressions

The evaluation of an input expression e that is not a de�ne-expression has a much

simpler process. As before, the input e is �rst translated into the compiled code

A = �f�x : �xg:e

The compiled code is then linked with the current environment 
 and the resulting

compiled code is evaluated to yield the value of the expression e under 
:

load (let 
 A)

Hence, evaluating the third expression

3> (foo 3)

under 
0 results in:

load (let 
0 �ffoo :fg:( �f 3))

= load �ffoo :f;bar :xg:(( �f��n:(if ((�x��n:T ) n) then 23 else 45)) 3)

= �1
x(�

1

f((
�f��n:(if ((�x��n:T ) n) then 23 else 45)) 3))



173

= �1
x((�n:(if ((�x��n:T ) n) then 23 else 45)) 3)

= (�n:(if ((�n:T ) n) then 23 else 45)) 3

= 23

In conclusion, disregarding input/output aspects, we have shown that interactive

programming in the style advocated by Lisp is a form of object-oriented programming.

It is modular programming with the addition of the incremental linking of late binding

variable references.



174



Chapter 9

Finale

After showing the practicality of our incremental program construction capability

enhancing schema, it is now time to summarize the results of this research, to compare

with other work, and to project directions for future work.

9.1 Results

Our goal is to integrate incremental program construction capabilities into program-

ming systems. At issue are linking mechanisms 
exible enough to compensate for

the limitations imposed by statically-scoped variables and yet well-behaved enough

to uphold all the nice properties of static scope. The basis of our work is the notion

of contexts, particularly the name capturing feature of context hole �lling. By per-

ceiving fully-evolved contexts (proper parse trees) as compiled code, partially-evolved

contexts (improper parse trees with non-terminal leaves) as compilation operators,

and context hole �lling as composition or application of such compilation operators,

our approach culminates into a schema for conservatively extending programming lan-

guages with mechanisms capable of modeling the incremental construction, linking,

and loading of compiled program components.

We apply our context-enriching schema to the pure �-calculus to demonstrate its

basic mechanics. In addition to the machine code modeled by �-terms, the schema

175



176

introduces free identi�er abstractions to model the compiled code of fully-evolved �-

contexts. Also introduced by our schema are operators for constructing the compiled

code of composite fully-evolved �-contexts from the compiled code of their immediate

sub-contexts. Unlike ordinary �-abstractions, the new compiled code abstractions

have quasi-statically-scoped variable references serving as temporary placeholders for

yet to be linked free variables. Such free variable references are subject to capture by

statically-scoped �-parameters in the construction of new compiled code.

The context-enriched pure �-calculus ���CC is expressive enough to encode symbol-

related incremental programming mechanisms such as �rst-class environments. A

compositional and metacircular compiler for ���CC-programs is ���CC-de�nable. If

dealing with source code is undesirable, a linker for integrating compiled ���CC-

programs is also ���CC-de�nable.

To further illustrate the power of our schema, we extend the pure �-calculus with

notations for expressing some frequently used programming idioms about variable

de�nition. The semantics of the new variable de�ning notations can be explained

in terms of simple syntactic expansions. So, there is minimal gain in expressiveness

by introducing these additional notations into the pure �-calculus. Their potentials

are unleashed once they are enriched with the incremental program construction

capabilities induced by the notion of contexts, however.

The abstractions introduced by our schema to model the compiled code of fully-

evolved variable de�nition contexts are �rst-class modules that import through their

free variables and export via their de�ning variables. The incremental compiled code

construction operators derived from our context-enriching schema provide the capa-

bilities to import from modules, to construct modules from scratch, and to combine

and link existing modules to form new modules. The context-enriched variable de�ni-

tion calculus ���DD is a conservative extension of the context-enriched pure �-calculus

���CC. Whereas ���CC, with its basic incremental compiled code constructors, facili-

tates incremental program construction in the small, ���DD, with its additional module

mechanisms, is also well-suited for incremental program construction in the large.



177

The extension of ���CC to ���DD demonstrates one important aspect of our context-

enriching schema, namely, it is a modular language design methodology. New compi-

lation mechanisms are introduced by the ���DD-calculus to deal with the new variable

de�ning notations added to the pure �-calculus; the semantics of the existing compi-

lation mechanisms of ���CC is unchanged. This is the case because our schema clearly

distinguishes compiled code from machine code. Moreover, the compiled code con-

structors use only �-conversion for linking purposes, no computational �-steps are

necessary. As a result, the operators specify how programs are constructed without

involving any implementation dependent tricks. It is thus possible to add new incre-

mental compilation operators into our context-enriched calculi in a modular fashion.

As yet another demonstration of our schema, we apply it to an extension of the

pure �-calculus with relinkable variable referencing devices. A relinkable variable

reference is a variable reference that can be bound by di�erent de�ning variables as

its surrounding context grows. It thus possesses the potential to act as a late binding

variable reference. At the machine code level, relinkable variable references behave

no di�erently than statically-scoped variables since their context has already been

�xed. Adding them therefore does not greatly enhance the expressiveness of the pure

�-calculus. In the context-enriched calculus of relinkable variable references ���RR,

evolving contexts are a meaningful and programmable notion. Relinkable variable

references occurring in compiled code abstractions therefore mimic late binding free

variables whose linking relation is subject to change as their context evolves.

The context-enriched �-calculi ���DD and ���RR are combined to express two of the

most common forms of incremental programming in practice, namely, object-oriented

programming and interactive programming. Objects are modules. Object encap-

sulation is module encapsulation. Object inheritance is module combination. Late

binding virtual references are relinkable variable references. Their linking relation is

resolved directly without the help of some pseudo-variable such as self.

The environment used by an interactive evaluator is a module. It exports pre-

viously evaluated de�ne-expressions and imports free variables mentioned in the



178

evaluated de�ne-expressions. The free variables are relinkable variable references.

They provide the needed sensibility for existing de�ne-expressions to respond to fu-

ture de�ne-expressions. Evaluating a new de�ne-expression overrides or extends the

existing interactive environment to yield a new environment.

In summary, programming language design is about the abstraction of recurring

programming idioms. The expressiveness of a programming language is tied to the

idioms it can 
uently express. In this sense, our context-enriched �-calculi are highly

desirable:

� They are expressive enough to cover the basic notions underlying many promi-

nent incremental programming paradigms.

� Their linking mechanisms are explained in terms of code copying and variable

renaming, thus corresponding nicely to the two source code editing functions

most often used if incremental program construction were done by hand.

� Their incremental program construction mechanisms are orthogonal to the com-

putational devices employed by �-calculi.

� They are derived from a modular language design methodology.

9.2 Related Work

We relate our context-enriched calculi to other extensions of the �-calculus with name-

based programming mechanisms. None of them explicitly supports incremental code

construction. To simplify the discussion, we take the liberty of altering their syntax

in the style of our context calculi.

9.2.1 Denotational Semantics of Lambda Calculus

The direct style denotational semantics of the �-calculus [67] shown in Figure 9.1

constitutes a view of incremental program construction involving computational �-

steps and environment lookups. An environment r maps the syntactic representation



179

E [[x]] = �r:(r [[x]])

E [[�x:e]] = (L [[x]]) (E [[e]])

E [[e1 e2]] = A (E [[e1]]) (E [[e2]])

with L = �s:�f:�r:�x:(f r[s 7! x])

A = �f1:�f2:�r:((f1 r) (f2 r))

Figure 9.1: Denotational semantics of �-calculus

[[x]] of variables x to their denotation. The notation r[[[x]] 7! e] denotes an extension

of the environment r such that an environment lookup r[[[x]] 7! e] [[y]] is e if x and y

are the same variable, but is otherwise the result of looking up [[y]] in the environment

r, r [[y]]. The meaning E [[e]] of (the syntax [[e]] of) a �-term e is usually de�ned in

an abstract mathematical model of the �-calculus known as domains [67]. Here, in

contrast to common practice, we elect to remain metacircular; that is, E [[e]] is merely

another �-term. We can then prove the following in the �-calculus with a structural

induction on e:

Theorem 9.1 Let x1; : : : ; xn be the free variables of e. Then,

E [[e]] !! �r:[(r [[xn]])=xn] � � � [(r [[x1]])=x1]e

That is, the meaning of the syntactic representation [[e]] of e is the �-term e parame-

terized over an environment r and that every occurrence of each free variable xi in e

is replaced by an environment lookup r [[xi]].

A �-term of the form �r:[(r [[xn]])=xn] � � � [(r [[x1]])=x1]e is reminiscent of a free

identi�er abstraction �fx1 :x1; : : : ;xn :xng:e when the syntactic representation [[xi]]

of variable xi is viewed as a realization of identi�er xi. Once we recognize the con-

nection, the deliberately �ltered out meaning functions A and (L [[x]]) of Figure 9.1

are the compiled code construction operators app and lamx of our context-enriched

�-calculi.

The advantages of de�ning incremental program construction based on the notion

of environment lookup are:



180

� There is no need for the special free identi�er abstraction mechanisms. Reason-

ing can be done purely in the �-calculus.

� It is straightforward to encode a prototype implementation with a suitable rep-

resentation of environments.

The advantages of thinking incremental program construction in terms of free

identi�er abstractions are:

� There are no administrative �-reductions involved in the construction and ap-

plication of environments to contend with. Instead, we deal with variable re-

naming, which is much simpler. More importantly, the latter is conceptually

closer to what happens in a linker.

� By recognizing free identi�er abstractions as a distinct data type and studying

their behavior as such, it is easier to incorporate more free identi�er abstraction

operators in the future in a manner that would have been less than intuitive

with the environment-based semantics.

� We can capture the essence of free variables without worrying about imple-

mentation details. Reasoning with free identi�er abstractions is more natural

than reasoning with environments precisely because they separate speci�cation

issues from implementation issues concerning free variables, a fundamental re-

quirement for any useful abstraction mechanism.

9.2.2 Lambda Calculus with Names

Dami's �-calculus with names �N [24] extends the �-calculus with keyword parameters

to facilitate program extensibility. The syntax of �N using our notation is:

e ::= x j ��:e j e(x�>e) j e! j err
� ::= fx1 :x1; : : : ;xn :xng



181

A �N-abstraction �fx1 :x1; : : : ;xn :xng:e has each parameter xi known externally via

the name (keyword or identi�er) xi. The �N-calculus breaks the �-reduction rule into

two independent reduction rules called bind and close. A bind reduction is

(��:e1)(x�>e2) ! ��:[e2=x]e1

where either x :x 2 � or else x is fresh. It binds the x-parameter of the abstraction

��:e1 to the denotation e2 without invoking the abstraction. A close reduction is

(�fx1 :x1; : : : ;xn :xng:e)! ! [err=x1] � � � [err=xn]e

It corresponds to the invocation of the abstraction �fx1 :x1; : : : ;xn :xng:e. Any un-

bound parameter is given the error value err.

The �N-calculus closely resembles our ���C-calculus. Indeed, we can easily embed

�N into ���C using the translation C[[ ]] de�ned inductively as follows:

C[[x]] = x

C[[��:e]] = ��:C[[e]]
C[[e1(x�>e2)]] = app (lamx C[[e1]]) �fg:C[[e2]]

C[[e!]] = load C[[e]]

A �N-abstraction ��:e is the free identi�er abstraction ��:C[[e]]. A close operation

(��:e)! loads the free identi�er abstraction ��:C[[e]] of ��:e, provided that we iden-

tify unlinked identi�er indicators ~x with the error value err. A bind operation

(��:e1)(x�>e2) is semantically equivalent to the compiled �-redex ��:((�x:e1) e2)

where either x :x 2 � or else x is fresh.

Although the two calculi have similar abstraction mechanism, there is a funda-

mental di�erence in the way names are utilized. In the �N-calculus, names are used

in parameter passing steps. In contrast, in our context-enriched calculi, names are

used in incremental program construction steps. The di�erence has a profound e�ect

on the philosophical view of software composition. In the view of Dami's �N-calculus,

as well as other extensions of the �-calculus with name-based programming mecha-

nisms such as records [19], label-selective �-calculus [6], transparent data parameters



182

[36, 40], and quasi-static procedures [42], composing programs is about passing named

parameters among program components, a notion tied to the computational behav-

ior of programs. With our context-enriched calculi, program composition is about

linking program components together, a notion that is completely independent of the

computational behavior of programs.

9.2.3 Jigsaw

Jigsaw [12, 13] is a framework for designing modular programming languages based on

the idea that inheritance is an essential linguistic mechanism for module manipulation.

A module is an abstract class [46, 68]. It is a mutually recursive scope consisting of

de�nitions and declarations. De�nitions bind names to values. Declarations specify

pure virtual attribute references. Inheritance covers the notions of code reuse and

late binding. Module operators reuse preexisting modules to produce new modules.

Module combination operators replace declarations in one module with de�nitions

from other modules, thus achieving late binding.

Jigsaw shares our view that modules and objects are closely related incremental

programming concepts that should be supported in a single system. The main dif-

ference lies in the way virtual attribute references are resolved. Jigsaw's semantics

is based upon a denotational model of inheritance [22, 60] where modules are mod-

eled as record generators, which are functions from records to records, and attribute

references are translated into record �eld selections. Module manipulation operators

are then de�ned as operations on such record generators. These record generator

operations are responsible for building records incrementally. They do not resolve

virtual attribute references. The linking relation of virtual references are resolved

only when modules are instantiated, since the complete picture of a record is only

known at that time. In contrast, our system as presented in Chapter 8 truthfully cap-

tures the incremental nature of module construction. The linking relation of every

attribute reference, whether virtual or not, of every module is determined as soon as

the module is de�ned. If necessary, such linking relation can be adjusted to accom-



183

modate the e�ect of future changes. Our description of incremental programming is

more attractive since it has a cleaner semantics for modules and objects. Moreover,

the semantic description very closely resembles actual implementations employed by

object-oriented languages such as C++ [26].

9.3 Future Work

There are many issues concerning our context-enriching schema left to be explored.

First and foremost is the need of an e�ective implementation for our context-enriched

calculi. E�cient implementation should not be the deciding factor of the practicality

of our context-enriched calculi, but a stronger case can be presented if we have one.

Second, so far we have only shown examples of enriching untyped programming lan-

guages. We would like to broaden the applicability of our schema to typed �-calculi

as well. Third, a nagging problem about our free identi�er abstractions is the need

of a special notion of equivalence ( � ) to garbage collect their redundant parame-

ters. It is one of our top priorities to develop a new representation for free identi�er

abstractions that would automatically rid them of redundant parameters.

9.3.1 E�ective Implementation

Devising an e�cient implementation for the incremental compilation mechanisms of

our context-enriched �-calculi is a challenging proposition. Intuitively, the compiled

code construction operations induced by our schema are run-time operations. It is

therefore conceivable that they require run-time code generation [20, 43]. We are

inclined to believe that some form of run-time code generation is inevitable when

e�ciency is a relevant issue.

A general rule of thumb about compilation technologies is that the more contex-

tual information we have about a program, the more static analysis we can perform

and therefore the more e�cient the compiled program is. This is unfortunately not

the case with our view of incremental program construction. For instance, it is easy



184

to determine the binding parameter of a statically-scoped variable reference when

we know enough about the context in which it is used. Consequently, such a vari-

able reference can be translated into a simple lexical address relative to the closure

representation of some �-abstraction [17, 27, 62]. Adapting such an implementation

technique to our free identi�er abstractions becomes a non-trivial task since the con-

text of the free identi�er references has yet to be built. It is therefore impossible

to translate them into some �xed lexical addresses beforehand. Particularly, what

lexical address should we assign for the variable reference x in �fx :xg:x with respect

to the closure representation of �fx :xg:x? Whatever the lexical address is, it is likely

to change in the future. To illustrate, in the process of

app �fx :xg:x �fy :yg:y ! �fx :x;y :yg:(x y)

either of the two variable references x or y in the resulting term must have its lexical

address altered to refer to its new position in the parameter speci�cation fx :x;y :yg.
On the other hand, the problem vanishes when lexical addresses are assigned only

when a free identi�er abstraction is about to be loaded because the complete contex-

tual information about any free identi�er reference is �xed at that time.

9.3.2 Enriching Typed Lambda Calculi

Another rich avenue of future research is to adapt our incremental program construc-

tion capability enhancing schema to typed �-calculi. It means that our incremental

compiled code construction operations must also perform type checking (or type in-

ferencing) duties. Since there is a diverse array of type systems [18, 50], it is a major

undertaking to study the various typing disciplines they impose on our incremental

compiled code constructors.

An extensive exploration of the typing of our context-enriched calculi is at the

top of our agenda. There is an abundance of results on types, and subtypes in

particular, that we can draw upon. Furthermore, since some of the crucial notions

underlying object-oriented programming are shared by our context-enriched calculi,



185

it is tempting to investigate if our incremental program construction mechanisms

simplify or complicate typing issues of object-oriented programming languages [2, 32,

51, 57].

9.3.3 Garbage Collecting Redundant Parameters

In the context-enriched �-calculi we rely on the meta-notion of indistinguishabil-

ity ( � ) to remove redundant parameters from free identi�er abstractions. We are

wondering if such redundant parameters can be removed without resorting to indis-

tinguishability.

A positive answer seems reachable. The reason we need indistinguishability is that

the reduction of the body term e of a free identi�er abstraction ��:e might remove

references to some parameters speci�ed in �, thus making them redundant. One way

to automatically garbage collect such redundant parameters is to do without the �-

speci�cation altogether and use a new category of free identi�er references xk that

are bound by the kth nearest enclosing �-abstraction. Formally, we are expressing

�fx1 :x1; : : : ;xn :xng:e

as

�:hx11=x1i � � � hx1n=xnie

by renaming every occurrence of xi in e with x1i . For instance,

�fx :x;y :yg:�fx :x0; z :zg:((�z:(x0 y)) x)

becomes

�:�:((�z:(x1 y2)) x2)

Notice that the redundant parameter z :z has disappeared. Furthermore, when we

contract the underlined �-redex to yield

�:�:(x1 y2)

the redundant parameter x :x is eliminated automatically.



186

With the new syntactic notation �:e for free identi�er abstractions, �-reduction

as well as incremental compiled code constructors such as lamx and app must be

adapted accordingly. It would be interesting to see how complicated such adjustments

turn out if they are feasible at all.

9.4 Concluding Remarks

Th contribution of this thesis to the study of programming languages is a modular

language design methodology for enhancing programming languages with incremental

program construction capabilities. Such capabilities are given an intuitively elegant

and yet sensible syntactic description. Furthermore, they can be added to a program-

ming language regardless of its computational idiosyncrasies. Last but not least, this

thesis illustrates that many incremental programming paradigms are indeed program-

ming with the notion of contexts. Our work answers only some basic questions about

contextual programming. There are a series of open problems waiting to be explored.

We expect further experimentation with the notion of contextual programming to

shed more light on the nature of incremental program development.



Bibliography

[1] Mart��n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques L�evy. Ex-

plicit substitutions. In Proceedings of the 17th ACM Symposium on Principles

of Programming Languages, pages 31{46, 1990.

[2] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Untyped and

�rst-order systems. In Theoretical Aspects of Computer Software, pages 296{

320. Springer-Verlag, 1994.

[3] Mart��n Abadi, Luca Cardelli, and Ramesh Viswanathan. An interpretation

of objects and object types. In Proceedings of the 23rd ACM Symposium on

Principles of Programming Languages, 1996.

[4] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and

Interpretation of Computer Programs. MIT Press, 1985.

[5] Norman Adams and Jonathan Rees. Object-oriented programming in Scheme.

In Proceedings of the ACM Conference on Lisp and Functional Programming,

pages 277{288, 1988.

[6] Hassan A��t-Kaci and Jacques Garrigue. Label-selective �-calculus: Syntax and

con
uence. In Proceedings of the 13th International Conference on Founda-

tions of Software Technologies and Theoretical Computer Science, pages 24{40,

Springer-Verlag, 1993.

[7] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, Revised

edition. North-Holland, 1984.

187



188

[8] Henk Barendregt. Self-interpretation in lambda calculus. Journal of Functional

Programming, 1(2):229{234, 1991.

[9] Klaus J. Berkling and Elfriede Fehr. A consistent extension of the lambda-

calculus as a base for functional programming languages. Information and

Control, 55:89{101, 1982.

[10] Klaus J. Berkling and Elfriede Fehr. A modi�cation of the �-calculus as a

base for functional programming languages. In Proceedings of the International

Colloquium on Automata, Languages and Programming, pages 35{47, Lecture

Notes in Computer Science 140. Springer-Verlag, 1982.

[11] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of

the ACM Conference on Object-Oriented Programming: Systems, Languages

and Applications, pages 303{311, 1990.

[12] Gilad Bracha and Gary Lindstrom. Modularity meets Inheritance. In Proceed-

ings of the International Conference on Computer Languages, pages 282{290,

1992.

[13] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and

Multiple Inheritance. PhD thesis, University of Utah, 1992.

[14] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool

for automatic formula manipulation. Indagationes Mathematicae, 34:381{392,

1972.

[15] N. G. de Bruijn. A survey of the project AUTOMATH. In To H.B. Curry:

Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages 579{

606, Academic Press, 1980.

[16] M.W. Bunder. An extension of Klop's counterexample to the Church-Rosser

property to lambda-calculus with other ordered pair combinators. Theoretical

Computer Science, 39:337{342, 1985.



189

[17] Luca Cardelli. Compiling a functional language. In Proceedings of the ACM

Conference on Lisp and Functional Programming, pages 208{217, 1984.

[18] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,

and polymorphism. Computing Survey, 17(4):471{522, 1985.

[19] Luca Cardelli and John C. Mitchell. Operations on records. In [32].

[20] Craig Chambers, David Ungar, and Eugene Lee. An e�cient implementation

of SELF, a dynamically-typed object-oriented language based on prototypes.

Lisp and Symbolic Computation, 4(3):243{281, 1991.

[21] William Clinger and Jonathan Rees (editors). Revised4 report on the algorith-

mic language Scheme. Lisp Pointers, 4(3):1{55, 1991.

[22] William Cook and Jens Palsberg. A denotational semantics of inheritance and

its correctness. In Proceedings of the ACM Conference on Object-Oriented Pro-

gramming: Systems, Languages and Applications, pages 433{443, 1989.

[23] William Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown

University, 1989.

[24] Laurent Dami. Software Composition: Towards an Integration of Functional

and Object-Oriented Approaches. PhD thesis, University of Geneva, 1994.

[25] L. Peter Deutsch and Allan M. Schi�man. E�cient implementation of the

Smalltalk-80 system. In Proceedings of the 11th ACM Symposium on Principles

of Programming Languages, pages 297{302, 1984.

[26] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Man-

ual. Addison Wesley, 1990.

[27] Marc Feeley and Guy Lapalme. Closure generation based on viewing lambda

as epsilon plus compile. Journal of Computer Languages, 17(4):251{267, 1992.



190

[28] Matthias Felleisen and Daniel P. Friedman. A closer look at export and import

statements. Journal of Computer Languages, 11(1):29{37, 1986.

[29] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories

of sequential control and state. Theoretical Computer Science, 102:235{271,

1992.

[30] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Im-

plementation. Addison Wesley, 1983.

[31] James Gosling and Henry McGilton. The Java language environment: A white

paper. Sun Microsystems, 1995.

[32] Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-Oriented

Programming: Types, Semantics, and Language Design. MIT Press, 1994.

[33] Chris Hankin. Lambda Calculi: A Guide For Computer Scientists. Oxford

University Press, 1994.

[34] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and

�-Calculus. Cambridge University Press, 1986.

[35] Paul Hudak. Conception, evolution, and application of functional programming

languages. ACM Computing Surveys, 21(3):359{411, 1989.

[36] Stanley Je�erson, Shinn-Der Lee, and Daniel P. Friedman. A syntactic theory

of transparent parameterization. In Proceedings of the 3rd European Symposium

on Programming, pages 211{226, Springer-Verlag, 1990.

[37] Samuel N. Kamin. Inheritance in Smalltalk-80: A denotational de�nition. In

Proceedings of the 15th ACM Symposium on Principles of Programming Lan-

guages, pages 80{87, 1988.

[38] Stephen C. Kleene. �-De�nability and recursiveness. Duke Mathematical Jour-

nal, 2:340{353, 1936.



191

[39] J.W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts 127,

Mathematisch Centrum, Amsterdam, 1984.

[40] John Lamping. A uni�ed system of parameterization for programming lan-

guages. In Proceedings of the ACM Conference on Lisp and Functional Pro-

gramming, pages 316{326, 1988.

[41] Peter J. Landin. The mechanical evaluation of expressions. Computer Journal,

6(4):308{320, 1964.

[42] Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing vari-

able bindings across multiple lexical scopes. In Proceedings of the 20th ACM

Symposium on Principles of Programming Languages, pages 479{492, 1993.

[43] Mark Leone and Peter Lee. Lightweight run-time code generation. In Pro-

ceedings of the ACM Workshop on Partial Evaluation and Semantics-Based

Program Manipulation, 1994.

[44] John McCarthy. Towards a mathematical science of computation. In Proceed-

ings of IFIP Congress 63, pages 21{28. North-Holland, 1963.

[45] John McCarthy et al. LISP 1.5 Programmer's Manual. MIT Press, 1965.

[46] Bertrand Meyer. Ei�el the Language. Prentice Hall, 1992.

[47] James S. Miller and Guillermo J. Rozas. Free variables and �rst-class environ-

ments. Lisp and Symbolic Computation, 4(2):107{141, 1991.

[48] Robert Milne and Christopher Strachey. A Theory of Programming Language

Semantics. Chapman and Hall, 1976.

[49] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML.

MIT Press, 1990.



192

[50] John C. Mitchell. Type systems for programming languages. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, Volume B, pages 365{458.

MIT Press, 1990.

[51] John C. Mitchell, Furio Honsell, and Kathleen Fisher. A lambda calculus of

objects and method specialization. In Proceedings of the 8th IEEE Symposium

on Logic In Computer Science, 1993.

[52] Torben �. Mogensen. E�cient self-interpretation in lambda calculus. Technical

Report, DIKU, University of Copenhagen, 1994.

[53] Martin Odersky, Dan Rabin, and Paul Hudak. Call by name, assignments, and

the lambda calculus. In Proceedings of the 20th ACM Symposium on Principles

of Programming Languages, pages 43{56, 1993.

[54] Atsushi Ohori. A compilation method for ML-style polymorphic record calculi.

In Proceedings of the 19th ACM Symposium on Principles of Programming Lan-

guages, pages 154{165, 1992.

[55] D. L. Parnas. On the criteria to be used in decomposing systems into modules.

CACM, 15(12):1053{1058, 1972.

[56] Simon L. Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice Hall, 1987.

[57] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for

object-oriented programming. Journal of Functional Programming, 4(2):207{

248, 1994.

[58] Gordon D. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical

Computer Science, 1:125{159, 1975.

[59] Gordon D. Plotkin. A structural approach to operational semantics. Technical

Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.



193

[60] Uday S. Reddy. Objects as closures: Abstract semantics of object-oriented

languages. In Proceedings of the ACM Conference on Lisp and Functional Pro-

gramming, pages 289{297, 1988.

[61] David A. Schmidt. Denotational Semantics: A Methodology for Language De-

velopment. Allyn and Bacon, 1986.

[62] Zhong Shao and Andrew W. Appel. Space-e�cient closure representations.

In Proceedings of the ACM Conference on Lisp and Functional Programming,

pages 150{161, 1994.

[63] Bruce Shriver and Peter Wegner. Research Directions in Object-Oriented Pro-

gramming. MIT Press, 1987.

[64] Alan Snyder. Encapsulation and inheritance in object-oriented programming

languages. In Proceedings of the ACM Conference on Object-Oriented Program-

ming: Systems, Languages and Applications, pages 38{45, 1986.

[65] Alan Snyder. Inheritance and the development of encapsulation software com-

ponents. In [63].

[66] Guy L. Steele Jr. Common Lisp: The Language, Second Edition. Digital Press,

1990.

[67] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-

gramming Language Theory. MIT Press, 1981.

[68] Bjarne Stroustrup. The C++ Programming Language, second edition. Addison

Wesley, 1991

[69] Masako Takahashi. Parallel reductions in �-calculus. Journal of Symbolic Com-

putation, 7:113{123, 1989.



194

[70] Carolyn Talcott. Binding structures. In Vladimir Lifschitz, editor, Arti�cial In-

telligence and Mathematical Theory of Computation, pages 427{448. Academic

Press, 1991.

[71] Carolyn Talcott. A theory of binding structures and applications to rewriting.

Theoretical Computer Science, 112:99{143, 1993.

[72] David A. Turner. A new implementation technique for applicative languages.

Software Practice and Experience, 9:31{49, 1979.

[73] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1982.

[74] Mario Wolczko. Semantics of Smalltalk-80. In Proceedings of the European

Conference on Object-Oriented Programming, pages 108{120, Lecture Notes in

Computer Science 276. Springer-Verlag, 1987.



Curriculum Vita

Shinn-Der Lee received his bachelor's degree from National Taiwan University, Tai-

wan, in 1982. In 1984, he earned his master's degree in Computer Science from

National Taiwan University. His doctoral research has been conducted under the

supervision of Prof. Daniel P. Friedman. During its course, he has published four

papers and given presentations of his work at conferences in the United States. His

graduate studies at Indiana University, Bloomington, have been supported by uni-

versity funded associate instructorships and NSF funded research assistantships. He

is a member of the Association for Computing Machinery since 1989.


