
INTROSPECTIVE LEARNING FOR CASE-BASED

PLANNING

by

Susan Fox

Submitted to the faculty of the Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science,

Indiana University

October, 1995

Accepted by the Graduate Faculty, Indiana University, in partial ful�llment of the

requirements of the degree of Doctor of Philosophy.

David B. Leake, Ph.D.
(Principal Advisor)

Michael Gasser, Ph.D.

Chris Haynes, Ph.D.

July 27, 1995 Robert F. Port, Ph.D.

ii

Copyright c
 1995

Susan Fox

ALL RIGHTS RESERVED

iii

Acknowledgements

First and foremost I have to express my gratitude to my advisor, David Leake, without

whose support and guidance none of this would have been possible. David's always

constructive critiques of my thinking and writing kept me on track and alert to the

possibilities and pitfalls of my ideas. He was always a fount of knowledge about people

and research I should pay attention to.

I would also like to thank the members of my committee, Chris Haynes, Mike

Gasser, and Bob Port, for their interest and invaluable assistance. I greatly appreciate

their willingness to o�er advice when I needed it and to challenge me to look at my

work from a new perspective. Bob Port deserves special thanks for his suggestions

about designing empirical tests for ROBBIE and analyzing the results. I would like

to include special thanks to George Springer who, while not involved in my research,

made me appreciate the value of careful thinking and careful preparation in teaching,

qualities that I have also found essential in writing and speaking about my research.

I would like to thank the other members of the CBR reading group for giving me

a fresh perspective on CBR: Lincoln Carr, Eliana Colunga-Leal, Phil Doggett, Chuck

Shepherd, Raja Sooriamurthi, and Dave Wilson.

Raja Sooriamurthi has been both a friend and a colleague. We have traded advice

on our research, and explored conferences together. His friendship has been deeply

iv

appreciated.

The CRANIUM lab has been a second home to me for at least three years, and

the people who make it up are a special group. I would like to thank them all for

making the lab a warm and relaxed place to work, for providing a mountain of useful

advice, and for keeping me on my toes during practice talks. The lab includes Doug

Blank, Fred Cummins, Doug Eck, Paul Kienzle, Devin McAuley, John Nienart, Cathy

Rogers, Raja Sooriamurthi, Keiichi Tajima, and Dave Wilson, plus Lisa Meeden and

Sven Anderson, who graduated in earlier years.

I would like to express my appreciation to all the members of the graduate student

community in the CS Department for fostering a true sense of community. A complete

list of those who deserve mention would �ll pages. I would like to thank Kathi

Fisler, Liz Johnson, Diana Meadows, and Cornelia Davis for innumerable talks about

everything. Knowing a bunch of great women like these has been inspiring to me.

I would like to particularly recognize Mike Ashley and Oscar Waddell, with whom

I have studied computer science for nine years, for frequent Star Trek parties, and

advice, assistance, and commiseration whenever I needed it.

My husband, George Calger, deserves my deepest gratitude for his love, support,

and encouragement. He listened to my technical babbling with patience, and provided

indispensable advice on the proper use of English in my writing. I also owe a deep

debt of gratitude to my parents, Robert and Marilynn Fox, for a lifetime of telling

me I could do it, letting me do it on my own, and accepting with equanimity when I

did do it.

This work was supported in part by the National Science Foundation under Grant

No. IRI-9409348. Additional support was provided by the College of Arts and Sci-

ences at Indiana University through a Summer Research Fellowship.

v

Abstract

A fundamental problem for arti�cial intelligence is creating systems that can operate

well in complex and dynamic domains. In order to perform well in such domains,

arti�cial intelligence systems must be able to learn from novel and unexpected sit-

uations. There are many well-researched learning methods for augmenting domain

knowledge, but little attention has been given to learning how to manipulate that

knowledge more e�ectively. This research develops a method for learning about rea-

soning methods themselves. It proposes a model for a combined system which can

learn new domain knowledge, but is also able to alter its reasoning methods when

they prove inadequate.

Model-based reasoning is used as the basis of an \introspective reasoner" that

monitors and re�nes the reasoning process. In this approach, a model of the desired

performance of an underlying system's reasoning is compared to the actual perfor-

mance to detect discrepancies. A discrepancy indicates a reasoning failure; the system

explains the failure by looking for other related failures in the model, and repairs the

aw in the reasoning process which caused the failure. The framework for this intro-

spective reasoner is general and can be transfered to di�erent underlying systems.

The ROBBIE (Re-Organization of Behavior By Introspective Evaluation) system

combines a case-based planner with an introspective component implementing the

vi

approach described above. ROBBIE's implementation provides insights into the kinds

of knowledge and knowledge representations that are required to model reasoning

processes. Experiments have shown a practical bene�t to introspective reasoning as

well; ROBBIE performs much better when it learns about its reasoning as well as its

domain than when it learns only about its domain.

vii

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Introspective reasoning in people : 5

1.1.1 Psychological support for introspective learning : : : : : : : : 6

1.2 Introspective reasoning in AI : 7

1.3 Requirements for introspective learning : : : : : : : : : : : : : : : : : 10

1.4 The ROBBIE system : 15

1.5 Results : 17

1.6 Goals of this research : 18

1.6.1 A framework for introspective reasoning : : : : : : : : : : : : 19

1.6.2 General applicability : 21

1.6.3 Evaluation of the model : 22

1.6.4 Ultimate goal : 23

1.7 Outline of the following chapters : 24

2 Background 25

viii

2.1 Case-based reasoning : 26

2.1.1 Planning in the context of CBR : : : : : : : : : : : : : : : : : 29

2.1.2 Determining features for indexing criteria : : : : : : : : : : : : 31

2.2 Reactive planning : 32

2.3 Integrating deliberative and reactive planning : : : : : : : : : : : : : 36

2.4 Introspective reasoning : 36

2.4.1 Model-based reasoning for introspective self-diagnosis : : : : : 37

2.4.2 RAPTER : 38

2.4.3 Autognostic : 40

2.4.4 Meta-AQUA : 41

2.4.5 IULIAN : 42

2.4.6 Massive Memory Architecture : : : : : : : : : : : : : : : : : : 43

2.4.7 Other methods for reasoning improvement : : : : : : : : : : : 43

2.5 ROBBIE's features : 44

3 ROBBIE and Its Domain 46

3.1 The domain : 49

3.2 Overview of the system : 51

3.3 The simulated world : 52

3.4 The planner : 58

3.5 The introspective reasoner : 60

3.6 The ROBBIE system : 62

4 ROBBIE's Planner 64

4.1 Using CBR to implement CBR : 68

4.2 Memory organization and cases : 69

ix

4.3 Indexer: index creation : 72

4.4 Retriever: Selecting cases from memory : : : : : : : : : : : : : : : : : 78

4.5 Adaptor: Altering cases : 82

4.6 Reretriever: Altering the goal : 91

4.7 Executor: Reactive execution : 97

4.7.1 Matching actual to goal locations : : : : : : : : : : : : : : : : 104

4.7.2 Planlet actions : 105

4.8 Storer: Adding cases to memory : 108

4.9 Summing up : 110

5 Model-based Introspective Reasoning 113

5.1 Assertions of the model : 117

5.1.1 What assertions to make : 118

5.1.2 Level of detail for the assertions : : : : : : : : : : : : : : : : : 119

5.1.3 Vocabulary for assertions : 120

5.2 Structure of the model : 123

5.2.1 Modularity : 126

5.2.2 Hierarchical structure : 127

5.2.3 Assertion to assertion links : 127

5.3 Costs versus bene�ts : 129

5.4 Summing up : 131

6 Introspective Index Re�nement in ROBBIE 135

6.1 Modeling ROBBIE : 137

6.2 Monitoring : 138

6.3 Explaining failures : 144

x

6.4 Repairing failures : 147

6.4.1 Finding missing features : 148

6.5 Summing up : 154

7 Experimental Results 156

7.1 Experimental design : 159

7.2 Performance measures : 163

7.3 E�ects of introspective learning : 165

7.3.1 Success rate : 166

7.3.2 Statistical signi�cance of di�erences : : : : : : : : : : : : : : : 168

7.3.3 Improved retrieval e�ciency : : : : : : : : : : : : : : : : : : : 173

7.4 E�ects of problem order : 177

7.5 Anomalous sequences : 179

7.6 Conclusions from the empirical tests : : : : : : : : : : : : : : : : : : 183

8 Conclusions and Future Directions 186

8.1 Domain issues : 188

8.2 The planning component : 190

8.2.1 Combining deliberative and reactive planning : : : : : : : : : 191

8.2.2 Re-retrieval to adapt goals : 193

8.2.3 Recursively using CBR for components : : : : : : : : : : : : : 195

8.2.4 Storage of cases : 196

8.3 Introspective learning : 197

8.3.1 Generality of framework : 198

8.3.2 Monitoring and explaining failures : : : : : : : : : : : : : : : 199

8.4 Index re�nement : 201

xi

8.5 Scaling up : 203

8.5.1 Scaling up the planning process : : : : : : : : : : : : : : : : : 204

8.5.2 Scaling up introspective learning : : : : : : : : : : : : : : : : : 209

8.6 Web searching as a real-world application : : : : : : : : : : : : : : : : 211

8.6.1 Index creation : 212

8.6.2 Case retrieval : 213

8.6.3 Adaptation : 214

8.6.4 Learning new search plans : 215

8.7 Summary : 216

A Sample Run of ROBBIE 218

B Taxonomy of Failures 238

C ROBBIE's Introspective Model 241

Bibliography 244

xii

List of Tables

1 Commands from ROBBIE to Simulator : : : : : : : : : : : : : : : : : 58

2 Similarities between modules : 69

3 Methods for similarity assessment : 78

4 Commands in planlets to Executor and world simulator : : : : : : : : 106

5 Failure types : 119

6 Assertion vocabulary predicates : 121

7 Monitoring messages from the planner : : : : : : : : : : : : : : : : : 139

8 Feature types : 149

9 Messages passed from introspective reasoner to planner : : : : : : : : 154

10 Statistical signi�cance of observed mean di�erences for each sequence:

signi�cant di�erences are marked with *, **, or *** (indicating level

of signi�cance), insigni�cant di�erences are unmarked : : : : : : : : : 172

11 Current repair classes for the model : : : : : : : : : : : : : : : : : : : 201

xiii

List of Figures

2.1 A typical case-based planner : 27

3.1 One of ROBBIE's worlds : 48

3.2 High-level plan : 50

3.3 ROBBIE and its world simulator : 52

3.4 Simulator's process : 53

3.5 A typical sidewalk location description : : : : : : : : : : : : : : : : 54

3.6 Typical intersect and in-street-inters location descriptions : : : 55

3.7 Typical street and between-blocks location descriptions : : : : : : 55

3.8 A portion of the world map with location types marked in shaded sections 56

3.9 ROBBIE's planning component : 59

3.10 Structure of the introspective reasoner : : : : : : : : : : : : : : : : : 61

4.1 A typical ROBBIE route plan : 71

4.2 Plan step categories : 72

4.3 Reactive planlet index when situation involves moving across a street 75

4.4 Di�erences for case old2 in �rst sample run : : : : : : : : : : : : : : 81

4.5 Initial and �nal forms of new-streets supplemental Adaptor knowledge 85

4.6 Adaptation strategy: �ll in turn street with previous : : : : : : : : : 88

4.7 Selected adaptation strategies : 90

xiv

4.8 Street information for ROBBIE : 91

4.9 Map annotated with locations : 96

4.10 A sample planlet for executing a turn step : : : : : : : : : : : : : : : 99

4.11 Location descriptions that match, to the Executor : : : : : : : : : : : 105

4.12 Planlets for crossing streets : 107

4.13 Key features of ROBBIE's planner : : : : : : : : : : : : : : : : : : : 111

5.1 A typical assertion: there will be one retrieved case : : : : : : : : : : 121

5.2 Sample assertions : 123

5.3 A typical cluster from the model, showing one assertion: Every case in

memory will be judged less (or equally) similar to the current problem

than the case that was actually retrieved . : : : : : : : : : : : : : : : : 126

6.1 Assertions refer to points in processing: before, during, after, and

on-failure. : 140

6.2 Indexer on-failure assertion for �nding features : : : : : : : : : : : 148

6.3 A typical feature type rule : 150

7.1 Map for experiments : 160

7.2 Sequence of locations in handmade sequence : : : : : : : : : : : : : : 162

7.3 Histogram of success rate frequencies for sequence Random 3 shows

a lower range of values for case learning alone and a higher range for

both case and introspective learning : : : : : : : : : : : : : : : : : : : 167

7.4 Average success rates for each sequence, dark bars with index re�ne-

ment, lighter bars without it: runs with index re�nement outperform

runs without it : 168

xv

7.5 Population distribution of mean di�erences created by bootstrapping

for Permuted 20c; the population represents the null hypothesis, the

distance of the observed mean from the curve suggests it may be sig-

ni�cant : 170

7.6 Percentage of good matches for test runs of the \well-ordered" se-

quence: dark line is one test run with introspective re-indexing, stars

show where re-indexing took place, light lines are �ve runs without re-

indexing. Re-indexing causes much lower percentages on some problems174

7.7 Successive averages for the handmade case: a large decrease in retrieval

percentages for introspective runs compared to non-introspective runs 176

7.8 Successive averages for a typical sequence: typical di�erence between

introspective and non-introspective graphs : : : : : : : : : : : : : : : 177

7.9 Average success rate of groups of sequences: with case learning the

average drops with random problem orders, with introspective learning

the average declines more slowly : 179

7.10 Histogram of success rate frequencies for anomalous sequence: the

peaks for case versus case and introspective learning are close together

(12-14), case learning alone extends higher : : : : : : : : : : : : : : : 181

7.11 Successive averages for the worst anomalous case (Random 5): almost

no di�erence between introspective and non-introspective graphs : : : 182

8.1 The \Bridge" map : 189

xvi

Chapter 1

Introduction

People learn to cope with the complex situations they face by analyz-
ing their reasoning as well as their actions. Similar bene�ts may be
achieved by monitoring and adjusting reasoning methods in arti�cial
intelligence systems. In this chapter we describe what is required to
perform introspective reasoning, our approach to the problem, and
the goals of our research.

When people solve problems, whether cooking, taking a quiz, or making a sale,

they do not blindly assume that they will be able to �nd a solution with the �rst

approach they try, nor do they assume that a solution will necessarily succeed. Ob-

stacles often arise both in creating a plan to solve the problem and in executing the

solution. Consider the following scenarios:

1. A person plans a route to drive to a job interview in a new city. As she drives

downtown, she discovers her route won't work because a street is one-way the

wrong way. She did not check a map for one-way streets in planning her route,

and resolves to pay more attention to which streets are one-way the next time.

2. A couple decides to make lasagne for dinner. After preparing the sauce and

cheese mixtures, they discover that they have no lasagne noodles. One says to

1

Introduction 2

the other: \Next time, let's be sure we have all the ingredients before we start

cooking."

3. A yellow-pages salesperson visits a small business where he �nds the owner and

his wife. He initially addresses all his comments to the man, assuming that

the wife is just a housewife. She asks questions, however, and turns out to

be an equal partner in the business. He realizes he could have lost the sale by

ignoring her, and he should re-evaluate assumptions about the roles of people in

a business.1

4. A student is taking a math quiz. After spending ten minutes on a problem

listed as taking �ve minutes, she realizes something must have gone wrong, re-

evaluates the problem and notices a shortcut she had missed. She quickly solves

the problem and reminds herself to consider several alternative approaches to a

problem before committing to one method.

5. A student writing a C program declares functions for manipulating arrays of

characters. After she has spent hours perfecting the code, she looks at the avail-

able libraries, and discovers that the functions she de�ned already existed in

a library. She realizes that she should look for already de�ned libraries before

wasting time writing code that may already be provided.

6. A novice cook is making rice the �rst time. He measures the water with a

measuring cup, then measures the rice into the same (now wet) cup. As a

result, the rice sticks to the cup and must be scraped out. While scraping, it

occurs to him that the extra work could be avoided if he had planned to measure

1This example is due to Burke (1993).

Introduction 3

the rice �rst and then the water.

All the previous examples are based on real episodes, and all seem to be natural

examples of learning. However, the type of learning that they involve has received

little attention in arti�cial intelligence research. Arti�cial intelligence research on

learning generally focuses on acquiring the domain knowledge needed to perform a

task, or on compiling knowledge to speed up performance. However in each of these

examples, the reasoners have su�cient knowledge. The problem is in learning how

existing knowledge should be accessed and applied.

The scenarios illustrate the fact that people are aware of, and can reason about,

not only the actions they are taking, but also the reasoning that led to those actions.

They can monitor their reasoning to check its validity, and monitor the consequences

of their decisions to see if they are as expected. When people notice something has

gone wrong, not only can they reason about how to recover from the failure, but they

can also use meta-reasoning to learn from it how to avoid the reasoning failure that

led them astray. In particular, each scenario above illustrates a di�erent aspect of

self-monitoring.

In the �rst two examples, failures while executing plans caused reconsideration

of the reasoning process used to create them. The planners' reasoning was at fault,

and by identifying what part of their reasoning was
awed, they could learn to avoid

similar failures in the future:

1. The driver failed to consider the right features in planning her route: she knew

that one-way streets existed, but did not take them into account until she

discovered a failure in her planned route. She could learn to avoid similar

failures by making sure to note one-way streets in the future.

Introduction 4

2. The lasagne cooks failed to include an important step in their plans for cook-

ing: to check that all ingredients are available. They should have altered their

reasoning about cooking to incorporate that step.

In the �rst two examples, the reasoning failure led to a bad outcome: the chosen

plans could not be executed successfully. The remaining four examples show that,

even if the outcomes of plans are successful, the reasoning process behind them may

need to be re�ned. Noticing the need to improve reasoning for a successful plan

requires monitoring performance not only to ensure a successful outcome, but also

to ensure that the processes leading to that outcome are as e�ective as possible. To

improve their future reasoning, people must identify places in the reasoning where

their performance was suboptimal or unnecessarily risky. Correcting such failures

requires meta-reasoning beyond just failure detection; the detected problem may be

a symptom of a deeper reasoning failure which may have occurred much earlier in the

reasoning process:

3. By realizing that he had misidenti�ed the wife as unimportant, the salesperson

avoided a possible failure, but the mistake still pointed to a
aw in how he

identi�ed important clients. He could correct it by changing his reasoning about

roles to avoid early assumptions.

4. The strategy of the math student was ine�cient: she picked one approach to the

problem and stuck with it, instead of considering alternative approaches before

beginning work. As a result she wasted time, but her poor approach could

have led to a correct solution in the end. This scenario demonstrates the need

for continuous monitoring of progress in reasoning and in applying solutions:

without monitoring her performance, the student would never have discovered

Introduction 5

that her approach was not the best one.

5. The C programmer succeeded in completing her assigned task, but wasted time

by not considering available libraries �rst. By including that step in her pro-

gramming strategy, she could improve her e�ciency.

6. The rice cook created a workable but ine�cient plan, because he placed the

steps in the plan in a poor order. The unexpected need to scrape out the

measuring cup led to his realization that he was wasting e�ort. He could improve

his cooking by changing his reasoning to taken more care with the order of

ingredients in measuring.

This thesis investigates how arti�cial intelligence systems can perform the type of

learning illustrated in these scenarios: how they can represent their internal reasoning

processes with self-models, and use those representations to monitor and reason about

their processing and to guide remedial learning to improve the reasoning processes.

1.1 Introspective reasoning in people

By continually re-evaluating their reasoning and its consequences, and explicitly

thinking about the reasoning process as well as the actions involved, people are able

to discover unexpected di�culties (and opportunities) as they occur, and are also

able to learn and improve their reasoning processes over time. This monitoring and

self-learning allows people to manage the complexity of the world in which they live:

complexity in terms of the enormous amount of information available at each instant,

the wide range of possible (and necessary) responses, and the rapidity with which

situations in the world change. People can adapt to new circumstances by noticing

Introduction 6

how their old ways of solving problems are inadequate. When facing a new environ-

ment people must often adjust their reasoning and view of the world, for instance:

moving from a city with few one-way streets to one with many, or learning how to

judge polite and rude behavior in a new culture.

1.1.1 Psychological support for introspective learning

We have given many anecdotes so far which support the idea that people are capable

of reasoning about and altering their reasoning methods; further support may be

found in some psychological studies (see Flavell (1985), for an overview).

Chi & Glaser (1980) found di�erences between the reasoning strategies of experts

and novices: experts approach problems in a more planful way, spend more time

analyzing of a problem before attempting to solve it, and understand better the im-

portant features of a problem. They suggest these strategies are learned as part of

the process of becoming an expert. Flavell, Friedrichs, & Hoyt (1970) found that

older children were better than younger children at monitoring how well they had

performed a given task and judging when they had completed it. Younger children

predicted they had completely memorized a list of words, then performed poorly.

Older children performed as well as they predicted. This shows an awareness of one's

own reasoning processes, as well as learning from that awareness to perform better.

Kreutzer, Leonard, & Flavell (1975) found that children improved their understanding

of their own memory processes as they became older: asked to describe strategies for

remembering things, older children tended to describe many strategies and their out-

comes, younger children very few. Children appear to be aware of their memorization

behavior and learn strategies to help them cope with memory tasks.

ROBBIE's learning centers on re�ning its criteria for determining the important

Introduction 7

features of a situation. Psychological experiments also provide evidence that, as chil-

dren grow, they re�ne the features that they consider important, and are aware of

failures to use appropriate types of features. Gentner (1988) found that younger chil-

dren depended on surface features of characters and objects in stories when mapping

from an old to a new story, whereas older children were able to use deeper features,

like the role of the object. Children were presented with a story and toys to represent

the characters and asked to act out the story. They were then given di�erent toys

which confused the surface features and roles of the characters (i.e., a �sh toy might

be used to represent a cat character) and asked to act out the same story with the

new toys. Younger children (5-7 years old) tended to revert to the objects' physi-

cal characteristics, but older children (8-10 years old) recognized the tendency and

avoided it, maintaining the role of the object over its form. From this she concludes

that their understanding of the di�erence between surface features such as form and

deeper features such as role is learned. The awareness of the older children when they

started to revert to physical features further suggests monitoring and introspection

about their actions.

1.2 Introspective reasoning in AI

If we acknowledge the bene�ts of introspective monitoring and correction of reasoning

methods for people, then we must acknowledge that similar bene�ts apply to the

decision-making and problem-solving of arti�cial intelligence systems.

Arti�cial intelligence systems are increasingly designed to operate and interact

Introduction 8

with complex worlds which are knowledge-rich and dynamic2. When a system is sit-

uated in a rich world, informing the system ahead of time of all possibly relevant

information and reasoning methods is intractable. It is extremely di�cult to antic-

ipate the situations the system will see, what information will be important, and

what response circumstances will demand. If in addition the world contains many

uncontrolled variables, the task of �xing knowledge and reasoning requirements be-

comes impossible. To develop systems which can successfully interact with real-world

or complex domains, we must explore ways of making systems more
exible, more

adaptable, and more sophisticated in their approach to each situation: more able to

learn what they need to know from their experience.

In terms of handling domain complexity, systems which can learn by adding

to their knowledge of their domains are a step above those systems whose reason-

ing methods and knowledge have been completely pre-determined by their designer.

Learning new domain knowledge allows a system to improve its understanding of

its domain, and to adapt somewhat to new circumstances. The work of the system

designer is simpli�ed by not having to select a priori all the knowledge ever required

for the system's tasks. Many systems have been designed which improve their knowl-

edge of the world and of how they operate in it (e.g., (Michalski et al., 1983, 1986;

Kodrato� & Michalski, 1990; Michalski & Tecuci, 1994)). However, most learning

systems are incapable of changing the processing or reasoning methods they use to

manipulate their world knowledge. They may learn new facts or new solutions, new

information about the domain in which they operate, but they do not learn new ways

2By knowledge-rich we mean to exclude domains whose knowledge is easily and concisely encap-
sulated, such as the typical \blocks world" domain. By dynamic we mean that the task or domain
involves elements which are outside the reasoner's control: the world may change without any action
by the system itself.

Introduction 9

to access or manipulate those facts.

Acquiring knowledge is a well-known problem for arti�cial intelligence systems.

Approaches developed to solve the knowledge acquisition problem include veri�ca-

tion of correct knowledge using a set of test problem and correction by a human

expert, case-based learning | sometimes expert-guided, and explanation-based gen-

eralization of knowledge (Marcus, 1989). All these methods only address the learning

of domain knowledge; they assume if a failure occurs that the problem stems from

faulty knowledge, not from a failure or the reasoning to apply the knowledge correctly.

Our approach, by contrast, is intended to extend the system to discover reasoning

failures and learn from them to reason better.

Just as systems which do no learning at all have problems in complex domains

because of the di�culty of selecting and �xing all the knowledge ahead of time,

systems which can augment their world knowledge, but which can never learn new

ways of processing that knowledge are also restricted by the limitations of their �xed

reasoning methods. Such systems must always assume that their domain knowledge

is at fault when something goes wrong, and cannot consider that the reasoning that

produced a correct answer might be faulty.

In a domain whose complexity makes determining the necessary world knowledge

di�cult, it will also be di�cult to determine the correct reasoning approach to ma-

nipulate that knowledge e�ectively. A particularly important problem which this

research addresses is determining what features of a situation in a knowledge-rich

domain are relevant to the solution of a given task. If the circumstances in which a

system operates change, the system must be able to adapt both its knowledge and

its reasoning to �t the new circumstances. Thus arti�cial intelligence systems in

knowledge-rich and dynamic domains need the capacity for introspective reasoning

Introduction 10

and learning.

Other systems have acquired meta-knowledge about how to apply their domain

knowledge. SOAR can create \meta-rules" which describe how to apply rules about

domain tasks and acquire knowledge (Rosenbloom, Laird, & Newell, 1993b, 1993a).

Meta-rules are created by chunking together existing rules. Chunking is the only

way for learning to occur; a full introspective reasoner should be able to alter its

reasoning in multiple ways (e.g., by deleting or altering rules). The introspective

process in SOAR is driven by impasses, points where the processing cannot proceed

normally; SOAR cannot learn from failures which produce successful but suboptimal

results. Furthermore, as for the general approaches described above, SOAR assumes

that the processes for selecting rules and carrying out their instructions are infallible;

ROBBIE models all of its underlying reasoning processes.

ASK learns \strategic knowledge" rules which described what reasoning actions

to take under given circumstances (Gruber, 1989). While this is close to the kind

of knowledge our approach will learn, learning in ASK is guided by a human expert

who provides all the knowledge about the reasoning process. Our task is to develop

the means to represent that knowledge about reasoning within the arti�cial intelli-

gence system, and to have diagnosis and repair of reasoning performed without the

intervention of a human expert.

1.3 Requirements for introspective learning

In order for a system to reason about and evaluate its reasoning methods, it �rst

must have access to information about its reasoning: what reasoning processes it has

applied up to the current point and what it is currently applying. The system must

Introduction 11

maintain a trace of its reasoning process which describes the sequence of decisions

it has made and the knowledge structures it used or created in the process. Such a

trace gives the system access to its past and present reasoning history, but it also

needs the means of determining from that information whether faulty reasoning has

occurred and how to correct it.

We must determine what kind of knowledge of the reasoning process is required

for introspective diagnosis; we must also �nd reasonable restrictions on the scope

and detail of that knowledge, as we cannot assume the system has access to perfect

knowledge of what its reasoning should have been. If the introspective knowledge were

perfect, then that perfect, detailed knowledge would be available to solve the original

task in the �rst place, and no reasoning failures would ever occur. Our model of

meta-reasoning, then, must be a limited abstraction of the actual reasoning processes

of the system.

We can break down the problem of noticing and correcting faulty reasoning into

four parts:

1. having criteria for deciding when to check for faulty reasoning,

2. establishing from those criteria whether or not a reasoning failure has occurred,

3. determining the ultimate cause of a detected failure, and

4. altering the reasoning process to avoid similar future failures.

Having criteria for when to check for faulty reasoning: The �rst requirement

above is to have criteria | in the form of knowledge | that describe the desired rea-

soning behavior of the system and outcomes of the system in order to judge whether

the system's reasoning at any given point seems correct or not. These criteria must

Introduction 12

produce expectations about the reasoning behavior the system should exhibit. These

expectations may be explicitly represented in the introspective knowledge of the sys-

tem, or they may be implicit in the reasoning system.

The criteria for judging the performance of the system's reasoning may include

expectations about di�erent portions of the system, task, and domain. There may be

expectations about the reasoning itself | \If this reasoning rules is applied, this new

intermediate value will be produced," | or about the solution that the reasoning

produces | \When I approach a turn I have planned, I will be able to make the

turn." Expectations may also exist which refer to features of the domain apart from

the reasoning system itself: \Streets will all have at least two lanes." Expectations

may also vary in their level of generality and scope: for example, a speci�c expectation

might be \I will be able to turn right onto 8th street", versus a general one whose

scope is the entire problem, like \The route I've planned will get me to the o�ce in

time."

Establishing whether a reasoning failure has occurred: To tell whether a

failure has occurred, the system must have the means of determining which expec-

tations are currently relevant to the reasoning process and which expectations may

be veri�ed by current observations. A reasoning failure is possible whenever expecta-

tions about the system's desired reasoning performance fail to be true of the actual

reasoning.

It is important to make a clear distinction between expectation failures, reasoning

failures, and outcome failures. An expectation failure is, at root, any event which was

not predicted by the system; such an event may not indicate an outcome failure where

the system's main task fails, but could be an unexpected opportunity . Independent

Introduction 13

of whether an expectation failure is an unexpected failure or success for the task, it

may be the result of a reasoning failure, if the system should have known the event

would occur and have planned for its existence. However, not all expectation failures

result from reasoning failures: unexpected events which are based on knowledge that

the system simply does not possess are unavoidable. For example, if a street is closed

due to a tra�c accident, it may be an expectation failure and an outcome failure,

but not a reasoning failure, as no improved reasoning could have predicted a tra�c

accident at that particular time.

We distinguish two classes of expectation failures to be detected. The �rst and

easiest to detect are those failures which are catastrophic: failures which make it

impossible to continue with the current problem solution. The lasagne and route

planning scenarios above are examples of this type of failure. To detect catastrophic

failures the system must have expectations about the actions involved in the solution

of the problem. The second class of failures are those which involve ine�cient process-

ing either in the creation or application of a solution. The math student is one such

scenario, as is the rice cook. Detecting the second class of failures is more di�cult; it

requires expectations about the reasoning process itself, expectations about how long

something should take, how many steps should be involved, and how to tell if proper

progress is being made (see also Fox & Leake (1994)).

Determining the ultimate cause: Once the system has detected an expectation

failure, it must be able to determine what point in the reasoning process the detected

failure was created. This task is perhaps the most di�cult part of introspective

evaluation of the reasoning process, because there is no guarantee that the system

will detect every reasoning failure at the instant it occurs. In fact, the scenarios

Introduction 14

described earlier indicate quite the opposite: very often reasoning failures persist

unnoticed until very much later in the overall reasoning task. The system must be

able to discover causal relationships between particular criteria at di�erent points of

the reasoning process in order to explain where a detected failure was generated.

Altering the reasoning process: The requirement that introspective reasoning

be able to repair reasoning
aws means that the system must have the ability to alter

its own reasoning process. It must therefore have access to the process and must be

able to decide what change to make on the basis of what went wrong. If we assume

that the system will have pinpointed the ultimate cause of a detected expectation

failure before attempting to generate a repair, the task of deciding what to change is

not as daunting. For a particular point in the reasoning process, the alterations which

could reasonably be made are rather limited. Considering the rice-cooking scenario

above, the detected problem of having the rice stick to the measuring cup could be

traced back to a failure to anticipate the interaction between water in the cup and

rice in the cup, which leads to a repair which says, for the future, to anticipate that

rice will stick after water, so measure the rice �rst.

To sum up, a system must have access to knowledge about its reasoning process

up to the current point in order to be able to detect and explain reasoning failures. It

must also have implicit or explicit expectations both about the results of its reasoning

in its domain and about the internal reasoning process itself. It must be able to

detect expectations failures during the reasoning process and during the execution of

the problem solution. The system must be able to explain an expectation failure in

terms of underlying reasoning failures, and must be able to determine how to alter

Introduction 15

the reasoning process to correct the failures for the future.

1.4 The ROBBIE system

We have implemented in ROBBIE (Re-Organization of Behavior By Introspective

Evaluation) a system which combines case-based reasoning with a separate intro-

spective component using a model of the ideal reasoning methods of the case-based

system itself. This system serves both as a testbed for our theoretical ideas about

modeling for introspective purposes and as a demonstration of the bene�ts of using

an introspective model such as we propose. ROBBIE's performance task is to gener-

ate plans for walking from place to place on a set of streets, given limited knowledge

about the map and a few initial sample routes. It examines the quality of those plans

through execution in a simulated world. As a case-based system ROBBIE learns by

adding new cases (in this case, new route plans) to its case memory. Adding cases

alters ROBBIE's world knowledge: as the case memory grows it re
ects a better and

better understanding of the map in which the robot moves. In parallel with the case-

based reasoning process, ROBBIE's introspective component monitors the reasoning

process of the planner and compares the actual processing to its expectations of the

ideal performance of the case-based reasoning process. When expectation failures oc-

cur (either because of catastrophic or e�ciency failures) the introspective component

of ROBBIE can suspend the planning task while it attempts to explain the failure

and repair the system. Under some circumstances, the performance task (planning

and executing plans) may continue until enough information is available to assess the

failure.

Introduction 16

ROBBIE's introspective model describes the reasoning process of ROBBIE's plan-

ner from start to �nish, and the introspective reasoner monitors and evaluates the

entire process, but we have focused on only one important and powerful repair strat-

egy: altering the features used in retrieving old solutions. Failures resulting from

other problems than poor retrieval will be detected and explained, but not repaired.

We expect to extend the repair component to incorporate alterations to other por-

tions of the planning task in the future. Modeling the entire reasoning process is

required for detecting failures related to just this repair strategy; a failure introduced

at the beginning by a poor retrieval might not become evident until the plan had

been adapted and was being executed, or even later.

Re
ection: It is important to note that while the approach we advocate does in-

volve the use of introspection to permit a system to examine and evaluate its reasoning

process, our approach is not a re
ective one. In order to be considered fully re
ective,

the process performing the base level task must also be able to manipulate and reason

about its own process, and alter its own processing behavior (Ibrahim, 1992). In our

approach, representation and manipulation of the main process are performed by a

separate reasoning process, the \introspective reasoner," which uses a di�erent form

or representation than the case-based reasoning system underlying it. Our approach

uses a separate reasoning component which represents the underlying reasoning pro-

cess in a di�erent manner than the representation used in the case-based component,

and examines artifacts of the underlying process, not the actual code in which it is

implemented.

The goal of our introspective reasoner does not require access to the actual code

with which the reasoning system is implemented, or the ability to generate arbitrary

Introduction 17

changes to that underlying reasoning system, but rather requires a model which rep-

resents expectations about the ideal reasoning the underlying system should exhibit.

For our purposes, artifacts of the actual processing are su�cient and a full re
ective

system, at this point, unnecessary and more di�cult to implement. Nevertheless, in-

corporating re
ection to the point of introspective reasoning about the introspective

reasoner, and using similar mechanisms for both base level and introspective tasks,

remain future possibilities.

1.5 Results

We can evaluate the introspective reasoning framework we have developed at several

levels. First we can consider what ROBBIE has shown about the kind of knowledge

needed for introspective reasoning, and the kind of model that is required to balance

failure detection and failure explanation and repair. We have found in our research

that introspective knowledge must span a range from very speci�c to very general:

that it must provide expectations at a low level for detecting failures and determining

speci�c repairs, and must provide expectations at a high level in order to facilitate

the process of explaining failures and tracing from detected failures to root causes.

The model must be structured to assist failure detection and explanation of failures

in di�erent ways. The model must also be designed to be easy to modify for di�erent

underlying reasoning systems by incorporating general mechanisms and vocabulary

for representing the model, as well as a highly modular structure for the model.

In constructing a working hybrid of case-based learning and introspective learn-

ing, we enable empirical testing of introspective learning's promised advantages, and

we evaluated ROBBIE in action to verify that introspective reasoning produces the

Introduction 18

learning we expect of it. We will describe selected examples of ROBBIE's reasoning

to show its performance under a variety of situations.

We will also evaluate ROBBIE's performance to verify that the changes made

by introspective reasoning do improve ROBBIE's performance over time. We chose

to evaluate ROBBIE's performance with and without the introspective component,

under circumstances of relative di�culty for both case-based learning and our form

of introspective learning. From these experiments we can judge the extent of the im-

provement introspective reasoning provides, and under what circumstances its bene�t

is maximized. These experiments demonstrate a bene�t for learning new retrieval in-

dexing features, driven by introspective failure detection and explanation.

1.6 Goals of this research

We claim that introspective reasoning for improving reasoning processes will improve

the performance of an overall learning system in a complex domain. In particular,

the ultimate goals of this thesis are

� to develop an approach to introspective reasoning that provides equally for

monitoring to detect failures and explanation of detected failures as equally

important to the introspective reasoning task;

� to create a framework for constructing introspective reasoning systems for ap-

plication to a variety of underlying reasoning systems;

� to implement and test this framework with an underlying learning system;

� and to develop methods for empirically evaluating systems which combine in-

trospective reasoning with other reasoning methods.

Introduction 19

In this section we will elaborate on these points.

1.6.1 A framework for introspective reasoning

We described four requirements for an introspective reasoning system in Section 1.3.

Here we will consider each requirement in turn and sketch how we have chosen to ap-

proach it. Our general approach uses a model of the system's own reasoning processes

to detect and to explain reasoning failures (see also Fox & Leake (1995c)). Using

model-based reasoning to represent the reasoning task itself was proposed by Birn-

baum et al. and implemented by them for self-debugging planners (Birnbaum, Collins,

Freed, & Krulwich, 1990). They suggested that model-based introspective reasoning

could be applied to case-based reasoning systems (Birnbaum, Collins, Brand, Freed,

Krulwich, & Pryor, 1991). However, their ideas were never implemented for case-

based reasoning, and their approach has never been empirically evaluated. This

research builds upon their suggestions for case-based reasoning, and empirically eval-

uates the resulting framework. One goal of this work is to study how to represent

case-based reasoning for introspective purposes, both in terms of general case-based

principles and in terms of our particular implementation.

Criteria: To implement criteria for telling if a failure has occurred we used a model

of the ideal reasoning of the underlying system. The model contains explicit expec-

tations about the results of each point in the reasoning process in terms of both

later reasoning and domain-level actions. The model contains modular clusters corre-

sponding to the actual structure of the underlying reasoning system, and contains a

hierarchy of expectations at di�ering levels of speci�city. For example, a speci�c-level

expectation about the retrieval mechanism of a case-based reasoning system might

Introduction 20

say \Retrieval will discover at least one relevant case."

Detecting failures: Expectations in the model are compared to the actual rea-

soning performance of the system to detect discrepancies. Discrepancies between the

expected, desired behavior and the actual behavior are expectation failures. The

portions of the model used for detecting failures are speci�c and limited in scope;

determining whether a failure has occurred means considering the set of speci�c ex-

pectations about the current point in the system's reasoning. Monitoring for expec-

tation failures occurs in parallel with the system's reasoning process: as each step in

the reasoning process occurs, expectations relevant to it are selected and considered.

For example, the speci�c-level retrieval expectation above would be evaluated at each

step of the retrieval process. If no cases were retrieved, the above expectation would

fail.

Explaining failures: The model used to represent the criteria for reasoning fail-

ures is also used to search for explanations of detected failures, by �nding an earlier

expectation that was at fault. The model incorporates causal information relating

one expectation to another, and a path is traced from the detected expectation fail-

ure to a \root cause" expectation that may have failed and gone undetected. The

system must be able to pinpoint a root cause in order to suggest a speci�c correc-

tion to the reasoning process which would prevent the failure in the future. For the

sample expectation failure in the previous paragraph, an explanation might trace to

a previously undetected expectation failure: the planner is expected to use the best

retrieval criteria.

Introduction 21

Repairing failures: Repairs to the reasoning process are attached to particular

expectations in the model, so that when that expectation fails, the attached repair is

suggested. The description of the repair in the model is not enough to specify exactly

how and what to change, so the system includes mechanisms for determining how to

implement the repair. The repair module takes the description of the explained failure

and the suggested repair strategy and uses that information to �ll in the details of an

actual repair and to make the actual alterations. A general repair module would have

a set of di�erent repair strategies and the means of implementing them; however, we

have chosen to focus on one very important strategy: adding to the set of features to

be considered explicitly in constructing a solution. For the example above, recognizing

the failure to use the right retrieval criteria might require knowing what criteria should

have been included. This knowledge leads to an obvious repair: make the retrieval

mechanism use the missing criteria.

Our approach incorporates into the structure and content of the model a balance

between the needs of failure detection and the needs of failure explanation. We have

considered carefully the kinds of knowledge and expectations that are required for

introspective reasoning to succeed. We have addressed the question of the level of

abstraction of the expectations in the model in order to describe the reasoning process

as a whole, and still include speci�c information required for ease in detection and

repair.

1.6.2 General applicability

The issues we are exploring have a wider applicability than this particular imple-

mentation, planning alone, or case-based reasoning alone. The framework we have

Introduction 22

developed for implementing an introspective reasoning system is designed to be re-

used for reasoning about other systems. Because the model is declarative, it may be

modi�ed without di�culty, and uses representations and structures which are system-

independent. The mechanisms for communication between the introspective reasoner

and its underlying reasoning system provide a generic format for integrating intro-

spective reasoning with existing arti�cial intelligence systems. We have examined in

detail the classes of knowledge needed to detect and repair reasoning failures: such

knowledge needs will remain the same regardless of the way in which introspective

reasoning is implemented.

Our introspective framework could be applied to monitor and improve the rea-

soning of systems in many domains where we can specify what the best performance

should be. Domains which could bene�t from introspective reasoning include: robot

control, scheduling for many objects or other variables, autonomous agents for or-

ganizing information or information-gathering (i.e., an \intelligent" web searching

system), and many others. Each of these domains is complex and highly dynamic,

the perfect environment for a system that learns to improve its reasoning as well as

improving its domain knowledge, when experience indicates the need for improve-

ment.

1.6.3 Evaluation of the model

The combination of introspective-level learning with ordinary domain-level learning

is relatively new, and has had, so far, little empirical evaluation to examine its ef-

fects and compare them to the hypothesized results. We have chosen one method of

empirical evaluation to test ROBBIE: comparing the performance of ROBBIE with

case-based learning and introspective learning against ROBBIE's performance when

Introduction 23

introspective learning is disabled (see also Fox & Leake (1995a)). We must ensure that

the tests involved cover as wide a range of possible situations as possible to ensure

that introspective learning improves performance across the board, and not just in a

small range of situations. In addition, examination of these di�ering circumstances

can illuminate how the performance of introspective reasoning is a�ected by the order

of the situations to which it is exposed (see also Fox & Leake (1995b)).

1.6.4 Ultimate goal

The ultimate, long-range goal of this research is the development of an approach to

learning that uses the same set of mechanisms for learning about its knowledge and

mechanisms at all levels; learning domain knowledge, and learning by improving all

of its reasoning processes. A system implementing such an approach would ideally be

re
ective, having the ability to bring any of its mechanisms to bear on any particular

reasoning it has to do (whether about its task or itself). At this point such a system

is long in the future, but we will address how our current work is a step in the right

direction, and what issues must still be considered.

One issue we will discuss in Chapter 8 is the feasibility of scaling up our approach

to more complex domains and tasks. Our current implementation operates in a rich

but restricted and idealized domain. The knowledge of the system may be limited and

interesting performance still be produced. We must analyze the cost and complexity

of our approach in order to extend it to real-world applications or large-scale problem

domains.

Introduction 24

1.7 Outline of the following chapters

In Chapter 2 we describe other research related to ROBBIE, forming the basis for

our work or providing an alternative approach. We describe case-based reasoning in

detail, as well as model-based reasoning for diagnosis. In Chapter 3 we provide an

overview of ROBBIE and its domain, describing its simulated world and sketching

how the various components �t together. In Chapters 4 through 6 we describe the

planning component of ROBBIE and the introspective component in greater detail.

We follow that in Chapter 7 by describing the experiments performed to evaluate

ROBBIE's performance. Finally, in Chapter 8 we describe our conclusions about the

issues our research has raised, including future directions for this research.

Chapter 2

Background

Our research builds on the case-based reasoning paradigm, and is
part of an upsurge of interest in representing reasoning processes.
We describe the approaches underlying our work and the similarities
and di�erences with other research on related problems.

Our research on ROBBIE is relevant to three main areas of arti�cial intelligence:

case-based reasoning, reactive planning, and introspective reasoning. ROBBIE's plan-

ner incorporates both case-based and reactive planning to create and execute route

plans and re�nes this process by introspective reasoning. In this chapter we describe

the fundamental tenets of case-based reasoning and how ROBBIE's planner relates to

other case-based planning systems. We describe other work relating to the problem

of index re�nement which ROBBIE addresses. We discuss the variety of approaches

to reactive planning, other work which has integrated plan creation with reactive ex-

ecution, and other planning systems which address some of the same issues ROBBIE

addresses.

The focus of our research is not on the planning aspects of ROBBIE, per se,

although ROBBIE's planner does incorporate several interesting innovations, as we

25

Background 26

will discuss in Chapter 4. We are most interested in examining the introspective

aspects of ROBBIE: how introspective knowledge may be represented, how it may

be structured to support its uses, and how it integrates into the system as a whole.

We therefore concentrate on the introspective frameworks to which ROBBIE's intro-

spective reasoner is related, and illustrate ROBBIE's contributions by comparing its

introspective framework to other approaches to the task of introspective diagnosis

and repair of reasoning failures.

2.1 Case-based reasoning

Creating arti�cial intelligence systems that reason by recalling previous situations

stems from the realization that people often use past experiences when facing new

problems (Schank, 1982). A student solving a math problem might recall a previous

problem with similar features and try to apply the method that worked to solve the

previous problem, altering it to �t the new situation. Recalling the right previous

situation can make responding to a new situation easier and response more rapid; a

person can re-apply a method worked out previously for solving a problem without

re-creating the reasoning from scratch. A number of psychological studies provide

support for the importance of this problem-solving process in human reasoners (see

(Ross, 1989) for a summary).

Using past experience as a jumping-o� point for current problem-solving has a

number of advantages for arti�cial intelligence systems. The cost of creating a solution

from �rst principles may be avoided by re-using the reasoning implicit in a solution

to a similar problem. Using existing solutions also avoids the need for a strong and

complete theory of a given domain; important features of the domain which may not

Background 27

From a
memory of
previous cases,

Index: From Maple
To Apple

1. Describe the goal
as an index.

new case.
4. Evaluate the

5. Store the

memory.
result in

3. Adapt the old

situation.
case to fit the new

2. Select the case

current situation.
closest to the

MEMORY

Goal: Move to AppleGiven a Goal,

From Cherry

Go to Oak
Turn North
Go to Apple

To Oak
To Birch
From Maple

To Birch
From Maple

From Maple
To Apple

To Apple
From Maple

Figure 2.1: A typical case-based planner

be apparent will exist implicitly in successful solutions in that domain. For example,

it is not necessary to understand the chemical processes involved in cooking to adapt

a recipe using veal and broccoli to one using beef and a mixture of vegetables.

The case-based reasoning process can be broken into separate tasks, although

exactly where the lines are drawn between tasks depends on the particular application.

The process may be generally divided into �ve components: describing the problem,

retrieving the best matching case(s) in memory, adapting those cases to apply to the

current situation, evaluating the resulting solution, and recording the new solution

in memory for future use. Some CBR systems focus on a few aspects of this set,

ignoring others or leaving their solution to a human user of the system. Figure 2.1

illustrates the typical case-based reasoning process for a case-based route planner.

Background 28

Describing the problem: In order to select the \best" match in memory, the

current situation must be described in terms which permit a comparison to existing

cases. The salient features of a situation must be collected or derived from an initial

description to form an index : a set of features which may be matched against the

same sort of features for cases in memory.

Retrieving cases: To retrieve an appropriate case, a CBR system compares the

index describing the current situation to the indices of cases in memory, and judges

how similar the two cases are from the similarity of their indices. Similarity should

correspond to \adaptability:" the best case to retrieve is the one requiring the least

e�ort to �t to the current situation. The index should embody those aspects of a

situation which indicate adaptability and the methods for assessing similarity should

choose between cases to appropriately select the most adaptable case.

Adapting cases: Most of the time the case or cases retrieved from memory will

not be perfect matches for the current situation. Adaptation is required to alter those

portions which are incompatible with the new problem. For instance, the SWALE

system selected a case describing Jim Fixx's death in an attempt to explain the

death of the racehorse Swale. Since horses don't jog recreationally, the explanation

of Jim Fixx's death must be altered to apply to racehorses (Schank & Leake, 1989).

Ensuring that the adaptations performed maintain the integrity of the original case

and successfully apply to the current problem makes adaptation of cases a key issue

for CBR systems. As a result, some systems avoid adaptation by leaving it to a

human user. ROBBIE, however, does perform adaptation of its planning cases.

Background 29

Evaluating solutions: Adaptation is often a heuristic process for case-based rea-

soning systems. The resulting solution may have hidden defects stemming from infor-

mation that the system did not possess or incorrectly applied. Evaluation of adapted

solutions is therefore an important part of the overall process, to determine the va-

lidity of changes made. Evaluation methods di�er: human feedback, feedback from a

separate computer system, simulation of applying the case, or actual application of

the case.

Learning cases: The storing of cases is important as the phase that incorporates

learning into the case-based framework. Once a successful solution (or an instructive

failure) has been found, adding that solution as a case to memory enables the system

to extend the breadth of situations it can successfully handle. Each case may be an

incremental extension to new knowledge: the explanation for Swale's death might help

explain the death of a famous greyhound. The case storage process depends upon a

successful encapsulation of the situation to be stored, and creation of a correct index

describing its salient features.

2.1.1 Planning in the context of CBR

Case-based reasoning has been applied to the tasks of explanation, understanding,

diagnosis, tutoring, and many others, but case-based planning has been a popular

task, perhaps because of the immediate crucial importance of planning for practical

applications (e.g., (Fowler, Cross, & Owens, 1995)). Where a case for an understand-

ing system might describe a scene or set of events, a case-based planner's case is likely

to be a set of instructions for achieving some goal.

Background 30

ROBBIE is most closely related to the planner CHEF in its structure and ap-

proach, although the domains to which each is applied are very di�erent. CHEF

creates recipes for stir-fry (and other) dishes. Like ROBBIE, CHEF conforms closely

to the sequence of tasks described above. CHEF uses an external, sophisticated

evaluation system to determine whether a new recipe is a success. ROBBIE performs

evaluation itself by integrating execution of its plans into the planning process. When

a recipe plan created by CHEF fails, CHEF learns the interactions among ingredients

or cooking steps that cause the failure. A description of the causal sequence leading

to the failure is provide to it the separate evaluation system. It then augments its

ingredient knowledge or the index used for the new case to represent the previously

absent interactions. ROBBIE alters its indexing, but uses an analysis of its reasoning

process to detect a broader class of failures: its introspective reasoning allows it to

detect a bad retrieval even when its case adaptor can repair the problems to produce

a successful solution.

Other case-based planners include PLEXUS (Alterman, 1986) which applies cases

describing routine, everyday plans for traveling by public transportation. PLEXUS is

concerned with the integration of planning and action, as ROBBIE is, and performs

adaptation of retrieved routine plans as an execution task. A plan step which cannot

be applied immediately is replaced by an alternative, chosen on the basis of the

current external situation. ROBBIE uses a more traditional adaptation process to

form a high-level plan, then uses reactive execution to complete the adaptation in

interaction with the external world.

ROUTER is another case-based route planner, which creates routes for navigating

a college campus (Goel, Callantine, Shankar, & Chandrasekaran, 1991). ROUTER

combines case-based plan creation with a more traditional model-based approach.

Background 31

Unlike ROBBIE, it is not concerned with execution of plans or dynamic changes

to the world which may suddenly invalidate an previously perfect plan. ROUTER

has also been combined with an introspective reasoning component, Autognostic,

(Stroulia & Goel, 1994) as we will describe in Section 2.4.

ROBBIE di�ers from all these case-based planners in its focus on incorporating

introspective reasoning into the system to detect and repair failures due to faulty

reasoning. The combination of case-based planning, to create a plan outline, with

reactive execution, to �ll in the details, is also unique.

2.1.2 Determining features for indexing criteria

Within the case-based reasoning paradigm, multiple methods have been proposed for

determining relevant indices. Explanations are often used to determine the relevance

of features when assigning indices to new cases. CABER provides plans for recovering

from machine failures of a milling machine to a human user (Barletta & Mark, 1988).

New repair plans are stored by deriving the important indices from explanations

based on knowledge of the machine. in question. Leake & Owens (1986) determine

the acceptability of a case for explaining an anomaly by characterizing the anomaly

and the goals of its explanation. In AQUA, new cases are similarly indexed by

explanation-based generalization of the \stereotypical" features of situations, and the

objects and characters in them (Ram, 1993). However, less attention has been devoted

to the central questions addressed by ROBBIE: when and how to alter the indexing

criteria based on an existing case in memory.

Some approaches alter indices in response to external feedback. CELIA initially

selects cases using a wide range of possible features (Redmond, 1992). It prunes

the features for a case when feedback from a human expert indicates the case is

Background 32

inapplicable. It also alters the indices to retrieve a case which was incorrectly omitted.

Veloso & Carbonell (1993) use derivational analogy to produce solutions by examining

the stored reasoning traces of previous solutions, in PRODIGY. PRODIGY's memory

manager suggests cases to its problem-solving component, and alters the indices for

the retrieved cases based on positive or negative feedback from the problem-solver on

the utility of the suggested cases. ROBBIE, by contrast, uses introspective analysis

of its reasoning performance to determine whether new indices should be learned.

IDEAL investigates index learning in the domain of device design by using a

model of the structure and function of a device to determine the important structural

features of a given device description, for indexing that description as a case (Bhatta

& Goel, 1993). In CADET, Sycara & Navinchandra (1989) alter the indices used to

retrieve cases for designing new devices by applying operators which elaborate the

important features describing the new desired device. The learning of new indices is

driven by design requirements, not failures of the existing index criteria.

In addition, when ROBBIE chooses new indices, it uses knowledge of both the

faulty retrieval and the case that should have been retrieved to guide the choice of

new indices. This allows it to select indices that are useful for discriminating between

the cases currently in its memory.

2.2 Reactive planning

Reactive planning grew out of a reaction against \armchair" deliberative planning

systems1 create plans never tested by actual execution, because they assume the

planner's knowledge of its domain is perfect, and nothing in the domain changes

1Deliberative planning refers to systems which plan out the entire problem before executing any
part of the plan.

Background 33

except when caused by the planner. Many planners depend on the assumptions

that the plans created will never go wrong, that no other actors exist in the domain

except the planner itself, or that alternatives to every conceivable problem may be

incorporated in a single plan. Creation of a plan that may be executed blindly seems

unrealistic for planners operating outside carefully controlled domains. Assuming that

no other actors exist is obviously limiting. In addition, the time taken to construct

elaborately detailed plans might mean that the situation in the world has altered and

the plan is obsolete.

Reactive planning, by contrast, focuses on the conjunction of moment-to-moment

decisions and actions to lead eventually to the goal. Reactive planners tie their de-

cisions closely to input about their world and to momentary actions taken. Reactive

planning is especially valuable in situations, like navigating a crowded room, where

a quick response is required and a complete plan would become obsolete before ex-

ecution could take place. A fully deliberative planner operates under the credo \A

stitch in time saves nine," a reactive planner by \He who hesitates is lost."

ROBBIE incorporates both deliberative (in the form of case-based planning) and

reactive planning to gain the bene�ts of thinking ahead and responding to immediate

feedback. Its reactive component is based on the Reactive Action Packages (RAP)

model of Firby (Firby, 1989). Firby implemented his RAP model for a system which

simulates a delivery truck responding to the commands of its dispatcher and the needs

of its current situation.2 Firby' system focuses on the problem of opportunistically-

managed multiple goals, as it may have immediate needs (such as being low on fuel)

and several outstanding delivery goals, at the same time. From its current goals, both

2Freed & Collins (1994a) uses the RAP model to underlie the introspective reasoning approach
in RAPTER, as we will discuss below.

Background 34

internal and external in source, the reactive planner selects a RAP which describes

a range of appropriate immediate responses. One response is selected based on its

applicability to the current situation. Applying the right method for a given context

means taking some actions in the world, or adding to the set of goals waiting to be

ful�lled. After a time step, the world situation is re-evaluated an another RAP may

be selected to respond to the changes since the previous time step.

ROBBIE's reactive component di�ers from Firby's system because of its combina-

tion with a deliberative planner. ROBBIE's case-based planner produces high-level

plans, which guide the reactive component much more than Firby's planner is guided

by its goals. Firby examines issues in the management of multiple goals; ROBBIE

has only one goal at a time (unless one considers goals at di�erent levels: a goal to

reach the goal location, a goal to �nish executing the current plan step, and a goal to

take particular actions in the world). ROBBIE's reactive planner is also implemented

using case-based reasoning: planlets, ROBBIE's equivalent to RAPs, are stored in the

case memory and retrieved by indices describing the current situation in the world.

Firby's RAPs incorporate both high-level and low-level actions. Other approaches

to reactive planning focus on increasingly low-level actions and an even closer link

between observations and actions.

The Pengi system plays the video game Pengo (Agre & Chapman, 1987). At each

moment, Pengi selects a routine, an action to perform, based on the current situation.

Local objects are labeled according to their function from Pengi's perspective (i.e.,

the-bee-that-is-chasing-me) and re-labeled in the next moment. Arbitration between

competing routines on the basis of priorities hardwired into Pengi by the designer;

thus Pengi cannot learn when to perform certain actions. By using compiled routines

chosen with hardwired priorities, Agre and Chapman avoid any explicit reasoning

Background 35

or use of symbols for objects by the system. However, it is di�cult to see how

Pengi would achieve a longer-range goal, requiring coordination of many actions; for

instance, in the case of Pengo, the goal of the game requires moving special objects

from positions scattered across the board into a particular con�guration.

Meeden (1994) takes a very di�erent approach to planning and action in Carbot.

Meeden trains a recurrent connectionist network using reward and punishment rein-

forcement learning to control a robot in order to achieve simple goals. For instance,

Carbot must learn to alternatively approach and move away from a light source, or

to keep moving without hitting a wall. Complex behaviors emerge from low-level as-

sociation of sensors and actuators, mediated by the connectionist network. Meeden's

thesis is that from such simple, learned behaviors more sophisticated behavior may

emerge which would be classi�ed as \planful." How far this approach may go remains

to be demonstrated. ROBBIE, by contrast, assumes explicit deliberative planning,

in combination with a representational approach to reactive planning.

At the extreme end of the reactive planning spectrum, and perhaps unwillingly

classi�ed as such, is Brooks' subsumption architecture (Brooks, 1987). The \plan-

ning" aspect is nearly missing completely; Brooks ties sensor input and action together

without an explicit representation of input or action intervening. The choice between

actions is mediated between di�erent hardwired processes performing di�erent func-

tions which map from input to action. For example, one process might encourage

wall-following behavior of a robot, and another might investigate objects. One pro-

cess might override another in some circumstances, or their recommended actions

might be combined to produce a compromise behavior. While this is an interesting

approach to low-level control and navigation, we do not feel it captures the abstract

reasoning required for long-range planning, which people perform when preparing to

Background 36

travel to a new location.

2.3 Integrating deliberative and reactive planning

One goal for ROBBIE was to address the conundrum faced by a system that must

plan ahead, but which operates in a domain where the situation changes dynami-

cally. ROBBIE addresses this by combining deliberative and reactive planning, and

by adding new features of situations through introspective learning as they turn out

to be important. Other work has addressed the integration of deliberative and re-

active planning: Gat (1992) implements a framework based on Firby's RAP system

in ATLANTIS, in which the reasoning process can request advice from higher-level

deliberative planning processes. Nourbakhsh, Powers, & Birch�eld (1995) describe

an alternative approach that maintains a set of the possible locations in which a real

physical robot might be, and re-plans whenever the most likely possibility proves to

be false. This approach demands a very complete understanding of the robot's world.

Maintaining a list possible locations may be infeasible when planning for a robot

navigating a city instead of an o�ce. Downs & Reichgelt (1991) combines reactive

planning with higher-level planning, using multiple levels which apply di�erent plan-

ning approaches, culminating in a STRIPS-like planner at the top level. Unlike our

research, these systems perform only limited learning even about their domain, and

none are concerned with learning to improve the system's reasoning mechanisms.

2.4 Introspective reasoning

Our research has focused, not on issues in planning, but on issues of introspective

reasoning. Recently, there has been a surge of interest in systems which have explicit

Background 37

knowledge about reasoning methods, and which can use that knowledge to diagnose

and repair their own reasoning methods, or understand the reasoning of others (Cox

& Freed, 1995). The introspective reasoning framework we have designed performs

diagnosis and repair of its own reasoning, but its approach to the representational

needs for modeling reasoning appears useful for these other introspective tasks as

well.

In this section we describe the research upon which ROBBIE's model is based,

and compare ROBBIE to other approaches to introspective reasoning for diagnosing

reasoning failures. We also discuss other approaches for improving reasoning methods.

2.4.1 Model-based reasoning for introspective self-diagnosis

Our approach to introspective reasoning derives from the proposal of Birnbaum et al.

(1991) to use model-based reasoning to represent expectations about the reasoning

process of a case-based planning system. The framework they propose forms the

basis from which ROBBIE's model was developed. Like ROBBIE's, their model is

made up of assertions which form expectations about the ideal underlying reason-

ing process. Expectations about the performance of the planner, separate from the

model, are examined directly to detect failures. Such performance expectations are

linked through justi�cation structures to the assertions in the model which describe

the assumptions upon which the expectations depend. The explanation of a failed

expectation, in Birnbaum et al.'s model, is a process of tracing back through these

justi�cation structures, to determine a series of assumptions that might be faulty

leading to a repairable faulty assertion. Their proposed model for case-based plan-

ning does not specify the level of detail of the assertions in the model, but describes

only highly abstract expectations. The justi�cation structures form the link between

Background 38

abstract expectations and actual performance.

The kind of model-based reasoning Birnbaum et al. propose was applied previ-

ously to self-debugging planners which used rule-chaining to construct plans (Birn-

baum et al., 1990). Their approach was also implemented in CASTLE, a system

which introspectively learned strategies for playing chess (Collins et al., 1993; Krul-

wich et al., 1992). A variation was applied to Firby's reactive planning domain

(RAPTER, (Freed & Collins, 1994a), see below). Their proposal for applying the

approach to case-based reasoning, however, was never investigated.

ROBBIE's model, while based on the proposal of Birnbaum et al., deviates from

their proposed model in a number of ways. The general concept of a model of ex-

pectations used both for failure detection and explanation of failures is incorporated

into our framework. ROBBIE's model, however, is hierarchical and includes highly

speci�c information about the underlying reasoning system. Justi�cation structures

are the key element in the proposed model of Birnbaum et al. to connect the speci�c

performance expectations to the introspective knowledge of the system. In ROBBIE,

however, much of the role of justi�cation structures is subsumed by the speci�c asser-

tions incorporated in the introspective model itself, and the causal connections in the

model between related assertions. Such justi�cation structures as ROBBIE includes

are used to describe a reasoning trace from which the introspective reasoner extracts

information about the actual reasoning of the planner.

2.4.2 RAPTER

The RAPTER system developed by Freed applies an introspective model of ideal

reasoning behavior to a Firby-like reactive planner in Firby's deliver-truck domain,

Truckworld (Freed & Collins, 1994b). The model is similar to ROBBIE's and the

Background 39

CASTLE model mentioned above, in that it is a set of assertions about the ex-

pected reasoning behavior of the system. Freed's approach, like that proposed in

Birnbaum et al. (1991), stresses the importance of justi�cation structures for tying

together performance expectations and knowledge about the reasoning process. Once

an expectation about performance is known to be violated, the justi�cation struc-

ture associated with it is used to determine possible failed assumptions on which

the failed expectation depends. In addition to introspective knowledge about its

reasoning process, RAPTER's justi�cation structures may relate a performance ex-

pectation to knowledge of the domain or general knowledge about planning. These

di�erence classes of knowledge are used together to determine a cause and repair for

a given failure. ROBBIE, by contrast, uses only its model, which contains detailed

knowledge of the reasoning process and causal relationships within it, to explain

detected failures. ROBBIE's hierarchy of abstract and speci�c assertions takes the

place of RAPTER's justi�cation structures. ROBBIE successfully performs diagnosis

and repair of reasoning failures without incorporating domain knowledge or extensive

justi�cation structures.

RAPTER does not perform continuous monitoring of its planner's reasoning pro-

cess, but incorporates monitoring of the outcomes of reasoning into the checks the

planner itself makes of its sensor input and state of the world. ROBBIE does not

depend on actions of its planner to determine when reasoning problems are detected;

it interrupts its planner whenever possible to examine the current reasoning process.

ROBBIE monitors not only the outcomes of the planning process, but the reasoning

process itself to discover failures.

Background 40

2.4.3 Autognostic

Autognostic incorporates a di�erent form of model for representing reasoning pro-

cesses (Stroulia & Goel, 1994). Instead of a model that contains explicit expectations

about the underlying reasoning process, Autognostic represents the underlying rea-

soning process as a computational process. It uses an existing framework for repre-

senting the function of devices to describe the functioning of the reasoning system to

which it is attached. The framework used is a \Structure-Behavior-Function" (SBF)

model (Chandrasekaran, 1994; Goel & Chandrasekaran, 1989) which describes the

system in terms of tasks, which may be thought of as goals of the system, methods,

which implement those tasks and which may in turn contain subtasks, which must be

achieved to apply the methods. Each task and method is de�ned in terms of its struc-

ture, the subtasks, methods, and primitive structures that make it up, its behavior ,

the process by which it achieves its goal, and its function, i.e. a description of what

it is supposed to accomplish. From this sort of model it is possible to classify the

di�erent kinds of changes that might be made to the system, and how an alteration

at oint point triggers the need for alterations in other portions of the system. It is

also possible to trace the behavior of the system through the expected selection of

tasks, application of methods, and knowledge transferred from one task or method to

another. The model, unlike ROBBIE's, does not include explicit expectations about

the performance of the system, nor does it indicate how to map underlying reasoning

behavior onto the model. The focus of Stroulia's work, therefore, is on the process

of assigning blame for a detected failure, not on the process of detecting the fail-

ure in the �rst place. To strongly support failure detection, we needed to develop a

representation of desired performance.

Autognostic has been used to model the performance of two di�erent underlying

Background 41

systems: ROUTER (Goel, Ali, & de Silva Garza, 1994) which applies both case-

based planning and rule-based planning to construct route plans for traversing a

college campus, and Kritik2 (Stroulia & Goel, 1992) which performs device design

and diagnosis.

The SBF model includes more detailed kinds of information about the reasoning

process than ROBBIE's model, because SBF models are designed to assist in the

design of the modeled system as well as to diagnose failures of such systems. Our

approach requires less knowledge, but is successful at an additional task: detecting

reasoning failures.

2.4.4 Meta-AQUA

Several approaches to introspective reasoning have taken a di�erent tack than the ones

discussed so far, which all incorporate an explicit model of reasoning separate from

the main task's reasoning process. Meta-AQUA performs failure-driven introspective

learning in a case-based manner, by retrieving and applying cases which describe rea-

soning events instead of domain events (Ram & Cox, 1994). Meta-AQUA is a story

understanding system that applies explanation pattern cases (XPs) to explain anoma-

lies (expectation failures) discovered in the story it is given. When Meta-AQUA fails

to understand a story fragment it expects to understand, it applies \Introspective

Meta-XPs" (IMXPs) to correct its reasoning process. An IMXP describes the rea-

soning failure with which it is associated, and describes possible learning strategies

for determining the exact cause of the failure and for repairing it. An Introspective

Meta-XP serves as a template which may be matched against a description of the

actual reasoning process (stored in \Trace Meta-XP"), to determine if the reasoning

failure associated with a given IMXP has occurred. Di�erent IMXPs refer to di�erent

Background 42

classes of reasoning failures, such as \Novel situation," \Incorrect background knowl-

edge," or \Impasse during memory retrieval," (Cox, 1994). Cox (1995) describes

a taxonomy of di�erent reasoning events and failures from which IMXPs might be

derived.

Meta-AQUA focuses on the use of Meta-XPs to explain and learn from reasoning

failures. It applies its meta-reasoning only when its main task, story understanding,

exhibits an explicit failure itself (as when it fails to explain an entire story, or recog-

nizes a failure to explain that was later resolved). Unlike ROBBIE, it cannot detect

suboptimal reasoning performance unless later information reveals the sub-optimality

explicitly.

2.4.5 IULIAN

IULIAN is another system which integrates introspective reasoning with its over-

all case-based task. IULIAN's task is discovery learning, to describe and explain

problems presented it by forming theories or by performing experiments (Oehlmann,

Edwards, & Sleeman, 1995). Its case memory contains previously solved problems,

plans for creating experiments by adapting existing ones, and plans for forming the-

ories through posing questions and recursively applying its methods to answer them.

Cases may refer to IULIAN's domain task, or to introspective tasks such as monitor-

ing the application of a reasoning strategies or explaining reasoning failures through

the same methods as applied to the domain task.

IULIAN is driven by expectation failures, as are many introspective reasoners,

including ROBBIE. An expectation failure for IULIAN occurs when an expected

outcome due to a hypothesis or theory it has formed is shown to be false by exper-

imentation. IULIAN retrieves an introspective plan for determining the cause of an

Background 43

expectation failure and recovering from it.

Improvements in IULIAN's reasoning process come about as a result of applying

introspective plans that describe how to evaluate its reasoning and how to correct

failures of it. Unlike ROBBIE, IULIAN does not maintain an explicit model of what

its reasoning process should be: its introspective knowledge is encapsulated in its

introspective plans. While ROBBIE's introspective framework is generally applicable

to many di�erent reasoning systems, it is unclear how IULIAN's approach would

apply to any but a discovery learning system.

2.4.6 Massive Memory Architecture

Arcos & Plaza (1993) approach introspective reasoning using uni�ed architecture for

describing case-based and meta-level problem solving tasks by describing each process

by decomposition into tasks and sub-tasks. If a domain task, such as \�nd the age

of Mary", has no known method for solving it, then a meta-task is initiated to �nd

such a method. The architecture supports re
ective processing by representing the

domain-level tasks and introspective tasks with the same framework. Failures are

driven by impasses when reasoning cannot continue normally, such as just described.

By contrast, ROBBIE can detect opportunities for learning which do not create im-

passes, and can distinguish ideal reasoning behavior from merely adequate reasoning

behavior.

2.4.7 Other methods for reasoning improvement

Systems such as SOAR improve their reasoning methods by chunking the rules it uses

to control the rule selection and focus of attention processes (Rosenbloom et al., 1993b,

1993a), rather than by analyzing the overall reasoning performance based on explicit

Background 44

representations of its desired function. In addition, the scope of circumstances from

which SOAR can learn does not include all of its reasoning processes: the mechanisms

for �nding and applying its rules are outside of its control. In contrast, re�ning these

processes is precisely the heart of ROBBIE's learning.

Other systems depend on interactions with a human user to detect
aws in their

reasoning processes and to improve those processes through human guidance. The

ASK system learns \strategic knowledge" about how to apply its domain knowledge

through a dialogue with a human user who corrects mis-applications of knowledge

(Gruber, 1989). The knowledge about how the reasoning process should perform

is all provided by a human user: in ROBBIE that knowledge is represented in the

introspective reasoner's own model, and the system itself determines the cause of a

failure and how to repair it.

2.5 ROBBIE's features

In this chapter we have described the various pools of research out of which ROBBIE

has sprung. ROBBIE incorporates a relatively standard case-based planner (with

a few twists), but combines the case-based planner with a reactive planner based

on Firby's RAP framework, to perform route planning. Of more interest than the

planner is ROBBIE's approach to introspective reasoning, which relates to work done

by Birnbaum, Collins, Krulwich, and Freed on using models of ideal reasoning to

detect and repair failures of reasoning.

ROBBIE di�ers from other case-based planners by incorporating execution into

the planning process. Its model of introspective reasoning is hierarchical, unlike

the models to which it is most closely related, and incorporates detailed knowledge

Background 45

about the underlying reasoning system and the relationships between expectations,

which in other models were maintained separately. It stresses the importance of both

detection of expectation failures and the explanation of failures, and utilizes a single

model separate from the underlying reasoner itself, to implement both tasks.

Chapter 3

ROBBIE and Its Domain

For developing a model of introspective learning, the task and domain
must be su�ciently rich for the system to potentially bene�t from
introspective learning without overwhelming the learning abilities of
the system. In this chapter we describe the testbed domain in detail
and sketch ROBBIE itself.

We are investigating introspective reasoning as applied to reasoning for a planning

task, the task of creating and carrying out plans to navigate as a pedestrian from one

location to another. The task has several parts: �rst, route planning in which a plan

is made deliberatively which should get from the starting location to the goal, second,

actual execution of the plan which was created, and last, learning from the success or

failure of the original plan. All three parts of the task are important. Without some

sort of planning ahead the pedestrian would have no guidance in �nding its way to

the goal location, without executing the plan it has no way to verify that its planning

was correct, and without learning from the results, it would repeat mistakes made in

planning or executing a plan, or waste e�ort re-creating a route already experienced,

over and over.

Let us consider one example of the kind of problem ROBBIE faces, involving

46

ROBBIE and Its Domain 47

the world map shown in Figure 3.1. A person interacting with ROBBIE selects a

starting location, such as the middle of the block of Birch street between Elm and

Oak, and then speci�es a goal location, like the corner of Fir and Oak streets. From

this description of starting and goal locations, ROBBIE uses case-based reasoning to

generate a plan for moving from start to the goal, described in high-level plan steps

like:

� Turn east on Birch

� Move east to Oak

� Turn north on Oak

� Move north to Fir and Oak.

ROBBIE then executes this plan in the simulated world of which it is a part. If the

plan succeeds without a hitch, ROBBIE should learn by remembering this route as a

success. If ROBBIE encounters some problems in executing the plan, for instance if

Oak is closed beyond Apple because of long-term construction, then ROBBIE might

�nd another way to the goal (perhaps by detouring on Apple and Cedar). ROBBIE

should learn that the route it selected was
awed, and to pay more attention to where

construction is in the future. If the plan itself were incorrect, if it had \south" instead

of \north" in the second pair of steps, then ROBBIE might become completely lost

and fail to reach its goal. It still has the opportunity to learn from this situation by

examining how its reasoning went awry, and improving its plan creation process.

The description of the domain at the beginning of this chapter does not give a

clear sense for how detailed or complex the knowledge available to ROBBIE's rea-

soning system actually is. We could be describing a problem as simple in form and

ROBBIE and Its Domain 48

Maple Street

Birch Street

Apple Street

Fir Street

E
lm

 S
tr

ee
t

C
ed

ar
 S

tr
ee

t

D
at

e
St

re
et

O
ak

 S
tr

ee
t

C
he

rr
y

St
re

et

Figure 3.1: One of ROBBIE's worlds

knowledge as the standard traveling salesperson problem, or as complicated as a real

physical robot moving about on real world streets. In setting up the actual domain

implementation, we must determine a point which is both feasible and interesting

for our task between these two extremes on the spectrum of complexity. A good

implementation of the domain for our purposes provides a level of complexity which

is manageable while being complex enough to lead to opportunities for introspective

learning. The description of locations and objects in the world must be su�ciently

knowledge-rich to make it di�cult to correctly weight the relative importance of the

features a priori. It should be di�cult to determine which feature are important to

include, and which interactions between features are important. Both features and

interactions may be implicitly part of the input description without being explicitly

enumerated (for instance, the concept of two locations being \on the same street" as

ROBBIE and Its Domain 49

a feature connecting starting and ending locations is not explicit in ROBBIE's input

problem description). Beyond the richness of the representation of objects in the

world, the domain should also include dynamic elements. Elements which change out

of the control of ROBBIE ensure that static knowledge is insu�cient to capture the

state of the domain, and provide more opportunities to learn from experience. Most

importantly, the complexity of the domain description should be extensible beyond

the original description to more knowledge-rich and more dynamic aspects as time

and ROBBIE's sophistication permit.

In this chapter we will �rst describe the domain in which ROBBIE plans and

learns in more detail, and we will discuss how our choices in creating this domain

address the issues raised in the previous paragraph. We will then provide an overview

of the ROBBIE system and the world simulator which interacts with it. We will

describe how the world simulator implements the domain for the planning task, and

will brie
y describe the major components of the ROBBIE system itself. We will

focus in this chapter on how control and information passes between ROBBIE and

the world simulator and from component to component within ROBBIE itself, and

will provide details of ROBBIE's implementation in later chapters.

3.1 The domain

The domain chosen to test out the introspective reasoner is that of a planner for a

robot moving from place to place on a simple grid of streets as a pedestrian. Figure 3.1

above shows one of several typical world maps in which ROBBIE has been tested.

The simulated robot starts out at some given location on a sidewalk of the world, and

ROBBIE is given another sidewalk location as a goal. ROBBIE creates and executes

ROBBIE and Its Domain 50

� Turn north on the corner of Maple and Elm

� Move north on Elm to the north side of Birch

� Turn east on the north side of Birch

� Move east on Birch to the position 20 units along Birch

Figure 3.2: High-level plan

a plan to move the robot from its current location to the goal location. Plans created

by ROBBIE describe how to reach the goal location with high-level plan steps, like

the one shown in Figure 3.2. These high-level plan steps are treated as sequential

goals of the reactive execution component of the planner.

Locations in this domain are not simple points on a graph, nor pairs of Cartesian

coordinates, but descriptions in terms of street names, sides of streets, blocks, and

so forth. These detailed descriptions provide many di�erent levels of comparison

between locations, and permit intuitive descriptions like \the north side of Birch"

which vary in speci�city from describing a whole side of a street to a particular point

along a street. The domain also includes dynamic elements which the planner is

expected to handle as a matter of course: tra�c lights (ROBBIE is never to cross

against the light), blocked streets, broken tra�c lights, and so forth. The planner is

also expected to recover, if possible, from failures of its plans.

This domain is a good one for testing the limits of ROBBIE's introspective learn-

ing abilities because of the complexity of information available to the system, the dy-

namic elements included in the domain, and its extensibility. Locations are complex

entities containing a great deal of information to be integrated, along with additional

information such as street signs, tra�c signals, and nearby obstacles. Moving about

ROBBIE and Its Domain 51

successfully requires coordinating the available information and anticipating and re-

acting to many variables out of the planner's control, such as tra�c lights and closed

streets. In a domain of this type it is di�cult to predict all the ways of responding

to new situations that the planning system will need; hence the need for introspec-

tive reasoning is greater. New responses may be added as needed in a system such

as ROBBIE where reasoning itself may be learned. The extensibility of the domain

makes working with it tractable while allowing it to scale up: at the current time

many possible complications and dynamic elements have been omitted, but can be

included at a later time to test ROBBIE's robustness under increasing complexity

(for instance, other pedestrians, cars, time constraints, etc.).

3.2 Overview of the system

Figure 3.3 shows a view of the entire system, consisting of ROBBIE itself and the

simulator that controls the world in which ROBBIE is situated. The simulator main-

tains the state of the objects in the world and updates their state at each time step. It

informs ROBBIE of the state of the world through a set of \sensory" values provided

to ROBBIE at each time step which, aside from goal locations received directly from

a human user, are ROBBIE's only inputs. In return the world simulator receives from

ROBBIE instructions for low-level actions for the simulated robot to take. The sim-

ulator interprets those actions and updates the robot's location and state in response

to them.1

ROBBIE itself contains two components, the planner which interacts with the

1We will use \ROBBIE" only to refer to the reasoning system which creates plans and performs
introspective reasoning on itself, and we will use \the simulated robot" to refer to the object in the
simulated world which represents ROBBIE.

ROBBIE and Its Domain 52

Memory

+
Case-based

Reactive

Internal view
 of world Repairs

Model-based

Reasoner

Planner:

Model of planner

World Simulator Monitor

ROBBIE

Figure 3.3: ROBBIE and its world simulator

simulated world and handles the performance task of creating and executing plans,

and the introspective reasoner, which watches the reasoning behavior of the planner

and corrects it in response to reasoning failures. The introspective reasoner has no

direct contact with the world simulator, and communicates with the planner through a

special, limited protocol which determines when and where introspective interference

is allowed and which permits the planner to be informed of the results of introspective

reasoning. In the following sections the world simulator will be described in detail as

an implementation of the domain, and the components of ROBBIE will be sketched

to explain their relationship to each other.

3.3 The simulated world

The world simulator implements the domain described in Section 3.1, and regulates

the relationship between ROBBIE's actions and the domain. It keeps track of time,

ROBBIE and Its Domain 53

- Initialize time of day

- Initialize map of world

- Initialize traffic lights

- Initialize robot position

- Initialize pedestrians

- Update position of robot

- Collect commands

- Send sensory input

- Update time of day

- Update obstacles

- Update other objects
R

ep
ea

t f
or

ev
er

Let ROBBIE run

On starting up:

Figure 3.4: Simulator's process

updates the state of objects in the world at each time step, generates sensory input

for ROBBIE and updates ROBBIE's state and position based on output command

ROBBIE sends it. Figure 3.4 shows an overview of the world simulator's process.

The streets on which ROBBIE travels are laid out in a grid pattern, although not

every street runs the whole length or width of the map (as in Figure 3.1). ROBBIE's

simulated robot is a pedestrian, and is therefore expected to travel on the sidewalks

and cross streets only when the tra�c light is green, but that restriction is not incor-

porated in the world simulator, which will permit the robot to move to any point on a

sidewalk or in a street, and only restricts the robot from moving into any \buildings"

(the space of each block inside the sidewalks).

The simulator maintains a map of the world which consists of discretely measur-

able objects: blocks are 100 units long, sidewalks are 6 units wide, and streets have

varying width, with a default of 20 units. Blocks are numbered sequentially starting

in the southwest corner and increasing to the east and the north (i.e., the west-most

block is numbered with zero, the next eastward block is 100, and so on).

ROBBIE and Its Domain 54

(sidewalk

(street maple)

(side north)

(block 100)

(along 20)

(across 3))

Figure 3.5: A typical sidewalk location description

Any point on a sidewalk or in a street has a location description which the world

simulator can use to determine the simulated robot's location, or can pass to ROBBIE

to describe a location of interest in the world. While in theory any describable location

could be given to ROBBIE as a goal, in practice goals are restricted to locations

which are on sidewalks in keeping with the pedestrian nature of the robot. Location

descriptions are frames which are classi�ed by the type of location each describes; the

slots for each class of frames di�er depending on the features of that type of location.

The canonical location type is the sidewalk form which is used whenever the sim-

ulated robot is standing on a sidewalk in the middle of a block, excluding sidewalks

at the intersection of two streets and places where one block changes into another.

Figure 3.5 shows a typical sidewalk location description. The information in a side-

walk description includes the street beside which the sidewalk runs, the side of the

street on which the sidewalk sits, the block of the street, the distance along that

block on the sidewalk (a number between 1 and 100 since blocks are 100 units long),

and the distance across the sidewalk (a number between 1 and 6). The across value

is often ignored by ROBBIE itself, but is important to the world simulator in order

to maintain the exact location of the simulated robot.

Other location types include intersect for locations on the sidewalk at the inter-

section of two streets, in-street-inters for locations in the street at an intersection

(as when the robot is crossing a street), street for locations in the street outside of

ROBBIE and Its Domain 55

(intersect

(street1 oak)

(side1 east)

(block1 300)

(along1 97)

(street2 fir)

(side2 south)

(block2 200)

(along2 4))

(in-street-inters

(street1 oak)

(side1 west)

(block1 (0 100))

(along1 12)

(street2 maple)

(side2 in)

(block2 100)

(along2 97)

(width2 20))

Figure 3.6: Typical intersect and in-street-inters location descriptions

(street

(street elm)

(block 100)

(along 75)

(across 5)

(width 20))

(between-blocks

(street date)

(side west)

(block (100 200))

(along 18)

(across 3))

Figure 3.7: Typical street and between-blocks location descriptions

an intersection, and between-blocks for sidewalks where a street normally would

be. Figure 3.6 and Figure 3.7 show examples of each of these location types, and

Figure 3.8 shows a portion of the map in Figure 3.1 with the di�erent location types

indicated by shaded sections.2 The intersection location types describe the robot's lo-

cation in terms of both streets at which it is standing; the �rst street in the description

is the street along which the robot is facing.

By using a more knowledge-rich representation of locations than simple Cartesian

coordinates, we provide ROBBIE with a better view of its world than it would oth-

erwise have. Locations are described in a way that is more intuitive for people to

understand, and captures information that can make ROBBIE's planning task easier

(for example, intersect locations are important for the ability to change direction,

2ROBBIE currently treats all intersections as four-directional, and sidewalks at an intersection
where a street would be as equivalent to being in the street itself.

ROBBIE and Its Domain 56

O
ak

 S
tr

ee
t

Birch Street

C
he

rr
y

St
re

et

Maple Street

D
at

e
St

re
et

Apple Street
street

sidewalk

in-street-inters

intersect

between-blocks

unreachable

Figure 3.8: A portion of the world map with location types marked in shaded sections

and can be easily distinguished from sidewalk locations with this method). It is also

easy to represent inexact locations like \the north side of Fir street" or \the 100 block

of Oak" simply by leaving some slots of the location frame empty.

The world simulator updates and maintains the dynamic elements of the domain.

The most important are the tra�c lights at intersections which control when ROBBIE

permits a street crossing. Currently, all intersections have tra�c lights which operate

independently of each other and of ROBBIE. Each light changes from red to green for

a particular direction, on a 30 time step cycle. When the world simulator is initialized,

each tra�c light is set to a random point in its 30 time step cycle. Tra�c lights

sometimes break down, remaining green in one direction for a random amount of time.

Other dynamic elements are implemented in the world simulator but are currently

ignored by ROBBIE: they exist for future expansion of the complexity. Streets may

be unexpectedly blocked for a random amount of time, and other pedestrians are

located on the map in di�ering numbers depending on the calculated time of day

ROBBIE and Its Domain 57

(many pedestrians at rush hour, few at 3 o'clock in the morning). At this time, the

world simulator allows ROBBIE to walk through closed streets and other pedestrians

as if they were not there, but their existence in the simulator lays the groundwork for

further extensions.

The world simulator provides input about the simulated world to ROBBIE, in-

forming it of the simulated robot's internal state and about objects and events in

the world which are within some distance of the simulated robot and to which the

robot is paying attention. The internal state consists of the direction the robot is

facing, whether it is standing still or moving, how fast it is moving, and how far it

moved in the last time step. ROBBIE is not given the new location of the simulated

robot, but must determine it from moment-to-moment information and knowledge of

its original position. ROBBIE can move at two speeds: \slow" is one unit per time

step, \fast" is three units per time step. External objects whose presence is reported

by default include walls, streets, and intersections within 20 units of the robot (in

any direction). ROBBIE is also informed when it is changing from one location type

to another (i.e., when it moves from an intersection into the street). ROBBIE may

request information about other objects in the world, including the status of tra�c

signals and street signs. After ROBBIE requests such information, the presence and

status will be reported at each time step until ROBBIE commands the simulator to

cease reporting that object.

ROBBIE must send commands to the simulator to control the simulated robot,

including control over which \attentional" inputs will be reported. Table 1 lists the

possible commands ROBBIE can use. These simple commands are combined by

ROBBIE to produce more complex behavior.

From this discussion it should be clear that the world simulator operates almost

ROBBIE and Its Domain 58

stop Stop the robot from moving
move Start the robot moving with the current direction and speed
slow Set the movement speed to slow
speed-up Set the movement speed to fast
turn Turn the robot to a new direction
look-at Report the status of the given object
look-away Stop reporting the status of the given object

Table 1: Commands from ROBBIE to Simulator

independently of ROBBIE, and has control over information about the simulated

world that ROBBIE needs in order to create and carry out its plans. The two systems

interact only by \sensory" information provided by the simulator to ROBBIE and by

commands sent to the simulator by ROBBIE to control the state of the simulated

robot. This implementation of a navigational domain meets the criteria we described

earlier by incorporating considerable complexity both in the richness of the available

information and the dynamic nature of the domain. The complexity is restricted to

a manageable level, while at the same time allowing for signi�cant future expansion.

The simulator already includes some elements of the domain which are, for expediency,

ignored by the robot and ROBBIE, but which could easily be activated. Additional

objects in the world such as cars and features such as time constraints on ROBBIE's

performance could also be added using the same basic simulator mechanisms.

3.4 The planner

ROBBIE's planner combines a typical case-based planner (Hammond, 1989) with

a reactive planning execution module (Firby, 1989). Figure 3.9 outlines the plan-

ner's process. The case-based planner takes a description of its current situation (the

current starting and goal locations), builds an index describing the situation, and

ROBBIE and Its Domain 59

Adapt

CaseCase

Retrieve

Plan

ExecuteBuild

Index

Store

Case
New

Planner cycle

External input from simulator and user

Figure 3.9: ROBBIE's planning component

retrieves old plans with similar indices for already-known routes on the current map.

Initially similarity is judged by the combining the geographical proximity of the cur-

rent starting location to the starting location of the old case, and the geographical

proximity of the current goal to the goal of the old case. ROBBIE learns new criteria

for judging similarity through introspective reasoning: the new criteria describe fea-

tures which were implicit in the original description of a situation but were not made

explicit in the index. ROBBIE applies a set of adaptation rules to convert the most

similar old case into a route plan which is applicable to the current situation. Each

rule makes a small local change which builds from the old case toward a new case.

Because retrieval and adaptation are guided by vague concepts like similarity

and heuristic rules, evaluation of a CBR-created plan is very important. ROBBIE

performs evaluation by reactively executing the adapted plan to see how it plays

out in the simulated world. This execution also forms a last stage of adaptation, as

the reactive execution may eliminate useless steps or add new ones in response to

obstacles.

ROBBIE and Its Domain 60

The reactive planning component is based on Firby's RAP model. Each high-level

plan step created by the case-based planner is considered in turn as a goal for the

reactive planner to achieve. At each time step, the reactive planner considers the

current input from the world and its current goal and selects a new reactive planlet

to execute. Each planlet contains commands to the planner itself (such as recording

some piece of information) and commands to the world simulator (such as speeding

up or slowing down).

After the goal location has been reached through execution of the plan, the �nal

plan is reconstructed from the actions of the reactive planner (most often it is the

same as the adapted plan). This plan is stored along with the index (the description

of the situation which was used to retrieve a case before), and the planner requests a

new goal location. By default, the new situation will have the current location of the

robot as its starting point, and awaits only a new goal location from the user.

3.5 The introspective reasoner

The introspective reasoner is signaled to examine its expectations by the planner when

the planner is in a state in which introspective monitoring can occur. This state could

be a point in the planner's reasoning process which represents a completed task (for

instance, when retrieval has �nished considering each case in memory). It could

also be a point at which the planner has noticed a catastrophic failure and should

not continue without introspective help (for instance, if the execution component

has become lost). A description of the current situation in a restricted monitoring

vocabulary is passed to the introspective reasoner.

Figure 3.10 shows the general structure of the introspective reasoning process.

ROBBIE and Its Domain 61

Monitor
assertions explanation

Search for
a repair
Select if failure

detected

unavailable
if information

failure

Reasoning
Model of

Reasoning
Trace of

Structures

if explainsignal
from

Knowledge

protocol

assertions
okay

if all

monitoring

return result to planner

K
no

w
le

dg
e

R
ea

so
ne

r

Knowledge of planner

Figure 3.10: Structure of the introspective reasoner

The introspective reasoner examines the current situation for expectation failures,

drawing on its model of the planning process, the trace of reasoning so far, and any

knowledge structures the planner may have created. An expectation failure occurs

when one of the model's assertions about the current ideal state of the reasoning

process proves to be false of the actual reasoning process. This is generally assumed

to be true if the planner encounters a catastrophic failure and cannot continue.

If the introspective reasoner �nds no expectation failures, meaning that all asser-

tions about what should be happening are true of the actual reasoning process, then

it returns control to the planner, informing the planner that everything is okay. If a

failure is discovered, however, the introspective reasoning process moves on to search

for the original cause of the failure by explaining how the failure came about. Once

again it may draw on the knowledge structures and reasoning trace of the planner as

well as its own model of the ideal planning process.

Because the introspective reasoner may need to access data structures of the plan-

ner, it is possible that at the time a failure is detected, the information available is

ROBBIE and Its Domain 62

not su�cient to diagnose and repair the failure. Therefore, the introspective reasoner

may decide to suspend its explanation and repair tasks and permit the planner to

continue until more information is available. When the requisite information becomes

available, the explanation and repair task will be restarted from where it left o�. If

the planner is unable to continue in any way, then the system must simply fail to

achieve its current goal and fail to explain the failure, a situation we hope will be

rare.

The last module of the introspective task involves creating a repair to prevent

the detected problem in the future. The repair will alter the reasoning related to the

expectation failure that was determined to be the root cause of the originally detected

expectation failure. The explanation of the original failure provides clues to help the

introspective reasoner repair the failure, as may the actual root cause expectation.

From this information the repair module creates a repair and alters the underlying

planning process. In the case of ROBBIE, repairs may be applied only for indexing

problems, which form the bulk of failures for ROBBIE in any case. An indexing

repair requires discovering a new feature for indexing cases in memory, adding a rule

to look for that feature in future problems, and re-indexing the cases in memory to

include the new feature. Once the repair has been accomplished, or the impossibility

of a repair is determined, the planner is given control again and informed of what

took place.

3.6 The ROBBIE system

In this chapter we have explained the details of ROBBIE's domain and the reasons

for our choices in designing it. In addition, we have given an overview of the system

ROBBIE and Its Domain 63

as a whole and a brief summary of how each part works.

The domain is one which should be di�cult for an ordinary deliberative planner to

handle because of the richness of information about any given situation, the imperfect

knowledge available to the planner, and the presence of dynamic elements which will

not remain the same throughout the planning or execution processes. ROBBIE has

only incomplete initial knowledge of the domain, and the features of the domain are

rich enough to make determining feature relevance for a given situation di�cult. Be-

cause of this, ROBBIE's domain should provide many opportunities for introspective

learning to �t ROBBIE's reasoning mechanisms to the requirements of the domain.

Some of the dynamic elements of the domain are addressed by the planner itself,

since it is a combination of case-based planning with reactive execution planning.

The feature selection problem is addressed, however, through introspective learning

which looks for and includes new features from a given situation when the existing

features prove to be inadequate.

In the next chapters we will look at the components of ROBBIE in detail, exam-

ining how each works and what issues were addressed in implementing each. We will

�rst describe the planner and provide sample output from ROBBIE's planning pro-

cess. In following chapters we will discuss \model-based reasoning" as the foundation

for introspective reasoning in general, and then our speci�c implementation of those

ideas.

Chapter 4

ROBBIE's Planner

ROBBIE's planning component combines a case-based, deliberative
planner with a reactive planner for execution. Subparts of the plan-
ner use the same case-based process as the planner as a whole. In
this chapter we describe the planner and discuss the issues that it
addresses.

The ROBBIE project investigates how introspective learning can improve the per-

formance of a system for a domain task: in ROBBIE, that domain task is navigation

by a robot pedestrian. This task is guided by a planner that takes a goal, which is a

desired new location for the robot with an attendant starting location, and plans a

route to get to that goal. ROBBIE interacts with its simulated world to execute the

new plan and test it \under �re." These two steps require a combination of deliber-

ative planning1 using case-based reasoning and reactive execution which responds to

the problems that inevitably arise in applying an abstract plan to a concrete situation.

Thus the components of ROBBIE's planning process are: goal generation, retrieval,

adaptation of retrieved cases, plan execution, and case storage. To introduce these

components, in this section we highlight each in turn. In the remainder of the chapter

1Recall that deliberative planners plan out the entire problem before executing it.

64

ROBBIE's Planner 65

we examine in depth the issues they involve.

Goal generation: Goals for ROBBIE are simply pairs of locations: where to start

from and where to end up. Most of the time, goals arise from external sources such

as a human user: the human plays the role of a dispatcher, as ROBBIE plays the role

of a pedestrian delivery robot.

ROBBIE's goals can arise in three ways. First, the user may provide a single

location, with the implicit command for ROBBIE to plan and execute a route from

its current location to the new location. Second, the user may specify a sequence

of locations, to be achieved one after the other like goals in a treasure hunt. Since

ROBBIE considers each goal location in the list one at a time, this type of input

goal is essentially the same from ROBBIE's perspective as providing goal locations

one at a time. The third kind of goal comes not from a human user, but arises from

ROBBIE internally through the process of \re-retrieval," which we will discuss below.

In re-retrieval, ROBBIE splits the given problem into two subparts by selecting an

intermediate location, and then generates two subgoals for itself, to create (but not

execute) a plan from its current location to the intermediate, and to create (but not

execute) a plan from the intermediate to the goal. These sub-plans are then combined

and executed as a single plan.

Case retrieval: Once a goal has been created, ROBBIE must generate a route

plan that describes a path from its starting location to the goal location. The plan

is created by a case-based planner structurally similar to the planning system CHEF

(Hammond, 1989)2. The case-based planner takes the goal (the new desired location

and current situation) and builds an index which describes the situation in terms of

2Previous case-based route planners are discussed in Chapter 2.

ROBBIE's Planner 66

its relevant features and how cases are stored in memory. The index is compared to

the indices of cases in memory to select the one with the most similar index. This

case forms the basis of a solution to the new problem.

Case adaptation: The retrieved case is adapted to create a case which applies to

the current situation exactly. Adaptation in ROBBIE involves mapping the locations

of the retrieved case onto the locations of the current problem and then �lling in the

intervening steps. The Adaptor applies many individual adaptation strategies which

alter small portions of the information in the old case to create a new solution.

ROBBIE's adaptation mechanism includes one aspect beyond a straightforward

case-based approach. Traditional CBR systems may be stymied if a retrieved case is

unadaptable. A case may prove unadaptable either because a faulty retrieval chose

an inappropriate case when a correct alternative existed, because all cases in memory

are dissimilar to the current situation so that no match is close enough to be mapped,

or because the current situation requires a more complex plan than any in memory.

When ROBBIE retrieves a case that cannot be mapped onto the current situation,

regardless of the cause, ROBBIE uses its re-retrieval process to alter the planning goal

of the system. The original goal is broken into more easily solvable pieces. A location

lying between the starting and goal locations of the original problem is chosen and

normal retrieval and adaptation are used to create two partial solutions, (one from

the starting location to the intermediate location, one from the intermediate to the

goal). The two new solutions are merged to form a solution to the entire problem.

Plan execution: Execution of the new adapted plan in the simulated environment

serves to evaluate the quality of the CBR-created plan, and it also acts as a last

component of adaptation, as the reactive Executor may alter the plan steps as needed

ROBBIE's Planner 67

to solve the problem.

Reactive execution is based on Firby's RAP approach to reactive planning. The

plan steps created by the case-based planner are treated as goals to be achieved in

sequence by the Executor. A step like \Move east to Oak" becomes a goal meaning

\Apply planlets until the simulated robot reaches Oak." At each time step, the

reactive Executor selects an appropriate planlet to help achieve the current reactive

goal. Between one time step and another the context may change drastically, requiring

a completely di�erent response. Reactive execution alters its behavior in response

to momentary changes in its environment. Each action of the reactive system is

recorded, allowing reconstruction of the actual steps taken after the goal location has

been reached.

Plan storage: The �nal solution to a given problem is the result of both deliberative

planning which creates the framework of a solution, and reactive planning which

alters the plan to �t the actual world. The solution is reconstructed from the steps

the reactive execution component took in reaching the goal. The reconstructed plan

is then stored into memory, forming the learning portion of the case-based learning

process. Once in memory, the case may be retrieved and re-applied whenever similar

situations arise.

In this chapter we will �rst discuss a central feature of the planner's design, the

re-use of the case-based retrieval process for subparts of the case-based reasoning

process itself. We will then examine each component of the planning process in turn,

illustrating its operation with sample output, and discussing the issues to be addressed

in implementing each task.

ROBBIE's Planner 68

4.1 Using CBR to implement CBR

In developing ROBBIE's planner, we noticed that certain components of the case-

based planning process were similar to one another, and that their function was

similar to the overarching case-based reasoning process itself. We chose to explore

that similarity by using the same basic CBR process for all these parts: the same

case memory to hold the knowledge for each component as well as the planner, and

the same indexing and retrieval mechanisms to access the knowledge. Using the same

case-based mechanisms for knowledge of components as for the whole is an elegant

approach, and suggests the possibility of extending the re-use to adaptation and

learning of knowledge for parts of the case-based process as well as the process as a

whole.

In the current system the Indexer, the Adaptor, and the Executor all have case-

based retrieval at the heart of their processing. Table 2 outlines how the knowledge of

each part relates to the others, and sketches how expectations about each component's

process match each other. The Indexer uses rules which specify when to alter the

current index; those rules are retrieved from memory using a description of the current

index to retrieve applicable indexing rules. The Adaptor applies strategies for altering

portions of a retrieved plan. These strategies are stored in memory and retrieved by

a description of the portion involved. The Executor uses reactive planlets to execute

steps of the high-level plan. Each planlet is applicable in certain situations in the

world; a description of the current world situation serves as an index for retrieving

them.

The Indexer and Retriever must build indices and retrieve cases for all the kinds of

memory structures in the case memory. This requires general mechanisms, combined

ROBBIE's Planner 69

Memory Expectations
Indexer rules Indexer will have all possible rules

Indexer will select the right rule
Indexer will �nd a rule if it exists

Adaptor strategies Adaptor will have all necessary strategies
Adaptor will use the correct strategy
Adaptor will use a strategy if it exists

Executor planlets Executor will have a planlet for every situation
Executor will take the right action
Executor will apply a planlet when it's applicable

Planner plans Planner will have some plan that matches
Planner will select the best plan
Planner will retrieve a plan if it is in memory

Table 2: Similarities between modules

with task-speci�c indexing schemes and similarity measures for di�erent memory

structures.

Using case-based retrieval for components of the case-based planner leads naturally

to the idea of including adaptation and learning of other memory structures than

plans. However, we have left the problem of adapting adaptation strategies and other

such structures for the future. In ROBBIE, other memory structures are added to the

case memory only through introspective reasoning, which adds new indexing rules to

the system's memory.

4.2 Memory organization and cases

ROBBIE's memory contains route plans, indexing rules, adaptation strategies, and

reactive planlets. Since e�cient memory access was not a focus of this research and

has been examined in detail by others, we chose the most simple method of access

to implement (if not the most e�cient): an unsorted list of memory structures. Our

focus in memory organization was on the contents of the indices by which similar cases

ROBBIE's Planner 70

are chosen, not how cases were physically stored in memory. Once an appropriate

set of indices has been selected, a number of e�cient retrieval methods are available

(e.g., (Kolodner, 1993a)).

A larger case memory would certainly require a more sophisticated memory access

method, but ROBBIE's memory rarely grows beyond 100 to 200 cases. Another linear

search is done when a new case is stored in memory, to ensure that two copies of the

same case are not stored.

Each structure in memory has a name, for human convenience only, an index,

and the contents of the case itself. The index describes the situation to which that

structure applies and what kind of a structure it is.

In later sections, as appropriate, we will describe the memory structures associated

with each component (indexing rules, adaptation strategies, and planlets), but we will

describe here what a plan case contains, as plans belong to the planning process as a

whole. Figure 4.1 shows a sample plan, one of ROBBIE's initial plans for the map we

have used throughout. As described above, the �rst part of the case is the case name:

old1 indicates it is an original case, later cases are given uniquely created names.3

Following the name is the index, which identi�es the case as a plan, and then gives

the starting and ending locations for the plan. If any additional features had been

learned through introspective reasoning, those special indices would appear after the

ending location. The body of the plan is simply a sequence of high-level plan steps

which, when executed one after the other, should lead from the starting to the goal

location.

Plans for ROBBIE can contain four di�erent kinds of steps, described in Figure 4.2.

The step starting-at makes sure the simulated robot is where it is supposed to be

3New case names are created using gensym.

ROBBIE's Planner 71

(old1

(plan (sidewalk (street elm) (side east) (block 100) (along 10) (across unspec))

(sidewalk (street birch)

(side north)

(block 100)

(along 1)

(across unspec)))

((starting-at (dir any)

(on (sidewalk (street elm)

(side east)

(block 100)

(along 10)

(across unspec))))

(turn (dir north)

(on (sidewalk (street elm) (side east) (block 100) (along 10))))

(move (dir north)

(on (sidewalk (street elm) (side east) (block 100)))

(to (sidewalk (street birch) (side north) (block 100) (along 1))))

(ending-at (dir any)

(on (sidewalk (street birch) (side north) (block 100) (along 1))))))

Figure 4.1: A typical ROBBIE route plan

before taking any actions, and ending-at makes sure the robot is at the goal when

all actions have been done. The step turn indicates a turn in a given direction, when

the robot is at a particular location. The fourth kind of step, move, states the goal to

move in a particular direction to a particular location, and move on another location.

\On" locations for move steps usually describe whole blocks of a street, or whole

sides of a street, since moving will eventually change any more detailed feature of the

robot's location.

Plan cases are accessed by indices that represent aspects of their content which

are available without knowing the actual route to be taken. The Indexer creates such

indices, given the goal's starting and ending locations.

ROBBIE's Planner 72

(starting-at (dir <direction>) (ending-at (dir <direction>)

(on <location>)) (on <location>))

(turn (dir <direction>) (move (dir <direction>)

(on <location>)) (on <location>)

(to <location>))

Figure 4.2: Plan step categories

4.3 Indexer: index creation

ROBBIE must convert a goal, whether externally or internally generated, into a de-

scription of the current situation, an index, which will enable retrieval of the most

similar case in memory. The most similar case should be the case that can be most

e�ectively adapted to a good solution. Index creation involves selecting and structur-

ing information about the current problem to match the indices of cases in memory.

It may also include deriving information which is implicit in the problem description.

Elaboration of the original problem description permits explicit comparison of situa-

tions on the basis of abstract features which would not be explicitly included in the

input description.

As mentioned in Section 4.2, the case memory contains memory objects for the

planner as a whole, and for several components of the CBR process: the Indexer, the

Adaptor, and the Executor. The Indexer, therefore, builds indices for the memory

structures of each of these components as well as the planner, given descriptions of

the di�erent situations for which cases must be retrieved (planning, adaptation, etc.).

The Indexer itself uses case-based retrieval and, hence, recursively applies itself. This

recursiveness raises interesting issues we will discuss below.

In the �rst sample run below, the user inputs a goal location, which is sent to the

ROBBIE's Planner 73

indexer:4

Rob(CBR)>> No current goal; please input next destination: ind2

Rob(CBR)>> New destination is:

The east side of elm, the 200 block, 90 feet along

Rob(Ind)>> Creating plan index

Rob(Ind)>> Creating index rule index Recursive call: see if any
Rob(Ind)>> Index is: indexing rules apply to
(indexer plan 40 23 23 230) current problem.
Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Retrieval level at 2

Rob(Ret)>> Retrieval level at 1

Rob(Ret)>> Retrieval level at 0

Rob(Ret)>> Cases under consideration are:

() No indexing rules apply.
Rob(Ind)>> Index is:

(plan (sidewalk

(street maple) Plan index is just starting
(side north) and ending locations
(block 100)

(along 20)

(across 3))

(sidewalk (street elm) (side east) (block 200) (along 90)))

The �rst step in creating an index is to convert the problem description into the

appropriate index frame. For plans, this process is simply a matter of putting starting

and goal locations into the index structure. The �nal index in the sample run above

is just a descriptor declaring it to be a plan index, and the starting and ending

locations themselves. Other memory structures have di�erent index frames labeled

4In all sample output, output of ROBBIE is tagged by ROB(: : :)>>, where the parentheses describe
the portion of ROBBIE's process involved: Ind for the Indexer, Ret for the Retriever, Ada for the
Adaptor, Reret for the Reretriever, and Sto for the Storer. All other output is generated by the
world simulator.

ROBBIE's Planner 74

by the component the object belongs to: planlet, adapt, and indexer. The sample

run above includes an indexer index used to determine if any indexing rules apply to

the current plan index being constructed. Each di�erent index form requires di�erent

input information to the Indexer, and the Indexer creates a di�erent structure for each

form. As an example, Figure 4.3 shows the information that would be provided to

the Indexer by the Executor to retrieve a reactive planlet, and the resulting index.

In this case, the planlet to be retrieved involves a move where the robot is already

facing the right direction and moving, and there is a street about to be entered in

the same direction. Naturally, this kind of Executor request would arise much later

in the planning process than the sample run above, when a high-level plan has been

retrieved, adapted, and is being executed.

Often the basic index created by the Indexer fully describes the current situation

for retrieval, as in the �rst sample run above. Sometimes, however, other features

must be added to complete the problem description: specializations of the basic

index. Specializations in ROBBIE are exclusively applied to plan indices for the

main planning process, not to indexer, adapt, or planlet indices, and are made

up of extra features which ROBBIE has learned to include in its indexing scheme

through introspective learning.

To determine what features to add to a basic index, the Indexer applies relevant in-

dexing rules which are stored in the case memory. To access them, the Indexer creates

from the basic index a special indexer index which is used to retrieve the indexing

rules from memory. In the �rst sample run above, an indexer index is created, but

no indexing rules apply to the current plan situation. The indexer index describes

the type of index to be specialized, in this case a plan index, and then provides other

relevant information. For plan cases the Indexer converts location descriptions into a

ROBBIE's Planner 75

Input description:

Current plan step:

(move

(dir north)

(on (sidewalk (street elm)

(side east)

(block 100)))

(to (sidewalk (street birch)

(side north)

(block 100)

(along 1))))

Sensory information:

((cross-street north))

Resulting index:

(planlet

(move

(dir north)

(on (sidewalk

(street elm)

(side east)

(block 100)))

(to (sidewalk

(street birch)

(side north)

(block 100)

(along 1))))

((facing north)

(moving #t)

(mov-speed fast)

(loc (intersect

(street1 elm)

(side1 east)

(block1 100)

(along1 99)

(street2 birch)

(side2 south)

(block2 100)

(along2 5))))

((cross-street north)))

Figure 4.3: Reactive planlet index when situation involves moving across a street

ROBBIE's Planner 76

rough coordinate system, X and Y values for the starting location and for the ending

location. This avoids the pitfalls inherent in the location description format, which

permits the same location to be described in multiple ways.

In the next sample run, the Indexer does retrieve an indexing rule from memory.

The indexing rules are applied to the basic index, and alter it to include the new

features and information:

Rob(CBR)>> New destination is:

The west side of oak, the 200 block, 50 feet along

Rob(Ind)>> Creating plan index

Rob(Ind)>> Creating index rule index Recursive application
Rob(Ind)>> Index is: of Indexer to �nd
(indexer plan 119 80 117 190) specializations of the
Rob(Ret)>> Starting to retrieve basic index
Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case indexerg1929 matched with difference value of 5

Rob(Ret)>> Cases under consideration are:

(indexerg1929) One indexing rule applies

Rob(Ind)>> Index is:

(plan (sidewalk (street oak) Starting location
(side west)

(block 100)

(along 60)

(across 1))

(sidewalk (street oak) Goal location
(side west)

(block 200)

(along 50)

(across 3))

(*spec-index* both-stay-on-x 1928)) Special feature from rule

Because this indexing scheme requires using the Indexer and Retrieval components

recursively, the potential exists for endless iteration of indexing and retrieval. In

ROBBIE's Planner 77

specializing an index the Indexer needs to create an index; in creating that index

it may want to specialize it, which leads to another index creation, and so on. To

eliminate this potential problem for the time being, we chose to restrict indexing

rules in memory to those created by introspective reasoning for application to plan

indices. No other kind of index is specialized, therefore the Indexer will call itself at

most once. This is a somewhat ad hoc solution, but a more principled solution is not

obvious.

If the Indexer could specialize any kind of index and so end up with unlimited

recursive calls to itself, it must be able to determine when to stop trying to specialize

an index. One alternative solution, perhaps equally ad hoc, would be to limit the

number of recursions of the Indexer. A better solution might be based on the reason

for specializing the index. For indices to retrieve plans, we want specialization to

make sure that relevant features are included: so that the best, most adaptable plan

is selected. For an indexer index (the only kind we need consider for recursive Indexer

calls), specialization might serve to expand the indexing rules which are applicable

to a given situation. In this case, the Indexer could choose to specialize non-indexer

indices automatically, but would only specialize an indexer index if retrieval with the

basic indexer index failed to discover any matching rules. If no matches are found

after several recursive iterations, the process could be halted and the assumption

made that no rules applied to the original specialization request.

The �nal index is the result of the basic index creation method, and any changes

made by indexing rules. The result is passed along to the Retriever for selection of

cases of the appropriate type and number from memory.

ROBBIE's Planner 78

Plan cases Di�erences between slots in starting locations, and in
ending locations, normalized for sidewalk/intersect
di�erences, plus di�erences between special indices, re-
gardless of order

Indexing rules Uni�cation with variable binding, where numbers within
15 of each other are taken to match

Adaptation strategies Uni�cation with variable binding
Execution planlets Uni�cation with variable binding on step and location

parts of index, uni�cation of elements of \news" list, re-
gardless of order in list

Table 3: Methods for similarity assessment

4.4 Retriever: Selecting cases from memory

ROBBIE's memory contains four di�erent kinds of memory structures; the Retriever

must satisfy the needs of each di�erent kind of retrieval. It does so using a single gen-

eral process with individualized measures of similarity and di�erent retrieval \modes"

which describe restrictions on the number of cases to be returned.

The Retriever needs to be able to evaluate the relative similarity of cases to the

current situation, and to rank those cases against one another. In comparing two

indices, the Retriever generates a di�erence value which quanti�es how similar or

di�erent the indices are. The value is zero if the indices match exactly and increases

as the indices become less similar, up to a pre-de�ned maximum value when two cases

are incompatible, as when indices refer to di�erent kinds of memory structures (e.g.,

plan and adapt).

Di�erent memory structures require di�erent measures of similarity because their

indices describe di�erent kinds of features. Plan indices contain location descriptions

whose slots may be compared to other location descriptions. Indices for other memory

objects often include variables which may be matched to the current index with

uni�cation. Table 3 describes the similarity measure for each kind of memory object.

ROBBIE's Planner 79

Indices for retrieving plan cases are compared by taking a weighted sum of each

di�erence in the three parts of the plan index: the starting location, ending location,

and special features. A di�erence for the location portions of the index is de�ned as

any place where the �llers of a particular slot are incompatible (after accounting for

di�erent possible location descriptions of the same location). A di�erence for special

features occurs when a feature exists in one index and does not exist in the other.

Other memory objects are chosen by uni�cation of the current situation index with

the case's index, further discriminated by the number of variable bindings that were

made. Since variables may appear in either the case in memory or in the current

situation index, fewer variable bindings often means a closer match.

Besides using di�erent similarity measures for di�erent kinds of cases, the Re-

triever may return di�ering numbers of cases as matches to the current situation,

depending on the needs of the component that calls it. The component of the system

invoking the Retriever provides it with the appropriate index for the current situa-

tion, and also describes the needed retrieval mode. The Retriever may return only

one case, or it may return many. It may permit no cases to match, or it may consider

no matching cases a failure. If the object is a plan or an adaptation strategy, exactly

one case must be selected and returned. The other memory structures (indexing rules

and reactive planlets) require all cases matching within a pre-determined level of sim-

ilarity to be returned. Because no indexing rules may apply to a given situation, it

is acceptable for an indexer retrieval to discover no matching cases, but requests

for other kinds of cases must result in the retrieval of at least one case matching the

given index.

ROBBIE is unique in incorporating adjustable similarity and retrieval modes into

one retrieval mechanism: the kind of retrieval and similarity assessment is controlled

ROBBIE's Planner 80

by the component calling for retrieval. Each component can specify, along with the

index describing its knowledge needs, whether it needs one case or many, and whether

or not no matching cases is permissible.

To ensure that it �nds at least one match (when that is required) while limiting

the number of cases considered similar at any one time, the Retriever may vary how

high a di�erence value will be considered \close enough" to include a case in its pool

of possible matches. If no cases match with the most restrictive similarity measure,

the Retriever tries again with less selective measures, until it cannot be less selective,

or it �nds at least one matching case. If there are many similar cases in memory,

only the most similar will match under the restrictive measure and be considered. If

few cases match closely, lessening the restrictiveness will allow consideration of cases

which would otherwise be discarded.

In retrieving cases, the Retriever considers each case in turn, calculating a dif-

ference value for the case's index and the current goal index.5 The Retriever builds

a pool of those cases whose indices matched within the current selectivity level. If

a single case is to be retrieved, the pool of possibilities is examined more closely to

select the case with the lowest di�erence value. If more than one case has an equally

low di�erence value, a single one is chosen at random. If multiple cases are desired,

the entire pool is returned. This is similar to the validated retrieval approach used by

Simoudis & Miller (1991) and Kolodner (1988) in which partially matching cases are

collected on the basis of coarse-grained features and more �ne-grained analysis makes

the �nal determination. In ROBBIE's case, the �nal determination does little more

analysis than the original, but explicitly compares partial matches to each other.

5A more sophisticated memory access method would permit more e�cient retrieval, but access
issues are not the heart of this research and are being addressed by many others elsewhere (Kolodner,
1993a).

ROBBIE's Planner 81

(((across 3 unspec)) Di�erences in starting locations
((street elm birch) Di�erences in goal locations
(side east north)

(block 200 100)

(along 90 1))

()) Di�erences in special features

Figure 4.4: Di�erences for case old2 in �rst sample run

The sample output in the previous section showed the use of the Retriever to

retrieve indexing rules. For the Indexer, if multiple rules had matched, even with

varying di�erence values, they would all have been returned to the Indexer. Contin-

uing the �rst sample run above from the point where the index is provided to the

Retriever,6 plan retrieval results in a random choice between two equally similar plan

cases:

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3 Initial, most stringent level
Rob(Ret)>> Case old1 matched with difference value of 40

Rob(Ret)>> Case old2 matched with difference value of 25 old2 and old3
Rob(Ret)>> Case old3 matched with difference value of 25 match equally
Rob(Ret)>> Cases under consideration are:

(old1 old2 old3)

Rob(Ret)>> Selecting case: old2 old2 is chosen randomly

The di�erences associated with case old2 are described in Figure 4.4. There are

three sets of di�erences: di�erences in the starting locations (insigni�cant in this

case), di�erences in the goal locations (quite signi�cant), and di�erences in special

features (none).

The cases retrieved may be used in very di�erent ways, to be adapted if the

6The sample run in its entirety can be found in Appendix A.

ROBBIE's Planner 82

case were a plan, to be applied as indexing rules or adaptation strategies, or to

be evaluated and executed for reactive planning. The Retriever therefore returns

a general retrieved-object structure (or a list of such objects) containing the case

retrieved and the circumstances regarding its retrieval, which the various components

must decode and use. Information in the retrieved-object structure besides the case

itself includes the di�erence value calculated, and the di�erences themselves. The

di�erences are often important for later application of the case, either in determining

what to adapt in a plan, or using the variable bindings made in uni�cation in the

body of the case.

4.5 Adaptor: Altering cases

The Adaptor component of ROBBIE modi�es retrieved cases to construct a solution

for the current problem. The adaptation process maps directions and locations in

the retrieved case onto the current situation and �lls in the changed details. The

Adaptor uses case-based retrieval to select adaptation strategies for speci�c portions

of the new plan, or for supporting knowledge structures the Adaptor creates. It

applies the selected rule to �ll in the information needed at that speci�c point. The

process is repeated until the new plan is completely adapted. The �rst sample run

described in previous sections continues with adaptation:

Rob(Ada)>> Considering adaptation of plan old2

Rob(Ada)>> Plan needs adaptation to repair differences

Rob(Ada)>> Mapping for cases found, beginning adaptation loop

The �rst task in adaptation is to determine how the directions (north, south,

ROBBIE's Planner 83

east, and west) in the retrieved plan correspond to the directions of movement in

the new situation. If memory is su�ciently large and evenly covers the world, it will

be possible to retrieve plans whose directions match completely (moving east in the

retrieved plan will correspond to moving east in the new plan). However, ROBBIE

starts out with a very small initial case memory, and permits matching of two indices

with any di�erent directionality: a situation involving moving south and east may

cause retrieval of a plan for moving north and east. Naturally, a case with the same

directionality will be preferred in retrieval to one with di�erent directionality and the

same level of similarity in other features. The Adaptor determines how the cardinal

directions map from old to new: for the previous situation it would map north onto

south, south onto north, and east and west onto themselves. From this mapping, the

Adaptor determines how to alter the directions in the old plan to �t the new one.

The Adaptor uses constraints on the current situation to determine what direc-

tions of movement could correspond to directions in the retrieved case. One sample

constraint is that if the starting location is in the middle of a block, the �rst move

must involve moving in the directions of that street: if the location is on an east/west

street then the �rst move must be either east or west. If the retrieved case's �rst

move is north, then the Adaptor can constrain the mapping to map north and south

onto east and west (and vice versa). Other constraints will allow the mapping to be

further speci�ed until a single mapping is found.

Determining how directions of movement map from old to new situations is im-

portant as the basis for deriving a new plan from the old one, but it also serves to

judge the adaptability of a case. A retrieved case which is inapplicable (either be-

cause of poor retrieval or di�ering levels of complexity) will be identi�ed when the

Adaptor cannot �nd a mapping for the directions of movement. If a case cannot be

ROBBIE's Planner 84

adapted, that fact is determined before much e�ort has been put into the adapta-

tion process, and the planner can then choose to alter the goals it is trying to reach

through re-retrieval.

If a mapping is found, as in the sample run above, the Adaptor continues by

initializing the knowledge structures needed for deriving the new case. In order to

adapt the old situation by mapping it onto the new one, it must make changes to

the direction of movement of the case, but also to the locations in the case and their

individual slot values. These changes are often dependent on one another; if the

location in a turn step is altered, the location in the following move step should be

a�ected. These slot-dependencies are best considered in isolation from other slots

(i.e., sides of streets are considered separately from blocks of streets). Therefore,

the Adaptor uses a set of supplemental knowledge structures which permit it to

consider just those features of a plan step which are dependent on each other without

continually accessing the complex plan step structures directly.

The main reason that supplemental knowledge structures are necessary emerges

from the case-based approach to adaptation. In order to retrieve the appropriate

strategy from the case memory, the Adaptor must be able to describe the current

portion of the problem and the other features on which its value depends. This is

di�cult to do if those features are buried inside locations in other plan steps, but is

easy when those features are immediately adjacent and available.

Supplemental knowledge structures are constructed during adaptation to describe

the directions of movement for each plan step, and the streets, sides of streets, and

actual locations for each location speci�ed in the plan steps. Each structure is ini-

tialized with the values that are known when adaptation begins (at least the starting

and ending values which come from the plan index itself). The rest of the values are

ROBBIE's Planner 85

((starting-at (maple))

(turn empty)

(move-on empty)

(move-to empty)

(turn empty)

(move-on empty)

(move-to empty)

(ending-at (elm)))

)

((starting-at (maple))

(turn (maple))

(move-on (maple))

(move-to (elm))

(turn (elm))

(move-on (elm))

(move-to (elm))

(ending-at (elm)))

Figure 4.5: Initial and �nal forms of new-streets supplemental Adaptor knowledge

marked as empty, indicating to the Adaptor that they have not yet been �lled in.

The distinction between locations and plan steps is important, since move steps

involve two locations with two di�erent meanings: one location on which the move

takes place, and another to which the move is headed. Separating the features of

these two locations into equally accessible members of a list is important for deter-

mining correct adaptation strategies to apply to each slot. Figure 4.5 shows the initial

and �nal forms of the new-streets knowledge structure for the �rst sample run we

described. The new-streets structure describes the streets for each location in the

plan being adapted.

Corresponding to each knowledge structure like new-streets which describes the

values of a particular class of knowledge for the new plan being created, a separate

knowledge structure describes in similar terms the values for the original plan. To

complete the adaptation process, a skeletal template for the new plan is created which

has the same form as the retrieved plan. Each of its parts requiring adaptation is

also �lled with empty markers. These empty markers are then �lled in from the

supplemental knowledge structures as the information becomes available.

ROBBIE's Planner 86

Once the knowledge structures for adaptation are initialized, the Adaptor repeat-

edly selects and applies adaptation strategies until the new plan is completely adapted

(there are no empty markers left). At each cycle, the Adaptor selects a spot in one

of the knowledge structures which contains an empty marker. Initially, the spot to

be adapted is chosen randomly from either the skeletal plan or the structure for di-

rections of movement, new-dirs. These two adaptation structures are singled out

because many pieces of the skeletal plan may be �lled in directly without reference to

the supplemental knowledge structures, but most of the other supplemental structures

depend on values in new-dirs being �lled in before they can be adapted. Once the

directions of movement are complete, all knowledge structures including the skeletal

plan are options for adaptation. Which structure, and what portion of it, is chosen

at random.

Rob(Ada)>> Mapping for cases found, beginning adaptation loop

Rob(Ada)>> Selecting next point of adaptation:

(0 ((starting-at (dir any) (on empty)) Adapting skeletal plan,
(turn (dir empty) (on empty))

(move (dir empty) (on empty) (to empty))

(turn (dir empty) (on empty))

(move (dir empty) (on empty) (to empty))

(ending-at (dir any) (on empty))))

(1 (turn (dir empty) (on empty))) The second step,
(2 (on empty))) The \on" location

Rob(Ind)>> Creating adaptor strategy index Selecting a strategy:
Rob(Ind)>> Index is:

(adapt start copy (on empty) turn)

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case adapt5 matched with difference value of 0

Rob(Ret)>> Case adapt45 matched with difference value of 4

ROBBIE's Planner 87

Rob(Ret)>> Cases under consideration are:

(adapt5 adapt45)

Rob(Ret)>> Selecting case: adapt5 If needed value is
Rob(Ada)>> Applying strategy: blank, do nothing,
(if (blank inter-val) (no-op) (value-of inter-val)) else �ll in value:
Rob(Ada)>> NO-OPING Rule does nothing
...

Rob(Ada)>> Selecting next point of adaptation:

...

Rob(Ind)>> Creating adaptor strategy index

Rob(Ind)>> Index is:

(adapt info new-dirs (index 7) major) Adapting new-dirs

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case adapt45 matched with difference value of 4

Rob(Ret)>> Case adapt22 matched with difference value of 1

Rob(Ret)>> Cases under consideration are:

(adapt45 adapt22)

Rob(Ret)>> Selecting case: adapt22

Rob(Ada)>> Applying strategy: Look up old direction
(map (look-up old-dirs ?ind)) and map it to new value
...

It might seem easier to derive the �llers for each knowledge structure in turn:

�rst the directions, then the streets, then the sides of streets, then locations, and so

forth. Choosing at random does have the negative e�ect that empty slots are chosen

which cannot be �lled from the available information (as the example above shows).

If it were easy to determine the correct order in which slots could be �lled, then it

would certainly be wasteful to use a random approach. However, the dependencies

between di�erent features are complex. We cannot start with one structure and �ll

it in completely before beginning on the next. The adaptation strategy adapt39 in

Figure 4.7 below is an example of a strategy in which the value of one slot (the street

for a location) depends on the value in a knowledge structure which would seem to

come later in the process (the list of complete new location descriptions).

ROBBIE's Planner 88

(adapt37

(adapt info new-streets turn ?ind filled blank filled)

(strategy

(value-of-all (prev-value new-streets ?ind))))

Figure 4.6: Adaptation strategy: �ll in turn street with previous

Once an empty slot in the adaptation structures is selected, a description of it and

its dependencies is passed to the Indexer, and the resulting index is used to retrieve

an adaptation strategy from memory. The strategy is applied to alter the empty slot,

if the right new value can be determined from existing knowledge. If not enough

information has been �lled in, the empty slot is left empty and will be reconsidered

later.

Each adaptation strategy applies to a particular adaptive situation in which the

system can infer new information from existing information. Figure 4.6 show a sample

adaptation strategy. Its index says that it is an adaptation strategy for supplemental

information, it a�ects the new-streets list with the street for a turn step at the

?ind position in new-streets, where the preceding street is �lled in, the current

street is blank, and the next street is also �lled in. The strategy is to look up the

values of the preceding street in the sequence and �ll in the current street with those

values. A turn location could be preceded by a move-to location, another turn

location, a starting-at location, or a ending-at location, but not by a move-on.

Since the robot will not have moved between the ending of the preceding step and

the current step, the turn must occur on the same street(s).

Figure 4.7 shows a few selected adaptation cases. Each case shares some features

with other memory structures: a name, an index, and then whatever other informa-

tion the case includes. The indices for adaptation strategies di�er in the number of

features each includes, but share a general structure. The �rst few features identify

ROBBIE's Planner 89

the case as an adaptation strategy, and then identify which of the adaptation knowl-

edge structures is a�ected. The feature start refers to the beginning portions of

the new plan, inter and end indicate the middle and ending portions of the plan,

respectively. The feature info indicates a supplementary knowledge structure, and

is followed by the name of the structure involved. Later parts of the index describe

other relevant features, such as the kind of change to be made. The heart of the adap-

tation structure is the strategy which describes how to alter the a�ected knowledge

structure. The strategy is described using a simple Scheme-like language which is

interpreted by the Adaptor.

For adapting cases which may not be extremely close matches, ROBBIE must

have access to more information about street locations than is explicitly available

from cases in memory. The Adaptor must choose intermediate streets, when the

plans call for them, which connect the endpoint locations of its new plan. ROBBIE

has, in addition to its case memory, information about individual streets from which

it can infer appropriate intermediate streets for plans (an appropriate intermediate

would be one that intersects with both the starting and ending streets or, failing that,

that intersects with at least one of them). Figure 4.8 shows an example of the typical

information ROBBIE knows about a street. The street information includes which

blocks it runs along, which direction it runs, and between which blocks it lies. From

this information, ROBBIE can derive the set of streets which intersect with a given

street, and at which blocks they intersect. This provides enough information to select

appropriate intermediate streets.

Once all empty slots of the new plan have been �lled in with values by adaptation

strategies, the resulting plan is passed along to the Executor to be executed and

evaluated. Before discussing execution, we will describe the re-retrieval process which

ROBBIE's Planner 90

Fills in direction slot of a ``starting" plan step:
(adapt1 (adapt start simple (dir empty) major)

(strategy (map old-plan-value)))

Copies ``on" location from location list to starting turn step:
(adapt5 (adapt start copy (on empty) turn)

(strategy (if (blank inter-val)

(no-op)

(value-of inter-val))))

Fills in direction list element:
(adapt22 (adapt info new-dirs (index ?ind) major)

(strategy (map (look-up old-dirs ?ind))))

Fills in new location in middle of plan by constructing from
street and side structures:

(adapt23c (adapt info new-locs inter ?ind ?a blank ?b)

(strategy

(if (or (blank (look-up new-sides ?ind))

(blank (look-up new-streets ?ind)))

(no-op)

(construct-rep (look-up new-streets ?ind) ?ind))))

Narrows possible streets by intersecting current with next neighbor:
(adapt25 (adapt info new-streets move-to ?ind fixed filled filled)

(strategy

(find-inters

(set-intersect (look-up new-streets ?ind)

(next-value new-streets ?ind)))))

Fills in new street by calculating intersecting streets from previous
location (street and side information required):
(adapt39 (adapt info new-streets move-on ?ind fixed blank ?any)

(strategy

(if (or (blank (prev-value new-locs ?ind))

(blank (look-up new-dirs ?ind)))

(no-op)

(find-inters

(rule1 (prev-value new-streets ?ind)

(value-of (prev-value new-locs ?ind))

(look-up new-dirs ?ind))))))

Figure 4.7: Selected adaptation strategies

ROBBIE's Planner 91

(street (name maple)

(extent 100 300)

(runs e/w)

(size small)

(loc 000))

Figure 4.8: Street information for ROBBIE

allows ROBBIE to extend the complexity of plans with which it can work by altering

its goals, subdividing complex problems into more simple pieces.

4.6 Reretriever: Altering the goal

It is possible that a retrieved plan will not be adaptable, either because it is too

poor a match to the current situation or because the current situation requires a

more complex plan than any case currently in memory. For instance, if all plans in

memory contain only one step, a move in some direction to some point, then no plan

exists which will solve a problem that requires turning a corner and moving in a new

direction. ROBBIE recognizes these situations when the Adaptor cannot adapt the

case which was retrieved as the best match in memory:

New sample run where re-retrieval is required.

Rob(CBR)>> New destination is:

The north side of maple, the 100 block, 50 feet along

Rob(Ind)>> Creating plan index

Rob(Ind)>> Creating index rule index

Rob(Ind)>> Index is:

(indexer plan 25 75 70 23)

...

Rob(Ret)>> Cases under consideration are:

()

Rob(Ind)>> Index is:

ROBBIE's Planner 92

(plan (sidewalk (street elm)

(side east)

(block 100)

(along 55)

(across 5))

(sidewalk (street maple)

(side north)

(block 100)

(along 50)))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Case old1 matched with difference value of 20

Rob(Ret)>> Case #:g1915 matched with difference value of 40

Rob(Ret)>> Case #:g1916 matched with difference value of 20

Rob(Ret)>> Cases under consideration are:

(old1 #:g1915 #:g1916)

Rob(Ret)>> Selecting case: g1916 Selects a learned case
Rob(Ada)>> Considering adaptation of plan g1916

Rob(Ada)>> Plan needs adaptation Case cannot be adapted
Rob(Ada)>> Plan couldn't be adapted, trying re-retrieval

The Reretriever alters the goal of ROBBIE to make the current problem more

tractable by breaking it into two parts and recursively applying case-based planning

to solve each part separately. An intermediate location is chosen between the current

starting and goal locations:

Rob(Reret)>> General dir = (east south) Route lies south and east
Rob(Reret)>> Options are = (maple birch) Neighboring streets
Rob(Reret)>> Runs = n/s are north/south
Rob(Reret)>> Choosing intermediate location

(intersect (street1 elm)

(side1 east) Intermediate location
(block1 100) is on nearest corner of
(along1 3) starting street and
(street2 maple) neighbor to the east
(side2 north)

(block2 100)

ROBBIE's Planner 93

(along2 unspec))

A route plan is created from the starting location to the intermediate one:

Rob(Reret)>> First new index:

((sidewalk (street elm) Old starting location
(side east)

(block 100)

(along 55)

(across 5))

(intersect (street1 elm) Intermediate location
(side1 east)

(block1 100)

(along1 3)

(street2 maple)

(side2 north)

(block2 100)

(along2 unspec)))

Rob(Ind)>> Creating plan index

...

Rob(Ret)>> Selecting case: g1916

Rob(Ada)>> Considering adaptation of plan g1916

Rob(Ada)>> Plan needs adaptation

...

and another route plan is created from the intermediate to the goal.

Rob(Reret)>> Second new index:

((intersect (street1 elm) Intermediate location
(side1 east)

(block1 100)

(along1 3)

(street2 maple)

(side2 north)

ROBBIE's Planner 94

(block2 100)

(along2 unspec))

(sidewalk (street maple) Old goal location
(side north)

(block 100)

(along 50)))

Rob(Ind)>> Creating plan index

...

The plans are then concatenated to form a single route:

Rob(Reret)>> New steps are:

((starting-at (dir any) Steps from �rst plan start here
(on (sidewalk (street elm)

(side east)

(block 100)

(along 55)

(across 5))))

(turn (dir south)

(on (sidewalk (street elm)

(side east)

(block 100)

(along 55)

(across 5))))

(move (dir south)

(on (sidewalk (street elm) (side east)))

(to (intersect (street1 elm)

(side1 east)

(block1 100)

(along1 3)

(street2 maple)

(side2 north)

(block2 100)

(along2 unspec))))

(turn (dir east) Steps from second plan start here
(on (intersect (street1 elm)

(side1 east)

(block1 100)

ROBBIE's Planner 95

(along1 3)

(street2 maple)

(side2 north)

(block2 100)

(along2 unspec))))

(move (dir east)

(on (sidewalk (street maple) (side north)))

(to (sidewalk (street maple)

(side north)

(block 100)

(along 50))))

(ending-at (dir any)

(on (sidewalk (street maple)

(side north)

(block 100)

(along 50)))))

In theory, the re-retrieval process could be applied recursively and inde�nitely.

Once again the spector of in�nite regress appears: ROBBIE could continuously choose

intermediate locations which lead to unadaptable retrievals. If intermediate locations

always simplify the route, however, and if retrieval is performing su�ciently well, the

Reretriever should eventually retrieve a simple and adaptable case. We have restricted

re-retrieval to non-recursive functioning, because of limitations to the heuristic for

selecting intermediate locations: if one of the new subgoals retrieves an unadaptable

case, ROBBIE simply gives up on the current goal.

The selection of the intermediate location is the key to a successful reformulation

of the problem. We chose a straightforward and simple method for selecting the in-

termediate location in order to avoid extensive reasoning overhead. The intermediate

location is chosen as one of the street corners closest to either the starting or goal

locations. Which original location to work from is chosen at random. ROBBIE can

determine the general direction in which it needs to move to solve a given problem

ROBBIE's Planner 96

R2

R10

R0

I0

I3 I7

I8

I9

I12

I20

E
lm

 S
tr

ee
t

Maple Street

Fir Street

Apple Street

I4

I11
I6

R4I5R1

R3

I1

I2 I10 R8

I13

O
ak

 S
tr

ee
t

C
he

rr
y

St
re

et

D
at

e
St

re
et

C
ed

ar
 S

tr
ee

t

Birch Street

Figure 4.9: Map annotated with locations

(i.e., north and east) from its knowledge of where streets lie in the world. It selects

an intersection one block from the selected location of the original problem in one

of the directions the problem requires moving in. For example, in Figure 4.9,if the

starting location for a problem were at R4, and the goal were at I8 so that the direc-

tion of movement would be north and east, the intermediate location starting from

R4 would be either \Birch and Oak" or \Maple and Cherry." This method is not

foolproof, consider the starting location I11 and the goal location R8. The likely

intermediate location starting from I11 would be the corner of \Birch and Cherry,"

which would probably make the situation worse. Still, an occasional failure due to

re-retrieval is better than always failing when an unadaptable case is retrieved, which

is the situation without re-retrieval.

ROBBIE occasionally retrieves an unadaptable case even when other cases exist

ROBBIE's Planner 97

in memory which would be adaptable (due to its limited initial indexing scheme). Re-

retrieval may be applied in this case, as when the problem is due to plan complexity,

but the failure to retrieve the right plan should be considered a reasoning failure. In

later chapters we will describe how introspective learning can overcome such reasoning

failures by avoiding poor retrievals.

Once an intermediate location is selected, the Retriever and Adaptor are called

recursively to create routes for the two new goals. Since the resulting routes share

a middle location, their steps can be concatenated to create a new plan to solve the

whole original problem.

4.7 Executor: Reactive execution

A plan which has been retrieved and adapted is presumed to be a correct solution

to the given problem. That presumption, however, must face the acid test of actual

execution of the plan. While we presume the plan to be correct, we do not assume it

to be correct, and so ROBBIE includes a reactive execution component which tests

out the new plan in its simulated world and learns from any problems that might

arise.

ROBBIE's Executor considers each plan step created by case-based planning as

a goal to be achieved in sequence. It does so using a variation of reactive planning

(Firby, 1989; Freed & Collins, 1994a; Agre & Chapman, 1987; Brooks, 1987).

Plan steps are stated as commands (\Turn east on Maple and Oak"), but within

each step is an implicit goal to be achieved. The steps starting-at and ending-at

encode the implicit goal that the current location match7 the location in the step

7We will discuss below what it means to the planner for locations to match.

ROBBIE's Planner 98

without further action by the reactive planner. A turn step encodes the goal that the

system take actions which result in the simulated robot facing in the right direction

(without changing the location of the robot). A move step describes the goal of taking

actions which result in achieving a given location, preferably while staying on another

given location.

The Executor's reactive planning approach is based on the idea of Reactive Action

Packages (RAPs). A RAP is a collection of methods for solving the goal of the RAP,

and each method is distinguished by the context in which it may be applied. In

ROBBIE the individual reactive objects are planlets which correspond to individual

methods for speci�c contexts, not collections of them. Planlets for the same goal

share similar indices, and often are retrieved as a group: such a group corresponds to

the set of methods within a single RAP. A planlet is stored in case memory, indexed

by the general goal it achieves (the plan step), plus features from the sensory input

to ROBBIE which are relevant to the method's context.

\Contexts," in this form of reactive planning, refer to the moment-to-moment

state of the world: where the simulated robot is, what it is doing, and what other

objects are nearby. When the context changes, as when the robot approaches a street

corner, a new planlet is selected to respond to the new context.

Figure 4.10 shows a typical planlet from ROBBIE's case memory. The index

of the plan contains a description of the plan step to which the planlet refers, a

description of the robot's state and location (ROBBIE's derived description, not the

world simulator's), and a list of the \news" items for the robot. \News" items are

features of the current sensory input from the world which are somehow out of the

ordinary or deserving of special attention. Expected sensory input such as the new

status of the robot or normal nearby objects (streets and walls, unless they are very

ROBBIE's Planner 99

(planlet2b

(planlet (turn (dir ?dir) (on ?on)) Planlet index
(?x ?y ?z ?q)

((cross-street ?dir)))

(and (on ?on) (dir ?dir)) Goal context
(and (not (dir ?dir)) (cross-street ?dir)) Applicability context
((stop) (turn ?dir))) Commands of planlet

Figure 4.10: A sample planlet for executing a turn step

close), are not \news:" they are not special enough to be considered a context change.

Extraordinary inputs which do constitute a possible context change include: colliding

with a wall, being within a step of entering or exiting a street, and the state of objects

which the simulated world was told to look-at (such as tra�c lights).

Each planlet describes a method which may be applied in a particular context

for achieving some goal. It must, therefore, include a description of the goal to be

achieved, and the situation in which it may be applied. We consider both requirements

as \contexts" which may be described using the same vocabulary (a simple predicate

form). The �rst context in the planlet structure describes when the planlet's goal has

been achieved: for the example in Figure 4.10 the goal states that the robot will be

located on the on location of the plan step, and will be facing the direction given in

the turn step. The second context determines when the planlet is applicable. The

planlet planlet2b applies when the robot is not already facing the right direction,

and when a street is about to be entered in the goal direction.

The last portion of a planlet is the list of commands which describe the appropriate

response to the current situation and goal. In planlet2b the correct response is to

stop moving, and then turn in the desired direction. By stopping before turning, the

robot will be sure not to accidentally step into the street which lies in that direction.

ROBBIE's Planner 100

The Executor maintains an execution log describing each planlet that is applied.

From that log ROBBIE reconstructs the actual plan that was needed to reach the

goal: hence reactive execution also acts as a last stage of adaptation.

When the Executor is just starting a plan, or when it has just �nished one plan

step and is starting the next, it retrieves applicable planlets from memory and selects

the right one by its context:

Time = 5:00:01

... Plan created here (�rst sample run above)

Rob(Exe)>> No current step, getting from plan

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(starting-at (dir any)

(on (sidewalk (street maple)

(side north)

(block 100)

(along 20)

(across 3))))

((facing east)

(moving #f)

(mov-speed none)

(loc (sidewalk (street maple)

(side north)

(block 100)

(along 20)

(across 3))))

())

Rob(Ret)>> Starting to retrieve Retrieving planlets
Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet0a matched with difference value of 10

Rob(Ret)>> Case planlet0c matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet0a planlet0c) All matches returned
Rob(Exe)>> Choosing between planlets:

ROBBIE's Planner 101

(planlet0c planlet0a)

Rob(Exe)>> Selecting planlet: planlet0a Selected by applicability
Rob(Exe)>> Executing starting-at

Rob(Exe)>> Come to a stop Planlet says to stop moving

Robot is currently stationary...

Robot is facing east at the position 20 feet along maple street

Often the index for retrieving planlets selects exactly one method which applies

to the current situation. However, some contexts require more information than

the indices contain. Hence the index retrieves all the planlets which might match

the current situation given information in the index, but the context is required to

make the �nal discrimination (determining whether the robot is \on" or \to" a given

location is one task which cannot be done by the current indexing scheme). Once a

group of planlets has been retrieved, therefore, their contexts are checked to determine

which, if any, apply to the current step.

As in Firby's model, before selecting a planlet, the goal context is evaluated to

see if the goal of the plan step has already been achieved. If the goal context is true,

then the methods retrieved do not need to be applied, and the Executor can move

on to the next plan step. In this way redundant or otherwise unnecessary plan steps

will automatically be pruned from the �nal plan: the planlets retrieved when initially

considering a new plan step are not stored in the execution log until they are applied .

If the goal is not already achieved, the Executor evaluates the context in which

each retrieved planlet applies, to determine which matches the current situation ex-

actly. If more than one matches, the choice is made among them randomly.

After a planlet has executed for one time step, there are three possible outcomes.

In the �rst case, the goal of the planlet is achieved, and the Executor moves on to

ROBBIE's Planner 102

the next high-level plan step:

Time = 5:00:02

Rob(Exe)>> Step successful!! Previous planlet's step done
Rob(Ind)>> Creating planlet index Executor goes on to next step
...

Rob(Exe)>> Choosing between planlets:

(planlet2 planlet1)

Rob(Exe)>> Selecting planlet: planlet2

Rob(Exe)>> Executing a turn to the west Executes next step

Rob(Exe)>> Come to a stop

Rob(Exe)>> Turning west

Robot is currently stationary...

Robot is facing west at the position 20 feet along maple street

If the goal of the current plan step has not been achieved, the Executor must choose

whether to continue applying the method from the previous step, or to retrieve a new

method. Whether the Executor chooses to continue its current planlet or select a

new one depends on changes in the information coming from the simulated world.

If the sensory input for a new time step contains anything the Executor classi�es as

\news," the Executor will retrieve a new method to respond to it. If the context

remains the same as the previous time step, the Executor will continue to apply the

currently selected planlet:

Time = 5:00:03

... Turn from previous step was successful, going on to a move

Rob(Exe)>> Executing a move on maple

ROBBIE's Planner 103

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving west to the position 17 feet along maple street

--

Time = 5:00:04

Rob(Exe)>> Continue current step No context change, continue move planlet

Rob(Exe)>> Move along

...

The most common context changes the Executor encounters occur when the robot

is very close to its goal location (and should slow down), or when it comes to a street

it must cross:

... Much time passes in this sample run
--

Time = 5:00:41

Rob(CBR)>> Close to entering street north \News" from sensors

Rob(Exe)>> Context has changed, reconsidering planlet Needs new planlet
Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east)

(block 200) (along 90))))

((facing north)

(moving #t)

(mov-speed fast)

(loc (intersect (street1 elm)

(side1 east)

ROBBIE's Planner 104

(block1 100)

(along1 99)

(street2 birch)

(side2 south)

(block2 100)

(along2 5))))

((cross-street north))) Index includes news: street to north
...

Rob(Exe)>> Choosing between planlets:

(planlet3h planlet3g planlet3d planlet3c

planlet3f planlet3b planlet3a planlet3)

Rob(Exe)>> Selecting planlet: planlet3g Planlet handles street-crossing
Rob(Exe)>> Executing a move on elm

Rob(Exe)>> Storing current step To cross street, store the move
Rob(Exe)>> Making sub-goal: cross step, add a new step that waits
Rob(Exe)>> Come to a stop for a green light, stop moving,
Rob(Exe)>> Looking at stop-light and start watching the stop-light

Robot requests a look at upcoming stoplight

Robot is currently stationary...

Robot is facing north at 99 feet along and 5 feet across

the sidewalk at elm and birch

When all plan steps have been achieved, the simulated robot is at the goal location

and the Executor's task is complete. The execution log is passed to the Storer so that

a new case may be learned.

4.7.1 Matching actual to goal locations

In evaluating the contexts of a planlet, the Executor must determine whether or not

locations match one another. Matching in this case does not imply an exact structural

or content match, but something much more loosely de�ned. Figure 4.11 contains a

set of location descriptions that all \match" from the Executor's perspective. The

ROBBIE's Planner 105

(sidewalk (street birch) (intersect (street1 birch)

(side north)) (side1 north)

(block1 100)

(along1 99)

(sidewalk (street oak) (street2 oak)

(side west) (side2 west)

(block 200) (block2 200)

(along 3)) (along 5))

Figure 4.11: Location descriptions that match, to the Executor

�rst general heuristic for matching is that locations need only match the features

which are speci�ed in the goal : a sidewalk description that only speci�es a side

of a street matches an intersect or between-blocks description which shares that

street and side. A more fully speci�ed location enforces a closer match. The second

heuristic is that locations must match up to the along slot of the robot's location.

If the goal location is in the middle of a block, the Executor insists that along, but

not across, slots match exactly. If the goal is at a corner, then the actual location

must match exactly in the direction the robot is moving , regardless of the value in the

other direction. With this method of matching locations, the robot will get as close

as possible to the speci�c location it is given, without having to include extra moves

which simply shift its position sideways to achieve an exact match.

4.7.2 Planlet actions

Each planlet contains a set of commands to ROBBIE and to the world simulator.

Table 4 shows the set of commands planlets can currently make. Other than the nor-

mal \motor" and attentional commands to the world simulator, planlets can indicate

when the robot encounters problems requiring re-planning, can record a step that was

ROBBIE's Planner 106

stop To simulator to stop robot
move To simulator to move robot
slow To simulator to move slowly
speed-up To simulator to move quickly
turn To simulator to turn robot
look-at To simulator to look at object
look-away To simulator to stop looking
replan To Executor to solve planning problem
record-turning To Executor to record a turn step
store-current-step To Executor to put step back in plan
make-new-step To Executor to add new step to plan

Table 4: Commands in planlets to Executor and world simulator

not a part of the original plan into the execution log, can push the current high-level

plan step back into the queue of steps to insert a new step, and can create a new step

to be inserted into the queue at the current spot.

The Executor is su�cient to execute correct plans well, given the sort of obstacles

which occur in the world simulator. Figure 4.12 shows the three planlets which permit

the Executor to cross streets with the green light. The �rst notices that the robot

is about to enter the street, stops, and inserts a new goal to cross the street when

the light is green. The second remains stationary until the light is green in the right

direction. The third restores normal activity and starts the robot moving across the

street. New planlets would be required to successfully maneuver new obstacles such

as pedestrians and cars. In addition, the Executor's \re-planning" capabilities are

currently limited to informing the introspective reasoner of a problem and giving up.

If execution succeeds, the execution log of planlets applied is passed to the Storer

component for reconstruction and addition to the case base.

ROBBIE's Planner 107

(planlet3g

(planlet (move (dir ?dir) (on ?on) (to ?to))

((facing ?dir) ?x ?y (loc ?loc)) ((cross-street ?dir)))

(and (on ?on) (to ?to))

(and (not (close ?to))

(and (cross-street ?dir) (not (stop-light ?s1 ?s2 green ?dir))))

((store-current-step)

(make-new-step cross ?loc ?dir)

(stop)

(look-at stop-light)))

Applies when a move in a given direction is barred by a street
in that direction, and the stop-light is not green in the right direction.
Puts the current plan step back into the queue of steps, creates
a new step to cross the street, and then sets up state of robot correctly

(planlet5a

(planlet (cross ?s1 ?s2 ?dir) (?x (moving #f) ?z ?q) ((cross-street ?dir2)))

(stop-light ?s1 ?s2 green ?dir)

(cross-street ?dir2)

((stop)))

Applies when the current plan step is a cross (created by
previous planlet). Makes sure the robot remains stationary as long as the
stop-light is not green the right way. The goal of the step is achieved
when the light is green.

(planlet3h

(planlet (move (dir ?dir) (on ?on) (to ?to))

((facing ?dir) ?x ?y (loc ?loc)) ((cross-street ?dir)))

(and (on ?on) (to ?to))

(and (not (close ?to))

(and (cross-street ?dir) (stop-light ?s1 ?s2 green ?dir)))

((look-away stop-light)

(move)))

Applies when a move in a given direction is barred by a street,
and the stop-light is green that direction. Stops looking at the stop-light
and simply moves into the street

Figure 4.12: Planlets for crossing streets

ROBBIE's Planner 108

4.8 Storer: Adding cases to memory

The Storer component must piece together the �nal solution from the execution log,

creating a normal high-level plan case, and store the resulting case in memory. Stor-

ing new solutions is the basis for domain learning in a CBR system. This learning

improves ROBBIE's performance by widening the pool of potential matches for a new

situation, and by diminishing the work required to adapt a dissimilar original plan

when a similar learned one may be applied instead.

The Storer is also important because only after execution of a plan and the Storer's

subsequent reconstruction of a �nal solution from the execution logs, is a de�nitive

�nal solution for the current route-planning problem available. The existence of

the �nal solution enables additional expectations of the introspective reasoner to be

examined to monitor the planner for failures. ROBBIE has expectations about what

the �nal solution should be in terms of what was retrieved, and the other cases in

memory. When these expectations fail, ROBBIE learns to re�ne its retrieval criteria.

Execution logs contain a list of every planlet applied in executing the case-based

route plan. Reconstructing a high-level plan from these small steps involves con-

verting starting-at, ending-at, and turn planlets into their high-level equivalents,

removing redundant turn steps (for example, when two turns are adjacent, the �rst

has no ultimate e�ect on the plan solution), and compressing the multiple planlets

usually required to achieve a move step back into a single high-level move step.

The resulting plan steps are inserted into a plan case structure, along with the

appropriate index, and then stored in memory. The Storer should avoid storing

duplicate cases: in adding a new case the Storer compares it to each old case to

make sure there is no duplicate. If no match appears, the case is added to memory,

ROBBIE's Planner 109

otherwise no case is stored and no learning takes place. The planning process then

repeats from the beginning:

Time = 5:01:19

Rob(Exe)>> Step successful!! Move step successful
Rob(Ind)>> Creating planlet index

...

Rob(Exe)>> Executing ending-at

Rob(Exe)>> Come to a stop

Robot is currently stationary...

Robot is facing north at the position 90 feet along elm street

--

Time = 5:01:20

Rob(Exe)>> Step successful!! Last plan step
Rob(Exe)>> Plan complete

...

--

Time = 5:01:21

Rob(Sto)>> Reconstructing finished plan

Rob(Sto)>> Irrelevancy: eliminate street crossing

Rob(Sto)>> Steps need combining

Rob(Sto)>> The plan to be stored:

Omitted for space, see Appendix A

The next output is triggered by the introspective reasoner.
It uses as an index the plan steps of the �nal solution to retrieve
the case in memory with the most similar plan steps. If this
is not the case originally retrieved, a reasoning failures is
indicated: the retrieved case is not the closest case in memory.
Rob(Ind)>> Creating plan solution index

Index is:

...

ROBBIE's Planner 110

Rob(Ret)>> Case old1 matched with difference value of 44

Rob(Ret)>> Case old2 matched with difference value of 14

Rob(Ret)>> Case old3 matched with difference value of 36

Rob(Ret)>> Cases under consideration are:

(old1 old2 old3)

No introspective reasoning comment here means the best
case was originally retrieved. No reasoning failure occurred.
Rob(Sto)>> Storing plan in memory under name: g5448

Other than plans, which are routinely added to memory, the other memory struc-

tures (e.g., indexing rules, adaptation strategies, or planlets) are only added through

introspective reasoning. The introspective reasoner inserts new indexing rules into

memory directly, bypassing the Storer.

4.9 Summing up

ROBBIE's planning module combines case-base planning | to create high-level de-

scriptions of routes for getting from one place to another | with reactive planning

to execute the high-level plan in ROBBIE's world to determine if the plan is correct,

and to make any last adjustments to the plan to apply it to the world. This combi-

nation of case-based and reactive planning is one exceptional aspect of the planner.

Another is the use of re-retrieval, which adapts the goals of ROBBIE to make them

more manageable, when retrieved cases cannot be adapted to �t the current problem.

A central design choice with broad rami�cations is the use of ROBBIE's own case-

based retrieval process to implement other components of the case-based reasoning

process. Re-use of case-based retrieval actually simpli�es the planner by avoiding

multiple mechanisms for tasks which have di�erent purposes but similar methods.

The idea of re-using the same mechanism is a powerful one which may be extended

ROBBIE's Planner 111

� ROBBIE begins with a small set of route cases, modeling the learning of a
person who starts out relatively unfamiliar with the environment in which
she �nds herself.

� ROBBIE combines deliberative and reactive planning, getting the bene�ts
of deliberation through case-based reasoning and the bene�ts of continual
response to a changing environment through Firby-style reactive planning.

� Goals exist whose routes are more complex than any plan in ROBBIE's case
memory. \Re-retrieval" permits ROBBIE to break a di�cult problem into
smaller pieces and solve each piece separately.

� ROBBIE uses its indexing and retrieval processes recursively to implement
components of the case-based planner. The Indexer itself, the Adaptor, and
the Executor all utilize structures stored in the same case memory from
which the planner as a whole retrieves route plans.

� ROBBIE's general retrieval mechanism permits di�erent kinds of indices,
di�erent measures of similarity, and di�erent modes of retrieval.

Figure 4.13: Key features of ROBBIE's planner

to other memory objects and components in the future. It raises interesting issues

about extending the re-use of case-based processes to adaptation of multiple types of

memory structures, and learning of other memory structures as well.

Many deliberative planners expend great e�ort constructing a plan to solve a

problem, and assume that that plan will be correct, so that execution will succeed by

blindly following the described plan steps. While this is short-sighted, it is equally

short-sighted to claim that there is no need to look ahead or consider the big picture

in planning; that the best approach is simply to start taking actions in the world and

worry only about the current situation. We have shown that deliberative and reactive

planning can be successfully combined to gain the advantages that each has to o�er.

Our case-based deliberative planner does consider the big picture and develops an

ROBBIE's Planner 112

abstract set of instructions for achieving its goal. Execution of the plan is not blind,

but rather acutely aware of the changing circumstances in which the simulated robot

�nds itself. Therefore, the �nal solution is the conjunction of deliberative preparation

and externally-driven responses.

Chapter 5

Model-based Introspective

Reasoning

ROBBIE's model-based framework for introspective reasoning sup-
ports both detection and explanation of failures, and contains generic
building blocks for constructing models of other systems. We de-
scribe the issues to be addressed in designing such a framework and
our design decisions.

The overarching goal of examining model-based introspective reasoning is to de-

velop an introspective framework for detecting, analyzing, and repairing reasoning

aws. Our approach addresses the problems of detection and analysis of failures in

detail and, in principle, the problem of alteration of the underlying reasoning process

as a general task. However, our research is particularly concerned with a single class

of repairs which is particularly important for case-based reasoning systems: re�ning

the indexing criteria used to retrieve cases. In this chapter we focus on the problem

of model-based introspective reasoning in general. The next chapter will address how

ROBBIE implements model-based introspective reasoning and applies it to introspec-

tive index re�nement.

113

Model-based Introspective Reasoning 114

The task of our introspective reasoning system is to diagnose and repair reasoning

failures of its companion performance system. To perform this task the introspective

reasoner must be able to detect possible reasoning failures, to explain the detected

problem in terms of the system's reasoning processes, and to alter the reasoning

processes to repair the
aw and prevent future re-occurrences. In designing our in-

trospective reasoning framework, and implementing it in ROBBIE, we were guided

by a set of goals which we believe an introspective reasoning system ought to achieve.

Those goals include triggering introspective learning in response to failures, giving

equal weight to the task of detecting failures and the task of explaining their causes,

continuously monitoring for failures during the reasoning process itself, and incorpo-

rating enough generality to ensure the framework could be applied to many di�erent

underlying reasoning systems. We elaborate on each aspect below.

Failure-driven learning: A central goal for this framework is for the introspective

component to trigger learning by detecting reasoning failures. In general, failures

point out precisely those places where the system most needs learning: places where

its current knowledge or reasoning is inadequate. Failures are therefore viewed as

opportunities for learning which will improve the performance of the system (Leake,

1992; Krulwich et al., 1992; Hammond, 1989; Ram, 1989; Schank, 1986; Riesbeck,

1981). Focusing on failures simpli�es the introspective reasoner's task, and concen-

trates e�ort on those places where opportunities to learn are most strongly indicated.

If the underlying reasoning appears perfect, there is no reason to expend e�ort second-

guessing it.

Model-based Introspective Reasoning 115

Combining detection and explanation of failures: A second goal for this in-

trospective reasoning framework is to incorporate in one set of knowledge and mech-

anisms both detection of failures and explanation of failures. Other approaches have

focused on one task at the expense of the other; they often assume failures will be

obvious and detectable by the performance system and hence monitoring for fail-

ures is unnecessary. We argue that a good introspective reasoner must be capable

of performing both tasks well. Many potential failures involve poor but successful

processing which in the long run will negatively a�ect the performance of the system.

The introspective diagnosis system should detect such \hidden" failures and correct

them, a task di�cult for the performance system itself to address.

Continuous monitoring: A re�nement of the previous goal is for the detection of

reasoning failures to occur continuously during the reasoning process itself, as opposed

to examining a completed reasoning trace after the fact, or o�-line. Tying the intro-

spective and underlying reasoning processes together keeps us honest about the costs

of introspective reasoning, and also provides the opportunity for introspective learn-

ing to overcome otherwise insurmountable obstacles the system might encounter. For

example, if the Executor failed to �nd any planlet matching a given situation because

of poor indexing criteria, introspective learning might correct the faulty indexing and

permit the planner to �nd the appropriate planlet and continue execution. Without

introspective learning, the planner would be unable to recover.

Generality: We desire a framework which is general enough to be used with many

di�erent underlying reasoning systems, but which allows for enough speci�city in

the knowledge of the introspective reasoner to perform its task. The introspective

knowledge about a particular reasoning process will di�er from one system to another.

Model-based Introspective Reasoning 116

In order to apply a standard framework to build a model for that di�ering information,

we must conceptually separate the content of the introspective model from the terms

in which it is described. We must have a generic vocabulary in which to describe

individual statements about the reasoning process; we must have building blocks

which describe in general terms how reasoning processes are organized in order to

structure the introspective knowledge of a given system's model. The knowledge of

the underlying reasoning process should be represented declaratively, and should be

manipulated by mechanisms independent of the content of the knowledge, except as

that content is provided by the underlying system.

ROBBIE's introspective component uses model-based reasoning to detect and

explain reasoning failures. As stated in Chapter 1, ROBBIE's introspective reasoning

is performed using a declarative model of the underlying reasoning process which

describes, in terms of explicit assertions, expectations about the ideal performance

of the reasoning process. The assertions in the model provide expectations about

reasoning performance which can be compared to the actual reasoning performance:

an expectation failure occurs when an expectation is not true of the actual reasoning

process. When an expectation failure is discovered, the system has an opportunity

to learn. Failures are explained by searching the declarative model for other possible

failures causally related to the detected one. The possibility of applying this approach

for improving case-based reasoning systems was �rst proposed by Birnbaum et al.

(1991), based on their earlier work involving self-debugging, chaining-based planners

(Birnbaum et al., 1990).

Our approach to model-based introspective reasoning achieves all the goals de-

scribed above. Detected failures drive the introspective learning task; without an

Model-based Introspective Reasoning 117

expectation failure the introspective component takes no action. The model of the

underlying reasoning process provides information for both monitoring for failures

and explaining them. The structure of the model is designed to support continu-

ous monitoring and evaluation of incomplete reasoning. The introspective reasoner

uses mechanisms independent of the model's content to manipulate it and describes

assertions using a vocabulary independent a particular system's features.

The introspective framework determines where to make the repair by explaining

the detected failure, and can guide the repair process by suggesting potential classes of

repair associated with particular assertions. For instance, if a poor case was retrieved

and the retrieval process was known to be correct, then an obvious class of repair

is to change the indexing criteria used to determine what to retrieve. The general

problem of constructing a repair and implementing it remains open, but we describe

our approach to one class of repair in the next chapter.

In this chapter we will describe our model-based introspective framework: what

its assertions are, and how the model is structured. We will discuss how our design

choices meet the goals described above, and discuss some general issues for introspec-

tive reasoning. In the following chapter we will discuss the application of these ideas

to ROBBIE's index re�nement problem.

5.1 Assertions of the model

In constructing the model of a system's reasoning processes, we must answer a set

of questions about the contents of the model: which portions of reasoning process

should be described by explicit assertions, in what detail the assertions should de-

scribe the reasoning process, and how assertions may be described in terms which

Model-based Introspective Reasoning 118

are independent of any particular underlying system. In this section we will describe

answers these questions in the context of ROBBIE and how those answers can be

applied independent of any particular system.

5.1.1 What assertions to make

There is an apparent paradox in developing a model of the ideal reasoning process of

a system. A completely detailed model of ideal reasoning processes would describe

an implementation of that ideal. It would determine the correct conclusion for any

situation. The di�culty of anticipating all situations and assuming correct behavior

is, of course, what led us to study introspective learning in the �rst place. Therefore

it is clear that we must set limits on the level of detail with which we attempt to

model the system's reasoning, and we must develop guidelines for deciding what the

appropriate level of detail is.

We approached the problem of determining what to assert about the reasoning

from the opposite end, by considering what failures might occur, and working back-

wards to determine what assertions were necessary to detect them. Examining the

reasoning process in detail to determine where failures might occur is a good gen-

eral strategy for developing the kind of model of interest here. Because we want our

model expectations to detect failures, it makes sense to start by determining what

failures they are to detect. This approach proved bene�cial to us in multiple ways. It

emphasized the importance of implementation-speci�c assertions, as we will discuss

in the next section. It also suggested the re-use of case retrieval for components of

the planner itself, because of the similarity of failures and corresponding assertions in

di�erent components (as in the �rst failures given in Table 5 for the Indexer, Adaptor,

and Executor).

Model-based Introspective Reasoning 119

Component Failures Assertions

Indexer Failed to detect feature The Indexer will use all applicable
rules

Added feature that was not there The Indexer will never use a bad rule
Retriever Incorrect index for retrieval The Indexer will provide a proper

index
Failed to retrieve any case The Retriever will �nd some match
Retrieved an inapplicable case The Retriever will retrieve applicable

cases
Adaptor Failed to apply some adaptation The Adaptor will use all applicable

strategies
Could not completely adapt the case The Adaptor has a strategy for every

situation
Made a bad adaptation The Adaptor will improve the case

Executor Failed to alter actions when necessary The executor will use all applicable
planlets

Failed to reach goal The robot will end at the goal
Failed to complete plan in time The robot will take N time-steps for

each step
Storer Stored a plan twice The storer will recognize identical

plans
Stored plan under wrong index A case is described by exactly one

index

Table 5: Failure types

We developed a taxonomy of failure types for ROBBIE's planner to guide our

choice of assertions, and also to suggest classes of possible repair for future extensions

of the system. Table 5 shows a sample set of failure types and related assertions which

were suggested by them, organized by the part of the system to which they refer.1

5.1.2 Level of detail for the assertions

One factor which distinguishes our work from others' is our view that a successful

model for detecting failures and explaining failures must have assertions at multiple

levels of detail. The model must include assertions which are abstract and describe the

general
ow of information and control through the reasoning process, and assertions

which have speci�c knowledge of the implementation of the reasoning process. For

1Appendix B contains a full listing of our failure taxonomy.

Model-based Introspective Reasoning 120

detecting failures, and for specifying repairs, the model must contain implementation-

speci�c knowledge. For explaining failures it is often necessary to trace the reasoning

process across many stages of the reasoning process, spanning several components.

Abstract assertions which describe the overall
ow of control permit cross-component

tracing to occur quickly, and can subsume with a single abstraction a collection of

more speci�c assertions.

During the process of creating the failure type taxonomy, it became clear that

many of the failures could only be recognized through implementation-speci�c asser-

tions. How could a system determine that the adaptor \did not completely adapt

the case" unless it could specify what a completely adapted case looked like? An

abstract statement might not be su�cient to pinpoint the original problem, either:

there might be more than one way in which the system could fail to completely adapt

a case. Birnbaum et al. (1991) only suggest abstract assertions, but determining

where they apply depends on more concrete knowledge.

5.1.3 Vocabulary for assertions

In the previous section we describe how we determined what assertions our model

should contain, giving the assertions in English. In order to implement the model we

require a vocabulary of primitives capable of capturing the meaning of our assertions.

To keep the vocabulary as simple as possible, it is restricted to a limited number of

primitives. Limiting the number of assertion types resists the temptation to include

more assertions of lesser generality. Because the framework is to be general, it includes

only general-purpose elements, and consists of terms independent of ROBBIE's own

mechanisms. The vocabulary must also be
exible enough to represent assertions at

abstract levels and detailed and implementation-speci�c levels.

Model-based Introspective Reasoning 121

Dependency: Structural:
depends-on-prev has-value

depends-on-next part-value

depends-on-spec magnitude-value

depends-on-co-occurs values-compare-by

parts-compare-by

magnitudes-compare-by

form-of-structure

member-of-structure

has-type

contains-part-of-type

types-compare-by

Table 6: Assertion vocabulary predicates

(magnitude-value retrieved-cases 1)

Figure 5.1: A typical assertion: there will be one retrieved case

The assertion vocabulary uses a simple �rst-order predicate calculus formulation

for assertions, with a generic and restricted set of predicates. Table 6 lists the predi-

cates available to describe assertions in our framework. Predicates in assertions must

come from the list given, but arguments to predicates are not required to be generic.

Instead, arguments refer directly to knowledge structures of the planner itself, to

functions belonging to the planner and applied to knowledge structures, or to con-

stant values. For example, the typical assertion shown in Figure 5.1 uses the generic

predicate magnitude-value, but has an argument which refers to information from

the planner (the list of retrieved cases) and an argument which is a constant value.

The assertion says that the magnitude of the retrieved-cases structure will be one

or, in other words, that exactly one case will be retrieved.

In determining what generic predicates are needed to describe the desired asser-

tions, we found that abstract and implementation-speci�c assertions fell into di�erent

Model-based Introspective Reasoning 122

classes of assertions and used di�erent elements of the vocabulary. Most abstract as-

sertions depend on the values of their neighbors (predecessors, successors, or more

speci�c children), rather than being directly evaluable in terms of information about

the planner. Abstract assertions were described using the set of \depends-on" pred-

icates. Speci�c assertions, on the other hand, naturally depend most directly on

features of the underlying knowledge structures, and were described by assertion

predicates specifying di�erent kinds of features of the knowledge structures. We will

consider these rough divisions of vocabulary types in more detail below.

Dependency assertions: Abstract assertions are most used for explaining failures,

by focusing the search for other failed assertions. They organize information in the

model, connecting di�erent portions of the reasoning task, describing the
ow of con-

trol in the system, and grouping together sets of speci�c assertions about the same

reasoning task. The truth of such assertions depends on the truth of the assertions

to which they are connected. Some assertions depend on their predecessors (such as

the �rst Adaptor assertion in Figure 5.2), some on their successors, and others on the

truth of some or all of their speci�cations. We developed the depends-on predicate

types to describe these dependencies. Assertions using depends-on predicates direct

the search for the root causes of failures by altering the search priorities. For example,

when considering a depends-on-prev assertion, the search process will put o� ex-

amination of all but the predecessor of the current assertion. Once the predecessor's

success or failure has been determined, the same value may be assigned to the current

assertion, and the relevance of other neighbors may be determined.

Features of underlying structures: Low-level assertions are most important in

detecting failures and repairing them, as they have speci�c expectations about the

Model-based Introspective Reasoning 123

Retriever will find a case

Retriever will output a valid case

abstract

Retriever:

Adaptor will get an adaptable case

Adaptation will succeed

Adaptor will produce an executable case

Adaptor will produce a complete case

Adaptor will complete in less than N steps

spec/abstr

abstract

specific

mid-level

Adaptor:

prev/next

spec/abstr

prev/next

prev/next

pr
ev

/n
ex

t

Figure 5.2: Sample assertions

implemented reasoning methods. Low-level assertions are more varied in type than

their high-level counterparts; most assert some fact about an underlying knowledge

structure. For instance, in Figure 5.2 the assertion \Adaptation will produce a com-

plete case" is de�ned by features of the case produced which must be examined.

We have developed a set of predicate types which correspond to di�erent types of

features of knowledge structures. Figure 6 includes elements of this set, including

magnitude-value for examining the size of a structure, part-value for looking at fea-

tures of a particular element within a structure, form-of-structure for considering

the overall parts the structure contains, and member-of-structure which searches

in a structure for a particular subpart.

5.2 Structure of the model

We described in the previous section what the assertions in the introspective model

are like, but we must still describe how they are organized to form the model. The

model is not simply a heap of assertions to be picked through at random; in order

to function properly the assertions must be structured to provide information about

how the parts of the reasoning process interrelate.

Model-based Introspective Reasoning 124

The model structure must conform to the goals listed at the beginning of the

chapter: supporting failure-driven diagnosis, supporting detection and explanation

of failures equally, allowing continuous monitoring for failures, and being general in

form to allow re-use of the framework. Like the assertions in the previous section,

the building blocks for the model structure should be generic, applicable across a

wide range of modeled systems. Features of the structure of ROBBIE's underlying

reasoning process should be re
ected in the structure of the model, but not in the

building blocks with which that structure is built.

The model structure must support both failure detection and explanation of fail-

ures. The �rst task requires a means to access the model in a sequential manner,

focusing on directly veri�able expectations. The second task requires access to asser-

tions across the model which are causally related to one another, regardless of where

in the reasoning process they occur. A detected failure may have as its cause a
aw

in reasoning that occured long before it in the overall reasoning process.

Figure 5.2, in the previous section, illustrates the structural features of the model.

The modularity of the model is one important feature, in which assertions are clus-

tered by the component of the underlying system to which they refer, and by how

speci�c they are to the underlying system's implementation. This hierarchical struc-

ture and modularity maintain the generality of the model by permitting sections of

the model to be retained while others are substituted when the underlying system

changes. The hierarchical structure also makes the monitoring task more e�cient by

limiting the extent of the model which must be examined at a given point of reasoning.

In addition to being modular and hierarchical, the model framework contains links

from one assertion to another which denote causal relationships between assertions.

Such links permit explanation of failures by permitting a search for related failures

Model-based Introspective Reasoning 125

to cross cluster boundaries easily.

Figure 5.3 shows a sample cluster from the model, and one assertion within it

(a larger segment of the model may be found in Appendix C). Each cluster has a

name, and assertions within it may be identi�ed by the cluster name combined with

the personal name (in this case the number 1) which heads the assertion structure.

Clusters which are abstract are linked through the parts slot to the more speci�c

clusters for the same component. As this example is a speci�c cluster, there are no

other parts. Assertions are represented as a sort of frame, starting with the assertion's

local name. The next (unnamed) slot contains the description of the assertion itself,

which in this case says that the Retriever will always select the closest matching

case to return. The when slot describes the context in which this assertion is to be

veri�ed, it may contain the values before, during, after, or on-failure. The truth

of the sample assertion is evaluated on-failure, when another failure has already

been detected or there is other evidence that something has gone wrong. Next in the

assertion structure is the list of knowledge structures on which this assertion depends.

These describe portions of the planner's knowledge or the current reasoning trace;

when these knowledge structures are not �lled with relevant values, the assertion

cannot be evaluated. The links slot contains the list of links from this assertion

to others: in this case an abstraction link and a link to the next speci�c Retriever

assertion. Finally, this assertion is associated with a class of repairs (not implemented)

called change-value, indicating here that the weighting of features in retrieval should

be altered if this assertion fails.

In the following sections we will discuss the structural features of the model in

more detail, and describe how each addresses the goals for the model.

Model-based Introspective Reasoning 126

(retriev-specific

(parts)

(assertions

(1 (forall (x in memory)

(magnitudes-compare-by <=

(closeness-goal x goals)

(closeness-goal retrieved-case goals)))

(when on-failure)

(closeness-goal goals retrieved-case memory)

(links (abstr (retriever 2))

(next (retriev-specific 3)))

(repair change-value))

...))

Figure 5.3: A typical cluster from the model, showing one assertion: Every case in
memory will be judged less (or equally) similar to the current problem than the case
that was actually retrieved .

5.2.1 Modularity

To facilitate our goal of developing a framework applicable to many systems, the

model structure is highly modular, clustering assertions into small groups related by

the component of the underlying system and their level of speci�city. These modular

constructs are based on system-independent building blocks: the central concepts are

\component," \abstraction," and \sequence" which are not speci�c to any particular

system. The modularity of the model permits the re-use of assertions where possi-

ble. For example, another case-based planning system could keep the more abstract

clusters of the model intact, for each component similar to ROBBIE's, adding new

lower-level details. A variation of ROBBIE which used a di�erent adaptation mecha-

nism could substitute new assertions for that component alone. This modularity also

assists the monitoring task by making it easy to �nd only the currently relevant asser-

tions. The monitoring phase need only consider the lower-level assertions associated

with the current component of the reasoning task.

Model-based Introspective Reasoning 127

5.2.2 Hierarchical structure

The hierarchical structure of the model, as part of the overall modularity, permits

re-use of portions of the model, as described above. It also separates di�erent ways

of thinking about the reasoning task: the abstract levels link components together

and describe how information and control passes between them, low-level assertions

describe portions of particular components and the speci�c information and algo-

rithms they involve. The process of constructing a model of a system can then be

broken down into development of an abstract-level description, followed by elabora-

tion of each abstract cluster while making few changes to already-existing clusters.

The hierarchical nature of the model plays a role in simplifying the monitoring task

of the introspective reasoner, as we described above, but the existence of assertions at

di�erent levels of abstraction is also important for explaining failures. The abstract as-

sertions permit explanation to skip quickly to causally-related but temporally-distant

expectations, because they describe the process in general terms and connect whole

portions of the reasoning process instead of individual steps. However, clustering

abstract assertions separately from speci�c does not assist in explanation because the

system cannot tell which assertions are causally relevant to a speci�c-level failure.

Instead, the direct links between assertions in di�erent clusters are used to pick out

the relevant abstract assertions and to trace the reasoning process to other possible

assertion failures.

5.2.3 Assertion to assertion links

Each assertion in the model is linked to the other assertions which are causally related

to it. These links guide the introspective reasoner in explaining and repairing a

Model-based Introspective Reasoning 128

detected failure by focusing on the most fruitful portions of the model. In other

words, we can focus on those assertions which are most directly related causally to

the detected failure by following links, instead of reasoning simply from the fact that

two clusters of assertions occur at adjacent points of the reasoning process. Five

di�erent kinds of links distinguish di�erent causal relationships between assertions.

The links are used to guide the search for an explanation for a failure.

Two pairs of the �ve link types form symmetric relationships with each other.

The �rst pair, abstr and spec, connect abstract assertions and speci�c assertions

which are about the same portion of the reasoning process. The sample assertion in

Figure 5.3 includes an abstr link to a higher-level assertion in a di�erent cluster. A

speci�c assertion usually has an abstr link to only one abstract assertion, but several

speci�c assertions may be speci�cations of a single abstract assertion, which will have

a spec link for each of them. The links prev and next relate expectations which

precede or follow one another in the reasoning process, regardless of the cluster to

which they belong. The example assertion contained a next link to the next in the

retrieval process, but no prev links, since there are several points of entry into the

retrieval process. The last link type is co-occurs which describes the relationship

between two assertions which often succeed or fail together without having one of the

aforementioned relationships.

Sequence links permit the system to trace back through the reasoning process to

�nd where a failure �rst could have been introduced. Abstraction and speci�cation

links can help to control the search: moving from a speci�c failure to its abstract

counterpart can permit a rapid move to consideration of other components of the

system, and a high-level assertion that might be the root cause of a failure elsewhere

may �nd a speci�cation can verify it as the cause and suggest a repair.

Model-based Introspective Reasoning 129

5.3 Costs versus bene�ts

In combining introspective diagnosis and repair of reasoning failures with an existing

system, we are adding yet another task, with associated costs, to the overall processing

of the system. We must take into consideration what those costs may be, and how

they may be o�set by the bene�ts of performing introspective reasoning.

One cost of such a combined system is the additional time that must be spent doing

the introspective reasoning, which may slow down the overall speed of the system.

Another cost is the need to alter the underlying system to include communication

with the introspective component in order to permit monitoring of the system in synch

with its own reasoning. We must not forget the cost of constructing an introspective

model, as well. Our framework for de�ning an introspective model is intended to

assist in the model construction process, but building no model at all certainly takes

less time.

We chose to focus on failure-driven introspective learning because it allows the

system to focus on real opportunities to learn, and because it captures the kind

of introspection seen in our everyday examples of people's reasoning. However, it

also has the bene�t of restricting the introspective task to a minimal overall e�ort.

Other approaches to introspective reasoning, such as counter-factual reasoning (i.e.,

an introspective reasoner might consider what would have happened if the underlying

reasoner had chosen di�erently) and reasoning about simulated situations (i.e., o�-

line, an introspective reasoner might consider many possible situation not actually

faced by the underlying system), require much more reasoning e�ort, without the

guarantee that there is any improvement to be done. By linking introspective e�ort

to the existence of detectable failures, we ensure that introspective e�ort will intrude

Model-based Introspective Reasoning 130

as little as possible into the performance of the system at its domain task.

By developing a simple and restricted vocabulary for communications between the

underlying system and its introspective counterpart, we limited the kind of alterations

to the underlying system which must be made to a reasonable set. To support this

claim, adding the monitoring links to ROBBIE's own planner took less than two

weeks, once the model had been constructed .

So far we have described the steps taken to minimized the costs of introspective

reasoning, but there is another side to the story. The addition of introspective rea-

soning to an existing system may provide bene�ts which outweigh any additional

costs incurred. An improvement in the system's reasoning mechanisms will lead to

many improvements at the domain level; conversely, an unnoticed
aw in a system's

behavior could a�ect the domain knowledge the system accumulates and the actions

it chooses to take. Potential bene�ts include improved e�ciency of the reasoning pro-

cess, improved e�ciency of problem solutions, and expanded problem-solving ability,

solving problems that were previously impossible for the system.

As said in Chapter 1, complex systems demand adaptability from systems that

operate in them. When the knowledge to be used is su�ciently rich, choices must be

made about which features are currently relevant, a decision which may depend on

other features of the current context, and which may change as dynamic elements of

the domain alter without warning. Any feature forever excluded from consideration

may turn out to be important under some set of circumstances. For instance, a

designer might exclude the calendar date (for example, a holiday a�ecting tra�c) from

the knowledge of a delivery robot. However, if the robot has time constraints on it

performance, it may fail to meet them on special holidays because of tra�c, parades,

or closed o�ces. The dynamic nature of a domain may create either obstacles or

Model-based Introspective Reasoning 131

opportunities for the problem-solver: one day a snow bank blocks the way, another

day a new sky-walk opens, permitting travel between two o�ce buildings without

going outside.

Introspective reasoning permits a system in a complex domain to adapt its rea-

soning methods when they prove inadequate to solve the given task, and to recover

from gaps in its initial speci�cation. It could alter its reasoning to include features it

previously ignored, like the date or a current weather report. It could alter its rea-

soning to include new options, like checking the map of a given building for sky-walks

to neighboring buildings.

In Chapter 7 we discuss the results of experiments testing the e�ects of introspec-

tive index learning on the performance of the ROBBIE system. We will show that

introspective learning can improve, both the overall success and the e�ciency of the

altered reasoning process.

5.4 Summing up

In this chapter we described the introspective reasoning framework we developed for

describing declarative models of ideal reasoning behavior, and detecting and diagnos-

ing reasoning failures using such models. The model allows for failure-driven learning

about the system's reasoning, supports both detection and explanation of failures

equally, and is constructed out of generic pieces to permit re-use of the framework for

di�erent underlying systems.

The model contains assertions, some of which describe facts about speci�c pieces

of the underlying reasoning, and some of which describe the reasoning process in

more general terms. We claim that an introspective model must include knowledge

Model-based Introspective Reasoning 132

about the reasoning process at multiple levels of abstraction; an abstract description

of the reasoning process focusing on how control and information move around, tied

to more and more speci�c details of how each portion of the task is implemented.

Detection of failures, and repair of failures in the general case, requires speci�c as-

sertions which can be easily examined to see if they are true of the current actual

reasoning. However, explaining a failure requires tracing from the detected problem

to the other portions of the model which may have a�ected it, and which may include

previously undetected failures. Tracing through abstract assertions when assigning

blame permits the system to rapid consideration of other assertions distant in terms

of the reasoning trace but causally close in terms of the
ow of control. To achieve

both failure detection and failure explanation, therefore, the model must incorporate

both abstract and speci�c levels of description.

Assertions in the model are clustered into groups which share the fact that they

refer to a particular component of the reasoning process, and a particular level of

speci�city. When monitoring to detect failures, the introspective reasoner can quickly

access only the most relevant assertions by selecting the single cluster containing

speci�c assertions for the current component of the reasoning process. By itself, the

modular, hierarchical aspect of the model is insu�cient to explain failures: we also

de�ned a set of causal links to connect each assertion to the other assertions which

are directly related to it. By tracing the resulting graph, guided by the kind of link

connecting two assertions, the introspective reasoner can quickly access other likely

points of failure to determine the original point in the reasoning which is to blame

for the detected failure. The model includes speci�cation and abstraction links, links

that indicate the sequence of reasoning, and causal links that connect assertions likely

to fail or succeed together.

Model-based Introspective Reasoning 133

Ensuring that the introspective framework would be re-usable for other underlying

systems was an important goal in determining how to represent the model. One result,

with other advantages as described above, was the modular, hierarchical division of

the model's assertions. Keeping assertions separated by component and speci�city

allows substitution of one cluster in the model for another to describe a new system.

For example, another CBR system could use the high-level portions of ROBBIE's

model and replace the underlying details.

The vocabulary with which to describe assertions includes a restricted and generic

set of predicates which describe general classes of facts an introspective model might

require. The restriction of the assertion vocabulary to these general predicates (with

speci�c reasoning structures as arguments) will describe equally well features of other

reasoning processes, while permitting us to describe the workings of the underlying

reasoning process in su�cient detail for the task.

The building blocks out of which the actual model's structure is constructed are

also designed for generality. They describe the underlying reasoning system and the

model itself in terms which hold for most, if not all, reasoning systems: components,

control, causal relationships, sequences, abstraction. The protocol for communicating

between the underlying reasoning system and the introspective reasoner also restricts

the information passed between underlying system and introspective reasoner to gen-

eralities, such as the reasoning component currently underway.

Application of introspective reasoning for the task of detecting and repairing rea-

soning failures of the system itself provides insights into the general knowledge re-

quirements for other \reasoning about reasoning" tasks: predicting others' behavior,

maintaining a dialogue, explaining behavior. The need for multiple levels of abstrac-

tion in knowledge of reasoning, and the ways in which that knowledge may interact

Model-based Introspective Reasoning 134

(i.e., sequential versus causal relationships) may be generally true of other reasoning-

modeling tasks.

In the next chapter we will discuss the implementation of this framework for

the task of index re�nement for ROBBIE. We will discuss the introspective index

re�nement task in detail, and describe what ROBBIE's model actually contains.

Chapter 6

Introspective Index Re�nement in

ROBBIE

Our general framework for performing introspective learning has
been applied to the speci�c task of index re�nement: using intro-
spective reasoning to detect when indexing criteria are inadequate
and to determine new features to consider. This chapter describes
the implementation of introspective index re�nement.

In the previous chapter we described the framework we have developed for in-

trospective reasoning. In this chapter we describe how the framework is applied to

implement introspective index re�nement. The processes for monitoring for failure

detection and for explaining failures once detected, are general and apply to any po-

tential failure or repair strategy. The repair mechanisms for ROBBIE, however, are

speci�c to the problem of index re�nement; other failures are detected and explained,

but not repaired. Since the index problem is a central issue for case-based reasoning

systems, this is a reasonable restriction at this time.

Selecting features to form an index for retrieving cases and judging the similarity

of cases are well-known to be di�cult problems for designers of case-based systems

135

Introspective Index Re�nement in ROBBIE 136

(Kolodner, 1993a). Some features provided in an input problem description may be

irrelevant, while other useful features may not be included explicitly in the input

description. For example, in an input description of ROBBIE's planning goals, the

robot's location across a sidewalk is often speci�ed, but is irrelevant to the plans

ROBBIE creates and remembers. A useful but unstated feature might be that a

starting location and ending location are on the same side of the same street. Such

a feature may be derived from the input description, along with many other possible

features, only some of which will be relevant. It is not feasible to include all possible

features, relevant or not, as explicit elements of either the input description or the

resulting index. Even if all features could be included, their worth for guiding retrieval

might vary enormously. For example, the weather seems a priori unimportant to

the route planning task. Of course, even unlikely features could turn out to be

important in some contexts: when making plans to travel around a beachfront resort,

the weather can determine which roads are likely to be clogged.

We believe the best solution is to learn the features for indexing through experi-

ence. We have approached this learning problem through introspective index re�ne-

ment : by using introspective reasoning to notice when and where existing features

failed to produce correct retrieval results and altering the retrieval mechanism to

include new relevant features. Index re�nement is one application of introspective

reasoning, but the framework we have developed could also be applied, in theory, to

alterations at any point in the underlying reasoning process.

In this chapter, we �rst describe what the model of ROBBIE's planner contains,

and how the model's organization is mapped from the organization of the planner

itself. We then examine each phase in introspective reasoning for index re�nement

in turn, describing how it is implemented and providing sample output illustrating

Introspective Index Re�nement in ROBBIE 137

ROBBIE's introspective processing.

6.1 Modeling ROBBIE

Before describing in detail how the introspective reasoner is implemented in ROBBIE,

we will discuss the content of the model: what the model represents about ROBBIE

itself. Each component of ROBBIE's planner corresponds in the model to a set of

clusters of assertions about that portion of the reasoning process. Each cluster traces

the steps of its component's reasoning process and describes how the component

relates to others.

The model must provide expectations for the reasoning processes of each com-

ponent of the planner: Indexer, Retriever, Adaptor, Executor, and Storer. Several

di�erent clusters contain assertions about a single component: these clusters of ex-

pectations vary in the level of speci�city with which they describe the process. Each

component is described by a cluster of abstract assertions: expectations about gen-

eral stages of its reasoning process and its relation to other components. In addition,

separate clusters describe the reasoning process for each component in increasingly

speci�c terms, starting with abstract principles and ending with assertions which re-

fer to actual knowledge structures and implementation details of the component in

question.

To take one component as an example, the portion of the model for the Retriever

consists of two clusters of assertions: one abstract and one describing implementation

details. The abstract cluster describes the retrieval process for ROBBIE as follows:

the retriever gets a valid index from the Indexer, its similarity assessment ranks cases

correctly, it succeeds in examining cases in memory and selecting the best one(s), it

Introspective Index Re�nement in ROBBIE 138

returns the right cases, and they are valid. The speci�c cluster contains assertions

which �ll in the details: for example, what it means for cases to be ranked correctly,

how the retrieval process selects cases, and how many and what kind of cases should

be returned for a given situation.

The retriever is connected to the components whose processing precedes and fol-

lows it in the case-based planning task (Indexer and Adaptor), but it is also con-

nected to the components of which it is a sub-part: components implemented using

case-based retrieval (Indexer again, Adaptor, and Executor). These connections are

mirrored in the model by links between assertions in the Retriever's clusters and re-

lated assertions in other clusters for other components. The links make explicit the

causal relationships between the Retriever and the rest of the system.

6.2 Monitoring

The introspective reasoning system depends on the underlying planner to indicate

when monitoring may take place. The planner sends a signal to the introspective

reasoner describing the current state of the reasoning process. The planner signals

at frequent, regular intervals in its normal processing, but may also signal when it

has discovered an unexpected problem on its own. In that case the message to the

introspective reasoner will include a description of the discovered problem. Table 7

describes a few sample messages the planner can produce and what they tell the

introspective reasoner.

Under normal circumstances, the monitoring phase of the introspective reasoner

is used to verify that the underlying reasoning is performing as expected from the

model of ideal processing. The assumption is made that the reasoning process is

Introspective Index Re�nement in ROBBIE 139

(executor start) Routine monitoring of the Executor before
it starts

(adaptor new-strat steps-taken) Routine monitoring of Adaptor between
strategy selections

(executor no-planlets failure) A failure has appeared in the Executor, no
planlets matched the current situation

Table 7: Monitoring messages from the planner

performing perfectly unless ROBBIE determines that an assertion has failed. ROB-

BIE's introspective reasoner uses the information in the monitoring message to select

the relevant portion of the model for veri�cation. It �rst selects the most speci�c

cluster of assertions for the current component of reasoning, then selects from that

cluster the assertions relevant to the current point of the component's processing. For

simplicity and generality only three points of a given component's process are distin-

guished: before, during, and after. In addition, a fourth relevance class is denoted

by on-failure, which describes assertions which are relevant only when some other

failure has already been detected. An on-failure assertion is often also restricted to

relevance either before, during, or after the current component's processing. Dis-

tinguishing these relevance classes focuses the monitoring e�ort on a small number of

assertions.

Figure 6.1 illustrates how assertions may relate to a given component's processing.

Assertions which are described as before their component refer to the state of the

reasoning process when control is passing to the current component, during assertions

refer to any point in the middle of the component's task, and after assertions refer

to the state when the component's processing is complete and control is passing to

the next component.

The following sample run illustrates introspective monitoring during the early

Introspective Index Re�nement in ROBBIE 140

Assertion A

Assertion B

Assertion C

Assertion A

Assertion B

Assertion C

Assertion A

Assertion B

Assertion C

Assertion A

Assertion B

Assertion C

Indexer

Retriever

Adaptor

during

after

X

before

on-failure

Figure 6.1: Assertions refer to points in processing: before, during, after, and
on-failure.

phases of the planning process: before and after the Indexer creates a plan index.1

Monitoring at the start of the Indexer's process will only evaluate assertions that

are labeled as before, and not labeled as on-failure. At the end of the Indexer's

process, those assertions labeled with after (and not on-failure) will be evaluated.

Other assertions are \skipped" since they are not currently relevant.

Rob(CBR)>> No current goal; please input next destination: ind1

Rob(CBR)>> New destination is:

The north side of birch, the 100 block, 1 feet along

Rob(MBR)== MONITORING: (indexer start)

Rob(MBR)== Checking out indexer, before

Rob(MBR)== Skipping indexer-specific assertion: \On-failure" assertion

(values-compare-by find-features final-solution context)

1Under normal circumstances, output describing introspective monitoring is suppressed, but may
be enabled by setting ROBBIE into the correct output mode.

Introspective Index Re�nement in ROBBIE 141

Rob(MBR)== Checking indexer-specific assertion:

(has-type goal-loc location?)

Rob(MBR)== Assertion checked out

Rob(MBR)== Checking indexer-specific assertion:

(has-type current-loc location?)

Rob(MBR)== Assertion checked out

Rob(MBR)== Skipping indexer-specific assertion: \After" assertion

(contains-part-of-type index from-part location?)

Rob(MBR)== Skipping indexer-specific assertion: \After" assertion
(contains-part-of-type index to-part location?)

Rob(MBR)== Skipping indexer-specific assertion: \After" assertion

(contains-part-of-type index other-part spec-index?)

Rob(MBR)== All indexer-specific assertions considered

Rob(MBR)== No assertion failures found

...

Rob(Ind)>> Index is:

...

Rob(MBR)== MONITORING: (indexer end)

Rob(MBR)== Checking out indexer, after

Rob(MBR)== Skipping indexer-specific assertion: \On-failure" assertion

(values-compare-by find-features final-solution context)

Rob(MBR)== Skipping indexer-specific assertion: \Before" assertion

(has-type goal location?)

Rob(MBR)== Skipping indexer-specific assertion: \Before" assertion

(has-type current-loc location?)

Rob(MBR)== Checking indexer-specific assertion: \After" assertions

(contains-part-of-type index from-part location?) now relevant

Rob(MBR)== Assertion checked out

Rob(MBR)== Checking indexer-specific assertion:

(contains-part-of-type index to-part location?)

Rob(MBR)== Assertion checked out

Rob(MBR)== Checking indexer-specific assertion:

(contains-part-of-type index other-part spec-index?)

Rob(MBR)== Assertion checked out

Rob(MBR)== All indexer-specific assertions considered

Rob(MBR)== No assertion failures found

A special case for the monitoring phase occurs when the planner itself has detected

a problem with its own processing and informs the introspective reasoner that a failure

must have occurred. In this case the monitoring phase assumes that a problem exists,

Introspective Index Re�nement in ROBBIE 142

and considers on-failure assertions as well as the ordinarily relevant assertions. As

an example of this kind of assertion, the model assumes that the indexing criteria

include all relevant features so long as the best case is retrieved with them. An

assertion in the model states that the Indexer uses all relevant features,2 but it is

classi�ed as an on-failure assertion and thus is only examined to see if any features

are missing when an indexing or retrieval failure has been detected.

Planner notices a catastrophic failure, signals the introspective

reasoner for help. Relevance is automatically set to \on-failure."

Rob(Exe)>> Problem, can't replan yet!!!

Rob(CBR)>> Failure discovered; executor is lost!

Rob(MBR)== MONITORING: (executor replanning failure)

Rob(MBR)== Checking out executor, on-failure Relevance is now on-failure

Rob(MBR)== Checking exec-specific assertion:

...

Once the relevant assertions have been selected, each assertion is passed to a

simple interpreter which determines if the assertion can be evaluated given the current

situation and, if so, evaluates it. A relevant assertion may depend on information (i.e.,

from the planner's knowledge structures) which is not yet available. For instance,

during the adaptation process supplemental knowledge structures are constructed,

but parts of the structures may be incomplete at any given time when introspective

monitoring occurs. Assertions related to those structures may appear relevant even

when the information upon which they depend is absent. If information is unavailable

to evaluate an assertion, the assertion will be stored in a list of \suspended" assertions

2This assertion appears in the previous sample output and is skipped.

Introspective Index Re�nement in ROBBIE 143

until the introspective session ends or the information becomes available. Assertions

are also suspended during the explanation phase of introspective reasoning.

If an assertion can be evaluated at the current time, the interpreter does so, storing

the result and the assertion on a list of \completed" assertions. The \completed"

list ensures that an assertion with a given context will only be evaluated once in

an introspective session (monitoring, explanation, and repair phases). In addition,

as one assertion's value may depend on another's, the \completed" list serves as a

reference for determining other assertions' values.

If all the relevant assertions for monitoring prove to be true of the current state of

the reasoning process, the introspective reasoner sends an okay message back to the

planner, and ends its operation until the next monitoring message from the planner.

If one assertion is not true of the current reasoning process, it is added to a list of

failed assertions while the rest of the relevant assertions are evaluated. In this way,

multiple failures appearing at the same time will all be noticed. The list of failures

is then passed to the explanation phase of the process.

In this sample run, a failure is detected during the Storer's

operation: an unretrieved case has a more similar solution than the

retrieved case:

Time = 15:03:00

Rob(Sto)>> Reconstructing finished plan

Rob(MBR)== MONITORING: (storer start)

Rob(MBR)== Checking out storer, before

Rob(MBR)== Checking storer-specific assertion:

There exists x in (retrieve-by-solution final-solution),

such that the rule

(values-compare-by equal? retrieved-case x) holds

The assertion says that the retrieved case has the most

Introspective Index Re�nement in ROBBIE 144

similar solution to the �nal solution. Checking this assertion

requires a retrieval from memory, hence recursive monitoring of

Indexer and Retriever:

Rob(MBR)== MONITORING: (indexer start)

Rob(Ind)>> Creating plan solution index

...

Rob(MBR)== Assertion in storer-specific failed:

There exists x in (retrieve-by-solution final-solution),

such that the rule

(values-compare-by equal? retrieved-case x) holds

Rob(MBR)== All storer-specific assertions considered

Rob(MBR)== Assertion failures found; explaining failures

...

6.3 Explaining failures

The explanation of a detected failure involves searching through the assertions in the

model for other failures which are causally related to the detected failure. The goal is

to �nd the earliest related assertion failure in the reasoning process, the likely source

of the detected failure. The explanation should lead the system to a repair strategy

to correct the failure for the future. If more than one failure is detected at the same

time, the explanation process is repeated for each failure, but work once done is not

repeated: by storing assertions which have been evaluated, along with the context in

which they were evaluated and the resulting truth value, the introspective reasoner

only has to check each assertion in a given context once.

Each assertion has associated with it links to other causally related assertions. In

terms of these links, the model can be seen as a graph with an assertion at each node.

This graph is searched using a modi�ed depth-�rst search starting at the detected

assertion failure.

From a given assertion, the search proceeds to each linked neighbor in a depth-�rst

Introspective Index Re�nement in ROBBIE 145

fashion, where the order in which the next neighbor is selected depends on the type

of link to the neighbor and the predicates forming the current assertion itself. Be

default the search considers �rst abstr links, then prev, then spec, and lastly next

links. This ensures that the search will head generally backwards in the reasoning

trace, and will move toward more abstract levels �rst. Moving quickly to the abstract

level places consideration of other components to be a high priority in the search.

Some assertions, like depends-on assertions, alter the order in which their neighbors

are considered to place priority on their particular requirements: a depends-on-next

assertion will extend the search �rst by following its next links, and then by following

the rest of its links in a normal order.

Rob(MBR)== Assertion failures found; explaining failures

Rob(MBR)== Checking links for (storer-specific 2) failure Original failure

Rob(MBR)== Checking link (abstr (storer 1) storer-specific 2) Abstraction

Rob(MBR)== Checking storer assertion:

(depend-on-spec the storer is given a good final solution)

Rob(MBR)== Assertion depends on children

Rob(MBR)== Assertion in storer failed: Fails because depends on failed child

(depend-on-spec the storer is given a good final solution)

Rob(MBR)== Found related assertion failures in (storer 1)

Rob(MBR)== Checking link (prev (executor 5) storer 1) Predecessor of parent

Rob(MBR)== Checking executor assertion:

(depend-on-next the executor will produce a good plan)

Rob(MBR)== Assertion depends on next assertion

Rob(MBR)== Assertion in executor failed: Fails because depends on next

(depend-on-next the executor will produce a good plan)

Rob(MBR)== Found related assertion failures in (executor 5)

...

If a given assertion depends on information which is not available, either from

the planner's knowledge structures or from another assertion, evaluation of it will

Introspective Index Re�nement in ROBBIE 146

be suspended and the assertion stored until the information becomes available. As

new information becomes available to the explanation phase, the list of currently

suspended assertions is reconsidered and any which are now ready to be evaluated are

removed from the list and evaluated. Assertions which include depends-on predicates

are suspended if the assertions upon which they depend are unevaluated, but such

unevaluated assertions are placed at the front of the search queue for immediate

consideration. An assertion which forces the addition of linked assertions to the

queue causes those links to be removed from the queue once the values of the linked

assertions are no longer needed.

A \depends-on" assertion must be suspended until its
children are evaluated.

...

Rob(MBR)== Checking link (prev (executor 4) executor 5)

Rob(MBR)== Checking executor assertion:

(depend-on-spec the executor will end up at the goal location)

Rob(MBR)== Assertion depends on children

The executor assertion must be suspended until its speci�cations

have been evaluated:

Rob(MBR)== Suspending assertion...

Rob(MBR)== Have suspended assertion, now adding links

...

The search ends when no further assertions remain in the queue to be considered:

either every assertion related to the original one has been evaluated or it has been

determined to be unnecessary. More than one failure might be found, suggesting com-

peting repairs. Since we have implemented a single repair strategy, deciding between

suggested repairs is not a problem, but must be considered in a comprehensive repair

system. In general, ROBBIE will prefer earlier failures, and those at the end of a

Introspective Index Re�nement in ROBBIE 147

chain of failures rather than in the middle.

It is possible for the search queue to become empty without a root cause failure

or a potential repair being found. This is especially likely if information from the

planner is missing and many assertions are suspended. If no further progress can

be made in explaining a detected failure, the introspective reasoner suspends the

entire explanation process, stores its current status, and waits for a later point in the

planner's reasoning progress to continue the explanation e�ort. Later opportunities

for introspective monitoring will automatically re-start the explanation process.

Explanation phase must be suspended for lack of information.

Later on it is restarted.

Rob(MBR)== All assertions suspended, no root cause found

Rob(MBR)== Suspending explanation phase

Rob(MBR)== Returning ``watch-out'' warning to planner

...

Rob(MBR)== MONITORING: (executor new-planlet)

Rob(MBR)== Restarting explanation phase

...

6.4 Repairing failures

A description of the failures found, including suggested repairs, is passed to the

repair module from the explanation module. ROBBIE currently ignores any suggested

repairs other than index re�nement, and simply signals the planner that a failure was

found which could not be repaired.

Introspective Index Re�nement in ROBBIE 148

(1 (values-compare-by find-features final-solution context)

(when on-failure)

(find-features final-solution context)

(links (abstr (indexer 1))

(next (indexer-specific 2)))

(repair add-case))

Figure 6.2: Indexer on-failure assertion for �nding features

6.4.1 Finding missing features

During the explanation phase, if a failure is traced back to the Indexer, scrutiny will

fall on an assertion which states that the Indexer includes all the relevant features of a

situation in its indexing criteria (See Figure 6.2). To avoid unnecessary overhead, this

assertion is normally not checked: the current indexing criteria are assumed correct

unless they have proven to be
awed. Limiting the search for new features to known

retrieval failures ensures that the indexing criteria remain as small as possible. In

determining the truth of this assertion for the current situation, the �nal solution and

the un-retrieved best match are examined for features which they share, but which

are not already explicitly included in the indexing criteria.

ROBBIE considers a feature a candidate for inclusion in the indexing criteria if

it is present in both the �nal solution and its best match. In addition, it must be

a feature derivable from the original index for the plan, since it must be possible to

detect it in the original input description before a route plan has been constructed.

To evaluate whether a feature should be added to the indexing criteria, the plan-

ner's procedure find-features is applied to the two relevant cases. This procedure

distills the basic indices of the two relevant cases into a more abstract form, and

applies a set of heuristics to determine which of a pre-de�ned set of feature types

are present in both indices. If any feature type can be instantiated for both cases,

and its instantiation is not already in use in the indexing criteria, then the resulting

Introspective Index Re�nement in ROBBIE 149

both-same Plan starts and ends at given locations
start-same Plan starts at a given location
end-same Plan ends at a given location
start-same-x Plan starts at a given longitude east

(same north/south street)
start-same-y Plan starts at a given latitude north

(same east/west street)
end-same-x Plan ends at a given longitude east

(same north/south street)
end-same-y Plan ends at a given latitude north

(same east/west street)
stay-on-x Plan's longitude doesn't change

(stays on same north/south street)
stay-on-y Plan's latitude doesn't change

(stays on same east/west street)

Table 8: Feature types

instantiated feature is a candidate for addition to the indexing criteria.

The basic indices are simply the starting and ending locations for each case; they

are converted into a rough Cartesian coordinate system (accurate to within about

10 units) and then the coordinates are compared. Cartesian coordinates are used in

this case to avoid di�culties stemming from the di�erent possible representations of

a single location. A location described as \99 units along the 100 block of the west

side Oak Street" is actually the same as \the southwest corner of Oak and Birch:"

the similarity may be hidden by the normal location description but becomes clear

when distilled to numbers describing how far east and how far north the location is.

ROBBIE's feature detector mechanism currently utilizes a set of detectable feature

types from which it selects new criteria. Table 8 lists the feature types included in the

detector process. For each feature type, ROBBIE can determine from the distilled

descriptions of the two cases (four locations in Cartesian coordinates) whether the

two cases share an instantiation of that type of feature. If both cases can instantiate

Introspective Index Re�nement in ROBBIE 150

(start-same-x

,(lambda (fr1 to1 fr2 to2)

(~= (x-val fr1) (x-val fr2)))

(indexer plan ?frx ?y1 ?x ?y2)

5)

Figure 6.3: A typical feature type rule

a feature type the same way, then a new candidate feature is created by substituting

in the values which are shared in common.

Figure 6.3 shows the structure which describes the start-same-x feature type.

The structure contains a simple procedure for determining whether the feature type

applies, the prototype of an index for the indexing rule which would be created to

implement an instance of the feature type, and an importance value which rates

the feature type's importance against other possible feature types. The function

determines whether the two cases do \start at the same longitude value." It says

that start-same-x is a feature type that applies to the two cases if the X-values of

the starting locations are roughly equal. From this general feature type, a speci�c

feature could be created for a particular X value, and an indexing rule added which

searches for that feature.

The feature that is learned must apply to individual cases, since it is to be added

to the indices of individual problems. Therefore, an instantiated feature for the

start-same-x feature type will contain a particular starting X value. For example,

if the two cases could instantiate the feature type start-same-x with the same lon-

gitude value of \250", then the feature created would be \starts at longitude value

250", and the indices of other cases which start at that longitude value be annotated

with that speci�c feature. Feature types are instantiated into actual features with

varying degrees of speci�city. For example, the feature type stay-on-x will only be

instantiated once, since it does not refer to any particular latitude or longitude values.

Introspective Index Re�nement in ROBBIE 151

The feature type both-same will be instantiated to a particular starting and ending

location, and will apply only to plans that start and end at roughly (though not

exactly) the same locations. More general features, such as stay-on-x, are preferred

over more speci�c ones.

The feature detector attempts to instantiate each feature type with the current

two cases. If none match, then it is assumed that the original assertion is true:

the Indexer really did use all relevant features in building an index for retrieval.3 If

feature types are successfully instantiated for the current two cases, then the assertion

is false, and the instantiated feature with the highest importance value is selected as a

suggested root repair. This assertion failure, and the feature that caused it, are added

to the list of \completed" assertions, just as any other assertion in the explanation

phase would be, and are passed to the repair phase when the time comes.

Rob(MBR)== Checking link (prev (indexer-specific 1) indexer-specific 2)

Rob(MBR)== Checking indexer-specific assertion:

(values-compare-by find-features final-solution context)

Rob(MBR)== Unretrieved plan is: g930

Rob(MBR)== Final Solution is: g935

Rob(MBR)== Searching for correlations with heuristics

Rob(MBR)== Came up with: (end-same-x) One feature type matches

Rob(MBR)== Correlation built is:

(end-same-x

(indexer plan ?x ?y1 ?tox ?y2)

(*spec-index* end-same-x 936))

In the resulting indexing rule (see next output trace) ?x, ?y1, and

?y2 will remain as variables to be uni�ed with a current situation's index

later on. ?tox, however, refers to the X-value of the goal locations of

the two cases, and will be �lled in with a speci�c number by the repair

component.

Rob(MBR)== Assertion in indexer-specific failed:

3We recognize that features exist which are not part of this hierarchy; future work could extend
this feature detection mechanism to a more general approach, e.g., involving explanation-based
generalization (Mitchell et al., 1986; DeJong & Mooney, 1986).

Introspective Index Re�nement in ROBBIE 152

(values-compare-by find-features final-solution context)

...

In order for index re�nement to be suggested as a repair strategy, the explanation

phase must have traced the failure to faulty indexing and discovered a feature in the

initial description of its problem which was not considered explicitly and which would

have led to the correct retrieval. Therefore, the index-re�ning repair strategy receives

from the explanation phase all the information it needs to e�ect the repair. Changing

the indexing criteria to include the new feature requires �rst building an indexing

rule to be stored in memory and retrieved by the Indexer when applicable. This will

ensure that the new feature is appended to every applicable index that appears in

the future. In addition, the indices of every case in memory, and of the current case

(which may or may not be stored in memory already) must be altered to include the

new feature, if they implicitly contain it. Therefore the repair strategy applies the

new rule it creates to the index of the current situation, and to every case in memory.

Having found a repairable failure and �nished considering other

possible failures, the results are passed to the repair phase:

Rob(MBR)== Completed search for deeper cause of (storer-specific 2) failure

Rob(MBR)== No repair known for failure:

There exists x in (retrieve-by-solution final-solution), Another related

such that the rule failure with no

(values-compare-by equal? retrieved-case x) holds known repair

Rob(MBR)== Repairing (storer-specific 2) failure from assertion:

(values-compare-by find-features final-solution context) Root failure

Rob(MBR)== The general repair specified is add-case

Rob(MBR)== The rule created is: end-same-x New rule for

(indexerg937 memory, with

(indexer plan ?x ?y1 40 ?y2) ending X-value

Introspective Index Re�nement in ROBBIE 153

(add-to-key end-same-x (*spec-index* end-same-x 936))) instantiated

Rob(MBR)== Rule added

Once a repair is complete, the planner receives a fail-fixed

message and continues

Rob(Sto)>> Storing plan in memory under name: g935

Rob(MBR)== MONITORING: (storer end)

Rob(MBR)== Checking out storer, after

Rob(MBR)== Skipping storer-specific assertion:

There exists x in (retrieve-by-solution final-solution),

such that the rule

(values-compare-by equal? retrieved-case x) holds

Rob(MBR)== All storer-specific assertions considered

Once the repair phase is completed, successfully or not, the introspective reasoner

informs the planner of the result of its introspective processing. Table 9 lists the

results the introspective reasoning system might send to the planner. Possible out-

comes include no problem being detected, a problem being detected and successfully

repaired, or variations of un-repairable problems. The planner may choose to alter

its behavior on the basis of these introspective outcomes. ROBBIE's planner usually

gives up if it receives a watch-out or fail-in-progress response. For example, if

the introspective reasoner determines that the Adaptor is not making progress to-

wards a completely adapted plan, the planner will choose to stop trying to adapt

the current case. A more powerful planner might respond di�erently to the last two

messages: by expending di�ering amounts of extra e�ort checking its progress and

being prepared to re-plan.

Introspective Index Re�nement in ROBBIE 154

okay No assertion failures found
fail-fixed Failure found and �xed, continue
fail-in-progress Failure found, explanation suspended, con-

tinue with caution
watch-out Failure found and explained, no repair,

continue with extreme caution

Table 9: Messages passed from introspective reasoner to planner

6.5 Summing up

ROBBIE's introspective reasoning mechanisms, for monitoring the reasoning process

for failures and explaining detected failures, implement the model-based introspective

framework we described in Chapter 5. The model itself describes the entire reason-

ing process of ROBBIE's planner, both abstractly and with implementation details.

Expectation failures which occur at any point in ROBBIE's reasoning process are

detected, and often explained. ROBBIE, however, focuses on one kind of repair:

re�ning the set of features used in constructing indices for plan cases.

The introspective reasoner's ability to suspend evaluation of assertions when the

information on which they depend is unavailable permits the model to contain asser-

tions whose values depend on other assertions. This sort of dependency may connect

the value of an abstract assertion to its speci�c counterparts which actually exam-

ines the planner's knowledge structures and performance. Suspending assertions also

permits the introspective reasoner to accommodate the changing information at the

planning level: if the planner has not yet created some knowledge structure, the

introspective reasoner can simply set aside those assertions which depend upon it.

Dividing assertions into clusters makes determining relevant assertions easier, as

does including notations in the assertion structure that describe at what point of its

component's process a given assertion is valid.

Introspective Index Re�nement in ROBBIE 155

The explanation phase must potentially examine a large number of assertions in

the model in determining which assertions are responsible for a detected failure. By

automatically guiding the search toward earlier components of processing and permit-

ting assertions themselves to alter the order in which their neighbors are evaluated,

the assertions which are examined may be minimized.

ROBBIE contains the framework of a general repair phase, but only one repair

strategy has been studied. This strategy | a particularly important one for case-

based reasoning | extends the features used in the indexing criteria, and depends

on the discovery during the explanation phase of a feature that exists in both the

�nal solution and in the best match case which is not used in the current indexing

criteria. The addition of such a feature alters the assessment of similarity of the two

cases and prevents similar faulty retrievals in the future. The repair strategy must

create a new indexing rule for the discovered feature, add it to memory for retrieval

by the Indexer, and apply the rule to the plan cases already in memory.

The feature detection mechanisms are currently simple, and restricted to a set

of feature types de�ned to capture common similarities between cases. Despite this

simplicity, features are learned introspectively which do capture important regularities

in the cases ROBBIE experiences, and which do permit its performance to improve

when new features are learned introspectively. In Chapter 7 we discuss experiments

which show the e�ectiveness of ROBBIE's introspective learning process.

Chapter 7

Experimental Results

Empirical evaluation provides more convincing proof of a system's
performance than examining individual examples. We describe ex-
periments which show that ROBBIE performs better with both case
and introspective learning, compared to case learning alone. We also
examine the e�ect of problem order on ROBBIE's performance. We
describe circumstances in which introspective index re�nement does
and does not improve performance.

Many arti�cial intelligence systems are evaluated solely by studying a few selected

examples believed to typify the problems of interest, in order to verify that the system

performs as expected. This approach may include a detailed analysis of the system's

methods and its most important features. It raises the question, however, of the

breadth of the system's good performance: the suspicion may lurk that the examples

studied are the only examples for which the system works properly (McDermott,

1981), or that this performance is not typical over the long term (Minton, 1990).

This has led to a call for systematic evaluations of arti�cial intelligence systems (e.g.,

(Cohen & Howe, 1988)).

Our previous chapters have discussed the in principle bene�ts of introspective

learning. This chapter presents empirical tests of our system. To our knowledge,

156

Experimental Results 157

these are the �rst empirical tests of any system using introspective reasoning to learn

from reasoning failures.

This chapter examines the e�ects of case learning and introspective learning on

ROBBIE's performance. To gauge the full e�ect of both kinds of learning we must

view the performance over time and the presentation of many goals. A single example

of case-based learning will inform us that the system can store a new case correctly,

but the real question is whether the new case can be retrieved and applied to improve

the system's later planning. Similarly, from a single example of introspective index

re�nement we can learn whether the system �nds and adds a feature which is currently

appropriate, but to determine the ultimate e�ect of including that feature in the

indexing criteria we must examine the long-term performance.

Because of the need to gauge the long-term e�ects of case-based and, especially,

introspective learning, and our desire to explore the full extent of ROBBIE's potential,

we designed a set of large-scale empirical tests. These experiments examine ROBBIE's

performance over long sequences of goals. In this way, cases and indexing features

learned early on have a chance to a�ect the later processing of the system. Di�erent

task sequences provided a range of di�erent levels of di�culty for the system. Some

contained goals which were extensions of previous problems, making ROBBIE's task

easier. Others were random collections of goals, so that a given problem might bear

little similarity to any problem ROBBIE had seen before.

The empirical tests we designed focused on two questions:

Bene�t of introspective index re�nement: The �rst, and most important, ques-

tion was to compare ROBBIE's performance under a given sequence of goals using

Experimental Results 158

only case learning by the planner, versus its performance on the same sequence us-

ing both case learning and introspective index re�nement. A di�erence between the

performances would demonstrate the e�ect of adding introspective reasoning to the

system. We predicted that introspective index re�nement would improve the per-

formance of the system no matter what the properties of the goal sequence. New

features, determined introspectively when the system knows that the current features

are not correct, improve the planner's information about how to select a case for

retrieval, and hence should allow the more appropriate cases to stand out in future

retrievals, eliminating less appropriate cases.

E�ect of problem order: The second question addressed by these experiments is

the e�ect on the learning and performance of ROBBIE of the order in which goals are

presented to it. Problem order is well-known to strongly a�ect learning in general,

and learning of CBR systems in particular (e.g., (Bain, 1986; Redmond, 1992)). The

question of how to select a sequence of situations to present to a system has also

been examined in reference to the training of connectionist networks (e.g., (Cottrell

& Tsung, 1989; Elman, 1991)). problem order to a�ect the introspective learning of

ROBBIE by altering the pool of cases in memory. With di�erent cases in memory,

the closest case in memory to a given solution may di�er, eliciting di�erent features

to be added to the indexing criteria. The e�ect of problem order is especially acute

for ROBBIE because its initial knowledge of routes in its domain is limited.

We compared ROBBIE's performance across di�erent sequences to see how the

di�culty of the problem order a�ected performance: some sequences were designed

to facilitate learning, others to obstruct it. Sequences which facilitated learning were

called \well-ordered."

Experimental Results 159

In order to create a well-ordered sequence of goal locations, we �rst needed to de-

�ne what we meant by \well-ordered." Redmond (1992) suggests problems presented

early in a case-based learner's experiences should cover the range of possible situa-

tions, to lay a foundation for later learning. We claim that in addition each problem

should push the boundaries of the system's capabilities without extending so far that

the problem is impossible for the system to solve. A sequence of goals which grad-

ually increases in complexity and distance from the original cases in memory should

maximize the e�ectiveness of the case-based reasoner's learning.

In this chapter we describe the experiments performed on ROBBIE: how the

experiments were designed, what measures of ROBBIE's performance were used, and

what results were found. We discuss what we conclude from these tests.

7.1 Experimental design

Before presentation of each sequence of goals, ROBBIE and the world simulator were

set to the same initial conditions. The world map used is shown in Figure 7.1, the same

map in which much of the development of the ROBBIE system took place. ROBBIE's

case memory initially contained three plans, all of which applied to locations in the

southwest corner of the map. The small size of the memory, and the fact that the

plans in it did not span the entire map, stack the deck against ROBBIE and allow us

to examine how a learner with limited initial information could expand its knowledge

to encompass its domain.

The initial indexing criteria for plans contain just the starting and ending locations

for a given problem. The introspective learning that occurs during the test run,

presentation of the sequence of goals to ROBBIE with a particular initial condition,

Experimental Results 160

C
ed

ar
 S

tr
ee

t

E2

E3

E4

E5

E7

E1

E10

E14 E15

E16 E17E6

E18

E19E11

E20

E23

E24

E25

E26

E27

E29

E12 E30 E31

E33E36

E37

E38

E39

E32

E21

E13

E34

E28

E0E9 E8

E22
E35

Finish

Start

Apple Street

O
ak

 S
tr

ee
t

E
lm

 S
tr

ee
t

C
he

rr
y

St
re

et

Maple Street

D
at

e
St

re
et

1

3

4

5 67

8

2

9 10 1113 14 15

1718

19

20

21
16

22

23

24

2529

30

31

32

Fir Street3433

2826 2735

36 373839

40 Birch Street12

Figure 7.1: Map for experiments

Experimental Results 161

provides the only opportunity for index re�nement. In half the test runs, the learning

ability of the introspective reasoner was disabled, so that only domain learning by

storing new cases could occur.

If we selected locations by hand to use as goals in the sequences, we would risk

some unconscious bias in the locations. Therefore, we generated 40 locations at

random (the locations are shown in Figure 7.1). Each sequence of goals is a list of

these 40 locations, in some ordering. After solving 40 problems under good conditions,

ROBBIE usually has a signi�cantly diverse case memory, and has had several (i.e.,

5-10) opportunities to apply introspective learning.

In these experiments, ROBBIE's initial location was set to the �rst location in

the sequence, and the next in the sequence was taken to be the �rst goal location.

ROBBIE considered each location in turn, planned from its current location to that

goal, executed the plan, and went on directly to the next goal location in the list.

For the purposes of these tests, when ROBBIE failed to reach a goal and was unable

to recover, ROBBIE's location was set to the failed goal and the sequence continued

from that point.

A total of 26 sequences were created to test ROBBIE, ranging between \well-

ordered" and random in their arrangement of locations. One sequence was generated

by hand to be very well-ordered; the other twenty-�ve formed �ve groups gener-

ated by altering the original sequence. The principles de�ning when a sequence is

\well-ordered," outlined above, guided our creation of the handmade sequence. The

sequence was designed to extend the case base a little bit at a time: it started with

goal locations similar to those in the case base, and gradually moved to goals further

away from the initial cases. The italicized numbers in Figure 7.1 indicate the order

of locations in the handmade sequence, which is listed in Figure 7.2.

Experimental Results 162

Position: 1 2 3 4 5 6 7 8 9 10
Location: E26 E21 E13 E29 E39 E18 E23 E11 E32 E19

11 12 13 14 15 16 17 18 19 20
E30 E22 E12 E4 E25 E5 E34 E24 E1 E27

21 22 23 24 25 26 27 28 29 30
E14 E37 E15 E31 E7 E6 E17 E16 E38 E3

31 32 33 34 35 36 37 38 39 40
E28 E0 E9 E8 E20 E36 E33 E10 E2 E35

Figure 7.2: Sequence of locations in handmade sequence

Each of the �ve groups of sequences contained �ve sequences generated in the

same way. Four of the �ve groups were generated by permuting the original sequence

to di�erent extents. A permutation of a sequence involves selecting two positions in

the sequence at random (i.e., the third and seventeenth positions) and swapping the

locations at those positions. Each group's sequences were formed by permuting the

original the same number of times. The �rst group had 10 permutations (correspond-

ing to about 25% of its elements being swapped), the second 20 permutations, the

third 30 permutations, and the fourth 40 permutations. The �fth and �nal group

contained sequences which were purely random orderings of the 40 locations. As it

turned out, even when 40 permutations of the original had been done, a few locations

remained in their original positions; including purely random sequences ensured no

residual bias from the well-ordered original would exist.

For each sequence ROBBIE was tested an equal number of times with both case

and introspective learning, and with case learning alone. Each initial con�guration

was run multiple times because ROBBIE chooses at random between two candidate

cases which appear equally similar. It is often the case, however, that the two cases

produce di�erent results which may a�ect later processing: one might fail or cause

Experimental Results 163

a new feature to be learned. To factor out idiosyncrasies of any particular run, we

ran each sequence twenty times with introspective index re�nement and twenty times

without it. Altogether, ROBBIE was presented with a total of 41,600 goals: 26

sequences, each 40 goals long; each sequence was run 20 times with introspection and

20 without.

7.2 Performance measures

The performance of ROBBIE for a given test run was measured in two ways. First, we

counted the number of plans which were successfully completed and added to memory

by the end of a test run, and second, we counted the number of cases considered good

matches by the Retriever for each given retrieval. The number of successfully learned

plans was used to estimate the overall success rate of the system: by comparing the

number of successes between two test runs we could rate ROBBIE's task performance

in each case. We predicted that the success rate should be higher when using intro-

spective learning of indexing features, since learned features could improve the focus

of the retrieval process to retrieve an appropriate case more often. The number of

good matches for each retrieval was used to evaluate the e�ciency of the retrieval

process: fewer cases considered good matches indicates that the Retriever is focusing

on the best matches and ignoring other more marginal matches. As index re�nement

focuses the retrieval process, the number of cases considered should drop. In sum,

we expected introspective re-indexing to increase the success of ROBBIE at the same

time as it decreased the work done in considering cases for retrieval.1

ROBBIE only learns a new plan case when it has successfully executed the plan:

1It would also be possible for introspective learning to cause retrieval to become too restrictive,
decreasing success; verifying that this is not commonly the case is another reason for empirical tests.

Experimental Results 164

when it fails to reach the goal no case is added to memory. Thus, we can measure

the success rate by counting the number of plan cases in memory after a test run.

This count includes the three original cases, but their inclusion a�ects nothing as it

is the same for every test run. We evaluated the statistical signi�cance of di�erences

between test runs with case learning alone and runs with case and introspective

learning, using a technique called \bootstrapping" to extrapolate what the normal

distribution of di�erences would be if the addition of introspective learning had no

e�ect (the null hypothesis). We then performed a t-test on our observed di�erences,

using the mean and standard deviation of the bootstrapped population to compute

the signi�cance of the observed di�erences. If the observed di�erence is su�ciently

distant from the population mean of the null hypothesis, (\su�ciently distant" is

de�ned by the value of t), then it is highly unlikely that the observed di�erence could

be due to random chance. It is therefore extremely likely that an actual di�erence in

performance exists.

While the measure of ROBBIE's success rate examines the state of the case mem-

ory at the end of a test run, the measure of the Retriever's e�ciency is continuous

across a test run. Each time a plan retrieval was requested, we stored the percentage

of plans in memory which were considered good matches. We could then plot the per-

centage considered against the sequence of retrievals for a given test run to gauge the

e�ect of new cases and new indexing criteria on the later retrieval process. Because

of the small number of plans in memory initially, the early retrieval percentages are

high, but the percentages become more reliable as the case memory grows. We found,

however, that the percentage considered a good match varied widely within a test run

depending on the problem presented. Whenever a situation relatively dissimilar to all

previously seen problems was presented, the percentage of memory considered a good

Experimental Results 165

match was very high. A better sense for the performance of the retrieval process over

time was gained by examining the successive averages of the sequence of retrievals

done during a test run. For each retrieval performed during a test run, we calculated

the average of its percentage considered good matches and all previous percentages

in the sequence. We then plotted these successive averages against their position in

the retrieval sequence to get a sense of the trend of retrieval percentages.

We kept track of other measure of ROBBIE's performance, although we did not

use them directly in our evaluation. We noted where failures occurred, what the

failure was, and kept track of the total number of failures for a test run. We also

noted where re-retrieval was applied, and whether it succeeded or not. We examined

where introspective index re�nement took place, and did some analysis of its e�ects, as

we describe below. These additional measures and more qualitative analyses veri�ed

that our expectations about ROBBIE's processes and learning were correct.

7.3 E�ects of introspective learning

In this section we describe the results of our experiments in comparing ROBBIE's

performance with case learning alone to its performance with both case and intro-

spective learning. From an informal examination of the mean of the cases learned for

the runs of a given sequence, we found that, on average, test runs with introspective

learning outperformed test runs with case learning alone. In fact, the performance

with introspective learning showed an improvement for all but one run. We per-

formed statistical analysis of the di�erence between success rates with and without

introspective learning for each sequence, and found that 21 of the observed di�erences

Experimental Results 166

were highly signi�cant, while 5 showed equivalent performance with and without in-

dex re�nement. The one test run that informally showed poorer performance with

introspective learning proved to be statistically equivalent. We suggest that the �ve

sequence producing anomalous are due to the potential e�ect of index re�nement to

over-restrict the retrieval process.

7.3.1 Success rate

We measured the success rate as the number of cases in memory at the end of a

test run. Each initial con�guration of the system was run twenty times to gauge

the di�erent possible outcomes due to random decisions during the planning process.

We examined the frequency of each success rate and compared frequencies for test

runs with introspective index re�nement and for those without. Figure 7.3 shows the

frequencies of di�erent success rates for one of the random sequences as a histogram

(actually two histograms displayed together). The dark bars represent the number of

times each success rate occurred for the test runs with index re�nement; the lighter

bars represent the frequency of that success rate for test runs using only case learning.

The distribution of outcomes is not strictly a bell curve, but the rough peak of the

test runs with only case learning are between 13 and 15, while the peak of the test

runs with both case and introspective learning is higher, between 15 and 17. It is

clear from the �gure that case learning alone tends to produce lower success rates

than when case learning is combined with introspective learning.

By averaging the twenty success rates, we can compare the performance with

and without index re�nement for each sequence. We will do so informally �rst, then

discuss statistical evaluation in Section 7.3.2. Figure 7.4 shows a breakdown of the

results. The averages for a particular sequence with and without index re�nement

Experimental Results 167

11 12 13 14 15 16 17 18 19 20 21

0

1

2

3

4

5

Number of cases learned

N
um

be
r

of
 o

ut
co

m
es

 p
er

 s
uc

ce
ss

 r
at

e Case and Introspective

Case learning alone

Figure 7.3: Histogram of success rate frequencies for sequence Random 3 shows a
lower range of values for case learning alone and a higher range for both case and
introspective learning

are side by side with the darker shaded bars indicating the presence of introspective

index re�nement and the lighter shaded, case learning alone. For all but one sequence,

ROBBIE with introspective learning succeeded more often, on average, than ROB-

BIE with only case learning, as we expected.2 For each group of sequences equally

permuted from the original, the mean success rate varied widely. In addition, the

size of the di�erence between runs with introspective reasoning and those with case

learning alone varied a great deal. In general a large di�erence between performance

with introspective learning and without it correlated with a higher average success

rate, and a greater improvement in retrieval e�ciency.

2The fact that the anomaly is the last sequence is pure chance.

Experimental Results 168

With re-indexing

Without re-indexing

A
ve

ra
ge

 N
um

be
r

of
 C

as
es

Anomalous Result

 5

 0

 10

 15

 25

 20

 30

10 permutes 20 permutes 30 permutes 40 permutes Random

Figure 7.4: Average success rates for each sequence, dark bars with index re�nement,
lighter bars without it: runs with index re�nement outperform runs without it

7.3.2 Statistical signi�cance of di�erences

In order to determine just how signi�cant the di�erences we saw in Section 7.3.1 were,

we evaluated the mean di�erence for a given sequence between test runs with index

re�nement and test runs with case learning alone3. With a larger set of test runs,

or a more well-behaved distribution of success rates, we could perform a standard

\t-test" on the mean di�erences to determine their statistical signi�cance. However,

examination of the success rate distributions (like the histogram shown in Figure 7.3

above) for particular sequences showed that not all sequences had normal distributions

(an assumption of the standard t-test). We performed instead a variation of the t-test

which makes no assumptions about the distribution of success rates in our samples.

We applied a statistical method called boot-strapping (Efron & Tibshirani, 1993)

to produce a \population" of mean di�erences to which to compare the observed

mean di�erence of a sequence. We wished to determine how likely it would be that the

3I.e., take the di�erence of the average success rate with index re�nement and the average success
rate with case learning alone.

Experimental Results 169

observed mean di�erence of the success rates of a sequence would arise if, in reality, the

addition of introspective learning had no e�ect on ROBBIE's performance (the null

hypothesis). The lower the probability of the mean di�erence arising at random, the

higher the probability that the di�erence we observed was signi�cant. The elements

of the population of mean di�erences, therefore, should represent the null hypothesis,

mean di�erences which draw equally from outcomes with introspective learning and

without it. This distribution naturally centers around zero.

To create a population to which to compare the actual mean di�erence, boot-

strapping extrapolates from the individual outcomes (success rates, in this case). For

a given sequence, all the outcomes (both with and without introspective learning) are

placed in a single pool. From that pool, two samples the same size as the original

samples are selected by picking elements at random without removing them from

the pool. The mean di�erence of these two randomly selected sets is calculated and

stored. This process, repeated thousands of times, produces a normal distribution of

di�erences under the null hypothesis for a given sequence.

For our experiment, each randomly-selected sample contained twenty elements

chosen randomly from a single pool of the success rates for all forty test runs of a

sequence (both with and without index re�nement). For each sequence, we collected

50,000 re-sampled mean di�erences. Figure 7.5 shows the resulting distribution of

mean di�erences for a typical sequence (Permuted 20c). On the graph we have marked

where our observed mean di�erence falls; it is clearly in the distant wings of the bell

curve, which indicates a strongly signi�cant di�erence. Nevertheless, we must still

determine the actual probability of that di�erence occurring under the null hypothesis,

using a variation of the t-test.

Because we generated the distribution of mean di�erences for each sequence under

Experimental Results 170

Mean difference of
original samples

0

700

800

900

1000

600

500

400

300

200

100

-4.00 -2.00 0.00 2.00 4.00 6.00
6.80

F
re

qu
en

cy
 o

f
m

ea
n

di
ff

er
en

ce

Mean difference of samples

Distribution of bootstrapped mean differences

(Permuted 20c)

Figure 7.5: Population distribution of mean di�erences created by bootstrapping for
Permuted 20c; the population represents the null hypothesis, the distance of the
observed mean from the curve suggests it may be signi�cant

Experimental Results 171

the null hypothesis, we could calculate the standard error of the di�erence between

means (�di�) as the standard deviation for that population distribution. We could

then calculate t under the following formula:

t =
Mci �Mc

�di�

Where Mci is the mean of the success rates of the sequence with both case and

introspective learning, and Mc is the mean of the success rates of the sequence with

case learning alone. Using that formula we found the values for t given in Table 10.

From t and a measure of the degrees of freedom of this problem (the sum of the

sample sizes, minus 2, or roughly 40) we could determine the probability that any

observed di�erence occurred by chance, i.e., that case learning alone performs just

as well as case and introspective learning. The probability values are shown in the

�fth column of Table 10. The lower the value of p, the higher the likelihood that our

observed di�erence is real and signi�cant. We consider any value of p less than or

equal to 0.05 (5%) to indicate a signi�cant di�erence. For most of the sequences, p

was far less than one-tenth of one percent, indicating that the di�erence was highly

signi�cant. As the sequences became less well-ordered, they tended to have lower

values for p, closer to the borderline for signi�cance.

Five sequences shown in bold lettering had observed di�erences which proved sta-

tistically insigni�cant. For those �ve sequences, introspective learning performed just

about the same as case learning alone. We discuss in a later section why introspective

learning might not produce an improvement, but it is useful to note that while ROB-

BIE with introspective learning did not perform measurably better than ROBBIE

with case learning alone on those sequences, it did not perform measurably worse

Experimental Results 172

Sequence Sample Bootstrapped t Probability How
Mean Stand. Dev. Value Di�erence is Signif.

Di�erence �di� Insigni�cant (***)

Handmade 1.75 0.288 6.067 p < 0:001 ***
10Perm.(a) 4.30 0.521 8.259 p < 0:001 ***
10Perm.(b) 2.45 0.320 7.662 p < 0:001 ***
10Perm.(c) 1.50 0.273 5.492 p < 0:001 ***
10Perm.(d) 3.90 0.526 7.420 p < 0:001 ***
10Perm.(e) 5.05 0.679 7.440 p < 0:001 ***
20Perm.(a) 10.25 1.383 7.413 p < 0:001 ***
20Perm.(b) 2.75 0.634 4.338 p < 0:001 ***
20Perm.(c) 6.80 1.044 6.516 p < 0:001 ***
20Perm.(d) 2.80 0.406 6.897 p < 0:001 ***
20Perm.(e) 2.10 0.450 4.663 p < 0:001 ***
30Perm.(a) 4.35 0.379 11.473 p < 0:001 ***
30Perm.(b) 1.35 0.871 1.550 p < 0:1
30Perm.(c) 2.20 0.593 3.710 p < 0:001 ***
30Perm.(d) 2.70 1.164 2.321 p < 0:025 *
30Perm.(e) 2.60 1.098 2.368 p < 0:025 *
40Perm.(a) 4.70 0.646 7.272 p < 0:001 ***
40Perm.(b) 0.85 0.394 2.160 p < 0:025 *
40Perm.(c) 0.65 0.780 0.834 p < 0:25
40Perm.(d) 6.75 0.917 7.361 p < 0:001 ***
40Perm.(e) 2.95 1.773 1.664 p < 0:25
Random (1) 3.00 0.759 3.952 p < 0:001 ***
Random (2) 0.65 0.515 1.261 p < 0:25
Random (3) 2.25 0.696 3.231 p < 0:005 **
Random (4) 4.80 1.303 3.683 p < 0:001 ***
Random (5) -0.30 0.720 0.417 p < 0:4

Table 10: Statistical signi�cance of observed mean di�erences for each sequence:
signi�cant di�erences are marked with *, **, or *** (indicating level of signi�cance),
insigni�cant di�erences are unmarked

Experimental Results 173

either. The anomalous sequence noted in Section 7.3.1 turns out, under statistical

analysis, not to have signi�cantly worse performance with index re�nement than it

does without: the performance is statistically equivalent.

The fact that the likelihood of equal performance increases as the \orderliness" of

problems presented decreases is another indication that problem order deserves careful

consideration, especially with a system as initially knowledge-poor as ROBBIE.

7.3.3 Improved retrieval e�ciency

The second comparison between case learning alone and case and introspective learn-

ing together examines the extent to which learning new indices improves the e�ciency

of ROBBIE's plan retrieval process. We measured this by considering the percentage

of stored plans ROBBIE collected as good matches in the �rst phase of its retrieval

process. We examined how retrieval changed over the course of a sequence of goals

by plotting the percentage of cases in memory considered good matches against the

sequence of retrievals. The sequence of retrievals made during a test run does not

match up exactly to the sequence of goal locations, because each application of the

re-retrieval process results in a total of three cases retrieved from memory (the orig-

inal unadaptable case plus two cases for the subgoals) instead of the usual one case.

The fact that di�erent test runs might use di�erent numbers of retrievals for a given

goal location also meant it was di�cult to generate an average percentage considered

for each goal location. However, by putting runs of a sequence together on one set

of axes, we could see commonalities between runs in terms of the percentage of cases

that ROBBIE considered similar. Figure 7.6 is an example of this sort of graph.

That index re�nement has a marked e�ect on the retrieval process can be seen in

Figure 7.6, which shows a single test run of the original well-ordered sequence using

Experimental Results 174

No Re-indexingRe-indexing
.

.

.

.

.

.

.
.

.

. .

. . .

.

.

.

. .

.

.
. .

.

.

.

.

.

.

.

. .
.

.

.

. .

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

. .
.

.

.

. .

.

. .

.

. .

.
.

.

.

.

.

.

.

.

.

.

. .
.

.

.

. .

.

. .

.

. .

.
.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

. .

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

. .

.

. .

.
.

.

.

.

.

.

 0 10 20 30 40 50

*

 *

 *

 *

 * * * * *
 *

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
er

ce
nt

 C
on

si
de

re
d

Sequence of Retrievals

Figure 7.6: Percentage of good matches for test runs of the \well-ordered" sequence:
dark line is one test run with introspective re-indexing, stars show where re-indexing
took place, light lines are �ve runs without re-indexing. Re-indexing causes much
lower percentages on some problems

Experimental Results 175

index re�nement as well as case learning (the heavy line) compared to �ve runs of

the same sequence with case learning alone (the light lines). Each point of the test

run where introspective learning took place is marked with an asterisk. The runs

without index re�nement are almost identical in the percentages considered at each

point. They appear almost as a single line, varying only due to an occasional re-

retrieval that shifts where a particular goal occurs in the sequence of retrievals. The

percentages for the introspective test run follow the same course at the beginning of

the sequence, but the percentage of good matches drops sharply after the �rst instance

of introspective learning. While the percentage of good matches for the introspective

run does occasionally increase at later points to nearly the level of the runs without

index re�nement, it repeatedly returns to a much lower level.

It is interesting to note that after the �rst instances of introspective learning, most

of the later introspective learning take place at points where the percentage of cases

considered good matches is low, instead of at high-percentage points. This suggests

that at the low points, retrieval might have had a narrower focus than needed, and the

new features learned should cross boundaries formed by previous features to cluster

cases di�erently in the future. The lack of introspective learning at high-percentage

points also suggests that when no cases in memory are similar to a goal, considering

a larger percentage of cases during retrieval is appropriate. With a much larger case

memory, the percentage would obviously be much smaller even when a new problem

was relatively dissimilar.

As Figure 7.6 demonstrates, the percentage considered good matches
uctuates

between very high and very low levels from one retrieval to another. This
uctu-

ation made it di�cult to analyze the trend of retrievals directly from the graph of

percentages. We gained a better perspective by plotting the \successive averages"

Experimental Results 176

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

A
ve

ra
ge

 P
er

ce
nt

 C
on

si
de

re
d

Sequence of Successive Averages

With Index Refinement

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 P
er

ce
nt

 C
on

si
de

re
d

Sequence of Successive Averages

Without Index Refinement

Figure 7.7: Successive averages for the handmade case: a large decrease in retrieval
percentages for introspective runs compared to non-introspective runs

of the percentage considered at each point in the sequence of retrievals. Figure 7.7

shows the resulting graphs for a sequence which demonstrated one of the most dra-

matic changes in the average percentage. Figure 7.8 shows the same kind of graph for

a sequence with moderate change to the percentages. The corresponding graph for

the worst anomalous sequence is in Section 7.5 below; it shows almost no di�erence

between the performance with and without introspective index re�nement.

For the sequence shown, the twenty runs with introspective learning are shown

on the left and the twenty without it on the right. The average percentages con-

sidered with index re�nement declined over time to a much lower level than those

without: for the best-performing sequence, almost all runs dropped below 40% when

introspective learning was permitted compared to 65-70% without it; for the typical

sequence, the percentage ranged between 30-45% instead of 60-70%. A similar pat-

tern of decline appeared in every sequence except the anomalous one. The decrease

was most dramatically better (both in terms of how low the percentage became and

Experimental Results 177

 0 10 20 30 40

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

With Index Refinement

A
ve

ra
ge

 P
er

ce
nt

 C
on

si
de

re
d

Sequence of Successive Averages
 50 0 10 20 30 40 50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
ve

ra
ge

 P
er

ce
nt

 C
on

si
de

re
d

Sequence of Successive Averages

Without Index Refinement

Figure 7.8: Successive averages for a typical sequence: typical di�erence between
introspective and non-introspective graphs

in how consistently runs displayed that low percentage) for those sequences which

also demonstrated higher overall success rates and greater di�erences between the

success rates with and without introspective learning.

7.4 E�ects of problem order

The sequences used to test ROBBIE's performance were designed to vary in the ex-

tent to which each assisted ROBBIE by building gradually from ROBBIE's initial

knowledge. By using sequences that varied so widely, we expected to elicit a gen-

eral sense for ROBBIE's performance across a variety of situations. We were also

interested in comparing ROBBIE's performance on sequences with di�erent degrees

of \orderliness" in order to examine the e�ects of problem order on both the case-

based and introspective portions of ROBBIE. We expect that ROBBIE's performance

should degrade as the sequences of problems become more random. Test runs with

introspective learning should degrade more slowly with disorder, because introspec-

tive learning should make the most out of the cases that are in memory. However, the

Experimental Results 178

quality of new features added to the indexing criteria depends on the quality of cases

in memory. When the sequence of goals is random ROBBIE's planner will perform

the most poorly: the chances that a given problem will be similar to a known one

are smaller compared to a well-ordered sequence. If the planner succeeds less often,

introspective learning will also su�er because the case size will remain small and be

less diverse.

To focus on the e�ects of problem order, we examined the success rates for the

di�erent groups of sequences with equal amounts of disorder to them. We calculated

the success rate for each group by averaging the average success rates for each member

of the group. The resulting averages for test runs using only case learning are plotted

on the left in Figure 7.9. The success rate is high for the sequence designed by hand

to meet our criteria for being \well-ordered:" out of 40 new problems the sequence

averaged only 10 failures. As the sequences are permuted to di�er from the well-

ordered sequence the performance drops o� rapidly. After 20 permutations have been

done on the original sequence, the average performance has dropped to a low level

that is essentially equivalent to the more random sequences, failing on 25 to 30 out

of 40 goals.

A similar pattern of decline appears when we consider the averaged success rates

for groups of sequences using both case and introspective learning, shown on the right

in Figure 7.9. However, ROBBIE with both case and introspective learning is more

resistant to the e�ect of poorly ordered problem sequences than ROBBIE with case

learning alone. The average runs with introspective learning degrade to the random

sequence level more slowly, showing that the inclusion of introspective learning does

mitigate the negative e�ects of problem order.

We did not perform a statistical analysis of the e�ects of problem order due to

Experimental Results 179

Hand. 10P 20P 30P 40P Rand.

0

5

10

15

20

25

30

A
ve

ra
ge

 n
um

be
r

of
 s

uc
ce

ss
es

Average with case learning alone

10

10P 20P 30P 40P Rand.

Average with index refinement

A
ve

ra
ge

 n
um

be
r

of
 s

uc
ce

ss
es

Hand.

30

25

20

15

5

0

Figure 7.9: Average success rate of groups of sequences: with case learning the average
drops with random problem orders, with introspective learning the average declines
more slowly

the complexity of comparing sets of sequences with bootstrapping techniques. For

now, we are content with an informal analysis showing that performance drops as

expected, and that introspective learning can mitigate, but not overcome, the e�ect.

A rigorous formal analysis similar to that done for the e�ects of introspective learning

remains for future work.

7.5 Anomalous sequences

Five sequences showed performance with introspective learning that was too similar to

the performance of the sequence with case learning alone to be judged statistically sig-

ni�cant. One such sequence had a negative mean di�erence between its performance

with and without index re�nement (i.e., from looking at the averages, introspective

learning seemed worse). We can group the �ve sequence by the probability value (p)

Experimental Results 180

of each, which estimates the likelihood of seeing the observed mean di�erence when

in fact the real performance is equal. The anomalous sequence, Random 5, had the

highest probability that there was no real di�erence: between 25% and 40%. Two

sequences were in the next percentage range, 10% to 25%: the sequences Permuted

40e and Random 2. The �nal two sequences nearly showed a statistically signi�cant

di�erence, having a likelihood of no di�erence between 5% and 10%.

The performance of these anomalous sequences may derive from the interaction

of a di�cult sequence of goals, ROBBIE's small initial memory, and index re�nement

which added irrelevant or unnecessary features to the indexing criteria. Introspective

learning of new indexing features only bene�ts the planner if those features apply to a

useful subset of the situations the planner will see in the future. The most compelling

explanation for the anomalous sequences is that introspective learning simply did not

create new features which would always be useful in later situations.

Because ROBBIE's re-indexing depends on having a case in memory which shares

important features with the current solution, the smaller the case memory, the less

likely a good match will be found and a useful feature learned. Therefore, when

the planner repeatedly fails at goals, as in a di�cult random sequence, few cases

will be added to memory, and index re�nement may select features which are not

widely applicable. These features will focus the retrieval process on fewer cases but,

because the features may not cluster cases in useful ways, the retrieval process may

occasionally ignore a case which should have been considered, leading to a failure in

planning. If the failure prevents ROBBIE from achieving that goal location, it may

not be traced back to a missing indexing feature, since no \�nal solution" exists to

which to compare cases in memory. Therefore, a better case to retrieve may not be

discovered and the correct features may not be learned.

Experimental Results 181

0

1

2

3

4

5

6

7

8

9

10

11

7 8 9 10 11 12 13 14 15 16 17 18

N
um

be
r

of
 o

ut
co

m
es

 p
er

 s
uc

ce
ss

 r
at

e

Number of cases learned

Case learning alone

Case and Introspective

Figure 7.10: Histogram of success rate frequencies for anomalous sequence: the peaks
for case versus case and introspective learning are close together (12-14), case learning
alone extends higher

The anomalous sequence Random 5 strongly �ts the pro�le for over-restriction

by index re�nement described above. Test runs of the sequence using case learning

alone show a very low success rate compared to all other sequences, random or per-

muted. Figure 7.10 shows the frequency of the range of success rates for test runs

of the anomalous sequence, both with and without introspective index re�nement.

As for the previous histogram, the lighter bars show values for case learning alone,

darker bars show values when introspective learning is enabled. The most common

success rates lie between the 10 and 15 range, meaning about 10 out of 40 goals were

successfully achieved. The range of success rates for this anomalous sequence is quite

wide compared to other sequences.

The tendency of index re�nement, when combined with poor case learning per-

formance, to over-restrict the retrieval process by learning irrelevant features is evi-

denced by the measure of retrieval e�ciency. Plotting the test runs for the sequence

Experimental Results 182

 0 10 20 30 40 50

0

10

 20

 30

 40

 50

 60

 70

 80

 90.

 100

With Index Refinement

A
ve

ra
ge

 o
f

P
er

ce
nt

 C
on

si
de

re
d

Sequence of Successive Averages
 0 10 20 30 40 50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Without Index Refinement

Sequence of Successive Averages

A
ve

ra
ge

 o
f

P
er

ce
nt

 C
on

si
de

re
d

Figure 7.11: Successive averages for the worst anomalous case (Random 5): almost
no di�erence between introspective and non-introspective graphs

Random 5, using the successive averages of percentages considered as we did in Sec-

tion 7.3.3, we �nd that the average percentage considered in retrieval did not change

signi�cantly with or without introspective learning. The anomalous sequences in the

p < 0:25 range of probability showed slightly better retrieval performance, and those

in the p < 0:1 range showed retrieval performance nearly the same as sequences that

showed signi�cant di�erences in performance. The lack of improvement in retrieval

e�ciency suggests that, for these sequence, the new features learned introspectively

did not apply to later situations and so could not provide any bene�t in retrieval.

Consequently, the features learned through introspective reasoning did not group to-

gether useful cases, but rather might have caused an occasional additional failure by

restricting retrieval so that a useful case might not be considered at all.

Experimental Results 183

7.6 Conclusions from the empirical tests

These empirical tests of ROBBIE were designed to evaluate the e�ect of introspective

index re�nement on ROBBIE's performance of its planning task, to examine the

performance of the system across a wide range of circumstances, and to determine

how problem order a�ects the case-based learning of the planner and the combined

case and introspective learning of ROBBIE as a whole. To our knowledge, it is the �rst

attempt to quantitatively evaluate the e�ects of combining an introspective diagnosis

and repair system with an underlying reasoning system.

We found, as expected, that index re�nement improved the average success rate

on a sequence over case learning alone. At the same time that the success rate was

increasing, the work done by the Retriever was decreasing as new indexing features

permitted a tighter focus on the most appropriate cases for a given situation. This

tighter focus, when combined with poor planning performance that caused irrelevant

features to be selected for the indexing criteria, could cause over-restriction of the

retrieval process so that correct cases were overlooked. In this situation, it is possible

that introspective learning might not improve the planning performance of the system.

The fact that over-restriction may arise when the case learning performance is es-

pecially poor emphasizes the importance of taking into account the e�ect of problem

order in general on both case-based learning and introspective learning of indexing

features. Our examination of this issue led to a de�nition of a \well-ordered" se-

quences: one in which

� Early goals should (eventually) span the entire range of possible situations to

lay the groundwork for later learning, and

� Each goal in sequence should extend the scope of solvable problem a small

Experimental Results 184

amount, rather than being a large departure.

The sequence we de�ned to conform to these criteria permitted ROBBIE to per-

form at a very high level. As the ordering of goals in test sequences became more

and more random, ROBBIE's performance degraded, with or without the presence

of introspective index re�nement. The success rate degraded more slowly when in-

trospective learning was present to assist in categorizing the problems which were

successfully achieved. We may conclude, therefore, that care should be taken with

the initial training of a case-based system that starts with a small case memory. A

lack of care may result in extremely poor planning performance, and index re�nement

that does not provide any bene�t over case learning alone.

By comparing the sequence of retrievals made during a test run with and without

introspective index re�nement, we discovered that new indexing features have the

immediate e�ect of focusing the retrieval process and reducing the percentage of

memory considered good matches. We also learned that, after an initial settling-out

period, new features tend to be learned after low-percentage retrievals, and some

high-percentage retrievals persist throughout the test run. From this we conclude

that learned indexing features may focus retrieval without focusing it perfectly: new

features learned after low-percentage retrievals probably help to adjust the focus of

retrieval to better re
ect the important aspects of a situation. We also conclude

that when a new problem is su�ciently dissimilar to the cases in memory, a high-

percentage retrieval is appropriate. The Retriever is casting a wider net and bringing

into consideration more cases, which improves the likelihood of selecting a good case

when no case is a spectacular match.

When care is taken by the goal provider of an \infant" planning system such as

ROBBIE, we may also conclude that introspective index re�nement performs just as

Experimental Results 185

we intend it to: the success rate increases, on average, and the extended indexing

criteria allow the retrieval process to focus on a few appropriate cases, limiting the

work to be done in selecting the best case, and causing better cases to be chosen than

the initial criteria permitted.

Chapter 8

Conclusions and Future Directions

The previous chapters have shown that introspective reasoning can
detect reasoning failures and alter the reasoning process to avoid fu-
ture failures, using a declarative model of the ideal reasoning process
being examined. We discuss our methods, results, conclusions, and
future directions for this research.

This research examines the problem of modeling introspective learning: of rep-

resenting knowledge about reasoning, and using that knowledge to diagnose failures

in an underlying reasoning process and to re�ne the process to prevent future fail-

ures. Our approach uses a model-based reasoner to form expectations about the ideal

reasoning behavior of the underlying reasoning system; the model consists of asser-

tions about the ideal state of the reasoner at speci�c points in the reasoning process.

Our introspective framework detects reasoning failures by an ongoing monitoring of

the underlying reasoning process, comparing the actual reasoning performance to the

ideal expectations of the model. It explains failures by searching from a detected

discrepancy for other assertion failures which might have initiated the problem that

was detected. The framework is general: introspective models of di�erent underlying

reasoning systems may be constructed from the same generic building blocks, and it

186

Conclusions and Future Directions 187

facilitates re-use of model fragments for introspective reasoning about systems which

share commonalities with ROBBIE.

We applied our introspective framework in ROBBIE to an underlying route plan-

ner. The planner combines case-based and reactive components: the case-based plan-

ner creates high-level descriptions of routes which the reactive component executes in

its simulated world. New routes are learned by storing the result of executing a plan.

Combining deliberative (i.e., case-based) and reactive planning results in a planner

that can view the problem as a whole in deciding on a route, but can also respond

quickly to changes during execution. Several other features of the case-based planner

are unique: the use of case-based retrieval mechanisms for components of the CBR

process, and the use of re-retrieval to permit complex problems to be broken into

more easily solved pieces.

The introspective component of ROBBIE monitors the planner's entire reasoning

process, and can explain reasoning failures which occur in any component. We focused

on one class of repairs to the reasoning process: extending the indexing criteria used

by the planner in retrieving old cases. Determining the features to use in indexing

criteria is a key problem for case-based systems; ROBBIE learns such features through

introspective experience.

Experiments performed to evaluate ROBBIE's performance with and without its

introspective learning component show that introspective index re�nement causes an

improvement in the e�ciency of the retrieval process, by permitting consideration

of fewer cases. In addition, ROBBIE performs more successfully when using both

case and introspective learning than when restricted to just case learning. Potential

improvements through the use of introspective learning may not be realized, however,

if problem orders pose too many di�cult problems for the system.

Conclusions and Future Directions 188

Our work applying introspective reasoning to planning has raised many issues for

future study. Future directions for this research fall into two main classes:

� extensions or alterations to ROBBIE itself to explore incomplete aspects,

� and extension and application of our introspective framework to a broader set

of reasoning systems, elaborating the framework as needed.

We must also consider the larger issues this research touches on: the issues involved

in systems for complex domains, and broader kinds of introspection about reasoning

itself.

In this chapter we discuss the important features of this research, and what we

learn from its implementation in ROBBIE. We also discuss the di�erent directions

this research may take in extending our understanding of introspective reasoning and

its role in the creation of arti�cial intelligence systems which can reason about their

domains and themselves, and can learn to respond
exibly to complex, changing

circumstances.

8.1 Domain issues

The domain implemented in ROBBIE's world simulator provides enough complexity

to challenge ROBBIE's planner. Given the small initial case base, ROBBIE must

often choose cases which are relatively distant matches to its current situation. Be-

cause of the complexity of knowledge involved in the description of a given situation,

judging which is the best previous case can be problematic. The complexity of ROB-

BIE's domain is the perfect testbed for introspective reasoning: ROBBIE can learn

through experience which features turn out to be important for a given set of experi-

ences. Such features may include locations which are pivotal either for their common

Conclusions and Future Directions 189

A
 S

tr
ee

t

B
1

St
re

et

C
 S

tr
ee

t

D
1

St
re

et

E
1

St
re

et

F1
 S

tr
ee

t

B
2

St
re

et

D
2

St
re

et

E
2

St
re

et

F2
 S

tr
ee

t

1st Avenue

2nd Avenue

3rd Avenue

4th Avenue

5th Avenue

6th Avenue

Figure 8.1: The \Bridge" map

appearance or the specialized needs of plans in their vicinity.

We have begun testing ROBBIE in larger and more complex world maps than

the three-by-three version upon which we have focused most of our attention. Larger

maps permit us to explore a richer set of situations; the map in Figure 8.1 simulates

a river through the simulated robot's world. Learning how to select cases which

require crossing a bridge may involve alternative introspective learning strategies or

qualitatively di�erent features. The feature \crosses river" is more abstract than

ROBBIE's current feature types, and is more di�cult to detect from route endpoints.

The important features for a domain such as the Bridge world di�er from those in

ROBBIE's ordinary domain; requiring extensions to the feature detection mechanism

associated with ROBBIE's introspective reasoner.

Conclusions and Future Directions 190

Future directions: The domain implemented by the world simulator succeeds in

providing a level of complexity requiring introspective learning. Nonetheless, exten-

sions to the domain to include more complexity could be considered. Some extensions

are already foreshadowed: the enforcement of blocked streets and other pedestrians

as obstacles for the simulated robot.

The representation of time in the world simulator is simplistic, as is the way in

which the simulator and ROBBIE interact. A better implementation would permit

the simulator and ROBBIE to be autonomous asynchronous processes, in order to

represent time in a more realistic fashion.

Exploration of alternative task domains would also extend our understanding of

the power and limitations of introspective learning. Such domains should still be

constrained by the properties we declared important for ROBBIE's domain: a rich-

ness of knowledge about objects in the world, a complexity in the number and form

of objects, and dynamic elements which change outside the reasoner's control. Do-

mains that meet these criteria include information-�nding tasks such as Web search-

ing agents, complex scheduling problems (i.e., a travel agent, or a package company

controller), real-world robot control systems, and many others.

8.2 The planning component

ROBBIE's planner was designed to examine the e�ects of limited initial knowledge

on the success of a case-based planner. In addition, it explores the combination of

case-based planning with reactive planning to both generate plans and execute them.

It incorporates several unique ideas for case-based planning, which are re
ected in

Conclusions and Future Directions 191

the introspective model of its reasoning process. It introduces a process called re-

retrieval , used to simplify a route goal that is too complex for the planner to handle.

Re-retrieval splits the original goal into two more simple goals and constructs solutions

for each goal separately. ROBBIE's planner also re-uses its case memory and retrieval

process to implement components of the planner itself.

8.2.1 Combining deliberative and reactive planning

ROBBIE's combination of a case-based planner with a reactively executing planner

gains the bene�ts of both approaches. The case-based planner, because it views the

problem as a whole, takes into account long-range features a�ecting the entire route.

For instance, if the robot is starting on an east/west street and the goal is to end up

on an east/west street three blocks to the north, the case-based planner will select

which north/south street to use based on whether it extends all three blocks to the

north, rather than selecting the closest one. A wholly reactive planner might choose

the nearest opportunity to head north, even if that street does not intersect with

the goal street, because the nature of a reactive planner is to focus on the current

situation and ignore the long view.

The bene�t of a reactive planner is its ability to respond to the unexpected obsta-

cles and dynamically changing elements in its domain. ROBBIE's reactive planner

chooses actions quickly, and without looking further than the situation of the mo-

ment. If the situation changes in one time step, the actions of the reactive planner

will change to respond to it. The reactive planner, then, provides a quick response

without looking ahead. The case-based planner does look ahead, but takes longer

to generate a plan of action. However, in a real world the cost of execution would

dominate planning costs, so the savings from performing good strategic planning are

Conclusions and Future Directions 192

still considerable. A mistake in execution which leads to wasted movements will over-

shadow the costs of deliberative planning to avoid that mistake (i.e., if the robot had

to backtrack).

Because we have combined deliberative and reactive planning, the case-based plan-

ner need not generate as detailed a plan as would otherwise be required. An abstract

description of the route plan is su�cient, since each step will be interpreted by the

reactive planner in terms of the momentary situation. This minimizes the time that

must be spent deliberating about the details of the plan, while at the same time en-

suring that the reactive planner has enough guidance to avoid problems due to its lack

of long-term reasoning. Combining deliberative planning with reactive planning has

been studied by various people (Gat, 1992; Nourbakhsh et al., 1995), but ROBBIE

is the �rst instance we know of a case-based planner being combined with a reactive

planner.

Future directions: While ROBBIE's planning components perform well together,

further work could be done to balance the power of the reactive planner against that of

the case-based planner. The reactive execution component of ROBBIE currently has

the capability to execute any correct plan it is given. However, it is limited in how it

can respond if the plan it executes turns out to be
awed. The reactive planner should

be extended to include the ability to re-plan when the original CBR-generated plan

has obviously gone awry. Currently the Executor informs the introspective reasoner

of the problem and then gives up trying to execute the plan. A better alternative

would be to incorporate reactive strategies for re-applying case-based planning from

the current location of the robot, for trying an alternative planning strategy (such

as a graph search, or a rule-based approach), or for reactive wandering intended to

Conclusions and Future Directions 193

move generally in the right direction.

At the current time the reactive planner is viewed as a component of the overall

planning system. Because the Executor is the component most directly tied to the

world simulator, if it were given more power the planner as a whole might be more

accurately described as a reactive system with a deliberative planning component

available to it. This would be more similar to the approach developed by Gat (1992)

in ATLANTIS.

8.2.2 Re-retrieval to adapt goals

ROBBIE starts out with a small number of route plans in its memory. Its main

adaptation technique is to map the locations of the new situation onto the locations

of the old one and convert the plan steps accordingly. Thus, the new plan always has

the same number of steps as the old one. It is possible, therefore, that a situation

will arise which will require more plan steps than any case in memory. Any case

retrieved for such a situation will be unadaptable because the locations will not map

onto each other: one endpoint might require a north/south street while the endpoint

of the case might be on an east/west street. In order to permit ROBBIE to recover

when retrieval provides an unadaptable case, we developed a re-retrieval mechanism

to adapt the original goal . The goal is broken into two smaller parts by selecting

an intermediate location between the two original locations. Each subproblem is

then recursively addressed by case-based planning. The resulting solutions may be

concatenated to form a more complex plan. ROBBIE's Re-retriever uses a heuristic

method to select the intermediate location. While the heuristic method may fail

occasionally, the retrieval of unadaptable cases would otherwise guarantee a failure.

Conclusions and Future Directions 194

Future directions: Re-retrieval is currently restricted to a single recursive appli-

cation: if a simpli�ed goal produces an unadaptable case ROBBIE gives up on the

problem. This restriction avoids the problem of in�nite recursive application of re-

retrieval. Development of better heuristics for selecting good intermediate locations,

combined with a mechanism to recognize when re-retrieval is not progressing, would

permit lifting that restriction. Instances when re-retrieval is not succeeding include

when the intermediate location is identical to one of the two original locations; and

when one of the simpli�ed goals is as simple as possible and the case retrieved is still

unadaptable.

The application of re-retrieval is currently always viewed as a correct part of the

reasoning process. However, the un-adaptability of a case may stem from a failure

of the indexing criteria to select the appropriate case, not from the complexity of

the current problem. ROBBIE does not currently distinguish between these two

situations. Further work should be done to determine how to distinguish necessary

re-retrievals from re-retrievals caused by reasoning failures, in order for introspective

reasoning to correct the retrieval process when it is
awed. The question remains

whether every re-retrieval in which cases of similar complexity exist in memory should

be considered a failure. It is possible that the cost of adapting a dissimilar but equally

complex case is higher than the cost of breaking the goal into two more simple parts

and solving each separately. Further investigation of this tradeo� should be done in

the future.

Conclusions and Future Directions 195

8.2.3 Recursively using CBR for components

The case memory for ROBBIE contains cases for the planner itself, and cases for

components of the planning process: Indexer, Adaptor, and Executor. Each compo-

nent uses the Indexer and Retriever recursively to select from memory appropriate

structures for performing its task. Re-using case-based reasoning mechanisms to im-

plement parts of the CBR process is an elegant approach: we contain most of the

knowledge needed by the system in one structure and access it with one mechanism.

It also simpli�es the planner by using a single mechanism for similar tasks in di�erent

parts of the reasoning process.

In order to implement this recursive use of case-based reasoning, we developed

a general retrieval mechanism capable of handling multiple forms of indices, using

di�erent similarity measures for di�erent indices, and retrieving di�erent numbers and

kinds of cases. This general retrieval mechanism separates the process of retrieval,

which remains the same, from the details of retrieving any particular kind of memory

object. By developing a generalized retrieval mechanism, we can see which parts of

the retrieval process are general, and which depend on the use to which the cases are

to be put.

Future directions: Using case-based retrieval to implement parts of the case-

based reasoning process raises the immediate question of incorporating adaptation

and learning of the components' cases. To what extent adaptation may be applied,

and how the Adaptor and Storer must change to accommodate di�erent memory

objects is a topic for future elaboration.

Despite the insights we have gained in ROBBIE about generalized retrieval mecha-

nisms, an interesting alternative approach would examine the feasibility of integrating

Conclusions and Future Directions 196

the indexing criteria and similarity assessment mechanisms for di�erent kinds of mem-

ory objects. Future work should determine if a similarity measure exists which would

apply to all the di�erent cases in memory; if such a measure existed it would bode

well for an integrated adaptation mechanism for such cases, since a uni�ed similarity

measure must rank the adaptability of di�erent kinds of cases.

Extending the kinds of knowledge structures in the case memory would further

broaden our understanding of di�erent forms of retrieval, as well as enhancing the

elegance of the reasoner by incorporating more of its knowledge into one storage and

access model. Other knowledge of the planner includes its knowledge of the streets

of its domain, and interpretations of sensory knowledge.

More central to our interest in introspective reasoning, the planner and introspec-

tive reasoner could be brought closer together by storing the introspective model as

cases in memory as well. This raises the unhappy specter, however, of poor retrieval

of introspective cases leading to decreased performance by the introspective reasoner,

and hence poorer performance by the system as a whole. Determining the feasibility

of case-based modeling of reasoning is an interesting future problem.

8.2.4 Storage of cases

The case memory for ROBBIE contains many di�erent kinds of cases. It includes

sophisticated indexing to retrieve cases, but storage in memory is done in a simple

and straightforward way. This simple memory storage increases the cost of retrievals,

but is not a signi�cant problem for a system with a small case memory. As the case

memory grows, however, it becomes more expensive to do retrieval and storage of

cases, and more di�cult to ensure that the same case does not get stored twice, nor

two di�erent cases get assigned the same index. Other research has examined di�erent

Conclusions and Future Directions 197

case storage methods (Kolodner, 1993a), which might be applied with positive results

here.

ROBBIE currently stores only successful cases in memory. Altering the memory

organization to permit storage of failed cases to provide warning against certain paths

in the future could improve ROBBIE's performance when there are more failures than

successes, by increasing the cases available in memory for a given situation.

8.3 Introspective learning

Our goals in designing an introspective reasoning component were to create a general

framework of wide applicability, to examine introspective reasoning as a failure-driven

process, to develop a single-model representation capable of both detecting and ex-

plaining failures, and to enable continuous, \on-line" monitoring of the underlying

reasoning process. The framework developed for ROBBIE achieves these goals. The

building blocks for describing a reasoning process in our framework are generic and

designed to correspond to features many reasoning systems have: components, ab-

stract versus speci�c descriptions, knowledge structures, and so forth. Introspective

learning occurs when the assertions of the model about the ideal reasoning process

fail to be true of the actual processing. The model contains constructs which per-

mit quick access to assertions to monitor for assertion failures, and constructs which

permit the model's assertions to be searched in order to explain detected failures by

determining other related assertion failures. Quick access to relevant pieces of the

model for monitoring and the ability to suspend assertions which cannot be evalu-

ated due to information constraints permit monitoring to occur in parallel with the

actual reasoning process. In this section we examine more closely our main goals for

Conclusions and Future Directions 198

the introspective framework.

8.3.1 Generality of framework

Using a declarative model to describe the ideal reasoning process is the �rst step in

ensuring that the framework developed is one generally applicable to di�erent un-

derlying systems. The assertions in the model are described using a vocabulary of

predicates carefully designed to be independent of ROBBIE's own requirements. The

assertion vocabulary allows arguments to predicates to be implementation-speci�c; in

that way speci�c knowledge structures may be referred to by an assertion without a

losing the generality with which the assertion is de�ned. The structure of the model

uses generic building blocks like \abstraction," \next," and \component" to organize

the assertions. In addition, the model uses highly modular clusters to separate as-

sertions which are general and perhaps re-usable from those which are speci�c to a

given system.

Future directions: As an extension to the model-based theory of introspective

reasoning, and in order to test the generality of ROBBIE's introspective framework,

we must use it to construct models for introspective reasoning about other underlying

systems. A �rst step would be to add an introspective component to another case-

based planner, such as micro-CHEF. Other non-case-based systems should follow. An

interesting application would be to construct a model for the introspective reasoning

process itself. Using introspective reasoning on the introspective reasoner itself would

be a step towards a re
ective reasoning system. We would expect to re�ne the frame-

work as the di�erent requirements of other underlying systems illuminate limitations

or new problems that were previously unidenti�ed.

Conclusions and Future Directions 199

8.3.2 Monitoring and explaining failures

The model-based approach to introspective reasoning which we developed focuses on

failure-driven learning. This limits the cost of introspective reasoning by restricting

its main e�ort to those times when it is known that an improvement to the underlying

system is possible. Our introspective reasoner expends a small e�ort throughout the

processing of the underlying system in order to look for expectation failures. The

structure of the model of reasoning ensures that the monitoring task requires as little

e�ort as possible by making it easy to �nd the currently relevant assertions. Only

when a failure is known to have occurred does the introspective reasoner expend

a larger e�ort by searching for other assertion failures that relate to the originally

detected one to determine how the failure came about.

The model supports both monitoring and explanation of failures by maintaining

two ways of organizing the same set of assertions. Assertions are clustered by their

speci�city and the component to which they refer, permitting assertions relevant to

the current point of the reasoning process to be found quickly. Assertions are also

linked together according to their causal relationships to each other, regardless of

the cluster to which they belong. The search for other assertion failures to explain

a detected one follows these causal links to �nd the most likely sources for a given

failure. Other introspective reasoning systems tend to stress either detection of fail-

ures or their explanation; our intent was to develop a single model and approach to

introspective reasoning capable of addressing both tasks.

Future directions: We have performed experiments which showed that the intro-

spective reasoning process improved ROBBIE's performance over case-based learning

Conclusions and Future Directions 200

alone. However, further examination of ROBBIE's learning could be done to deter-

mine if its introspective learning is applied when we expect it, and if it always learns

the right thing. Further experiments could examine in more detail the costs of intro-

spective reasoning as well as the circumstances in which it produces an improvement.

The planner keeps a reasoning trace which describes the reasoning that has oc-

curred up to the current point. The introspective reasoner uses that reasoning trace

in a limited way, so far, to determine the values of knowledge structures to which it

needs access. To extend the power of our approach to introspective reasoning, the

use of the reasoning trace should be expanded so that, if necessary, the introspective

reasoner could reconsider every retrieval made, every adaptation strategy applied,

every detail of the underlying reasoning. The method used to control the search for

failed assertions when explaining a detected failure requires further study to �ne-tune

its focus on important causally-related assertions. In addition, the kinds of links in

the model cover most kinds of causal relationships between assertions, but further

re�nement may be desirable.

Developing a working framework for introspective diagnosis and explanation of

reasoning failures has been the focus of this research. The most important extension

to that introspective framework is the addition of a general approach to repairing

reasoning failures. For a general approach, we must be able to describe, in generic

terms, di�erent repair strategies, and a generic description of repairs to many di�erent

components of the underlying system. Because of the importance of indexing feature

selection for case-based reasoning systems, ROBBIE got a great deal of mileage out

of a single repair strategy. However, failures occur which cannot be traced back

to a retrieval problem. These failures are currently detected and explained; the

introspective reasoner should be able to repair them as well. A broad, generic repair

Conclusions and Future Directions 201

Class Description
add-case Construct a new memory object which addresses

a gap in the reasoning process
change-value Alter a numeric value to increase or decrease some

behavior
alter-structure Change an existing knowledge structure to correct

a
aw in it
delete-case Remove a bad case from memory to prevent fur-

ther use

Table 11: Current repair classes for the model

module is a necessity if the framework is to be applied to di�ering underlying systems.

Preliminary work has been done in determining a partial catalog of repair types,

which have been included in the model as unimplemented suggestions (Table 11 lists

the current catalog). A mechanism for selecting a repair strategy, given a description

of the failure and a suggested repair class, is currently implemented in ROBBIE,

with only one strategy included (add-case, used for index re�nement). The possible

repair strategies must be classi�ed in terms of the kinds of changes they make to the

underlying system, in order to develop a generic vocabulary for describing repairs and

generic mechanisms for interpreting those descriptions.

8.4 Index re�nement

The application of introspective reasoning to re�ne the indices of the case-based plan-

ner addresses one of the key issues for designers of case-based systems. The success

of a case-based reasoning system depends on its ability to retrieve from memory the

best applicable case; that case should be the one most easily adapted to �t the current

situation. Thus the decision about what features to use in indexing cases in memory

should be tied to predictors of adaptability. Our approach, allowing the features to

Conclusions and Future Directions 202

be determined from experience, links the indexing criteria for plans very closely to

success in adapting and applying the case. New features will be added when existing

features fail to retrieve the most easily adaptable case (which is de�ned for ROBBIE

as the case with the most similar plan steps). The burden on the system designer of

selecting features for indexing is lessened, and the choice of indexing criteria is guided

by the actual application of cases to real problems for the system.

Our experiments have shown that the new indices learned introspectively capture

interesting and useful features of the situations ROBBIE faces. The addition of new

indices driven by retrieval failures makes ROBBIE more successful in creating plans

to reach goals. New indices also permit the retrieval process to focus on smaller sets

of cases by grouping cases which share the same new feature together.

Future directions: The �rst direction of future research into index re�nement must

be further study of the tendency of introspective index re�nement to over-restrict the

retrieval process. When the deck is stacked against the learner, i.e. when the planner

is repeatedly unsuccessful in achieving goals, the case memory remains small. The

smaller the case memory is, the less likely it is that the solution of a case will match

closely with a new problem's solution. The closest case in memory may not share a

particularly useful feature with the new solution, causing the introspective reasoner

to add a useless feature instead. Each useless feature added to the indexing criteria

will tend to cause the retrieval process to focus on smaller sets of cases, just as a

useful feature would. The result may be over-restriction of the retrieval process as

potentially applicable cases, which happen not to share a useless feature included in

the indexing criteria, are ignored in favor of less applicable cases, which do have the

useless feature. This phenomenon appeared in the empirical tests we performed on

Conclusions and Future Directions 203

ROBBIE | another bene�t of performing empirical tests | and must be studied

further to determine how to alleviate the phenomena.

The method used in ROBBIE to determine what relevant features of a situation

are missing from the indexing criteria is based on a set of heuristic feature types. For

each feature type a simple test exists which determines whether the feature is present

in a given case. This method of determining features for the indexing criteria is not

generic: it is limited to the feature types we chose to include. We intend to examine

more principled methods for determining missing features. One such method would

be to apply explanation-based generalization to explain what features are shared

between two cases whose plan steps are similar but whose indices fail to re
ect that

similarity. An explanation of the relevance of the potential features of a situation

could determine which features are especially important for a given case.

8.5 Scaling up

ROBBIE's domain incorporates the important features for a domain to stimulate

introspective reasoning: it includes knowledge-rich and dynamic objects with which

ROBBIE must contend. It is, however, relatively simple compared to many interesting

real-world domains (as we described above). In addition, the domain knowledge of

ROBBIE remains relatively small; ROBBIE's knowledge generally stays below 200

cases in memory. A natural question is how the approach tested in ROBBIE would

\scale up" to a larger problem involving a large case library and a richer task and

world. There are two related aspects involved in scaling ROBBIE's approach: changes

needed to scale up the planning component, and changes needed to scale up the

introspective learning component. In this section we describe the e�ects of increasing

Conclusions and Future Directions 204

the problem complexity on each component of our approach and in the next section we

illustrate our ideas with an example of a highly complex domain to which case-based

planning with introspective learning could be applied.

In terms of handling more knowledge and more complex situations, the key portion

of ROBBIE's overall processes is the case retrieval process. Other operations both in

ROBBIE's domain and introspective tasks depend upon case retrieval or are otherwise

bounded in some way, even when the task complexity and knowledge involved increase

in di�culty. The cost of introspective learning depends on the complexity of the

reasoner involved, not its domain, task, or knowledge. A relatively small model can

capture su�cient expectations about the reasoning system to provide a bene�t to its

performance, as ROBBIE has shown. If introspective reasoning is bounded in its size

and cost as the problem complexity increases, then the question remaining is how

the planning process performs. Case retrieval is central to the planning process as a

whole, and it is central to the processing of other components which use case retrieval

to access the knowledge structures they require.

8.5.1 Scaling up the planning process

Case retrieval is central to many components of the planning process, as well as the

whole task of plan generation. Therefore it is no surprise that the costs associated with

retrieving cases from memory are the most important factors in extending ROBBIE's

planning approach to more complex domains. To examine all the costs of scaling up

ROBBIE's planner, we examine each component of the planning process in turn.

Conclusions and Future Directions 205

Index creation

As the situations a system like ROBBIE faces become more complex, so do the

indices which describe the relevant features of each situation. The Indexer component

of ROBBIE depends on quick retrieval of indexing rules from memory to build a

complete index. The costs of building a basic index form and applying the Indexer

recursively would remain relatively constant as complexity increases. If rules can

be quickly retrieved from memory, the cost of applying them is proportional to the

number of rules applied to a single index, which should never become very large.

Case retrieval

Retrieving the right case e�ciently depends on two issues, one of which ROBBIE

has addressed. The �rst issue is determining the right features to use to decide

which cases in memory are similar: ROBBIE uses introspective learning to help

determine these features. The second issue is how actual cases are accessed in memory.

ROBBIE uses a simple case storage method: retrieving or storing cases in memory

requires a linear examination of every case in memory. Such a simple approach

would become too expensive if the number of cases increased dramatically. More

sophisticated case storage methods have been examined in other research and are

applicable to ROBBIE's case library: discrimination networks (Hinrichs, 1992; Koton,

1989; Simpson, 1985), implementation on parallel machines (Evett, 1994; Stan�ll &

Waltz, 1988), and multi-stage retrieval methods (Kolodner, 1988; Simoudis, 1992)

(see Kolodner (1993b) for a full discussion of case storage methods). These methods

are made e�ective by the use of good features in indexing, which ROBBIE's index

re�nement facilitates.

Conclusions and Future Directions 206

Organizing ROBBIE's cases with discrimination trees: With a serial ap-

proach to case retrieval, collecting cases that share certain features in common can

improve retrieval e�ciency. The case memory can be partitioned into groups, se-

lecting a case becomes a process of selecting more and more restricted partitions of

memory. Retrieval can focus on only the subset of cases similar to the goal index

without examining individual cases and their full indices. A variety of approaches

to discrimination networks implement this kind of solution. To take ROBBIE's own

case memory as an example, we could group cases �rst by their type (plan, indexer,

adapt, or planlet). We could further group plan cases according to starting streets,

or special features, or other features that plans might share in common. We could then

eliminate all cases of di�erent types and di�erent starting streets without examining

the indices of individual cases at all.

A discrimination network of cases in memory is constructed as cases are added

to memory. A new case will cause changes to the discrimination structure in order

for the new case to be distinguished from existing ones. Using a discrimination

network requires that each goal index contain the information needed to make a

discrimination at any particular point in the network. If information is missing,

discrimination may be di�cult (e.g., if ROBBIE did not know the starting street for

a goal). The discrimination network must be as full as possible as well, for optimal

performance. In the best case, a discrimination network approach would permit

case retrievals at O(logbn) where n is the number of cases and b is the branching

factor at each discrimination point, but in the worst case retrievals would be O(n).

The worst performance would occur when each question removed only one case from

consideration.

Conclusions and Future Directions 207

Using parallel retrieval methods: Because of the overhead of maintaining a

discrimination network and its potential worst-case cost, research into parallel im-

plementations of case retrieval has provided an alternative approach. Evett (1994)

implement in PARKA a knowledge retrieval method on a Connection machine that

guarantees performance at O(d + p) where d is the hierarchical depth of knowledge

(from an individual case to abstractions of it), and p is the number of features in the

desired index. This retrieval performance is independent of the number of cases in

memory. Other approaches use multi-stage retrieval processes in conjunction with a

potentially parallel implementation. Cases are evaluated using a simple estimate of

similarity, a process which could be performed in parallel, and deeper evaluation is

performed only on the most similar cases (Kolodner, 1988; Simoudis, 1992).

Large case memories are not uncommon in industry applications of CBR. Even

without expensive parallel hardware implementations, accessing cases in a large mem-

ory can be performed e�ciently and quickly by combining case-based reasoning with

existing relational database technology. Kitano et al. (1992) access cases using by pos-

ing queries to a relational database containing, at last count, over 20,000 cases. Cases

describe solutions for problems in software quality control, and are used interactively

by users attempting to solve problems.

Starting from indices that contain the right set of features is the key to high-

quality, e�cient retrieval. Approaches that dynamically restructure the case memory

would bene�t immediately from ROBBIE's ability to learn the relevant features for

indexing cases. Restructuring of cases in memory often occurs when a new case is

learned, and involves only that case and a few neighbors. Introspective learning of

new indexing features would trigger a reorganization of the entire memory and would

improve the parameters by which cases are chosen.

Conclusions and Future Directions 208

Case adaptation

As for the Indexer above, the cost of retrieving adaptation strategies dominates the

cost of performing adaptation. Other costs associated with adaptation are controlled.

ROBBIE's adaptation component is general enough to apply to many di�erent prob-

lems. The Adaptor is highly dependent on case retrieval to select the right adaptation

strategies for a given situation. Besides retrieval costs already discussed, the only sig-

ni�cant cost in ROBBIE's adaptation process is selecting what portion of the case to

adapt. Determining what changes to make during adaptation remains an open ques-

tion, although learning when to apply a given adaptation strategy, or even learning

new strategies, could help to limit the adaptation e�ort when the case being adapted

is highly complex (Leake, 1995).

In general, as the case library for a case-based reasoner grows in size, the need

for extensive adaptation decreases: a case selected will be more similar than when

few cases are available. In addition, ROBBIE's introspective learning helps to focus

the retrieval process, reducing the e�ort expended in adaptation by selecting the best

possible case. For many practical applications of CBR in complex domains, adapta-

tion is not a requirement. Kitano et al. (1992) implement in SQUAD a system to

assist a human user in diagnosing and correcting software problems, without auto-

matic adaptation. CLAVIER proposes layouts for baking high-technology parts in

an autoclave, but adaptation of old solutions is left to a human user (Hennessey &

Hinkle, 1991).

Case applications

Given that a case-based plan is to be executed interactively, there are two aspects

of the reactive planning process that pose obstacles to scaling up. The �rst is the

Conclusions and Future Directions 209

need to quickly select a new action given a new context. Because ROBBIE uses

CBR for this problem, this reduces once again to a case retrieval problem, which

ROBBIE already begins to address. The second aspect is performing a fast analysis

of the current situation to determine whether the current goal has been reached or

the context has changed. Analysis of its domain was straightforward for ROBBIE

because its sensory input was pre-processed; a real robot would require a component

to perform this pre-processing. Currently existing robot technology can make good

estimates of distances to nearby objects and can locate distinctive objects in visual

range (e.g., (Firby et al., 1995)).

Case learning

In order to create cases for storage in memory, a system such as ROBBIE that includes

both case-based and reactive reasoning must be able to reconstruct a case from actions

of its reactive component. This process will become more complex as the domain

complexity grows. ROBBIE has a set of rules which reverse the mapping made from

high level steps to robot actions; these rules would be more numerous and perhaps

more involved (looking for retraction of some actions, for example). However, as

case learning occurs after the solution to a given problem, reconstruction of the �nal

solution does not face the same time pressure as reactive application of a case, and

could be performed during otherwise idle time.

8.5.2 Scaling up introspective learning

The question of domain complexity has little e�ect on the requirements of the intro-

spective learning component. The introspective reasoner does not re
ect the com-

plexity of the domain, but the complexity of its underlying reasoner. While a domain

Conclusions and Future Directions 210

may grow more complex, the reasoning system that performs in that domain may not

signi�cantly increase in complexity.

The cost of monitoring for reasoning failures is relatively constant across the

underlying reasoning process. Because the organization of ROBBIE's model helps to

focus attention on just the relevant portions of the model as it is examined, ROBBIE's

introspective reasoner evaluates less than ten assertions at any given point in the

reasoning process unless a failure is detected; a system for a more complex domain

should maintain a similar level of detail. The time spent on introspective reasoning is

small compared to the time spent planning, and both are small compared to the time

spent actually executing a plan. The overall time required by ROBBIE is much less

than a physical robot would require moving in a physical world. Further re�nement of

the criteria for assertion relevance could improve the monitoring process even more.

Explanation of a detected failure takes much more time than monitoring to detect

failures. The explanation process will, at worst, evaluate every assertion in the model,

although in practice many assertions are not relevant to a given detected failure. So

long as the model remains similar in size to ROBBIE's current model, however, the

time spent in explanation is a reasonable price to pay for the bene�ts of introspective

learning. If time pressures warranted it, the search process itself could be re�ned

further to focus its search more carefully, limits could be placed on it to prevent it

from taking too much time, or a parallel implementation could evaluate many model

assertions at once, as model dependencies allow.

Conclusions and Future Directions 211

8.6 Web searching as a real-world application

In the previous section we described the issues involved in scaling up ROBBIE's

approach to any more complex domain. In this section we describe in detail how

ROBBIE could be applied to one particular domain mentioned earlier: a system

for assisting a user in searching the World Wide Web for information.1 While in

principle the introspective reasoning framework, the heart of our research, could be

applied to an underlying system that takes a very di�erent approach than case-based

reasoning, for the purposes of this example we assume that the Web searcher does use

the general approach of ROBBIE: case-based planning combined with plan execution.

In this case, the plans would be methods for �nding the requested information, and

plan execution, for simplicity, could be left to a human user.

A ROBBIE-like Web-searcher | maybe Charlotte would be a good name |

would follow the basic division between task and introspective processing, with an in-

trospective reasoner modeling an idealized reasoning process and examining its actual

reasoning process for deviations from its model. The task itself would be approached

in much the same way: Charlotte would be given a description of the kind of informa-

tion to be found, for instance \Information about podiatry schools in Minnesota." It

would generate a plan for going about �nding that information, then use that plan to

suggest possible avenues of exploration to its user. It would store the user's resulting

search, along with an evaluation of its quality provided by the user. With a more

complex problem domain like web-searching, determining whether a proposed plan

was successful is more di�cult than in ROBBIE. The user's input as to a given plan's

utility might be needed for Charlotte to fully rate a search plan's success.

1We have chosen this domain as an example, but we make no claims to a deep understanding of
existing Web searching technology.

Conclusions and Future Directions 212

In the following sections we break the task down into ROBBIE-like components

to describe how each part of the problem would be addressed both at the task level

and the introspective level.

8.6.1 Index creation

Whereas in ROBBIE index creation for plan cases is initially simple and depends on

introspective learning for any specialization, index creation for Charlotte would be

much more important and would require more elaboration of the original problem

description from the start. For instance, if the problem were as described above:

Podiatry schools in Minnesota, Charlotte might want to elaborate the index to

include more general information like medicine, specialties, location, in USA,

and so forth. This sort of elaboration is necessary if Charlotte is to assist with searches

for many di�erent kinds of information. No matter how many cases Charlotte has in

memory, retrieving search plans based only on the original keywords is not feasible.

While Charlotte may have no previous plans regarding information about podiatry,

it may have plans for location-speci�c information, or for information about medicine

in general. In addition, good search techniques should dictate the use of concepts

instead of keywords for searching. Elaborating beyond the speci�c terms used in a

particular query should improve both case selection and later search (Kolodner, 1984;

Lehnert, 1978). This sort of elaboration of the original situation seems well-suited

for the kind of case-retrieval approach ROBBIE uses.

From an introspective standpoint, Charlotte's model of its index creation process

would be very similar to ROBBIE's. Charlotte might include index-elaborating rules

of more complexity than ROBBIE's. For instance, a rule might describe searching an

Conclusions and Future Directions 213

abstraction hierarchy for a more general concept to include in the index. These com-

plexities would need to be re
ected in Charlotte's introspective model, but constitute

a relatively small increase in the model's complexity.

8.6.2 Case retrieval

Search plans in memory for a system like Charlotte might describe the paths taken

in previous attempts to �nd information, relating why each path was used, as well

as what the path was. For instance, if Charlotte had previously looked for informa-

tion about elementary school education in Burlington, Vermont, a search plan might

describe starting at a description of sites in the US because a location was speci�ed,

specializing to sites in Vermont because that is the location desired, then looking for

descriptions of Burlington or school districts.

Whereas in ROBBIE a single route plan could be used to successfully achieve a

goal without human intervention, for Charlotte a better approach might be to produce

a set of di�erent approaches generated, perhaps, by stressing di�erent aspects of the

original query to be provided to the human user. For example, some plans might

stress the geographical aspects of our sample query, others might look for education-

oriented search points, and others focus on medical searches. Many case-based system

designed for assisting human users similarly suggest multiple possibilities and let the

user decide which to use. The CLAVIER system assists a user in positioning pieces

to be baked in an autoclave; it provides the user with a set of the most similar,

unadapted cases in its memory (Hennessey & Hinkle, 1991). CASCADE contains

cases describing VMS operating system failures and provides the closest matching

alternatives to the user in the face of a new problem (Simoudis, 1992).

Introspective evaluation of case retrieval in Charlotte must evaluate expectations

Conclusions and Future Directions 214

about the applicability of di�erent search approaches, and whether all applicable

search plans have been chosen. These expectations are not qualitatively di�erent

than the expectations ROBBIE itself has about its retrieval process. Because multiple

cases are to be retrieved, expectations should evaluate the breadth of possible search

types typi�ed by the set of retrieved cases.

8.6.3 Adaptation

To some extent adaptation of cases may be left to a user in a system designed to

support the user's own actions: Charlotte could simply present the search plans it

found and let the user decide how to apply them. However, adaptation of search

plans could also be performed in a manner similar to ROBBIE's, by substituting for

the appropriate di�erences. To search for medical schools in Minnesota, starting from

the search plan for elementary schools in Vermont, Charlotte could substitute the fea-

tures of podiatry schools for those of elementary schools, and substitute the location

Minnesota for the location Burlington, Vermont. ROBBIE's approach to adapta-

tion is suitable for many di�erent kinds of cases, but Charlotte might also require

an information-gathering approach to adaptation more similar to that described in

Leake (1995). In such an approach, adaptation strategies include directions on how

to search for the appropriate information to substitute, and may be learned through

experience as well.

Introspective assertions about adaptation might expect that only valid Web sites

are referred to, that there will be links from the starting page to the relevant informa-

tion, that the needed information for adaptation will be found. These expectations

are similar to the expectations ROBBIE has about its adaptation process.

Conclusions and Future Directions 215

8.6.4 Learning new search plans

The selection of particular search plans to apply and their execution may be left

in major part to the human user, with Charlotte keeping track of what the plans

said to do and what the user has actually done. From an analysis of the outcome,

which could be augmented by user input about the utility of Charlotte's search plans,

Charlotte could determine whether its proposed plans were appropriate and useful,

and could learn new search plans based on what the user actually encountered. Be-

cause the Web is a changing environment, Charlotte should be particularly aware of

expectation failures such as new sites or non-existent old sites. Such failures might

indicate reasoning failures, or might not, but should be noticed and examined by the

introspective reasoner regardless.

As for ROBBIE, once a path is found to the desired information, Charlotte would

have more to work with in terms of evaluating its reasoning performance. It should

expect only minor alterations to its suggested plans: major alterations or the failure of

a suggested plan to �nd any relevant information should indicate a reasoning failure.

Introspective reasoning should have expectations about how the suggested plans and

the actual plans should relate. Learning new indexing features or criteria for selecting

di�erent search paths could be driven by discrepancies between the actual successful

path and the original one. For example, if Charlotte proposed �nding information

on podiatry schools by looking for specialized institutions, by analogy to dentistry or

optometry schools, and that plan found no matches because podiatry is a specialty

taught within medical schools, then Charlotte could alter its reasoning to stress the

specialty feature more strongly. Relating this change to the fact that a school is

desired might be important; �nding information about podiatrists might depend on

looking for specialized institutions (i.e., podiatry clinics).

Conclusions and Future Directions 216

Charlotte is a proposed system engaged in a much more complex and dynamic

domain than ROBBIE. By examining how ROBBIE's approach could map onto such

a complex problem, we can see what parts of ROBBIE's approach are most general,

and how we might go about scaling up both the planning and introspective com-

ponents of ROBBIE to problems of practical interest. Charlotte can use many of

the same mechanisms as ROBBIE, although scaling up to Charlotte's needed case

memory and knowledge requirements would involve some of the changes discussed

in Section 8.5. Converting the introspective component requires the least alteration

to handle scaling up, as the reasoning of Charlotte is not much more complex than

the reasoning of ROBBIE. This example demonstrates the wide applicability of our

approach to planning and introspective learning: the potential of a case-based plan-

ner to successfully encounter complex, knowledge-rich domains, and of introspective

reasoning to assist such a system in operating in such a domain.

8.7 Summary

This research has successfully integrated introspective reasoning with an underlying

case-based planning system and has shown through empirical tests that the combi-

nation outperforms the planner alone. We have developed a general framework for

constructing reasoning models for the task of diagnosis and repair of reasoning pro-

cesses. We have examined the implications of limited initial knowledge on a case-based

learning and introspective learning system, the e�ects of di�erent problem orderings,

and the e�ects of continued limited knowledge if learning does not progress well.

We have also contributed to a better understanding of the more general problem

of modeling reasoning processes. We found it necessary to deviate from previous

Conclusions and Future Directions 217

models which were primarily abstract in form to incorporate both abstract knowl-

edge about the reasoning and knowledge that described how the reasoning process

actually worked. Abstract knowledge is required for the system to distinguish the big

picture from the messy details, and to understand the structure of the reasoning it

is describing. Speci�c knowledge is needed to relate the observed reasoning behavior

to the more abstract portions of the model, and to provide details for detecting and

repairing reasoning failures.

The ultimate goal we described in Chapter 1 was the development of a learning

system that applied the same set of learning mechanisms to opportunities to learn

about its domain or itself. The immediate goal of this research was one step towards

that long-range aim: to explore the possibilities of using a model-based approach to

introspective learning in combination with an underlying domain-knowledge learning

system. ROBBIE's successful integration of introspective learning with its case-based

learning system, forms a basis from which to generalize the application of introspective

learning in arti�cial intelligence systems.

Appendix A

Sample Run of ROBBIE

This appendix contains the output of a sample run of ROBBIE. Selected portions

of this example is used to illustrate portions of ROBBIE's planner; this is a more

complete and contiguous set of output (tedious details have been removed). Routine

output from the introspective reasoner has been suppressed, introspective output only

appear if a failure is detected.

--

Starting up World and Robot

Time of day randomly set to 11:00:01

Robot is facing east at the position 20 feet along maple street

--

Time = 11:00:01

ROBBIE receives a goal and creates a plan index for it:

Rob(CBR)>> New destination is:

The east side of elm, the 200 block, 90 feet along

Rob(Ind)>> Creating plan index

Rob(Ind)>> Creating index rule index

Rob(Ind)>> Index is:

(indexer plan 40 23 23 230)

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

218

Sample Run of ROBBIE 219

Rob(Ret)>> Retrieval level at 2

Rob(Ret)>> Retrieval level at 1

Rob(Ret)>> Retrieval level at 0

Rob(Ret)>> Cases under consideration are:

()

Rob(Ind)>> Index is:

(plan (sidewalk (street maple) (side north) (block 100) (along 20) (across 3))

(sidewalk (street elm) (side east) (block 200) (along 90)))

ROBBIE retrieves a case matching the goal:

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case old1 matched with difference value of 40

Rob(Ret)>> Case old2 matched with difference value of 25

Rob(Ret)>> Case old3 matched with difference value of 25

Rob(Ret)>> Cases under consideration are:

(old1 old2 old3)

Rob(Ret)>> Selecting case: old2

ROBBIE applies adaptation strategies to alter the old case
(most individual adaptations will be omitted.)

Rob(Ada)>> Considering adaptation of plan old2

Rob(Ada)>> Plan needs adaptation to repair differences

Rob(Ada)>> Mapping for cases found, beginning adaptation loop

Rob(Ada)>> Selecting next point of adaptation:

((1 ((starting-at none)

(turn none)

(move-on none)

(move-to none)

(turn none)

(move-on none)

(move-to none)

(ending-at none)))

(0 (starting-at none)))

Rob(Ind)>> Creating adaptor strategy index

Rob(Ind)>> Index is:

(adapt info new-dirs (index 0) major)

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case adapt45 matched with difference value of 4

Rob(Ret)>> Case adapt22 matched with difference value of 1

Rob(Ret)>> Cases under consideration are:

(adapt45 adapt22)

Rob(Ret)>> Selecting case: adapt22

Rob(Ada)>> Applying strategy:

(map (look-up old-dirs ?ind))

Sample Run of ROBBIE 220

Adaptation continues similarly, only selected adaptations will be shown

...

An example of the selection of an adaptation point which cannot
be adapted:
Rob(Ada)>> Selecting next point of adaptation:

(...)

Rob(Ind)>> Creating adaptor strategy index

Rob(Ind)>> Index is:

(adapt start copy (on none) turn)

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case adapt5 matched with difference value of 0

Rob(Ret)>> Case adapt45 matched with difference value of 4

Rob(Ret)>> Cases under consideration are:

(adapt5 adapt45)

Rob(Ret)>> Selecting case: adapt5

Rob(Ada)>> Applying strategy:

(if (blank inter-val) (no-op) (value-of inter-val))

Rob(Ada)>> NO-OPING

...

An example of the adaptation of a location for the
new plan by copying the location following it:
Rob(Ada)>> Selecting next point of adaptation:

(...)

Rob(Ind)>> Creating adaptor strategy index

Rob(Ind)>> Index is:

(adapt info new-locs end 6 blank blank fixed)

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case adapt47 matched with difference value of 7

Rob(Ret)>> Case adapt23b matched with difference value of 2

Rob(Ret)>> Cases under consideration are:

(adapt47 adapt23b)

Rob(Ret)>> Selecting case: adapt23b

Rob(Ada)>> Applying strategy:

(value-of (next-value new-locs ?ind))

...

An example of the adaptation of a street for the new
plan by taking the intersection of the sets of streets
at the current index and for the location following it:
Rob(Ada)>> Selecting next point of adaptation:

Sample Run of ROBBIE 221

(...)

Rob(CBR)>> Creating adaptor strategy index

Rob(CBR)>> Index is:

(adapt info new-streets move-to 3 fixed filled fixed)

Rob(CBR)>> Case adapt47 matched with 7

Rob(CBR)>> Case adapt24 matched with 1

Rob(CBR)>> Cases under consideration are:

(adapt47 adapt24)

Rob(CBR)>> Selecting case: adapt24

(find-inters

(set-intersect

(look-up new-streets ?ind)

(next-value new-streets ?ind)))

Rob(CBR)>> set-inters: (move-to (elm) (oak) (cherry) (date)) and

(turn (elm))

...

An example of adapting a direction of movement for the
new plan itself, mapped directly from the old plan's value
(the last adaptation strategy applied):
Rob(Ada)>> Selecting next point of adaptation:

(...)

Rob(Ind)>> Creating adaptor strategy index

Rob(Ind)>> Index is:

(adapt inter simple (dir none) major)

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case adapt8 matched with difference value of 0

Rob(Ret)>> Case adapt45 matched with difference value of 4

Rob(Ret)>> Cases under consideration are:

(adapt8 adapt45)

Rob(Ret)>> Selecting case: adapt8

Rob(Ada)>> Applying strategy:

(map old-plan-value)

Rob(CBR)>> Adapted case:

(((across 3 unspec))

((street elm birch)

(side east north)

(block 200 100)

(along 90 1))

())

((starting-at

(dir any)

(on (sidewalk (street maple) (side north) (block 100) (along 20) (across 3))))

(turn (dir west)

(on (sidewalk (street maple) (side north) (block 100)

(along 20) (across 3))))

Sample Run of ROBBIE 222

(move (dir west)

(on (sidewalk (street maple) (side north)))

(to (sidewalk (street elm) (side east))))

(turn (dir north) (on (sidewalk (street elm) (side east))))

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

(ending-at

(dir any)

(on (sidewalk (street elm) (side east) (block 200) (along 90)))))

ROBBIE, having created a plan, starts reactive execution:

Rob(Exe)>> No current step, getting from plan

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(starting-at

(dir any)

(on (sidewalk (street maple) (side north) (block 100) (along 20) (across 3))))

((facing east)

(moving #f)

(mov-speed none)

(loc (sidewalk (street maple) (side north) (block 100) (along 20) (across 3))))

())

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet0a matched with difference value of 10

Rob(Ret)>> Case planlet0c matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet0a planlet0c)

Rob(Exe)>> Choosing between planlets:

(planlet0c planlet0a)

Rob(Exe)>> Selecting planlet: planlet0a

Rob(Exe)>> Executing starting-at

Rob(Exe)>> Come to a stop

Robot is currently stationary...

Robot is facing east at the position 20 feet along maple street

--

Time = 11:00:02

Having veri�ed its initial position, the Executor starts the
next step, a turn to the west

Rob(Exe)>> Step successful!!

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

Sample Run of ROBBIE 223

(turn (dir west)

(on (sidewalk (street maple) (side north) (block 100)

(along 20) (across 3))))

((facing east)

(moving #f)

(mov-speed none)

(loc (sidewalk (street maple) (side north) (block 100) (along 20) (across 3))))

())

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet1 matched with difference value of 10

Rob(Ret)>> Case planlet2 matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet1 planlet2)

Rob(Exe)>> Choosing between planlets:

(planlet1 planlet2)

Rob(Exe)>> Selecting planlet: planlet2

Rob(Exe)>> Executing a turn to the west on maple

Rob(Exe)>> Come to a stop

Rob(Exe)>> Turning west

Robot is currently stationary...

Robot is facing west at the position 20 feet along maple street

The tra�c signal at Elm and Apple is temporarily broken:
Creating blockage

(breakage

(signal

(traflight (street1 elm) (street2 apple) (green e/w) (time 17) (warn #f)))

(start 3)

(end 33))

--

Time = 11:00:03

Rob(Exe)>> Step successful!!

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir west)

(on (sidewalk (street maple) (side north)))

(to (sidewalk (street elm) (side east))))

((facing west)

(moving #f)

(mov-speed none)

(loc (sidewalk (street maple) (side north) (block 100) (along 20) (across 3))))

())

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet3 matched with difference value of 10

Sample Run of ROBBIE 224

Rob(Ret)>> Case planlet3a matched with difference value of 10

Rob(Ret)>> Case planlet3b matched with difference value of 10

Rob(Ret)>> Case planlet3c matched with difference value of 10

Rob(Ret)>> Case planlet3d matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Choosing between planlets:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Selecting planlet: planlet3d

Rob(Exe)>> Executing a move west on maple

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving west to the position 17 feet along maple street

--

Time = 11:00:04

The robot will continue to move west until it reaches the
corner of Elm and Maple

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving west to the position 14 feet along maple street

--

Time = 11:00:05

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving west to the position 11 feet along maple street

--

Time = 11:00:06

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving west to the position 8 feet along maple street

--

Time = 11:00:07

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Sample Run of ROBBIE 225

Robot requests a look at upcoming street sign

Robot is entering an intersection

Robot is currently in motion...

Robot is moving west to 5 feet along and 3 feet across

the sidewalk at maple and elm

--

Time = 11:00:08

ROBBIE has achieved half of its plan, now it must turn
north and move to the �nal goal location

Rob(Exe)>> Step successful!!

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(turn (dir north) (on (sidewalk (street elm) (side east))))

((facing west)

(moving #t)

(mov-speed fast)

(loc (intersect

(street1 maple) (side1 north) (block1 100) (along1 5)

(street2 elm) (side2 east) (block2 100) (along2 3))))

())

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet1 matched with difference value of 10

Rob(Ret)>> Case planlet2 matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet1 planlet2)

Rob(Exe)>> Choosing between planlets:

(planlet1 planlet2)

Rob(Exe)>> Selecting planlet: planlet2

Rob(Exe)>> Executing a turn to the north on elm

Rob(Exe)>> Come to a stop

Rob(Exe)>> Turning north

Robot is currently stationary...

Robot is facing north at 3 feet along and 5 feet across

the sidewalk at elm and maple

--

Time = 11:00:09

Rob(CBR)>> Close to entering street south

Rob(Exe)>> Step successful!!

Sample Run of ROBBIE 226

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

((facing north)

(moving #f)

(mov-speed none)

(loc (intersect

(street1 elm) (side1 east) (block1 100) (along1 3)

(street2 maple) (side2 north) (block2 100) (along2 5))))

((cross-street south)))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet3 matched with difference value of 10

Rob(Ret)>> Case planlet3a matched with difference value of 10

Rob(Ret)>> Case planlet3b matched with difference value of 10

Rob(Ret)>> Case planlet3c matched with difference value of 10

Rob(Ret)>> Case planlet3d matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Choosing between planlets:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Selecting planlet: planlet3d

Rob(Exe)>> Executing a move north on elm

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to 6 feet along and 5 feet across

the sidewalk at elm and maple

--

Time = 11:00:10

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is leaving an intersection

Robot is currently in motion...

Robot is moving north to the position 9 feet along elm street

--

... Execution continues uneventfully until:

--

Time = 11:00:39

ROBBIE's robot is approaching Birch street, it must recognize

Sample Run of ROBBIE 227

which street and stop to cross with the green light

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot requests a look at upcoming street sign

Robot is entering an intersection

Robot is currently in motion...

Robot is moving north to 96 feet along and 5 feet across

the sidewalk at elm and birch

Stoplight at oak and birch changing to yellow.

Stoplight at oak and fir changing to green east and west.

Stoplight at date and birch changing to green north and south.

Stoplight at date and fir changing to green east and west.

--

Time = 11:00:40

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to 99 feet along and 5 feet across

the sidewalk at elm and birch

--

Time = 11:00:41

Rob(CBR)>> Close to entering street north

Rob(Exe)>> Context has changed, reconsidering planlet

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

((facing north)

(moving #t)

(mov-speed fast)

(loc (intersect

(street1 elm) (side1 east) (block1 100) (along1 99)

(street2 birch) (side2 south) (block2 100) (along2 5))))

((cross-street north)))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet3 matched with difference value of 10

Rob(Ret)>> Case planlet3a matched with difference value of 10

Rob(Ret)>> Case planlet3b matched with difference value of 10

Sample Run of ROBBIE 228

Rob(Ret)>> Case planlet3f matched with difference value of 10

Rob(Ret)>> Case planlet3c matched with difference value of 10

Rob(Ret)>> Case planlet3d matched with difference value of 10

Rob(Ret)>> Case planlet3g matched with difference value of 10

Rob(Ret)>> Case planlet3h matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet3 planlet3a planlet3b planlet3f planlet3c

planlet3d planlet3g planlet3h)

Rob(Exe)>> Choosing between planlets:

(planlet3 planlet3a planlet3b planlet3f planlet3c

planlet3d planlet3g planlet3h)

Rob(Exe)>> Selecting planlet: planlet3g

Rob(Exe)>> Executing a move north on elm

Rob(Exe)>> Storing current step

Rob(Exe)>> Making sub-goal: cross

Rob(Exe)>> Come to a stop

Rob(Exe)>> Looking at stop-light

Robot requests a look at upcoming stoplight

Robot is currently stationary...

Robot is facing north at 99 feet along and 5 feet across

the sidewalk at elm and birch

--

Time = 11:00:42

Rob(CBR)>> Close to entering street north

The light is not green, so ROBBIE will stay put until it is

Rob(Exe)>> Context has changed, reconsidering planlet

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(cross elm birch north)

((facing north)

(moving #f)

(mov-speed none)

(loc (intersect

(street1 elm) (side1 east) (block1 100) (along1 99)

(street2 birch) (side2 south) (block2 100) (along2 5))))

((stop-light e/w) (cross-street north)))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet5a matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet5a)

Rob(Exe)>> Choosing between planlets:

(planlet5a)

Sample Run of ROBBIE 229

Rob(Exe)>> Selecting planlet: planlet5a

Rob(Exe)>> Executing a street crossing north at elm and birch

Rob(Exe)>> Come to a stop

Robot is currently stationary...

Robot is facing north at 99 feet along and 5 feet across

the sidewalk at elm and birch

--

Time = 11:00:43

Rob(CBR)>> Close to entering street north

Rob(Exe)>> Context has changed, reconsidering planlet

Context always changes so long as trying to cross the street!
Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(...) As previous step
Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet5a matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet5a)

Rob(Exe)>> Choosing between planlets:

(planlet5a)

Rob(Exe)>> Selecting planlet: planlet5a

Rob(Exe)>> Executing a street crossing north at elm and birch

Rob(Exe)>> Come to a stop

Robot is currently stationary...

Robot is facing north at 99 feet along and 5 feet across

the sidewalk at elm and birch

--

... Execution continues uneventfully until:

--

Time = 11:00:49

Rob(CBR)>> Close to entering street north

Rob(Exe)>> Context has changed, reconsidering planlet

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(...)

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet5a matched with difference value of 10

Sample Run of ROBBIE 230

Rob(Ret)>> Cases under consideration are:

(planlet5a)

Rob(Exe)>> Choosing between planlets:

(planlet5a)

Rob(Exe)>> Selecting planlet: planlet5a

Rob(Exe)>> Executing a street crossing north at elm and birch

Rob(Exe)>> Come to a stop

Robot is currently stationary...

Robot is facing north at 99 feet along and 5 feet across

the sidewalk at elm and birch

Stoplight at elm and birch changing to green north and south.

Stoplight at cedar and fir changing to green east and west.

--

Time = 11:00:50

Rob(CBR)>> Close to entering street north

The tra�c signal changed color in the previous time step,
now ROBBIE can cross the street

Rob(Exe)>> Step successful!!

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

((facing north)

(moving #f)

(mov-speed none)

(loc (intersect

(street1 elm) (side1 east) (block1 100) (along1 99)

(street2 birch) (side2 south) (block2 100) (along2 5))))

((stop-light n/s) (cross-street north)))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet3 matched with difference value of 10

Rob(Ret)>> Case planlet3a matched with difference value of 10

Rob(Ret)>> Case planlet3b matched with difference value of 10

Rob(Ret)>> Case planlet3f matched with difference value of 10

Rob(Ret)>> Case planlet3c matched with difference value of 10

Rob(Ret)>> Case planlet3d matched with difference value of 10

Rob(Ret)>> Case planlet3g matched with difference value of 10

Rob(Ret)>> Case planlet3h matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet3 planlet3a planlet3b planlet3f planlet3c

planlet3d planlet3g planlet3h)

Sample Run of ROBBIE 231

Rob(Exe)>> Choosing between planlets:

(planlet3 planlet3a planlet3b planlet3f planlet3c

planlet3d planlet3g planlet3h)

Rob(Exe)>> Selecting planlet: planlet3h

Rob(Exe)>> Executing a move north on elm

Rob(Exe)>> Looking away from stop-light

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to the position 2 feet along

crossing birch on elm

Stoplight at cherry and birch changing to yellow.

--

Time = 11:00:51

Because it has moved into the street, it must once again
select a new planlet

Rob(Exe)>> Context has changed, reconsidering planlet

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

((facing north)

(moving #t)

(mov-speed fast)

(loc (in-street-inters

(street1 elm) (side1 east) (block1 (100 200)) (along1 2)

(street2 birch) (side2 in) (block2 100) (along2 5) (width2 20))))

())

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet3 matched with difference value of 10

Rob(Ret)>> Case planlet3a matched with difference value of 10

Rob(Ret)>> Case planlet3b matched with difference value of 10

Rob(Ret)>> Case planlet3c matched with difference value of 10

Rob(Ret)>> Case planlet3d matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Choosing between planlets:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Selecting planlet: planlet3d

Rob(Exe)>> Executing a move north on elm

Rob(Exe)>> Move along

Sample Run of ROBBIE 232

Robot is currently in motion...

Robot is moving north to the position 5 feet along

crossing birch on elm

--

Time = 11:00:52

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to the position 8 feet along

crossing birch on elm

Stoplight at elm and maple changing to yellow.

Stoplight at elm and fir changing to yellow.

--

... Execution continues uneventfully until:

--

Time = 11:00:56

Rob(CBR)>> Close to exiting street north

Because it is ready to exit the street, it selects
a new planlet

Rob(Exe)>> Context has changed, reconsidering planlet

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

((facing north)

(moving #t)

(mov-speed fast)

(loc (in-street-inters

(street1 elm) (side1 east) (block1 (100 200)) (along1 17)

(street2 birch) (side2 in) (block2 100) (along2 5) (width2 20))))

((exit-street north)))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet3 matched with difference value of 10

Rob(Ret)>> Case planlet3a matched with difference value of 10

Rob(Ret)>> Case planlet3b matched with difference value of 10

Rob(Ret)>> Case planlet3c matched with difference value of 10

Rob(Ret)>> Case planlet3d matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

Sample Run of ROBBIE 233

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Choosing between planlets:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Selecting planlet: planlet3d

Rob(Exe)>> Executing a move north on elm

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to the position 20 feet along

crossing birch on elm

--

Time = 11:00:57

Rob(CBR)>> Close to exiting street north

Rob(Exe)>> Context has changed, reconsidering planlet

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

((facing north)

(moving #t)

(mov-speed fast)

(loc (in-street-inters

(street1 elm) (side1 east) (block1 (100 200)) (along1 20)

(street2 birch) (side2 in) (block2 100) (along2 5) (width2 20))))

((exit-street north)))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet3 matched with difference value of 10

Rob(Ret)>> Case planlet3a matched with difference value of 10

Rob(Ret)>> Case planlet3b matched with difference value of 10

Rob(Ret)>> Case planlet3c matched with difference value of 10

Rob(Ret)>> Case planlet3d matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Choosing between planlets:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Selecting planlet: planlet3d

Rob(Exe)>> Executing a move north on elm

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to 3 feet along and 5 feet across

the sidewalk at elm and birch

Sample Run of ROBBIE 234

Stoplight at elm and maple changing to green north and south.

Stoplight at elm and fir changing to green east and west.

--

Time = 11:00:58

Rob(CBR)>> Close to entering street south

Rob(Exe)>> Context has changed, reconsidering planlet

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

((facing north)

(moving #t)

(mov-speed fast)

(loc (intersect

(street1 elm) (side1 east) (block1 200) (along1 3)

(street2 birch) (side2 north) (block2 100) (along2 5))))

((cross-street south)))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet3 matched with difference value of 10

Rob(Ret)>> Case planlet3a matched with difference value of 10

Rob(Ret)>> Case planlet3b matched with difference value of 10

Rob(Ret)>> Case planlet3c matched with difference value of 10

Rob(Ret)>> Case planlet3d matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Choosing between planlets:

(planlet3 planlet3a planlet3b planlet3c planlet3d)

Rob(Exe)>> Selecting planlet: planlet3d

Rob(Exe)>> Executing a move north on elm

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to 6 feet along and 5 feet across

the sidewalk at elm and birch

--

Time = 11:00:59

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is leaving an intersection

Robot is currently in motion...

Robot is moving north to the position 9 feet along elm street

Sample Run of ROBBIE 235

Stoplight at date and apple changing to green east and west.

--

Time = 11:00:60

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to the position 12 feet along elm street

--

... Execution continues uneventfully until:

--

Time = 11:01:26

Rob(Exe)>> Continue current step

Rob(Exe)>> Move along

Robot is currently in motion...

Robot is moving north to the position 90 feet along elm street

--

Time = 11:01:27

ROBBIE has reached the goal location, the move step is
over and only the ending veri�cation of the location remains

Rob(Exe)>> Step successful!!

Rob(Ind)>> Creating planlet index

Rob(Ind)>> Index is:

(planlet

(ending-at

(dir any)

(on (sidewalk (street elm) (side east) (block 200) (along 90))))

((facing north)

(moving #t)

(mov-speed fast)

(loc (sidewalk (street elm) (side east) (block 200) (along 90) (across 5))))

())

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case planlet0b matched with difference value of 10

Rob(Ret)>> Case planlet0d matched with difference value of 10

Rob(Ret)>> Cases under consideration are:

(planlet0b planlet0d)

Rob(Exe)>> Choosing between planlets:

(planlet0b planlet0d)

Sample Run of ROBBIE 236

Rob(Exe)>> Selecting planlet: planlet0b

Rob(Exe)>> Executing ending-at

Rob(Exe)>> Come to a stop

Robot is currently stationary...

Robot is facing north at the position 90 feet along elm street

Stoplight at elm and fir changing to green north and south.

--

Time = 11:01:28

Rob(Exe)>> Step successful!!

Rob(Exe)>> Plan complete

Rob(Exe)>> Final status:

((facing north)

(moving #f)

(mov-speed none)

(loc (sidewalk (street elm) (side east) (block 200) (along 90) (across 5))))

Robot is currently stationary...

Robot is facing north at the position 90 feet along elm street

--

Time = 11:01:29

ROBBIE must store the resulting plan in memory
(no introspective failures occur in this sample run)

Rob(Sto)>> Reconstructing finished plan

Rob(Sto)>> Irrelevancy: eliminate street crossing

Rob(Sto)>> Steps need combining

Rob(Sto)>> The plan to be stored:

(#:g1915

(plan (sidewalk (street maple) (side north) (block 100) (along 20) (across 3))

(sidewalk (street elm) (side east) (block 200) (along 90)))

((starting-at

(dir any)

(on (sidewalk (street maple) (side north) (block 100)

(along 20) (across 3))))

(turn (dir west)

(on (sidewalk (street maple) (side north) (block 100)

(along 20) (across 3))))

(move (dir west)

(on (sidewalk (street maple) (side north)))

(to (sidewalk (street elm) (side east))))

(turn (dir north) (on (sidewalk (street elm) (side east))))

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

Sample Run of ROBBIE 237

(ending-at

(dir any)

(on (sidewalk (street elm) (side east) (block 200) (along 90))))))

Rob(Ind)>> Creating plan solution index

Rob(Ind)>> Index is:

(solution

(starting-at

(dir any)

(on (sidewalk (street maple) (side north) (block 100)

(along 20) (across 3))))

(turn (dir west)

(on (sidewalk (street maple) (side north) (block 100)

(along 20) (across 3))))

(move (dir west)

(on (sidewalk (street maple) (side north)))

(to (sidewalk (street elm) (side east))))

(turn (dir north) (on (sidewalk (street elm) (side east))))

(move (dir north)

(on (sidewalk (street elm) (side east)))

(to (sidewalk (street elm) (side east) (block 200) (along 90))))

(ending-at

(dir any)

(on (sidewalk (street elm) (side east) (block 200) (along 90)))))

Rob(Ret)>> Starting to retrieve

Rob(Ret)>> Retrieval level at 3

Rob(Ret)>> Case old1 matched with difference value of 44

Rob(Ret)>> Case old2 matched with difference value of 14

Rob(Ret)>> Case old3 matched with difference value of 36

Rob(Ret)>> Cases under consideration are:

(old1 old2 old3)

Rob(Sto)>> Storing plan in memory under name: g1915

Rob(CBR)>> ===

Rob(CBR)>> Number of cases considered in retrieval: 3

Rob(CBR)>> Total number of cases in memory: 65

Rob(CBR)>> Number of plans in memory: 4

Rob(CBR)>> Number of rules in memory: 0

Rob(CBR)>> Adaptation was done

Rob(CBR)>> Replanning was done 0 times

Rob(CBR)>> New plan was stored

...

Appendix B

Taxonomy of Failures

This appendix contains a listing of the failure taxonomy as it was developed for

ROBBIE. The taxonomy was developed by considering the planning process in detail

and determining points where failures might occur for each component. Some types

of failures are the same in di�erent components because of the re-use of case-based

reasoning for parts of the whole planning process.

Trace of reasoning process Types of failures
Indexer: Relevant feature missing from criteria
1. Given the initial description,
2. Retrieve all matching rules Fails to retrieve relevent rule
using coordinates for locations, Builds indexer index incorrectly
and uni�cation to match indices Matching picks wrong rule, or misses one
3. For each rule, add new feature to
description

Feature incorrectly added

and go on to the next rule Fails to apply all retrieved rules
4. Pass �nal description back Fails to have start, end, or special features

in the right form

238

Taxonomy of Failures 239

Trace of reasoning process Types of failures
Retriever: Fails to retrieve the best case

Retrieves wrong number/kind of cases
1. Loop starting with highest restrictive-
ness of similarity

Tries to retrieve with invalid
restrictiveness

2. Make a list of cases whose similarity
assessment is good enough

Wrong cases judged similar

Use wrong similarity measure
Weighting of similarity stresses wrong
features

3. If no matches, decrease restrictiveness
and repeat (from 1)
4. Else if \many" to be retrieved then
return all matches,

Retrieves zero matches when at least one
required

5. Else select those from the list of equal
similarity,

Fails to select most similar

6. Pick randomly from among equally
similar
7. Pass selected case(s) back Retrieved case has the wrong type

Wrong number of cases retrieved
Case retrieved is ill-formed

Adaptor: Fails to adapt adaptable case
Does not have a strategy for adapting
some situation
An adaptable case exists in memory, but
isn't the retrieved one

1. Map the old cardinal directions onto
new (i.e. north)north, east)west, etc.)

Finds no unique mapping

2. If mapping failed, suggest re-retrieval Finds no mapping when one exists
3. Else create a template new solution Skeletal plan is incorrect
5. Set up supplemental information information incorrectly initialized
6. Repeat until the new case is �nished New case never gets �nished

Misses an unadapted slot
|Select place to adapt Selects an already adapted place
|Retrieve an applicable strategy Retrieves irrelevant strategy

Finds no strategy applicable
|Apply to the hole Application incorrectly alters plan
7. Return adapted case Case is incompletely adapted

Case is incorrectly adapted

Taxonomy of Failures 240

Trace of reasoning process Types of failures
Re-retriever:

1. Select an intermediate location Chooses bad intermediate location
Chooses invalid intermediate location
(i.e., location does not exist)

2. Retrieve and adapt a case from start to
intermediate

(failures for Retriever and Adaptor apply
here)

3. Retrieve-and-adapt a case from inter-
mediate to end
4. Concatenate the cases Steps are omitted in concatenating

Extra steps are included in concatenating
5. Return the result Case has wrong, unusable structure

Executor: Fails to have a planlet for some situation
Fails to apply a planlet

1. Given a plan, initialize system for
execution

Sets up internal view of world incorrectly

2. While there are plan-steps left Plan execution never ends
| If starting a step or context has
changed

Fails to notice context change

Fails to update context correctly
| a. Retrieve planlets from memory Does not retrieve applicable planlet
| b. Pick the planlet matching current
context

Picks the wrong planlet

| c. Perform subactions in this timestep Actions cause a failure
| Else continue current actions Actions cause a failure
3. When plan complete pass execution log
to Storer

Plan does not lead to the goal

At goal while plan steps still pending
Collides with an obstacle
Finds itself in unexpected location
Takes too long to execute plan

Storer: Gives the same plan steps two di�erent
indices

1. Reconstruct �nal solution from steps Fails to reconstruct all plan steps
Inserts plan steps not in logs

2. Search memory for an exact match, Stores an identical plan in memory twice
3. If �nd an exact match, don't store case,
4. Else add case to memory Gives new plan bad index

Stores new plan incorrectly

Appendix C

ROBBIE's Introspective Model

This appendix contains a portion of the actual model structure for ROBBIE. The

model structure is a set of clusters containing assertions and connections to each

other. Each assertion also contains links to other assertions causally related to it, a

list of the underlying information upon which it depends, and a repair class, if any

exists. The portions of the model include the cluster for the system as a whole, and

the clusters, abstract and speci�c, for the Indexer component of the planner.

(define model

'((whole

(parts indexer retriever adaptor re-retriever executor storer)

(assertions))

(indexer

(parts indexer-specific)

(assertions

(1 (depend-on-spec "the indexer knows all relevant features")

(when on-failure)

()

(links (spec (indexer-specific 1))

(next (indexer 2)))

(repair))

(2 (depend-on-spec "the indexer will build the correct index")

241

ROBBIE's Introspective Model 242

(when on-failure during)

()

(links (spec (indexer-specific 2))

(spec (indexer-specific 3))

(spec (indexer-specific 4))

(next (indexer 3))

(prev (indexer 1)))

(repair))

(3 (and (depend-on-spec

"the indexer will produce a valid index")

(depend-on-next

"the indexer will produce a valid index"))

(when on-failure after)

()

(links (spec (indexer-specific 5))

(spec (indexer-specific 6))

(spec (indexer-specific 7))

(next (retriever 1))

(prev (indexer 2)))

(repair))))

(indexer-specific

(parts)

(assertions

(1 (values-compare-by find-features final-solution context)

(when on-failure)

(find-features final-solution context)

(links (abstr (indexer 1))

(next (indexer-specific 2)))

(repair add-case))

(2 (or (not (has-value index-type plan))

(has-type goal location?))

(when before)

(index-type goal location?)

(links (abstr (indexer 2))

(prev (indexer-specific 1))

(next (indexer-specific 2)))

(repair))

(3 (magnitudes-compare-by > new-index index)

; the relevant new features will be added

(when during)

(new-index index >)

(links (abstr (indexer 2))

ROBBIE's Introspective Model 243

(prev (indexer-specific 2))

(next (indexer-specific 4)))

(repair))

(4 (or (not (has-value index-type plan))

(contains-part-of-type index other-part spec-index?))

; new features will be added correctly

(when during)

(index-type index other-part spec-index?)

(links (abstr (indexer 2))

(prev (indexer-specific 3))

(next (indexer-specific 5))

(next (indexer-specific 6))

(next (indexer-specific 7)))

(repair))

(5 (or (not (has-value index-type plan))

(contains-part-of-type index from-part location?))

; the final index will have a from location

(when after)

(index index-type from-part location?)

(links (abstr (indexer 3))

(prev (indexer-specific 4)))

(repair))

(6 (or (not (has-value index-type plan))

(contains-part-of-type index to-part location?))

; the final index will have a to location

(when after)

(index index-type to-part location?)

(links (abstr (indexer 3))

(prev (indexer-specific 4)))

(repair))

(7 (or (not (has-value index-type plan))

(contains-part-of-type index other-part spec-index?))

; the final index will have a proper special-part

(when after)

(index index-type other-part spec-index?)

(links (abstr (indexer 3))

(prev (indexer-specific 4)))

(repair))))

Bibliography

Agre, P. & Chapman, D. (1987). Pengi: an implementation of a theory of activity. In

Proceedings of the Sixth Annual National Conference on Arti�cial Intelligence

Seattle, WA. AAAI.

Alterman, R. (1986). An adaptive planner. In Proceedings of the Fifth National

Conference on Arti�cial Intelligence, pp. 65{69 Philadelphia, PA. AAAI.

Arcos, J. & Plaza, E. (1993). A re
ective architecture for integrated memory-based

learning and reasoning. In Wess, S., Alto�, K., & Richter, M. (Eds.), Topics in

Case-Based Reasoning. Springer-Verlag, Kaiserslautern, Germany.

Bain, W. (1986). Case-based Reasoning: A Computer Model of Subjective Assessment.

Ph.D. thesis, Yale University. Computer Science Department Technical Report

470.

Barletta, R. & Mark, W. (1988). Explanation-based indexing of cases. In Kolodner,

J. (Ed.), Proceedings of a Workshop on Case-Based Reasoning, pp. 50{60 Palo

Alto. DARPA, Morgan Kaufmann, Inc.

Bhatta, S. & Goel, A. (1993). Model-based learning of structural indices to design

cases. In Proceedings of the IJCAI-93 Workshop on Reuse of Design Chambery,

France. IJCAI.

244

BIBLIOGRAPHY 245

Birnbaum, L., Collins, G., Brand, M., Freed, M., Krulwich, B., & Pryor, L. (1991). A

model-based approach to the construction of adaptive case-based planning sys-

tems. In Bareiss, R. (Ed.), Proceedings of the Case-Based Reasoning Workshop,

pp. 215{224 San Mateo. DARPA, Morgan Kaufmann, Inc.

Birnbaum, L., Collins, G., Freed, M., & Krulwich, B. (1990). Model-based diagnosis of

planning failures. In Proceedings of the Eighth National Conference on Arti�cial

Intelligence, pp. 318{323 Boston, MA. AAAI.

Brooks, R. (1987). Intelligence without representation. In Proceedings of the Work-

shop on the Foundations of Arti�cial Intelligence Cambridge, MA. MIT.

Burke, R. (1993). Retrieval strategies for tutorial stories. In Leake, D. (Ed.), Proceed-

ings of the AAAI-93 Workshop on Case-Based Reasoning, pp. 118{124 Wash-

ington, DC. AAAI. AAAI Press technical report WS-93-01.

Chandrasekaran, B. (1994). Functional representation and causal processes. In Yovits,

M. (Ed.), Advances in Computers. Academic Press, New York.

Chi, M. & Glaser, R. (1980). The measurement of expertise: a development of knowl-

edge and skill as a basis for assessing achievement. In Baker, E. & Quellmalz,

E. (Eds.), Educational testing and evaluation: Design, analysis and policy. Sage

Publications, Beverly Hill, CA.

Cohen, P. & Howe, A. (1988). How evaluation guides ai research. The AI Magazine,

9 (4), 35{43.

Collins, G., Birnbaum, L., Krulwich, B., & Freed, M. (1993). The role of self-models in

learning to plan. In Foundations of Knowledge Acquisition: Machine Learning,

pp. 83{116. Kluwer Academic Publishers.

BIBLIOGRAPHY 246

Cottrell, G. W. & Tsung, F.-S. (1989). Learning simple arithmetic procedures. In

Proceedings of the Eleventh Annual Conference of the Cognitive Science Society,

pp. 58{65 Hillsdale, NJ. Lawrence Erlbaum Associates.

Cox, M. (1994). Machines that forget: learning from retrieval failure of mis-indexed

explanations. In Proceedings of the Sixteenth Annual Conference of the Cognitive

Science Society, pp. 225{230. Lawrence Erlbaum Associates.

Cox, M. (1995). Representing mental events (or the lack thereof). In Proceedings of the

1995 AAAI Spring Symposium on Representing Mental States and Mechanisms.

Cox, M. & Freed, M. (Eds.). (1995). Proceedings of the 1995 AAAI Spring Symposium

on Representing Mental States and Mechanisms, Stanford, CA. AAAI.

DeJong, G. & Mooney, R. (1986). Explanation-based learning: an alternative view.

Machine Learning, 1 (1), 145{176.

Downs, J. & Reichgelt, H. (1991). Integrating classical and reactive planning within

an architecture for autonomous agents. In European Workshop on Planning,

pp. 13{26.

Efron, B. & Tibshirani, R. (1993). An Introduction to the Boostrap. Chapman &

Hall.

Elman, J. L. (1991). Incremental learning, or the importance of starting small. Annual

Conference of the Cognitive Science Society, 13, 443{448.

Evett, M. (1994). PARKA: A System for Massively Parallel Knowledge Representa-

tion. Ph.D. thesis, University of Maryland.

BIBLIOGRAPHY 247

Firby, J., Kahn, R., Prokopowicz, P., & Swain, M. (1995). An architecture for vision

and action. In Proceedings of the Fourteenth International Joint Conference on

Arti�cial Intelligence, pp. 72{79. Morgan Kaufmann Publishers.

Firby, R. J. (1989). Adaptive Execution in Complex Dynamic Worlds. Ph.D. thesis,

Yale University, Computer Science Department. Technical Report 672.

Flavell, J. (1985). Cognitive Development. Prentice-Hall, Englewood Cli�s, NJ.

Flavell, J., Friedrichs, A., & Hoyt, J. (1970). Develpmental changes in memorization

processes. Cognitive Psychology, 1, 324{340.

Fowler, N., Cross, S., & Owens, C. (1995). The ARPA-Rome knowledge-based plan-

ning initiative. IEEE Expert, 10 (1), 4{9.

Fox, S. & Leake, D. (1994). Using introspective reasoning to guide index re�nement

in case-based reasoning. In Proceedings of the Sixteenth Annual Conference of

the Cognitive Science Society, pp. 324{329 Atlanta, GA. Lawrence Erlbaum

Associates.

Fox, S. & Leake, D. (1995a). An introspective reasoning method for index re�nement.

In Proceedings of 14th international Joint Conference on Arti�cial Intelligence.

IJCAI.

Fox, S. & Leake, D. (1995b). Learning to re�ne indexing by introspective reasoning.

In Proceedings of the First International Conference on Case-Based Reasoning

Sesimbra, Portugal.

BIBLIOGRAPHY 248

Fox, S. & Leake, D. (1995c). Modeling case-based planning for repairing reasoning

failures. In Proceedings of the 1995 AAAI Spring Symposium on Representing

Mental States and Mechanisms Stanford, CA. AAAI.

Freed, M. & Collins, G. (1994a). Adapting routines to improve task coordination. In

Proceedings of the 1994 Conference on AI Planning Systems, pp. 255{259.

Freed, M. & Collins, G. (1994b). Learning to prevent task interactions. In desJardins,

M. & Ram, A. (Eds.), Proceedings of the 1994 AAAI Spring Symposium on

Goal-driven Learning, pp. 28{35. AAAI Press.

Gat, E. (1992). Integrating planning and reacting in a heterogeneous asynchronous

architecture for controlling real-worl mobile robots. In Proceedings, Tenth Na-

tional Conference on Arti�cial Intelligence, pp. 809{815.

Gentner, D. (1988). Metaphor as structure mapping: the relational shift. Child

Development, 59, 47{59.

Goel, A., Ali, K., & de Silva Garza, A. G. (1994). Computational tradeo�s in

experience-based reasoning. In Proceedings of the AAAI-94 workshop on Case-

Based Reasoning, pp. 55{61 Seattle, WA.

Goel, A., Callantine, T., Shankar, M., & Chandrasekaran, B. (1991). Representation,

organization, and use of topographic models of physical spaces for route plan-

ning. In Proceedings of the Seventh IEEE Conference on AI Applications, pp.

308{314. IEEE Computer Society Press.

Goel, A. & Chandrasekaran, B. (1989). Use of device models in adaptation of de-

sign cases. In Hammond, K. (Ed.), Proceedings of the Case-Based Reasoning

Workshop, pp. 100{109 San Mateo. DARPA, Morgan Kaufmann, Inc.

BIBLIOGRAPHY 249

Gruber, T. (1989). Automated knowledge acquisition for strategic knowledge. Ma-

chine Learning, 4, 293{336.

Hammond, C. (1989). Case-Based Planning: Viewing Planning as a Memory Task.

Academic Press, San Diego.

Hennessey, D. & Hinkle, D. (1991). Initial results from clavier: a case-based autoclave

loading assistant. In Bareiss, R. (Ed.), Proceedings of the Case-Based Reasoning

Workshop, pp. 225{232 San Mateo. DARPA, Morgan Kaufmann, Inc.

Hinrichs, T. (1992). Problem Solving in Open Worlds: A Case Study in Design.

Lawrence Erlbaum Associates, Hillsdale, NJ.

Ibrahim, M. (1992). Re
ection in object-oriented programming. International Journal

on Arti�cial Intelligence Tools, 1 (1), 117{136.

Kitano, H., Shibata, A., Shimazu, H., Kajihara, J., & Sato, A. (1992). Building large-

scale and corporate-wide case-based systems: integration of organizational and

machine executable algorithms. In Proceedings of the Tenth National Conference

on Arti�cial Intelligence, pp. 843{849 San Jose, CA. AAAI.

Kodrato�, Y. & Michalski, R. (Eds.). (1990). Machine Learning: An Arti�cial Intel-

ligence Approach, Vol. 3. Morgan Kaufmann.

Kolodner, J. (1984). Retrieval and Organizational Strategies in Conceptual Memory.

Lawrence Erlbaum Associates, Hillsdale, NJ.

Kolodner, J. (1988). Retrieving events from a case memory: a parallel implementa-

tion. In Kolodner, J. (Ed.), Proceedings of a Workshop on Case-Based Reason-

ing, pp. 233{249 Palo Alto. DARPA, Morgan Kaufmann, Inc.

BIBLIOGRAPHY 250

Kolodner, J. (1993a). Case-Based Reasoning, chap. 8, pp. 289{320. Morgan Kaufman,

San Mateo, CA.

Kolodner, J. (1993b). Case-Based Reasoning. Morgan Kaufman, San Mateo, CA.

Koton, P. (1989). Smartplan: a case-based resource allocation and scheduling system.

In Hammond, K. (Ed.), Proceedings of the Case-Based Reasoning Workshop, pp.

290{294 San Mateo. DARPA, Morgan Kaufmann, Inc.

Kreutzer, M., Leonard, M., & Flavell, J. (1975). An interview study of children's

knowledge about memory. Monographs of the Society for Research in Child

Development, 40. (1, Serial No. 159).

Krulwich, B., Birnbaum, L., & Collins, G. (1992). Learning several lessons from one

experience. In Proceedings of the Fourteenth Annual Conference of the Cognitive

Science Society, pp. 242{247 Bloomington, IN. Cognitive Science Society.

Leake, D. (1992). Evaluating Explanations: A Content Theory. Lawrence Erlbaum

Associates, Hillsdale, NJ.

Leake, D. (1995). Combining rules and cases to learn case adaptation. In Proceedings

of the Seventeenth Annual Conference of the Cognitive Science Society Pitts-

burgh, PA. Lawrence Erlbaum Associates.

Leake, D. & Owens, C. (1986). Organizing memory for explanation. In Proceedings

of the Eighth Annual Conference of the Cognitive Science Society, pp. 710{715

Amherst, MA. Cognitive Science Society.

Lehnert, W. (1978). The Process of Question Answering. Lawrence Erlbaum Asso-

ciates, Hillsdale, NJ.

BIBLIOGRAPHY 251

Machine Learning (1989) Machine Learning, 4 (3/4). Special issue on knowledge

acquisition.

McDermott, D. (1981). Arti�cial intelligence meets natural stupidity. In Haugeland,

J. (Ed.), Mind Design. MIT Press, Bradford Books, Cambridge, MA.

Meeden, L. (1994). Towards Planning: Incremental Investigations into Adaptive

Robot Control. Ph.D. thesis, Indiana University, Computer Science Depart-

ment.

Michalski, R., Carbonell, J., & Mitchell, T. (Eds.). (1983). Machine Learning: An

Arti�cial Intelligence Approach, Vol. 1. Morgan Kaufmann.

Michalski, R., Carbonell, J., & Mitchell, T. (Eds.). (1986). Machine Learning: An

Arti�cial Intelligence Approach, Vol. 2. Morgan Kaufmann.

Michalski, R. & Tecuci, G. (Eds.). (1994). Machine Learning: A multistrategy ap-

proach, Vol. 4. Morgan Kaufmann.

Minton, S. (1990). Quantitative results concerning the utility of explanation-based

learning. Arti�cial Intelligence, 42, 363{391.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based generaliza-

tion: a unifying view. Machine Learning, 1 (1), 47{80.

Nourbakhsh, I., Powers, R., & Birch�eld, S. (1995). Dervish: an o�ce-navigating

robot. AI Magazine, 16 (2), 53{60.

Oehlmann, R., Edwards, P., & Sleeman, D. (1995). Introspection planning: rep-

resenting metacognitive experience. In Proceedings of the 1995 AAAI Spring

Symposium on Representing Mental States and Mechanisms.

BIBLIOGRAPHY 252

Ram, A. (1989). Question-driven understanding: An integrated theory of story un-

derstanding, memory and learning. Ph.D. thesis, Yale University, New Haven,

CT. Computer Science Department Technical Report 710.

Ram, A. (1993). Indexing, elaboration and re�nement: incremental learning of ex-

planatory cases. Machine Learning, 10 (3), 201{248.

Ram, A. & Cox, M. (1994). Introspective reasoning using meta-explanations for

multistrategy learning. In Michalski, R. & Tecuci, G. (Eds.), Machine Learning:

A Multistrategy Approach. Morgan Kaufmann.

Redmond, M. (1992). Learning by Observing and Understanding Expert Problem

Solving. Ph.D. thesis, College of Computing, Georgia Institute of Technology.

Technical report GIT-CC-92/43.

Riesbeck, C. (1981). Failure-driven reminding for incremental learning. In Proceedings

of the Seventh International Joint Conference on Arti�cial Intelligence, pp. 115{

120 Vancouver, B.C. IJCAI.

Rosenbloom, P., Laird, J., & Newell, A. (1993a). Meta Levels in Soar, Vol. I, chap. 26.

The MIT Press.

Rosenbloom, P., Laird, J., & Newell, A. (1993b). R1-SOAR: An Experiment in

Knowledge-Intensive Programming in a Problem Solving Architecture, Vol. I,

chap. 9. The MIT Press.

Ross, B. (1989). Some psychological results on case-based reasoning. In Hammond,

K. (Ed.), Proceedings of the Case-Based Reasoning Workshop, pp. 144{147 San

Mateo. DARPA, Morgan Kaufmann, Inc.

BIBLIOGRAPHY 253

Schank, R. (1982). Dynamic memory: A theory of learning in computers and people.

Cambridge University Press.

Schank, R. (1986). Explanation Patterns: Understanding Mechanically and Cre-

atively. Lawrence Erlbaum Associates, Hillsdale, NJ.

Schank, R. & Leake, D. (1989). Creativity and learning in a case-based explainer.

Arti�cial Intelligence, 40 (1-3), 353{385. Also in Carbonell, J., editor, Machine

Learning: Paradigms and Methods, MIT Press, Cambridge, MA, 1990.

Simoudis, E. (1992). Using case-based retrieval for customer technical support. IEEE

Expert, 7 (5), 7{13.

Simoudis, E. & Miller, J. (1991). The application of cbr to help desk applications.

In Bareiss, R. (Ed.), Proceedings of the Case-Based Reasoning Workshop, pp.

25{36 San Mateo. DARPA, Morgan Kaufmann, Inc.

Simpson, R. (1985). A Computer Model of Case-based Reasoning in Problem-solving:

An Investigation in the Domain of Dispute Mediation. Ph.D. thesis, School of

Information and Computer Science, Georgia Institute of Technology. Georgia

Institute of Technology, Technical Report GIT-ICS-85/18.

Stan�ll, C. & Waltz, D. (1988). The memory-based reasoning paradigm. In Kolodner,

J. (Ed.), Proceedings of a Workshop on Case-Based Reasoning, pp. 414{424 San

Mateo. DARPA, Morgan Kaufmann, Inc.

Stroulia, E. & Goel, A. (1992). Generic teleological mechanisms and their use in case

adaptation. In Proceedings of the Fourteenth Annual Conference of the Cognitive

Science Society, pp. 319{324 Bloomington, IN. Cognitive Science Society.

BIBLIOGRAPHY 254

Stroulia, E. & Goel, A. (1994). Task structures: what to learn?. In desJardins,

M. & Ram, A. (Eds.), Proceedings of the 1994 AAAI Spring Symposium on

Goal-driven Learning, pp. 112{121. AAAI Press.

Sycara, K. & Navinchandra, D. (1989). Index transformation and generation for case

retrieval. In Hammond, K. (Ed.), Proceedings of the Case-Based Reasoning

Workshop, pp. 324{328 San Mateo. DARPA, Morgan Kaufmann, Inc.

Veloso, M. & Carbonell, J. (1993). Derivational analogy in prodigy: automating case

acquisition, storage, and utilization. Machine Learning, 10 (3), 249{278.

