
Collective Objects: An Object-Oriented Tool for Collective

Operations in Distributed Parallel Computation

Katarzyna Keahey

Dennis Gannon

fkksiazek, gannon g@cs.indiana.edu

Indiana University

215 Lindley Hall

Bloomington, IN 47401

May 6, 1996

Abstract:

This paper describes the collective object, a new abstraction providing support for collective opera-
tions common in parallel programming. The collective object is introduced in the context of research
aiming to produce a design of a distributed object-oriented environment suitable for parallel com-
putation, and will constitute a part of the object model of this environment. We give a formal
de�nition of the collective object and supporting constructs and conclude with some examples and
preliminary results concerning application of the collective object.

1 Introduction

Challenging object-oriented technology to create interoperability between distributed and hetero-
geneous modules has lead to the development of the Common Object Request Broker (CORBA)
[OMG95] standard from The Object Management Group (OMG). The success of CORBA relies on
the introduction of an object model which allows the designers of distributed, heterogeneous ap-
plications to express their programs completely in terms of object interactions. The idea of object
encapsulation, enforced through interfaces, lets the programmer separate the services provided by
an object from implementation details. Our research concentrates on formulating an environment
which would use ideas developed by CORBA to bring interoperability of heterogeneous and dis-
tributed modules into the domain of parallel programming. We are therefore looking for a set of
abstractions which would let the programmers of parallel applications formulate their ideas in its
terms. Towards that end, this paper introduces the concept of a collective object, a new abstraction
providing support for collective operations, such as barrier, gather, or reduce.

So far no object-oriented abstraction supporting collective operations has been de�ned. We feel
that such abstraction is needed since it would allow programmers to formulate their own collective
methods instead of relying on a limited set of system primitives. Conventional objects do not
have the functionality needed to perform collective operations. In particular they lack the ability
to accept and process an invocation coming from several sources as one service. It is therefore
necessary to introduce an abstraction which will both draw on the functionality and elegance of

1

object-oriented programming and provide this service in a way which is simple, intuitive, and makes
e�cient implementation possible.

This paper de�nes the concept of a collective object: a parallel abstraction designed to implement
collective operations associated with a set of clients. Services of the collective object can include
standard collective operations and other events which could be common to a set of clients, such
as main thread events. A collective service is performed in answer to a collective invocation, that
is a set of requests coming from all the clients registered with a given collective object. Each of
the registered clients has to request the service exactly once; in response to this set of requests the
collective method is provided only once.

The key di�erence between a collective invocation and an ordinary invocation is that an ordinary
method will be invoked many times in response to many invocations. The state of the object that
the method is invoked on, can change between invocations and the side-e�ects, if any, produced by
this methods will be repeated. A collective method on the other hand, will be executed only once,
and its execution will be completed only if all of the clients join in the invocation.

The notion of a collective invocation gives rise to questions about client synchronization. In par-
ticular we would want to know if all clients need to communicate their requests to the collective
object before the collective method is executed, and whether it is safe to assume that they will all
return from the call at the same time. Most collective operations do not require synchronizing with
all clients, either on entry, or on exit. In the gather operation for example, each client can be \ser-
viced" independently. A sum reduction can be executed on behalf of the clients which have already
joined the invocation while waiting for other clients to contribute their input. Similarly, on exit from
a collective method, only some operations (such as barrier) will require the clients to synchronize.
The decision about whether to synchronize or not is therefore left to the programmer, and support
is provided to monitor dependencies between individual clients, thus letting the programmer avoid
synchronization whenever possible.

Dependencies between individual clients will arise mostly from argument instantiation and return in
a non-synchronized invocation. In general, since each of the invoking clients can bring di�erent ar-
gument values into the collective method, collective objects require techniques of argument handling
which would associate the invoking clients with argument values instantiated by them. This function
is ful�lled by the Collective Associative data structures (CAs) which maintain a mapping between
the clients of a collective object, arguments instantiated by them and semaphores signaling argu-
ment instantiation. Associating argument values with semaphores prevents accessing uninstantiated
arguments and lets the programmer write code without having to worry about the asynchronous
nature of collective entry.

2 Motivation

This research grew out of our experiences in distributed parallel programming, in particular the
work on the distributed version of the Self Consistent Field (SCF) program [NBB+96] which was
part of the I-WAY project presented at SuperComputing '95. SCF [HO92] simulates the interaction
of galaxies by performing N-body computation on their gravitational �elds. The computation is
data-parallel in character, and in its distributed version it consists of several components distributed
over di�erent supercomputers.

The data exchange in the SCF application relies on a reduce-and-broadcast operation consisting of
reducing the vector of coe�cients describing the gravitational �eld of galaxies and then broadcasting
it to all computational units. Our philosophy in implementing distributed SCF was to create inter-

2

operability between existing heterogeneous components, rather than redesign them to use a common
communication base. Therefore, in addition to local reduce-and-broadcast operations, each compo-
nent participated in a global reduce-and-broadcast, exchanging the vector of gravitational coe�cients
with other distributed components. The global reduce-and-broadcast operation was implemented
by sclib, a library written specially to work with this project.

This experiment provided an insight into the general needs of a distributed object-oriented envi-
ronment. In particular, it made clear the necessity to support a wide range of collective operations
enabling collaboration between distributed parts of data-parallel computations. At this point we
were faced with two choices: either to provide collective services as library calls, or to place entities
capable of supporting collective services in the object model of our environment and thus give the
programmer the opportunity to de�ne his or her own collective operations. We chose the latter.

Our primary motivation was
exibility. Programming in terms of library calls is limiting; a pro-
grammer wanting to implement collective operations not supported by the library has to resort to
programming in terms of low-level primitives, which is both arduous and error prone. Library de-
signers have recognized this problem and e�orts have been made to relax the rigidity of �xed library
interfaces [For95], but still within the narrow limits of a library.

The collective object o�ers the programmer a
exible tool for developing his or her own collective
operations. Through shifting the support for coordinating invocation from many processes onto the
system and providing suitable argument support, the collective object lets the programmer concen-
trate on the semantics of the collective operation itself and disregard the mechanics of interaction
of the participating processes.

Further, viewing collective operations as method invocations in the context of a parallel system,
rather than as library primitives, leads to interesting ideas and generalizations. One of them is
giving the notion of a collective invocation non-blocking semantics, and representing values returned
from this invocation as futures. One of our experiments demonstrates how this idea can be used to
overlap di�erent levels of communication without loss of clarity in programming.

Finally, we found it very convenient to think in terms of the collective object abstraction. It deals
with concepts frequently and widely used in parallel programming in a way that is very accessible
to the programmer. We found that it gave us a fresh way of looking at parallel programs which lead
to interesting ideas on how to improve them.

3 De�ning the Abstraction

3.1 Extensions to the CORBA Object Model

In the CORBA model, objects (servers or service providers) are de�ned as encapsulated entities
which can perform certain actions (services) upon request. Clients are entities capable of requesting
services to be performed by speci�c objects. A request is an event that communicates to the service
provider that a client wants a speci�c service performed; the request can carry with it some input
data which can be used by the server in performing the service and it may demand some output
which is a product of the service. A service is an action performed by the object to satisfy a request.

Let C be a set of clients fc1; c2; : : : ; cng. Let rs be a request for a service s and let (ci; rs) denote
a request for service s issued by ci 2 C. A collective request R(C;s) for service s from C is a set of
requests R(C;s) such that 8ci 2 C; (ci; rs) 2 R(C;s) and (ci; rs) 2 R(C;s) ^ (cj ; rs) 2 R(C;s)) i 6= j.
Informally, R(C;s) is a set of requests of the same kind such that every client in C makes the request

3

exactly once. R(C;s) can be satis�ed either by providing service s n times, if n =j C j, or providing
s only once if s is a collective service.

A collective service s is a service performed in response to a collective request R(C;s) only once; input
carried by any (ci; rs) 2 R(C;s) can be used by the service provider in performing s, and any output
produced by s can be returned to any ci 2 C. An entity capable of providing such services is called
a collective object, that is, a collective object associated with C, COLLC , is an object capable of
providing collective services to C.

Like regular CORBA objects, the services provided by a collective object are de�ned by an inter-
face. Rather than introducing a new keyword to CORBA IDL, we decided to make this distinction
between a collective and ordinary object visible through requiring that the collective object inherit
form a generic collective object de�ned by the Distributed Object-Oriented and Parallel (DOOP)
environment. The generic collective object interface will additionally make available many common
collective operations. An example IDL de�nition might look like this:

interface my_collective: DOOP::collective_object {

void reduce_and_broadcast(inout vector coefficients);

void one2all(inout long val);

void exchange(in array x, out array y);

};

3.2 Semantics of Collective Invocation

We will call the set of operations executed by the collective object in order to perform a collective
service a collective method, and the process of invoking a collective method, a collective invocation.

From the client's perspective invoking a collective method is not di�erent from any other invocation;
in particular the signature of the collective method that the client uses for invocation does not re
ect
the existence of other clients. We will relax the invocation semantics of the CORBA standard to
support non-blocking method invocations; thus the client's invocation of a collective method could
be blocking or non-blocking. In the �rst case, after issuing the request, the client blocks until the
collective object signals that the request is satis�ed and all the requested return values have been
instantiated. In the second case, after issuing the request, the client proceeds with its computation
until it needs the results of the request; it then waits for the results to be returned.

Let m be a collective method corresponding to the service requested by r. A request rc from a client
c enters m when the request has been communicated to the collective object, and the arguments (if
any) carried by rc have been instantiated. A collective entry to m is a set of request entries to m such
that rc 2 R(C;s). After a request from the �rst client enters the collective method, m is ready to be
activated and start executing towards satisfying that request. If we impose the additional condition
that all clients have to enter before m can start executing, the collective entry is synchronized.
Otherwise the entry is non-synchronized.

Most collective operations do not need to globally synchronize on entry to the collective object;
dependencies between individual clients are handled on the level of argument instantiation by the
Collective Associative data structures (see section 3.4). However, the clients may want to synchronize
on entry to the collective method to ensure that some side-e�ects of their actions, such as I/O
operations for example, complete before entering the collective method (as they may a�ect it).

Symmetric to the parallel entry is the notion of a collective exit. A client exits a collective method
when the work that the collective object was doing on behalf of that client's request is completed, all

4

the return values requested by the client are returned to the client process, and if the invocation was
blocking, control is returned to the client's process. A collective exit is a set of client exits from m.
If m has to �nish executing on behalf of all the clients before any are allowed to exit, the collective
exit is synchronized, otherwise it is non-synchronized.

The meaning of synchronization on exit is that a client can expect the results produced by the
collective method to be available to other clients at the same time as they are made available to it.
The character of the collective entry or exit can be enforced by the implementator of the method by
calling a synchronizing function at entry or exit.

As is the case with ordinary methods, methods of the collective object may or may not a�ect its
state. We will call the �rst kind state-dependent methods and the second kind state-independent

methods. State-independent services of the collective object can be executed concurrently if the
implementation allows it; every state-dependent method must await the completion of the previously
invoked state-dependent method.

3.3 Activation and Interaction of Collective Objects

The activation of collective objects is performed by an entity external to both the clients and the
object. The activating entity is responsible for delivering to the collective object the references to
the clients.

collective object

client 1 client 2

activating entity

1 1

2

33

Figure 1: Binding to the collective object. The activating entity �rst obtains references to collective
object clients (1), then delivers them to the collective object (2), �nally the clients bind to the
collective object (3)

From the client's perspective the process of binding to the collective object appears to be no di�erent
then any other service request. The request for binding will however be satis�ed only if this client
is registered with the collective object. Furthermore, subsequent invocations to collective methods
will be performed only if all clients have established a binding.

A collective object can be a client of another collective object provided that the sets of clients
registered with both objects are identical. It follows that the collective object can call its own
methods internally.

3.4 Collective Associative Data Structures as Arguments

Support for the collective invocation calls for a mechanism of argument instantiation and return
which would give the programmer convenient access to data associated with di�erent clients. This

5

mechanism needs to be general enough to handle situations when only some of the clients participat-
ing in the collective call bring or request meaningful argument values (as in one-to-many broadcast)
and scenarios when all the clients bring in or return di�erent values (as in exchange or scatter).
Further, argument handling should be capable of dealing with the fact that in a non-synchronized
invocation, values from di�erent clients may be instantiated at di�erent times. The task of dealing
with those issues is ful�lled by the Collective Associative data structures.

A Collective Associative data structure (CAs) is a set of mappings, relating domains participating
in collective argument transfer, such as argument values and client references. We will say that a
CAs refers to type T if the argument values it relates are of type T . Every CAs of a collective object
COLL contains at least one mapping: a function from the set of client references registered with
COLL to instances of T .

In certain cases, only some of the participating clients will be sending meaningful input to the
collective object or expecting meaningful return values. In order to avoid unnecessary value transfer
in such cases, and yet inform the collective object that the argument values have been instantiated,
the CAs use empty values. An empty value associated with type T is an entity, which has the
typecode of T , but does not belong to a set of legal values of T . The empty value simply carries the
information \this instance of T is not active".

It is useful to associate each client reference in a CA with a semaphore which indicates if a given client
has already instantiated its argument value. The association of argument value and semaphore,
induced in this way, corresponds to the concept of a future [Hal85] and allows the programmer
to write non-synchronized collective operations without the need to explicitly check for argument
instantiation; any attempt to access non-instantiated argument value will simply cause the CAs to
block until the responsible client instantiates that value. Another useful mapping is an ordering on
the set of client references which lets the programmer of the collective object view the argument
structure as a vector.

A collective method has two signatures: the signature seen by the clients, the internal signature,
and the signature as it appears to the collective method, the external signature. These signatures
are bound by the following relationship: an argument or return type T in the external signature is
represented as a CAs referring to T in the internal signature. The CORBA tie mechanism [OMG95]
can be used to associate the client invocation with the collective method in the general case.

Following the CORBA model of argument passing, the collective object supports argument transfer
in three modes: in,out and inout. The lifespan of the in and inout arguments lasts throughout
the duration of the collective call independent of the time of exit of the client that instantiated
them. The programmer can decide to cause the return of the out or inout arguments before the
method completes its execution by invoking CAreturn on the corresponding argument structure.
This mechanism is similar to rtf in Mentat [Gri93].

3.5 Examples

This section will present a few examples of programming with the CAs. The �gure below illustrates
of what a very simple interface to a CAs might look like in C++ syntax:

template<class T>

class CA {

public:

T& operator()(client_ref);

T& operator()(order_type);

6

CA<T>& operator=(T&);

order_type assoc(T&);

client_ref assoc(T&)

client_ref assoc(order_type);

order_type assoc(client_ref);

T& next_available();

void CAreturn();

};

In this example, operator() method retrieve values associated with a certain client or its ordering,
operator= assigns a value to all argument values managed by the CAs and the assoc methods
retrieve information about the mappings maintained by the CAs. The next_available method
returns the next available argument value (in the centralized implementation); the assoc methods
can be used to determine which client supplied it. The functionality of CAs can be extended by
the implementator, either by adding new mappings or more operations. A very useful extension for
example would be to support generic programming algorithms such as applying a function to all
arguments held by the CAs, or reducing across the CAs.

Example 1: Reduce-and-broadcast function (centralized implementation). In this example val is
an inout argument, which both brings in and returns a value. Note that the e�ciency of this imple-
mentation could be improved by using the next_availablemethod to retrieve the next instantiated
argument.

void reduce(CA<double>& val) {

double total=0;

for(int i=0; i<registered_clients(); i++)

total += val(i);

val = total;

val.CAreturn();

}

Example 2: One-to-all broadcast. This implementation of broadcast relies on the fact that
exactly one client placed the call with an instantiated value; if only empty values were passed
next_available will never return, if more than one meaningful value is passed, the �rst instanti-
ated value will be broadcast.

void one2all(CA<int>& val) {

val = val.next_available();

val.CAreturn();

}

Example 3: Exchange. The exchange operation permutes the elements of the in_array according
to the key provided in exchange_index (both are in arguments). The results are returned in the
out_array (an out argument). This operation can be used for data exchange, for example in the
binary-exchange fast Fourier transform [KGGK94].

void exchange(CA<array> in_array, CA<array>& out_array, CA<int> exchange_index) {

for(int i=0; i<number_of_clients; i++)

out_array(i) = in_array(ex_index(i));

out_array.CAreturn();

}

7

4 Implementation

We will consider two implementations of a collective object: a centralized implementation, where the
collective object is associated with only one context, understood as a distinct address space, and a
disseminated implementation, when the implementation of the collective object is distributed over
the contexts of its clients, and its computations are e�ectively performed by the clients. In both
cases we assume that each client of the collective object is associated with a di�erent context.

4.1 Centralized Implementation

In a centralized implementation the collective object can either reside in the context of one of the
servers or in a context of its own. The situation when the collective object is given resources inde-
pendent of the clients' resources allows the clients to delegate the execution of a collective operation
to a di�erent resource and proceed with other computations until the results of the collective oper-
ation are needed. The idea of treating the collective operation as an invocation, which could return
a future rather than block, lets the programmer implement this concept easily.

We will now present a few preliminary experiments demonstrating how this feature of the collective
objects can be used. The �rst experiment tries to determine if improvements obtained in this way
are worthwhile; the second series of experiments relates to the SCF project whose e�ciency could
be improved by using futures from collective invocation. The collective object implementation is
based on the mpich implementation of MPI over UNIX sockets; the collective object and its clients
are UNIX processes and no additional scheduling facilities are used. The experiments were run on
an SGI Power Challenge with 10 processors.

Experiment 1

In this experiment �ve computational servers were using the services of a collective object in order to
perform a reduce-and-broadcast operation, implemented as a method of collective object as shown
in Example 1. The work of the clients consisted of reducing a vector of 600 elements across all
clients, and a computation C, unrelated to the reduction. In the �rst version of the experiment, the
collective invocation is blocking; in the second version it is non-blocking and returns futures which
are consumed by the servers only after C completes. These experiments were contrasted with an
implementation of the same computational servers based directly on MPI, that is the servers were
using calls to MPI_Reduce and MPI_Broadcast, rather than collective methods, in order to perform
the reduction, and then performing C. The table below summarizes the results, in seconds of wall
clock time.

Experiment time (in seconds)
MPI direct 0.0175
collective (blocking) 0.02165
collective (non-blocking) 0.0150

The performance of a blocking collective object reduction was worse than that of the direct MPI
implementation which could have been due to two factors. First, the implementation of the collective
object was written on top of MPI and involved additional data copies. Second, while MPI was likely
performing a tree reduction, the collective object was performing a sequential reduction. Still,
overlapping computation and reduction in the case of non-blocking collective invocation allowed the
collective object to outperform the library (at the cost of an additional resource).

Experiment 2

8

In this experiment we used the collective object to experiment with the distributed SCF program,
described in section 2. As mentioned before the local reductions (con�ned to a particular supercom-
puter) are performed separately from the global reductions (over all supercomputers involved). For
the components of the SCF computation written in pC++ the following code was developed:

(1) pcxx_ReduceDoubleAdd((void*)sinsum,elem_count);

(2) pcxx_ReduceDoubleAdd((void*)cossum,elem_count);

(3) sclib_ReduceDoubleAdd((double*)sinsum,elem_count);

(4) sclib_ReduceDoubleAdd((double*)cossum,elem_count);

(5) pcxx_BroadcastBytes(flag, elem_count*sizeof(double), sinsum);

(6) pcxx_BroadcastBytes(flag, elem_count*sizeof(double), cossum);

where (1) and (2) are local reductions, (5) and (6) local broadcasts, and (3) and (4) are calls to a
distributed library which implements both a global reduction and a broadcast. Let t1 be the time
of execution of (1) or (2), t2 time of execution of (5) or (6), and T + l time of execution of (3) or
(4), where l is the time needed to initiate the remote reduction and T is the remaining time of the
remote reduction. The time spent on executing the code fragment above is 2(t1 + T + l + t2). We
have rewritten this code using the collective object in the following way:

pcxx_ReduceDoubleAdd((void*)sinsum,elem_count);

dfsin = sinsum;

coll->rda(dfsin,elem_count);

pcxx_ReduceDoubleAdd((void*)cossum,elem_count);

dfcos = cossum;

coll->rda(dfcos,elem_count);

pcxx_BroadcastBytes(flag, elem_count*sizeof(double), ((double*)dfsin));

pcxx_BroadcastBytes(flag, elem_count*sizeof(double), ((double*)dfcos));

Here, dfsin and dfcos are futures which are consumed by the broadcast operations. Rearranging
instructions of the original code fragment and using collective invocation with futures lets us overlap
local and remote collective operations. The fact that this optimization has not even been noticed
until collective objects were invented testi�es to the power of this abstraction.

Since sclib_ReduceDoubleAdd and a blocking call to the collective object are functionally identical,
it can be calculated that using the collective objects in this way should save t1 + t2 + l time.
Further, since rda is a state-independent operation, a collective object implementation can service
it concurrently with other invocations of the same method. In this case the savings go up to T + t2
(the assumption being that T � t1; t2; l and t1 + l > t2 which is true of this particular example).

We tested this theory by combining the collective object implementation from the previous experi-
ment and the relevant fragments of the pC++ implementation of SCF and con�guring the system
to include two pC++ components, using 2 processors each, and a collective object implemented in
a separate context. The average of obtained results are summarized below (in milliseconds of wall
clock time):

Experiment time (in milliseconds)
blocking rda 11.34927
non-blocking rda 9.36438
state-independent 7.76205
t1 0.79551
t2 0.28878
T 4.48039

9

The results of using non-blocking calls to the reduce operations involving only one collective object
con�rmed our predictions, In the case of state-independent implementation of the collective object,
although de�nite improvement was noticed, it fell slightly under our expectations, which can prob-
ably be attributed to increasing computational load of the machine. Even so, it gave us savings of
over 30% in communication time. It seems safe to assume that in the absence of competition for
resources the savings would only go up with the increase of the number of processors used by the
computational servers (as t1 and t2 will grow).

During our experiments with distributed SCF, in the perfectly balanced case, time spent on remote
collective operation constituted 15% of total computation [NBB+96]. Additional resources for col-
lective object computations were available, and in fact used. Thus, the optimization just described
could have saved us some time and could prove even more pro�table in computations which are
more communication-intensive then SCF.

4.2 Disseminated Implementation

In many cases using the centralized implementation of the collective object is not practical. In the
exchange algorithm from example 3 using a centralized implementation would mean that instead
of being sent directly to its recipient, the data would be routed through the collective object, an
additional and unnecessary link in the communication. Besides, additional resources for collective
object computations may not always be available or practical to use.

Disseminated implementation of a collective object therefore presents an interesting alternative.
Although the invocation interface that is used by the client of the collective object is no di�erent
than in the case of the centralized implementation, operationally the calls to the collective object
are performed using resources assigned to the clients. This opens the possibility of using traditional
collective operation algorithms such as tree reduction. As in the case of centralized implementation,
the programmer can take advantage of the non-blocking invocation combined with futures to overlap
collective operations with local computation; in this case however only the nodes which do not
participate in the execution of a collective method will bene�t by it, so the distribution of the time
saved in this way can be very irregular.

The e�ciency and practicality of this solution has not yet been determined; research aimed at
answering these questions is currently underway.

5 Conclusions

In this paper we have introduced and described the collective object, a new parallel programming
abstraction providing support for collective operations which can be
exibly de�ned by the program-
mer. We have discussed the collective invocation semantics and argument structures which support
non-synchronized invocation coming from many clients. The collective object has been introduced as
one of the abstractions underlying an object-oriented design of a distributed environment supporting
interoperability of parallel modules. The ideas developed here are based on our experiences with
distributing a real parallel application.

We have provided illustrations of how the collective object can be used to implement collective
communication between its clients. Further, we have shown that the collective objects can be used
to advantage in overlapping remote and local communication and demonstrated with a real life
example that such situations actually arise.

10

The research described above is still in progress. In particular, the potential of di�erent imple-
mentations of the collective object has not yet been fully evaluated. We are also investigating
the practicability of relaxing the de�nition of a collective object to support group invocation and
opportunities that arise out of incorporating it into the object model of a parallel programming
system. In the �nal version of this paper more complete performance results will be provided for
the disseminated implementation of the collective object.

References

[For95] Message Passing Interface Forum, MPI:A Message-Passing Interface Standard, June
1995.

[GK96] Dennis Gannon and Katarzyna Keahey, Distributed parallel environment | a sketch,
POOMA '96 Abstracts, February 1996.

[Gri93] Andrew S. Grimshaw, The Mentat Computation Model Data-Driven Support for Object-

Oriented Parallel Processing, Tech. Report CS-93-30, University of Virginia, May 1993.

[Hal85] Robert H. Halstead,Multilisp: A Language for Concurrent Symbolic Computation, ACM
Transactions on Programming Languages and Systems 7 (1985), no. 4, 501{538.

[HO92] L. Hernquist and J.P. Ostriker, A Self-Consistent Field Method for Galactic Dynamics,
The Astrophysical Journal 386 (1992), 375{397.

[KGGK94] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel computing,
The Benjamin/Cummings Publishing Company, Inc., 1994.

[NBB+96] Michal L. Norman, Peter Beckman, Greg L. Bryan, John Dubinski, Dennis Gannon,
Lars Hernquist, Kate Keahey, Jeremiah P. Ostriker, John Shalf, Joel Welling, and Shelby
Yang, Galaxies Collide on the I-WAY: An Example of Heterogenous Wide-Area Collab-

orative Supercomputing, accpted for publication by The International Journal of Super-
computer Applications (1996).

[OMG95] OMG, The Common Object Request Broker: Architecture and Speci�cation. Revision

2.0, OMG Document, June 1995.

[WO95] Gregory Wilson and William O'Farrell, An Introduction to ABC++, 1995, draft.

11

reduce(x);reduce(x);

reduce(x);

r1 r2 r3 r4

1 2 3 4

1

1.25 3

1 00

client references

ordering

inbound semaphore

value

reduce(CA<double>& val) {

}
.....

C1 reduce(x);
C2

C3

C4

r1 r2 r3 r4

1 2 3 4

outbound semaphore

client references

ordering

value

0 0 0 0

x x x x

xx

Figure 2: CAs in argument passing; note that the variable x in the client's invocations is of type
double while to the collective method it appears as CAs referring to type double.

12

