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Abstract

This paper gives a brief introduction to the logic of Rele-
vant Implication. It argues that the notion of implication needed
for question-answering systems is more accurately modelled by Rele-
vant Implication than by traditional material implication. It
presents two examples in which material implication leads to path-
oclogies avoidable by the use of relevant implication. One example
is the introduction of universes of discourse, and the second involves

the deduction of new rules of inference.



1. Why Formal Systems?

Before beginning the discussion, let us give an informal des-
cription of what we mean by a formal system. A formal system con-
sists of a set of formal objects, e.g., formulas (usually represented
as finite strings), a distinguished subset called axioms, and a set

of rules of inference. A formal object A is a theorem of the sys-

tem (we write FA) if it is derivable from the axioms by successive
applications of the rules of inference. This should be familiar
material, which we restate only to indicate the wide scope of the
notion. Useful formal systems have been constructed in which the
formal objects are not the "usual" logical formulas but strings (Hop-
croft, J., and Ullman, J. [10]), pairs of formulas (Kleene [13]),
programs (Milner [14]), or even proofs themselves (Fitch [T7]).
This flexibility is the reason that formal systems should be
of interest to the non-mathematician and to the AL practitioner in
particular. In each case, the formal objects are the objects under
study in some application, and a formal object is a theorem if and
only if it has some property which is important for that application,
Esi
(1) W is a derivable string in a grammar G
(ii) A logically implies B
(iii) The function defined by program S is a subfunction of
that defined by T
(Av) P 18 3 wuliad proef
If one has an informal notion, one may formalize it (pun inten-

ded) by writing down some of its local properties as axioms or



rules of inference and then relying on deduction as a global struc-
ture. If may be that the finished system no longer has some desired
properties of the original informal notion. In that case, one must
patch the axioms or rules. To find the offending axiom requires
considerable intellectual effort, just as it does to debug a program.

The classical propositional calculus, for example, is intended
to model among other things the informal notion of an argument. In
the early portion of the twentieth century, philosophers discovered
arguments which they believed to be nonvalid, but which the classi-
cal propositional calculus deemed valid. After analyzing these
"bugs," they modified the formal system and arrived at a formal
system which more closely matched their conception of an argument:
the intuitionistic propositional calculus. Similar criticisms resul-
ted in the creation of the various modal logics (Hughes and Cresswell
[xzT).

This analysis does not necessarily assert that classical logic
is "wrong"; we may take it to mean that the informal notion we are
interested in does not coincide with the notion defined by the ori-
ginal formal system. Logicians have studied (in more or less detail)
a wide range of formal systems, and, if there is an informal notion
we wish to formalize, there may already be a known formal system
embodyling our concerns.

In this paper, we will argue that classical material implica-
tion is not an exact model of our informal notion of "implication."
We will present a brief account of the work of Anderson, Belnap,

and their colleagues [2] on the logic of Relevant TImplication.



Last, we will argue that the formal notion of Relevant Implication
is better than material implication as a model of what "implication"
ought to mean in a question-answering system.

This paper is not intended to be a brief for the exclusive use
of logic as the top level structure for a question-answering system.
Instead, we mean to point out that even a "procedural" top-level
in fact constitutes a formal system (albeit an extremely complicated
one). The study of simpler formal systems should therefore give
some guldelines for the desired behavior of the kind of system (either
"procedural™ or "formal") which we eventually implement on computing
machinery.

2. Implication vs. Material Implication

The suspicion that material implication is a less than perfect
model of the intuitive notion of implication is not new, for it is
embodied in the names of certain classically valid wffs, which are
known collectively as the Paradoxes of Implication (Hughes and Cress-
well [11]; Ambrode and Lazerowitz [1]). Here is a list of such
"strange" wffs, with paraphrases:

(1) A > (B2A) "If a thing is true, then anything implies it"

(this is called Positive Paradox).

(2) A » (BY~B) "Anything implies an analytic truth" (a corol-
lary of Positive Paradox).
(3) (A&~A) » B "A false statement implies any statement."
Even those who do not find the preceding wffs unintuitive often balk
at
(4) (A=B&C) Vv (B>A&C) VvV (C>A&B) "Given any three statements,

there i1s one which implies the other two."



This last formula says in effect that there are only two propo-
sitions in the world: the true one and the false one. If one accepts
that, then A > B is the true proposition if and only if A 1s the
false proposgsition or B is the true one.

Luckily, (4) and its generalizations are false in the intui-
tionistic caleculus and its cousins, all of which insist on the exis-
tence of infinitely many propositions (and in which implication is
not expressible in terms of the other propositional connectives).
Less luckily, (1), (2) and (3) are still valid intuitionistically,
so we need some additional analysis of why we object to (1)-(3).

One way to attack (1)-(3) is to note that the linguistic usage
of "if...then" or "therefore" (which ">" is designed to model) usu-
ally involves an element of causality. As Anderson and Belnap say:

Of course we can say "Assume that snow is puce.

Seven is a prime number." But if we say "Assume

snow is puce. It follows that (or consequently,

or therefore, or it may be validly assumed that)

seven is a prime number," we have simply spoken

falsely (Anderson & Belnap [2], p. 14, italics in
original).

Imagine, if you can, a situation as follows. A
mathematician writes a paper on Banach spaces,

and after proving a couple of theorems he concludes
with a conjecture. As a footnote to the conjecture,
he writes: "In addition to its intrinsic interest
this conjecture has connections with other parts of
mathematics which might not immediately occur to the
reader. For example, i1f the conjecture is true,

then the first order functional calculus is complete;
whereas 1f it is false, then it implies that Fermat's
last conjecture is correct." The editor replies that
the paper is obviously acceptable, but he finds the
final footnote perplexing; he can see no connection
whatever between the conjecture and the "other parts"
of mathematics, and none is indicated in the foot-
note. So the mathematician replies, "Well, I was
using 'if...then--' and 'implies' in the way that
logicians have claimed I was: the first order func-
tional calculus 1is complete, and necessarily so, SO



anything implies that fact -- and if the conjecture is

false it is presumably impossible, and hence implies

anything. And if you obJject to this usage, it is

simply because you have not understood the techanical

sense of 'if...then--' worked out so nicely for us by

logiciang." ([2]), P 17)

They conclude:

Material implication is not a "kind" of implication,

or so we hold; it is no more a kind of implication

than a blunderbuss is a kind of bus. ([2], p. 5)

Without taking quite so radical a philosophical stance, we may
still adopt much of their analysis of what went wrong in (1)-(3)
and the other examples. The problem is, baldly, that the prime-
ness of seven has nothing to do with puceness (pucity?) of snow.

If "A implies B" is to involve an element of causality, then surely
A and B must have something in common. In (2) and (3), the ante-
cedent clearly has nothing to do with the consequent. In (1), we
are asked to assert, upon the truth of A, another implication in
which the two sides have no element in common.

Of course, merely insisting that the two sides have some element
in common is not sufficient: ~(A=2A) o (A>A) is a theorem of the
classical system, but fhis is also implausible as an implication.
Since we already know that the conclusion A o A is true -- why
bother to assert the theorem? This leads to a second attack on
(1)-(3). In a question-answering system, an implication has impera-
tive as well as declarative content: an implication ought to be a
useful inference rule (Hewitt [9, Ch. 1]). (Some classically-based

theorem provers already discriminate between the imperative content

of ~A v B and that of A = B [15].)



A "fgil-safe" heuristic, avoiding the dual quagmires of causa-
lity and plausible inference, but still rejecting all of the patho-
logical examples cited, is: "do not assert 'A implies B' unless the
hypothesis A was actually used in the proof of B." A formal system
embodying this heuristic is the system R of Relevant Implication of
Andrson and Belnap [2].

3. Relevance Logic

We will compare the logic of relevant implication with stan-
dard logic using the natural deduction notation of Fitch [7] (a simi-
lar system is that of Kalish and Montague [12]). Following Anderson
and Belnap [2], we style the standard Fitch system FH and the rele-
vant Fitch system FR. In order to avoid details which are irrele-
vant to this paper, we will discuss only the fragments Fg:A and F§+ﬂ
in which the indicated connectives are the only connectives. The
full FR system 1s presented in Anderson and Belnap [2], pp. 346-348.

A proof in Fitch's notation is a set of properly nested sub-
proofs, the outermost of which is called categorical, the others
being called hypothetical. FEach subproof consists of an ordered
set of wffs and subproofs introduced according to the rules of the
system. 1In the system FR , , each wff has a set associated with 1it.
We will use lowercase Greek letters to represent these sets. If
A is a wff with associated set a, we will write the pair as

A,

The universe whose elements comprise these sets 1s arbitrary but
presumed "large enough" for any proof. It is standard to use the

natural numbers. The last element of a categorical subproof will



be a wff which is thereby proved to be a theorem of the system. In
FE+A the set associated with this wff will be the empty set. The
Filtch-style system consists of a set of rules showing how proofs may

be extended. These are shown below for FH A and for FR i for
~> ~

comparison.

(1) To introduce a new hypothetical subproof
in FH_, | A hyp in FR , A, {k} hyp

where k 1s a singleton set whose element, k, has never before

appeared in the proof.

(2) To repeat a wff within a subproof

10 Filey A in F§+A Asa

A rep A,o rep

(3) To reiterate a wff from a subproof into a nested subproof

in FH A in FR A,o
~OA ~oA

B hyp

A reit




(4) To derive a wff from two others in the same subproof, elimi-

nating an implication (entailment) connective. (Compare Modus Ponens)

In FE_,| - in FR,, | -
A A,a
ASB A-B,B
B oE B,auB ~E

(5) To terminate a subproof and introduce an implication (entail-
ment) formula into the immediately outer subproof. (Compare the

Deduction Theorem)

in FH | A hyp in FR, Asfk) hyp
B B,B
ASB oI A-B,R-{k} +1

where -1 is only allowed if k € B .

(6) To derive a wff from another in the same subproof, elimi-

nating a conjunction.

in FH . in FR .
~DA - ~ = A -
AAB AAB ,a
A AE A,a AE
and and
AAB AAB,a
B AE B,o AE

(7) To derive a wff from two others in the same subproof,

introducing a conjunction.

in FE:A . in FE»A :
A i)
B B,a
AAB AT AAB ,a AT
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As an example, we will show the proofs of the law of transi-

tivity in both systems:

in FH |A-B hyp
~IA B hyp
ASB reit
A hyp
A>SB relt
B oF
BoC - reit
C oR
A>-C o1
(Bag)s(As0C) 51

(ADB)::[(BDC) :(ADC)] =T

i ¥R,

A-C,{1,2}
(B+C)~+(A~C) , {1}
(A-B)~>[(B+C)~>(A~>C) ], {}

Note that the effect of the sets used in F§+A

hyp
hyp
reit
hyp
reit
=B
relt
=+H
1
+1
-1

is to record for

each wff in the proof, those hypotheses that were really used in

the derivation of the wff. The restriction on the use of »1I en-

sures that whenever A-B,o appears in a proof, A is relevant to the

deduction of B under the hypotheses noted by a.

To illustrate the

effect of this, we show the proofs of the paradoxes of implication

in FEDA, and next to them the parallel derivations in FR

as they can legally be carried out.

in FH A hyp
oA B hyp
f_A reit

BoA =31

A>(BoA) oAl
A hyp

B hyp
! B rep
oB =21

A>(B5B) o1

in FR
o+

A

A,{1}

HIE:{?L}

~A

hyp
hyp
reit

hyp
hyp
rep
4T

as far
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Note that in both examples, the restriction on -+I prevents con-
tinuing the parallel derivation and underscores the feeling that
something irrelevant is happening in the proof in F%:A‘ While these
examples do not constitute a proof, it can be shown that neither
As>(B+A) nor A+(B-B) is provable in F§+A.
The restriction on Al may seem surprisingly strict. One

might think that the following rule would be correct

BsB
AAB,ouB Al

However, this would allow the following proof:

hyp
hyp
reit
rep
AT
AR
-1
_;I

The restriction on Al prevents such gratuitous exchanges of the

index sets.

4., Some Connections to Question-Answering Systems

4.1 Universes of Discourse

Shapiro [16] discusses the use of categorization, source, and

-

universe of discourse indications with information stored in a
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Question-Answering System (QAS)+. He points out that two subsets

of the information in the data base

...may contain contradictory information either
because two users have conflicting beliefs or
because two fields [of inquiry] have different
logical systems. These apparent conflicts will
not matter if the simultaneous use of the two
subsets is avolded by using categorization
pointers...Another use for the source pointer
is to keep track of the assumption and deduc-
tion rules upon which a deduced substructure is
based. The reason for doing this is that there
is nothing to stop a user from entering incon-
sistent information into the data base. He may
do this unknowingly, and may discover contra-
dictions at a later time. It would then be
useful to discover the source of the contra-
diction and remove it. (pp. 107-109)

We now see that source pointers are equivalent to the elements
of the singleton sets introduced when new subproofs are begun, and
that categorization and universe of discourse indicators are
equivalent to the union of the sets associated with the hypothesis
of a subproof and the hypotheses of all higher subproofs. The uni-
verses of discourse form a hierarchy of contexts. The rules of
FE+A show us how to 1limit our deductions and in which contexts a
deduced assertion may be considered to lie if we are to limit our
QAS to "relevant" assertions.

Notice that the rules AI and AE show us that there are two dif-
ferent ways of introducing a new assertion into a QAS and that the
choice determines what future assertions may be deduced. Here is

a typical context:

TA similar proposal for partitioning the data base into sub-data
bases 1s in Hendrix [8].
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A,{k}

Here A, with source pointer {k}, represents the hypothesis of the
innermost context layer, and T represents the set of formulas in

the outer layers, all of which may be reiterated into the current

context. The "universe of discourse" is {k}u{i|i € o« and o is the sub-

script of some formula in T}.

Now consider adding a new piece of information B. We may do this

in two ways: we can add a new context layer B,{k+l} as follows:

i
A,{k}
'—_\r ,{k+1}

or we may say, "I didn't tell you the complete truth before. Rather

than 'A,{k}', the assumption should have been 'AaB,{k}.' " The

I AnB, {k}

The rules of reiteration and AE ensure that in both cases A

second choice yields

r

and B (as well as the formulas in ') may each be asserted in the
current context. The two arrangements differ, however, in what
implications may be deduced for use in the context I'. Let us ima-
gine, for example, that we may deduce a formula C using only B and

some formulas from I'. The proofs would look as follows, where kgY:
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Aot}

B, {k+1} ;B

C,yuik+l}
B>C,Y

In the first case we deduced B-+C in A's context, but we may not
deduce A-+(B-»C) or B-»(A-C) in the context I', because neither "A-»>..."
is a relevant implication (although it is easy to show that B-C,
may be derived in TI'). In the second case, however, we may deduce
AAB»C in the context I'. This may be interpreted as saying A and B
Jointly imply C relevantly; AAB 1s regarded as a "packet"™ which is
left as an unanalyzed whole for determining relevance. This is the
way information is usually treated; we normally write things like
"G is a group > P" without regard for the relevance of all the pleces
of information that make up the packet "G is a group."

We hope that this discussion will shed some light on the gquestion
of when to introduce a new context layer. The set associated with
each proposition serves simultaneously the purpose of the source
pointer suggested by Shapiro [16] and the purpose of FR,, to avoid
the paradoxes of implication. Each derived piece of information
will carry with it an indication of the assumptions under which
it was derived, and all data with the same set of indices are thereby
in the same universe of discourse. The rules of FR,, will prevent us
from using the deduction rules of one universe incorrectly on the

data of another.
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An alternate view of this situation is that a QAS contains a
data base, DB, of assertions of the form A,¢,a, where A is some

formula, ¢€{0,1}, and & is a set. The rules for adding assertions

to DB are:

1. (hyp) A,0,{k} may be added to DB as long as {k} is a single-
ton set such that no assertion of the form B,0,{k} is already in DB.

2. (add) A,0,{k} may be removed from DB and replaced by
AAB,0,{k}.

3. (»E) If A,¢,a € DB and A+B,¢,B8 € DB, then B,l,aup may be
added to DB.

4, (+I) If A,0,{k} € DB and B,¢,B € DB and keR, then A-»B,1,8-{k}
may be added to DB.

5. (AE) If AAB,¢,o € DB, then A,l,0 may be added to DB and
B,l,a may be added to DB.

6. (AI) If A,$,® € DB and B,%,0 € DB, then AAB,l,a may be
added to DB.
In this scheme, all assertions of the form A,0,a are hypotheses
entered by the user and all assertions of the form A,l,0 are asser-
fions which have been derived under the set of assumptions
{(B,0,{k}) |kea}. A context is a set y and is said to contain the
set of assertions { (A,¢,a)|acy}. For any contexts &,y such that
Ycéd, & is a sub-context of y and y is an enclosing context of §.

1t is worthwhile considering the status of assertions C,l,a
that were derived from the hypothesis A,0,{k} before the latter was
updated by use of the add rule to A B,0,{k}. If kea, the formula C
must have been derived using the formula A. This derivation is

still valid since A,1,{k} is derivable by the rule aAE. If kdéa, C
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might be of the form A-+D. In this case, C is still wvalid since
A,0,{j} could be introduced by hyp, D,1,0u{j} could be derived as
D,1,au{k} was earlier, and A+D,l,o0 derived by +I. All contexts con-
taining jJ can now be discarded, having served their purpose. The
only other case is that C derives from a formula of the form A-=D,

in which case, since A-»D 1s still wvalid, so 1s C. So we see that
all assertions derived before an application of add remain wvalid
afterward.

4,2 The Garden of Eden Path Phenomenon

There are two ways in which stored data, including stored deduc-
tion rules, may be combined to derive new deduction rules in F§+A.
Using -+E, an assertion of the form P,¢,a may be combined with an
assertion of the form P>(Q»R),¢,B to produce a deduction rule of the
form Q+R,1,auB. This latter deduction rule holds under the assump-
tions a and B. That is, it holds in those worlds in which both the
assumptions o and the assumptions B hold.

The other way to derive new deduction rules is based on =I.

The following discussion of this method will demonstrate a real
benefit in the use of relevance logic to design Questlon-Answering
Systems. Consider a universe of discourse, o, and the new, hypo-
thetical world produced by assuming P,0,{p}. If, in this hypo-
thetical world, we can derive Q,l,au{pl, we can then derive the new
deduction rule P+Q,1l,0 in the original universe by use of »I. This

is a productive rule in the sense that if we later learn that

P,0,B is true, we can derive Q,l,auB. How might this use of I
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actually be programmed in a QAS? We might take a stored assertion and
produce the hypothesis, P, by generalization or by replacing certain
constants by others. For example, a cognitive mobile robot might

take the fact that children can move from one location to another to
produce the hypothetical situation of a child moving in front of

the robot. Use of »I will, hopefully, produce a plan which could

be used promptly i1f the situation ever did result. Unfortunately,

if the rules of FH_, were used, such meaningless plans as "if a child

A
moves in front of me than I can push a block into another room by
first positilioning myself behind the block" might be derived. The
rules of F3+A are precisely the right ones to ensure that any derived
plans are in fact relevant to the hypothetical situation.

Another problem that must be faced in deriving plans in hypo-
thetical worlds is how much time or other resources should be spent
in each such endeavor. A fixed bound seems to be insufficiently
flexible. A more acceptible solution (assuming the problem of re-
cognizing "interesting" facts has been at least partially solved)
would be, "Keep going if you are producing interesting facts and
stop if you are producing uninteresting ones." Certainly this runs
the risk of being "led down the garden path" by a hypothetical sit-
uation that will never come about. The worst garden path would be
the "Garden of Eden Path" produced by classical rules from a hypo-
thetical that implies a contradiction, since all sorts of wonderful
facts would then be derivable. In classical logic the only way to

avoid Garden of Eden paths is to check for the consistency of each

hypothetical situation -- a prohibitively costly method at best.
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The rules of relevance logic would at least prevent a standard gar-
den path from becoming a Garden of Eden path with the resultant
waste of computer resources.

4.3 The Other Connectives

Our discussion has involved only the connectives » and A, because
we were concentrating on the issues of the deduction and use of
deduction rules and on the conjoining of new assertions into a data
base. A discussion of how FR,, 1s extended to the full FR 1s in
Anderson and Belnap [2], pp. 3U46-348. A related system, called the
logic of first degree entailment is developed in Anderson and Belnap
[2] Chap. III. This discusses formulas of the form A B, where A
and B are formulas containing any truth functional connectives, but
no arrows. Its application to Question-Answering Systems is dis-
cussed in Belnap [4,5], Bechtel [3] and Bechtel and Shapiro [4].

5. Conclusions

Following a general discussion of the significance of non-
standard logics to AI practitioners, we argued that material impli-
cation has serious deficiencies as a model of the kind of implica-
tion needed for question-answering systems. We gave a brief discus-
sion of a system Fa+“ of relevant implication. We presented two
examples where the pathologies generated by material implication were
rectified by the use of relevant implication. It is important to
remember that a logical analysis of question-answering and language
understanding systems is not relevant only when they are being driven
by formal theorem provers. The design of any inference system entails

a commitment to some system of logic. We believe that relevant
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implication or some variant thereof will be a useful tool in
gquestion-answering systems, natural language understanding systems
and similar applications.
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