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Abstract. Error di�usion, ordered dither, and patterning are well-known digital halftoning tech-

niques, each with its advantages and disadvantages. Error di�usion is known for correlated artifacts

looking like zebra stripes. Images produced by ordered dither and patterning su�er from arti�cial

contours in slowly varying regions of pictures. Use of ordered matrices by both ordered dither and

patterning results in poor rendition of small details, so the images appear blurred. We discuss how

the modi�ed Floyd{Steinberg error di�usion algorithm reduces correlated artifacts compared to

the classical Floyd{Steinberg algorithm without increase in the amount of work. It also simpli�es

combining of error di�usion with other methods. We introduce two families of hybrid algorithms.

One of them combines the modi�ed Floyd{Steinberg algorithm with ordered dither and the other

one combines it with patterning. We �ght the correlated artifacts with ordered matrices while

reducing the accompanying arti�cial contours by error di�usion. The latter achievement allows us

to use smaller matrices and thus a�ect small detail representation at low resolutions. We show

that hybrid algorithms are useful for digital simulation of classical screens. Combining error di�u-

sion and patterning results in speedups essential for printing medical images at high resolutions.

The article considers application of the hybrid algorithms to printing of medical images on laser

printers.
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1. Introduction

Human vision possesses ability spatially to average small luminance deviations [16 (p. 621)].
Error di�usion [4, 5], ordered dither [1, 12, 13, 14], patterning [7, 10, 15, 17 (Section 2.28)], and
other algorithms for digital halftoning (see, for example, [6, 11, 22]) take advantage of this averaging
process, which can be loosely described as two-dimensional \demodulation" of graphic information.
So does the analog method known as the \classical" screen, which has been used to do halftoning
since the nineteenth century [24 (Section 5.1)]. Readers interested in a comprehensive comparison
of halftoning techniques are referred to [6, 11, 20, 24]. Many related neurobiological aspects of
vision are discussed in [8]. Our opinions on bene�ts and de�ciencies of known algorithms are based
primarily on the material found in these sources. This introduction will provide descriptions and
de�nitions forming the basis for presentation of the hybrid algorithms for digital halftoning.

Since Floyd and Steinberg presented the �rst error di�usion algorithms [4, 5], many modi�-
cations were proposed to reduce characteristic correlated artifacts (zebra patterns) [3, 9, 21, 23].
Most of such modi�cations involve signi�cantly more processing than the early versions of error
di�usion. The original Floyd{Steinberg error di�usion algorithm [4] for processing of a halftone
image represented by an m � n array (matrix) A of real values between 0 and 1 can be written,
after a slight modi�cation involving use of a serpentine raster [24 (pp. 266{267)], as

for i := 1 to m do
begin
if i is odd then
for j := 1 to n do
begin
if Ai;j < 1=2 then Bi;j := 0 else Bi;j := 1;
" := Ai;j � Bi;j ; f" is the current value of error.g
Ai;j+1 := Ai;j+1 + " � �;
Ai+1;j := Ai+1;j + " � ;
Ai+1;j+1 := Ai+1;j+1 + " � �;

end;
else
for j := n downto 1 do
begin
if Ai;j < 1=2 then Bi;j := 0 else Bi;j := 1;
" := Ai;j � Bi;j ;
Ai;j�1 := Ai;j�1 + " � �;
Ai+1;j := Ai+1;j + " � ;
Ai+1;j�1 := Ai+1;j�1 + " � �;

end;
end.

Our implementation of the modi�ed Floyd{Steinberg algorithm uses � =  = 14=38 � 0:368,
� = 10=38 � 0:263. These values of error di�usion coe�cients (weights) are close to the ones
recommended by Floyd and Steinberg (� =  = 3=8 = 0:375, � = 1=4 = 0:25) [4]. The m � n
array (matrix) B of zeros (black dots) and ones (white dots) serves as output of the algorithm. B
represents a binary approximation to the input image.
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The classical Floyd{Steinberg algorithm [5] has one more weight. It can be written as

for i := 1 to m do
for j := 1 to n do
begin
if Ai;j < 1=2 then Bi;j := 0 else Bi;j := 1;
" := Ai;j �Bi;j ; f" is the current value of error.g
Ai;j+1 := Ai;j+1 + " � �;
Ai+1;j�1 := Ai+1;j�1 + " � �;
Ai+1;j := Ai+1;j + " � ;
Ai+1;j+1 := Ai+1;j+1 + " � �;

end.

Our implementation uses the error di�usion coe�cients recommended by the authors: � =
7=16, � = 3=16,  = 5=16, and � = 1=16. It is straightforward to see that the amounts of
processing required by the classical Floyd{Steinberg algorithm and the modi�ed Floyd{Steinberg
algorithm are roughly the same.

Most illustrations in this paper are printed at the resolution of 300 dpi on an HP LaserJet
IVsi laser printer. The other illustrations are printed on the same printer at 600 dpi: discrepancies
between the pictures produced by di�erent digital halftoning algorithms are generally harder to
notice at this and higher resolutions (cause and implications of this phenomenon will be discussed
later).

The same digitized photograph (portrait of Anya Pogosyants) was used as source for all pictures
shown in Figure 1. Figure 1(a) features results of digital halftoning by the classical Floyd{Steinberg
algorithm at 300 dpi. Figures 1(b) and 1(c) illustrate the results of halftoning by the modi�ed
Floyd{Steinberg algorithm at 300 and 600 dpi, respectively. As Figures 1(a) and 1(b) demonstrate,
the modi�ed Floyd{Steinberg algorithm reduces correlated artifacts compared to the classical one.
We will discuss the reasons of it in the next section, where our choice of the modi�ed Floyd{Steiberg
algorithm for the purpose of combining error di�usion with other techniques is justi�ed.

Halftoning by ordered dither can be described as follows [24 (Chapter 5)]. An ordered dither
algorithm generates a binary halftone image by comparing pixels from an original continuous-tone
image to a threshold value from a deterministic, periodic array. The thresholds are \ordered"
rather than \random". Ordered dither is a point operation, that is, the output depends only on
the state of the current pixel.

Patterning maps an input pixel into a cell (tile, pattern, character of a gray shade font) with
the average intensity value close to the input value. This technique is also known as PSAM
(Pulse-Surface-Area Modulation), but we prefer the simpler name [17 (Section 2.28)]. One way to
do patterning would be pick output pixels from imaginary planes tiled with the patterns. This
approach could give us a one to one mapping. However, if we want to avoid unpleasant e�ects
along the borders of areas of di�erent intensity, we will arrive at equivalents of ordered dither. It
is more common to replace each input pixel by a cell: an implied scale change occurs.

There are two main problems with ordered dither and patterning. One of them is poor rendition
of small details: as a result, images appear blurred. The other one is presence of arti�cial contours
in the areas with slowly varying intensity. This e�ect, often called contouring, interferes with the
use of matrices smaller than 8�8: the number of levels of gray that can be represented by distinct
matrices is not large enough to make arti�cial contours reasonably inconspicuous. On the other
hand, use of larger matrices hurts representation of small details too much. Interestingly enough,
the very presence of the matrix patterns is liked by some people and disliked by others. Generally,
the readers should keep in mind that the evaluation of how relatively pleasant di�erent halftoned
images are remains a somewhat subjective process.
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There were several attempts to combine use of matrices with error di�usion. Knuth [11]
introduced dot di�usion and smooth dot di�usion, where 8� 8 matrices were used to control the
ow of error di�usion. The dot di�usion technique fails to get rid of arti�cial contours, and the
image blurring e�ect is signi�cant. Smooth dot di�usion is more involved computationally, and the
small image details are still blurred. Stephen [20] presented a fairly complex algorithm using blue
noise (randomized error di�usion) to dynamically generate sets of 8 � 8 cells (gray shade fonts).
The halftoning time for a 256� 256 image turned out to be more than 20 times larger than that
of conventional 8 � 8 clustered-dot font patterning. Earlier, Billotet-Ho�man and Bryngdahl [2]
proposed using conventional 8� 8 ordered dither arrays in place of the �xed threshold used in the
classical Floyd{Steinberg error di�usion algorithm. However, the resulting methods failed to break
its strong correlated artifacts and signi�cantly worsened small detail representation.

What went wrong? At the distances from which people usually look at halftoned pictures, the
resolution capacity of their vision system is between 100 and 130 dpi. As a result, for combining
error di�usion with matrix-using techniques and subsequent presentation of the results at low
resolutions, 8 � 8 matrices are simply too large. Also, as we shall see in the next section, the
classical Floyd{Steinberg algorithm is not the best choice for basing hybrid algorithms upon. Our
hybrid algorithms use other varieties of error di�usion to reduce contouring, while �ghting the
zebra stripes with small ordered matrices.

2. Advantages of the Modi�ed Floyd{Steinberg Algorithm

On the intuitive level, the reasons why the modi�ed Floyd{Steinberg algorithm is better than
the classical one can be explained as follows.

Following the approach presented in [18, 19], we can interpret outputs Bi;j of a digital halfton-
ing algorithm as values of random variables ei;j . Let S be an area of the image, consisting of pixels
that are close together, and let T (S) be the set of all possible two-element subsets f(i1; j1); (i2; j2)g
of S. Let the correlation coe�cient of ei1;j1 and ei2;j2 be denoted as �(ei1;j1 ; ei2;j2). Because of the
\demodulation" property of human vision, it is desirable to construct ei;j so that the variance

V (
X
S

ei;j) =
X
S

V (ei;j) + 2
X
T (S)

�(ei1;j1 ; ei2;j2) (1)

is minimum on the condition that the expected values

E(ei;j) = Ai;j (2)

for all (i; j) in S.

Notice that the underlying assumption that the vision system averages intensity levels of pixels
in S with equal weights is just an approximation. Moreover, direct transition from the local quasi-
optimality criterion to a practical halftoning algorithm is nontrivial and is related to an open
problem posed in [19]. A good solution to the problem may result in improvement of quality of
digital halftoning. This may also be a way to �nd a better generator of blue noise [24 (Chapter 8)]
than the known digital halftoning algorithms. Anyhow, the closer together any two pixels are, the
less correlated the corresponding random variables should be (on the condition that their expected
values coincide with the inputs). In our opinion, error di�usion algorithms are better whenever
they come closer to meeting this intuitive requirement. Many other approaches have also been
used to evaluate quality of digital halftoning [1, 6, 16, 24]. A more extensive discussion of error
metrics would go beyond the scope of the paper.

As Figure 2 shows, the serpentine raster of the modi�ed Floyd{Steinberg algorithm allows it
to take more neighbors into account.
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a) b) c)

d) e) f)

g) h) i)

Fig. 1. Portrait of Anya Pogosyants

a) Classical Floyd{Steinberg Algorithm, 300 dpi

b) Modi�ed Floyd{Steinberg Algorithm, 300 dpi

c) Modi�ed Floyd{Steinberg Algorithm, 600 dpi

d) Dithered Serpentine Di�usion, 4� 4 matrix, 300 dpi

e) Dithered Serpentine Di�usion, 6� 6 matrix, 300 dpi

f) Patterned Serpentine Di�usion, 3� 3 tiles, 300 dpi

g) Patterned Double-Cross Di�usion, 2� 2 tiles, 300 dpi

h) Patterned Double-Cross Di�usion, 2� 2 tiles, 600 dpi

i) Patterned Double-Cross Di�usion, 3� 3 tiles, 300 dpi
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b)a)

Fig. 2. Flow of Error Di�usion
a) For the Classical Floyd{Steinberg Algorithm
b) For the Modi�ed Floyd{Steinberg Algorithm

The correlated artifacts (zebra stripes) tend to be roughly perpendicular to the general direc-
tion of error di�usion. The theory behind the fact is presented in [19]. Figure 2(b) shows that
the ow of error di�usion for the modi�ed Floyd{Steinberg algorithm is nicely balanced in the
horizontal direction. This simpli�es choice of weights and makes the orientation of remaining cor-
related artifacts approximately horizontal. The latter feature, along with the overall reduction of
the zebra stripes, makes the modi�ed Floyd{Steinberg error di�usion algorithm a good candidate
for combining with ordered dither and patterning.

3. Combining Error Di�usion on a Serpentine Raster and Ordered Dither

Let D be an M � N matrix of real values between 0 and 1. This section introduces dithered
serpentine di�usion, the technique obtained by substituting Ai;j < D(i mod M)+1;(j mod N)+1 for
Ai;j < 1=2 in the modi�ed Floyd{Steinberg error di�usion algorithm.

Our implementations of dithered serpentine di�usion employ the weights chosen earlier for the
modi�ed Floyd{Steinberg algorithm. Figure 1(d) corresponds to the 4� 4 matrix

D =

0
BB@
1=9 2=9 5=9 6=9
4=9 3=9 8=9 7=9
5=9 6=9 1=9 2=9
8=9 7=9 4=9 3=9

1
CCA : (3)

Figure 1(e) demonstrates the e�ect of the 6� 6 matrix

D =

0
BBBBB@

13=19 15=19 10=19 9=19 3=19 6=19
16=19 18=19 14=19 5=19 1=19 2=19
11=19 17=19 12=19 7=19 4=19 8=19
9=19 3=19 6=19 13=19 15=19 10=19
5=19 1=19 2=19 16=19 18=19 14=19
7=19 4=19 8=19 11=19 17=19 12=19

1
CCCCCA
: (4)

Comparison with Figures 1(a,b) shows that dithered serpentine di�usion achieves further re-
duction of the correlated artifacts and breaks their directionality at the cost of image blurring.
Arti�cial contours and extra granularity noticeable in the case of the 4 � 4 matrix subside when
the matrix size is increased. Very light tones retain some correlated artifacts, and appearance
of some of the corresponding areas even gets worse. In the meanwhile, the gray areas acquire
structure similar to that of the 45� classical screen (this is due to our choices of D). The quality
of halftoning by dithered serpentine di�usion may be improved through adjustment of the error
di�usion coe�cients and/or D.
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Notice that the speed of the dithered serpentine di�usion algorithms is slightly worse than
that of the modi�ed Floyd{Steinberg algorithm. Faster hybrid algorithms are given in the next
two sections.

4. Combining Error Di�usion on a Serpentine Raster and Patterning

Let C(0); C(1); : : : ; C(MN) be M � N matrices of zeros and ones such that, for any k,
0 � k � MN , C(k) has exactly k zero elements. Let fl0 = 0; l1 = 1=(MN); : : : ; lM�N = 1g be
a set of MN + 1 equidistant quantization levels.

Patterned serpentine di�usion is a combination of the modi�ed Floyd{Steinberg algorithm and
patterning. Its input A is the same as before, but the elements of the output matrix B take values
from fC(k)g. The technique can be described algorithmically as follows.

for i := 1 to m do
begin
if i is odd then
for j := 1 to n do
begin
q := the index of the nearest of lk (k = 0; : : : ;MN) to Ai;j ;

Bi;j := C(q);
" := Ai;j � lq; f" is the current value of error.g
Ai;j+1 := Ai;j+1 + " � �;
Ai+1;j := Ai+1;j + " � ;
Ai+1;j+1 := Ai+1;j+1 + " � �;

end;
else
for j := n downto 1 do
begin
q := the index of the nearest of lk (k = 0; : : : ;MN) to Ai;j ;

Bi;j := C(q);
" := Ai;j � lq;
Ai;j�1 := Ai;j�1 + " � �;
Ai+1;j := Ai+1;j + " � ;
Ai+1;j�1 := Ai+1;j�1 + " � �;

end;
end.

Our implementations of patterned serpentine di�usion use the weights chosen for the modi�ed
Floyd{Steinberg algorithm. One of the algorithms uses 3� 3 matrices

C(0) =

0
@ 0 0 0
0 0 0
0 0 0

1
A ; C(1) =

0
@ 0 0 0
0 0 0
0 0 1

1
A ; C(2) =

0
@ 0 0 0
0 0 0
0 1 1

1
A ;

C(3) =

0
@ 0 0 0
0 0 1
0 1 1

1
A ; C(4) =

0
@ 0 0 0
0 0 1
1 1 1

1
A ; C(5) =

0
@ 0 0 1
0 0 1
1 1 1

1
A ; C(6) =

0
@ 0 0 1
0 1 1
1 1 1

1
A ; (5)

C(7) =

0
@ 0 0 1
1 1 1
1 1 1

1
A ; C(8) =

0
@ 0 1 1
1 1 1
1 1 1

1
A ; C(9) =

0
@ 1 1 1
1 1 1
1 1 1

1
A ;
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to simulate a 0� classical screen. Its e�ect is shown in Figure 1(f). Again, the correlated artifacts
are curbed at the cost of increased granularity, image blurring, and some contouring. All these
negative e�ects except the image blurring can be reduced by using larger tiles. The structure of
the tiles appears to be signi�cant, too.

The other implementation of patterned serpentine di�usion involves 4� 4 matrices

C(0) =

0
BB@
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
CCA ; C(1) =

0
BB@
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1
CCA ; C(2) =

0
BB@
0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0

1
CCA ;

C(3) =

0
BB@
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 1

1
CCA ; C(4) =

0
BB@
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

1
CCA ; C(5) =

0
BB@
0 1 0 0
0 0 0 1
1 0 1 0
0 0 1 0

1
CCA ;

C(6) =

0
BB@
1 0 0 1
0 1 0 0
0 0 0 1
1 0 0 1

1
CCA ; C(7) =

0
BB@
1 0 1 0
0 1 0 1
0 0 1 0
0 1 0 1

1
CCA ; C(8) =

0
BB@
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1
CCA ; (6)

C(9) =

0
BB@
1 0 1 0
0 1 0 1
1 0 1 1
1 0 1 0

1
CCA ; C(10) =

0
BB@
0 1 0 1
1 0 1 1
1 1 0 1
1 0 1 0

1
CCA ; C(11) =

0
BB@
1 1 0 1
0 1 1 0
1 1 1 0
1 0 1 1

1
CCA ;

C(12) =

0
BB@
1 0 1 1
1 1 1 0
0 1 1 1
1 1 0 1

1
CCA ; C(13) =

0
BB@
1 1 1 1
1 0 0 1
1 0 1 1
1 1 1 1

1
CCA ; C(14) =

0
BB@
1 1 1 1
0 1 1 1
1 1 0 1
1 1 1 1

1
CCA ;

C(15) =

0
BB@
1 1 1 1
1 1 1 1
1 0 1 1
1 1 1 1

1
CCA ; C(16) =

0
BB@
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1
CCA :

The apparent asymmetry is related to the issue of image printing, so the discussion of this algorithm
will take place in Section 6.

The implied scale change can be implemented very e�ciently. Moreover, this kind of scaling
is often needed even for the algorithms allowing a one to one mapping. In the meanwhile, the
number of operations required by a patterned serpentine di�usion algorithm is roughlyMN times
smaller than the number of operations needed by each of the other error-di�usion-based algorithms
considered so far to produce an output image of the same size. Di�erence in the nature of the
operations, along with necessary overheads, accounts for the fact that this dependency is just an
approximation.

5. Fast Hybrid Algorithms for Emulation of 45� Classical Screens

In the course of our digital halftoning research, we met a few people who liked classical screens,
and a few people who didn't. Did these meetings inuence the direction of our work? Somewhat.
In Section 3, we showed that the dithered serpentine di�usion algorithms can emulate 45� screens.
In this section, we present faster hybrid algorithms capable of doing the same thing (one of them
happened to be good for medical image printing).

Let R = fR(0); R(1); : : : ; R(2N2)g and W = fW (0);W (1); : : : ;W (2N2)g be sets of N �N matrices
of zeros and ones. Let fl0 = 0; l1 = 1=(2N 2); : : : ; l2N2 = 1g be a set of 2N 2 + 1 equidistant
quantization levels.
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Patterned double-cross di�usion is a hybrid of error di�usion and patterning. Values assigned
to the entries of B are elements of R[W . The algorithmic description of the process is as follows.

c := (n mod 2);

for i := 1 to m do

begin

d := (i mod 2) + 1;

for j := d by 2 to n� c� (d mod 2)(1� 2c) do

begin

q := the index of the nearest of lk (k = 0; : : : ; 2N 2) to Ai;j ;

Bi;j := R(q);

" := Ai;j � lq; f" is the current value of error.g

Ai;j+2 := Ai;j+2 + " � �;

Ai+1;j�1 := Ai+1;j�1 + " � �;

Ai+1;j+1 := Ai+1;j+1 + " � �;

end;

for j := n+ c+ (d mod 2)(1� 2c)� 1 by 2 downto (d mod 2) + 1 do

begin

q := the index of the nearest of lk (k = 0; : : : ; 2N 2) to Ai;j ;

Bi;j := W (q);

" := Ai;j � lq;

Ai;j�2 := Ai;j�2 + " � �;

Ai+1;j+1 := Ai+1;j+1 + " � �;

Ai+1;j�1 := Ai+1;j�1 + " � �;

end;

end.

Figure 3 shows the ow of double-cross error di�usion.

Fig. 3. Flow of Double-Cross Error Di�usion

We implemented two patterned double-cross di�usion algorithms, using � = 0:32, � = � = 0:29.
The sets of cells R andW for one of them were obtained by using thresholds 17=18; 15=18; : : : ; 1=18
to perform conventional two-level quantization of matrices

~R =

�
4=9 3=9
2=9 1=9

�
; ~W =

�
5=9 7=9
6=9 8=9

�
: (7)

Figures 1(g) and 1(h) demonstrate the e�ect of this algorithm applied to the digitized portrait of
Anya Pogosyants at 300 dpi and 600 dpi. The algorithm was applied to medical image printing as
well. This application will be discussed in the next section.
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The other patterned double-cross di�usion algorithm we implemented uses sets of cells pro-
duced by conventional two-level quantization of

~R =

0
@ 6=19 4=19 9=19
2=19 1=19 5=19
8=19 3=19 7=19

1
A ; ~W =

0
@ 10=19 16=19 13=19
14=19 18=19 17=19
12=19 15=19 11=19

1
A (8)

with thresholds 37=38; 35=38; : : : ; 1=38. Its e�ect is shown in Figure 1(i).

Look at similarities and di�erences between Figures 1(d) and 1(g), then compare Figures
1(e) and 1(i). The patterned double-cross di�usion algorithms appear to curb correlated artifacts
stronger than the corresponding dithered serpentine di�usion algorithms. This is achieved at the
expense of small details of the image. Occurrence of characteristic vertical artifacts may be further
fought by means of weight adjustment. Di�erences become smaller when the matrix sizes increase.

Patterned double-cross algorithms outperform error di�usion and dithered serpentine di�usion:
approximately N 2 times fewer operations are required. Actual savings aren't as high due to
di�erence in the nature of operations and presence of overheads.

6. Application of Hybrid Algorithms to Medical Image Printing

Three of our hybrid algorithms found application in the medical imaging software by VIDAR
Ltd. Traditionally, the printing of computer tomography images and ultrasound diagnostics images
had been done on thermo printers. The image printing on laser printers is less expensive, and our
hybrid algorithms ensured good quality at high speed.

Before we cover the details, a preliminary remark about image printing in general. Tone scale
adjustment [24 (Section 1.3)] is an essential part of image printing on laser printers. In particular,
it is usually necessary to compensate for broadening of black pixels which darkens images. Despite
our having performed this procedure in the course of illustration preparation for this manuscript,
slight di�erences of brightness of some areas of similar images may be observed in Figures 1, 4,
and 5. These di�erences are small compared to what happens when the same image is printed at
di�erent toner levels. Figure 6 shows gray scale ramps produced without tone scale adjustment.
The appearance of a ramp does not depend solely on the digital halftoning algorithm applied. It is
inuenced by the choice of a printer, the toner level, and the resolution. In particular, algorithms
equally good at representing intensity levels by appropriate proportions of black and white pixels
may produce very di�erent ramps, because the dots produced by the printer are not ideal pixels.

It is not a good idea to print medical images at 300 dpi, unless one wants a hard copy of an
unimportant image fast. For this purpose, patterned double-cross di�usion with sets of patterns
generated from the matrices in Eq. (7) was used. This algorithm is also good for printing at 600
dpi, but the patterned serpentine di�usion algorithm with tiles from Eq. (6) was selected instead,
because it is faster. Limits on resolution capacity of the vision system cause the di�erences between
digital halftoning algorithms to become less conspicuous at higher resolutions of printing and allow
the use of more primitive, faster algorithms.

Pictures shown in Figures 4 and 5 feature two CAT scan images: the cyst (Figure 4) and
the head of a healthy man (Figure 5). The cyst (a closed sac having a distinct membrane and
developing abnormally in someone's brain) is the obnoxious dark area in the right-hand side of the
�rst image. Figures 4(a) and 5(a) are printed at 300 dpi, using the appropriate patterned double-
cross di�usion algorithm. Figures 4(b) and 5(b) show outputs of the same algorithm at 600 dpi.
Figures 4(c) and 5(c) represent results of the faster patterned serpentine di�usion algorithm. In
reality, hard copies of medical images are approximately four times larger (each size being doubled)
than our illustrations. Figures 1(b,c,g,h) help to illustrate the e�ect of improved resolution. Quality
di�erence between Figures 1(c) and 1(h) is smaller than between Figures 1(b) and 1(g).
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a) b) c)

Fig. 4. The Cyst

a) Patterned Double-Cross Di�usion, 2� 2 tiles, 300 dpi

b) Patterned Double-Cross Di�usion, 2� 2 tiles, 600 dpi

c) Patterned Serpentine Di�usion, 4� 4 tiles, 600 dpi

a) b) c)

Fig. 5. The Head of a Healthy Man

a) Patterned Double-Cross Di�usion, 2� 2 tiles, 300 dpi

b) Patterned Double-Cross Di�usion, 2� 2 tiles, 600 dpi

c) Patterned Serpentine Di�usion, 4� 4 tiles, 600 dpi

For medical image printing, VIDAR Ltd. recommends LEXMARK printers, which seem to
need less tone scale adjustment than, say, HP LaserJet IVsi used to prepare illustrations in this
paper. The asymmetry in Eq. (6) allows to further reduce the necessary adjustment.

Finally, a patterned serpentine di�usion algorithm using 8 � 8 matrices was developed for
medical image printing at 1200 dpi on LEXMARK laser printers. It is analogous to the algorithm
for printing at 600 dpi.
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suggestions on presentation of the paper. We are deeply grateful to Gregory Pogosyants for his
permission to use the digitized portrait of his daughter, Anya Pogosyants (1969{1995). A grad
student at the Massachusetts Institute of Technology, Ms. Pogosyants was involved in research of
properties of randomness-containing programs and other topics in computer-aided veri�cation and
distributed computing. The medical images in this paper are published with permission of VIDAR
Ltd.
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Fig. 6. Gray Scale Ramp
a) Classical Floyd{Steinberg Algorithm, 300 dpi
b) Modi�ed Floyd{Steinberg Algorithm, 300 dpi
c) Modi�ed Floyd{Steinberg Algorithm, 600 dpi
d) Dithered Serpentine Di�usion, 4� 4 matrix, 300 dpi
e) Dithered Serpentine Di�usion, 6� 6 matrix, 300 dpi
f) Patterned Serpentine Di�usion, 3� 3 tiles, 300 dpi
g) Patterned Serpentine Di�usion, 4� 4 tiles, 300 dpi
h) Patterned Double-Cross Di�usion, 2� 2 tiles, 300 dpi
i) Patterned Double-Cross Di�usion, 3� 3 tiles, 300 dpi
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