
DDD-FM9001: Derivation of a Veri�ed Microprocessor y

by

Bhaskar Bose

Submitted to the faculty of the Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

December 1994

yResearch reported herein was supported, in part, by NASA: The National Aeronautics
and Space Administration under grant number NGT-50861, and by NSF: The National
Science Foundation, under grants numbered DCR 85-21497, MIP 87-07067 and MIP 89-
21842.

Accepted by the Graduate Faculty, Indiana University, in partial
ful�llment of the requirements for the degree of Doctor of Philosophy.

Doctoral Prof. Steven D. Johnson, Ph.D
Committee (Principal Advisor)

November 11, 1994 Prof. David E. Winkel, Ph.D

Prof. David S. Wise, Ph.D

Prof. J. Michael Dunn, Ph.D

ii

Copyright c1994

Bhaskar Bose

ALL RIGHTS RESERVED

iii

To my parents, Asim and Tripti.

iv

Abstract

Derivation and veri�cation represent alternate approaches to design. Derivation

aims at deriving a \correct by construction" design while veri�cation aims at con-

structing a post factum \proof of correctness" for a design. However, as researchers

and engineers gain design experience in a formal framework, both approaches are

emerging as interdependent facets of design. The thesis of this work is that alternate

forms of formal reasoning must be integrated if formal methods are to support the

natural analytical and generative reasoning that takes place in engineering practice.

As a vehicle for this research, the DDD digital design derivation system was im-

plemented to study formal hardware design in an algebraic framework. DDD is a

�rst-order transformation system which mechanizes a basic design algebra for syn-

thesizing digital circuit descriptions from high-level functional speci�cations. The

system is a collection of correctness preserving transformations that promote a top-

down design methodology where the discipline of applicative programming is adapted

to hardware veri�cation.

As a non-trivial illustration of these ideas, the derivation of the DDD-FM9001 is

presented. The DDD-FM9001 is a 32-bit general purpose microprocessor mechanically

derived directly from Hunt's Boyer-Moore Logic FM9001 microprocessor speci�cation.

The derivation involved the use of three mechanical veri�cation tools: the DDD digital

design derivation system, the Nqthm theorem prover, and the COSMOS boolean

tautology checker. The DDD digital design derivation system was used to derive a

signi�cant portion of the design leaving relatively small portions to be veri�ed by the

other veri�cation tools. The result of this experiment was a derived FM9001 de�ned

by a rigorous path to hardware.

v

Acknowledgments

I would like to thank Steven D. Johnson and David E. Winkel for their support,

assistance, and friendship. Their breadth of knowledge and sagacity has provided me

with the guidance to pursue this investigation. For the knowledge and wisdom that

they have shared with me, I will always be indebted.

The relationship between teacher and student is something I hold very dear to

me. Steve's insight into the research issues were instrumental in the success of this

work. I am grateful to have such a teacher.

I would like to thank the other members of my committee, David S. Wise and

J. Michael Dunn. Their encouragement and belief in this work has been a source of

strength. I would also like to thank Warren A. Hunt, Jr. for providing the FM9001

speci�cation and hardware implementation, and for providing a body of work that

serves as a context for this research. I would like to thank the Formal Methods

Branch at NASA Langley Research Center, who through the NASA Graduate Student

Researchers Program, provided �nancial support for this work.

The derivation system presented herein was �rst implemented by myself in Septem-

ber 1986, while C. David Boyer applied it to a non-trivial design example. It is from

this synergy that this work derives its spirit. I am particularly indebted to my dear

friend and colleague M. Esen Tuna. His contributions to this work has added a di-

mension that would not have otherwise existed. Others who have contributed to this

work include Ignacio Celis, Kathy Fisler, William A. Hunt, Paul S. Miner, Kamlesh

Rath, Shyamsundar Pullela, Robert M. Wehrmeister, and Zheng Zhu.

And �nally to my wife Ansuya Bose, like Steve, she too is an educator and has

given me guidance and support throughout this writing. Her contributions to this

work are manifest in its very existence. To Ansuya, with love, I thank you.

{bb{

vi

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

1.1 Dissertation Contributions : 4

1.2 Outline : 6

2 Related Research 7

2.1 Formal Veri�cation Systems : 7

2.1.1 Model Checking : 7

2.1.2 Theorem Proving and Proof Checking : : : : : : : : : : : : : : 8

2.1.3 Design by Algebraic Transformation : : : : : : : : : : : : : : 10

2.2 Integrating Formal Systems : 12

3 DDD - Design Derivation System 16

3.1 Introduction : 16

3.2 The Derivation Path : 17

3.3 An Example: Fibonacci : 19

3.4 The Speci�cation Language : 24

3.4.1 Scheme Syntax : 24

3.4.2 Behavior Speci�cation : 26

3.4.3 Structural Speci�cation : 29

vii

3.5 Description of Transformations : 32

3.5.1 Behavioral Transformations : : : : : : : : : : : : : : : : : : : 35

3.5.2 Behavior to Structure Construction : : : : : : : : : : : : : : : 37

3.5.3 Structural Transformations : 38

3.5.4 Projection Transformations : : : : : : : : : : : : : : : : : : : 42

4 Derivation of the DDD-FM9001 45

4.1 FM9001 Speci�cation : 48

4.2 Transformations on Behavior : 52

4.2.1 Unfolding: let : 53

4.2.2 Expanding: if* : 54

4.2.3 Scheduling mem-write and mem-read : : : : : : : : : : : : : : 55

4.2.4 Distributing: if : 61

4.3 Behavior to Structure : 63

4.4 Factoring mem, regs, and v-alu : 69

4.4.1 Factoring mem : 69

4.4.2 Factoring regs : 72

4.4.3 Factoring v-alu : 75

4.4.4 Factoring v-inc and v-dec : : : : : : : : : : : : : : : : : : : 78

4.5 Verifying v-alu, v-inc and v-dec . : : : : : : : : : : : : : : : : : : : 82

4.5.1 Boolean Veri�cation: An Example : : : : : : : : : : : : : : : : 84

4.5.2 Verifying v-alu : 86

4.5.3 Verifying v-inc and v-dec : 88

4.6 Deriving the Next-State and Command Generator : : : : : : : : : : : 88

4.6.1 The Next-State Generator : 89

4.6.2 The Command Generator : 90

4.7 Projection : 92

viii

4.7.1 Projecting the Command Generator : : : : : : : : : : : : : : : 93

4.7.2 Projecting the Next-State Generator : : : : : : : : : : : : : : 95

4.7.3 Projecting the Datapath : 98

5 DDD-FM9001 Realization 100

5.1 Design Validation : 102

5.1.1 Hardware Test Environment : : : : : : : : : : : : : : : : : : : 103

5.1.2 Software Interface : 103

5.2 Comparing the FM9001 and DDD-FM9001 : : : : : : : : : : : : : : : 105

6 Conclusion 108

6.1 The Interplay of Derivation and Veri�cation : : : : : : : : : : : : : : 108

6.2 The DDD System : 109

6.3 Design Derivation : 109

6.4 The Derivation Script : 110

6.5 Closing Remarks : 111

A The FM9001 Speci�cation 123

B The DDD-FM9001 Derivation Script 129

C The DDD-FM9001 Structural Speci�cation 143

ix

List of Figures

1.1 FM9001 Veri�cation vs. DDD-FM9001 Derivation : : : : : : : : : : : 3

1.2 DDD-FM9001/FM9001 Logic Engine Prototype Environment : : : : 5

4.1 DDD-FM9001 Derivation Path : 46

4.2 DDD-FM9001 Block Diagram : 47

4.3 FM9001 Instruction Set : 49

4.4 DDD-FM9001 Serialization : 56

4.5 DDD-FM9001 Initial Sequential System : : : : : : : : : : : : : : : : : 65

4.6 OBDDs of sum and carry : 84

4.7 Multiplexor Implementation: 1-Bit Full-Adder : : : : : : : : : : : : : 85

4.8 Command Code Assignments : 91

4.9 Representations : 96

5.1 DDD-FM9001 Realization Schematic : : : : : : : : : : : : : : : : : : 100

5.2 DDD-FM9001 Pin Assignments : 101

5.3 Hardware Test Environment : 103

5.4 Quantitative Comparison : 105

5.5 DDD-FM9001 Block Diagram : 106

5.6 FM9001 Block Diagram : 106

x

Chapter 1

Introduction

Derivation and veri�cation represent alternate approaches to design.

Derivation aims at deriving a
\correct by construction" design.

Veri�cation aims at constructing a
post factum \proof of correctness" for a design.

However, as researchers and engineers gain design experience in a formal framework,

both approaches are emerging as interdependent facets of design [44, 8, 54]. The

thesis of this work is that alternate forms of formal reasoning must be integrated if

formal methods are to support the natural analytical and generative reasoning that

takes place in engineering practice.

The DDD-FM9001 is a 32-bit general purpose microprocessor formally derived

from Hunt's Boyer-Moore Logic FM9001 microprocessor speci�cation [35, 36]. The

derivation involved the use of three mechanical veri�cation tools: the DDD digital

design derivation system [42, 40, 6, 41] , the Nqthm theorem prover [11], and the

COSMOS boolean tautology checker [14, 15]. The project was undertaken to explore

the nature of integration between derivation and veri�cation.

The DDD digital design derivation system is a �rst-order transformation system

that implements a basic design algebra for synthesizing digital circuit descriptions

1

2

from high-level functional speci�cations. The system promotes a top-down design

methodology, based on the concept of executable and veri�able speci�cations. Nqthm

is a quanti�er free, �rst order logic theorem prover based on the Boyer-Moore Logic.

The logic is mechanized by a collection of Lisp programs that allow the user to

axiomatize inductively constructed data types, de�ne recursive functions, and prove

theorems about them. The COSMOS boolean tautology checker, is a boolean formula

manipulation tool derived from the COSMOS symbolic simulator that constructs Bi-

nary Decision Diagrams from boolean terms. The system is used to establish equiv-

alence between two boolean expressions.

The DDD-FM9001 project is an experiment to construct an implementation of the

FM9001 using a design strategy that exploits the strengths of di�erent formal systems

to establish a rigorous path from an abstract high-level speci�cation to a hardware

realization. The DDD system is used to derive a signi�cant portion of the design

leaving relatively small portions to be veri�ed by the other veri�cation tools. In this

derivation exercise, a set of transformations is applied to decompose and reorganize

the design. Complex components, such as the memory, register-�le, ALU, incremen-

tor, and decrementor, are isolated using DDD's abstraction mechanisms. Technology

dependent, highly optimized implementations of the ALU, incrementor, and decre-

mentor are engineered and veri�ed against their respective isolated components using

COSMOS. Binary representations, veri�ed by Hunt in Nqthm for the FM9001, are

used to project the design to boolean equations. The memory and register-�le are

implemented with standard RAM components. The result of this experiment is a

derived FM9001 implemented in FPGAs (Field Programmable Gate Arrays) de�ned

by a rigorous path to hardware.

The FM9001 and DDD-FM9001 share a unique property - each microprocessor

has a mechanically veri�ed, formal relation to the same top-level mathematical spec-

i�cation. Figure 1.1 illustrates the relationship between Hunt's FM9001 and the

3

Nqthm Specification

FM9001

verify state

control

operand−a

operand−b

b−address

pc−reg

c

z

v

n

MEM

INC

DEC

ALU

REGS

derive

derive verify

 DDD−
FM9001

ins

Figure 1.1: FM9001 Veri�cation vs. DDD-FM9001 Derivation

DDD-FM9001. On the left is Hunt's veri�cation. Hunt veri�ed four levels of speci�-

cation in Nqthm - the abstract programmer's model, the two valued logic level, the

three valued logic level, and a gate level model. The FM9001 is realized on a single

custom gate-array by LSI Logic. On the right is the derivation of the DDD-FM9001.

In this case, derivation is used to decompose and restructure the design. Equivalence

checking is used to verify various arithmetic components. The design is realized in

an ACTEL FPGA and an external register-�le.

Experience shows that derivation systems impose restrictions on the design, and

veri�cation systems result in design descriptions that are impractical for implemen-

1.1. DISSERTATION CONTRIBUTIONS 4

tation [34] or proofs too di�cult to construct [23]. This research sets out to address

these de�ciencies by integrating derivation and veri�cation in a uni�ed framework.

It seems appropriate that algebraic transformations would provide a reasonable ap-

proach to this problem since the massive restructuring and decomposition necessary

in reorganizing the design represent purely syntactical manipulations. A derivation

system such as DDD can decompose and restructure the design in such a manner

as to derive a signi�cant portion of the design and isolate the veri�cation problems

to small building blocks. Veri�cation can then be applied to the isolated building

blocks. The intuition is that for a given design, the relationship between its speci�-

cation and implementation has two facets. One facet of the implementation can be

systematically derived from the speci�cation. This portion, though critical, repre-

sents the uninteresting part of the design. The other facet of the design represents

the interesting engineering in the design and is better addressed by veri�cation.

1.1 Dissertation Contributions

The primary goal of this research has been the study of formal hardware design in

an algebraic framework. To this end, the DDD digital design derivation system has

been developed as a research vehicle for engineers and scientists.

This work extends the experimentation on the interplay between derivation and

veri�cation reported in [44]. Previous work applied the DDD system to Hunt's

FM8501 description [34]. The FM8501 is a 16-bit microprocessor veri�ed by Hunt

in the Nqthm theorem prover. Results of the DDD/FM8501 experiment exposed the

need to take a broader view of formal reasoning in design. The experiment illustrated

how alternative modes of reasoning could be applied to a single design. The work

showed how the massive restructuring involved at lower levels of abstraction could

be implemented more easily by derivation, and how the inventive aspects of a design

1.1. DISSERTATION CONTRIBUTIONS 5

could be isolated for veri�cation.

The DDD-FM9001 exercise extends the previous work on the FM8501 in three

ways. First, the derivation was upgraded in conjunction with Hunt's re�nements

to representation. Second, much more of the algebra was mechanized; in fact, the

entire gate-level hardware description was generated either by mechanical derivation

or veri�ed using boolean equivalence methods [3, 14]. Finally, the DDD-FM9001 was

realized in hardware and subjected to side-by-side functional tests with Hunt's chip.

Figure 1.2 is a photograph of the hardware prototype in which Hunt's FM9001 and

the DDD-FM9001 are fully operational. Details are given in Chapter 5.

FM9001

DDD−FM9001

Memory

Figure 1.2: DDD-FM9001/FM9001 Logic Engine Prototype Environment

1.2. OUTLINE 6

1.2 Outline

This dissertation sets out to present in a meaningful way the details of the derivation

of the DDD-FM9001. Chapter 2 explores related research, including brief descriptions

of derivation exercises using the DDD system. Chapter 3 describes the DDD system.

A characterization of the derivation process is outlined de�ning a path from behavior

to structure to physical organization. An example illustrates the path from behavior

to architecture. Chapter 4 contains a documentary of the signi�cant aspects of the

DDD-FM9001 derivation, in which the reader is carried through key points of the

derivation in an attempt to mirror the intellectual exercise imposed by the derivational

methodology. Chapter 5 describes the DDD-FM9001 hardware realization. Chapter

6 concludes this thesis with remarks and future directions. Appendix A contains

the top-level Boyer-Moore Logic speci�cation of the FM9001 as well as details of

the instruction set, condition codes, addressing modes, and register addresses for the

FM9001. Appendix B contains the complete DDD derivation script. Appendix C

contains the initial and �nal structural speci�cations derived from the behavioral

speci�cation.

Chapter 2

Related Research

With the growing complexity in VLSI technology, the need for powerful design tools

has become essential to the future of computer design. Formal methods in VLSI are

playing a fundamental role in design automation as mathematical techniques provide

a rigorous framework for reasoning about complex designs and guaranteeing integrity

in the design process.

2.1 Formal Veri�cation Systems

Formal veri�cation systems mechanize the mathematical reasoning necessary in de-

sign. They provide proof management support for the overwhelming detail associated

with the description of hardware systems, and span a range of expressive power from

fully automatic model checkers to manually guided theorem provers.

2.1.1 Model Checking

Model checking is a fully automatic technique that involves extracting models from

implementations and verifying properties about the model in a formal framework.

Binary decision diagrams (BDDs) [3] have emerged as an e�ective data representation

for digital systems. One variation of BDDs, called Ordered BDDs (OBDDs) [14] has

the special property that for a given ordering of the variables the representations are

7

2.1. FORMAL VERIFICATION SYSTEMS 8

canonical. Thus OBDDs are used frequently to solve problems in the areas of boolean

veri�cation and �nite-state machine equivalence [16, 49].

The \bdd" program [15], used to verify the arithmetic components of the DDD-

FM9001, is a boolean formula manipulation tool integrated with the COSMOS sym-

bolic simulator which constructs OBDDs from boolean terms. The system is used to

establish equivalence of boolean expressions. In \bdd", boolean equations are repre-

sented as acyclic graphs, with variables as the internal nodes and TRUE and FALSE

(1 and 0) as the terminal nodes. Because of the canonical nature of OBDDs, the

test for equality of two boolean expressions and other operations on boolean expres-

sions reduce to simple graph algorithms operating on OBDDs. For example, verifying

the equality of two boolean equations reduces to the graph equality test on OBDDs

representing the two equations. Although in the worst case the size of the OBDDs

can be exponential in the number of variables, there is substantial empirical evidence

that OBDDs are of reasonable space and time complexity for most of the boolean

expressions in digital design [14]. Although, the techniques in model checking are

completely automatic and have been used to verify some very large systems [21], they

are limited in their ability to verify many properties of a given speci�cation.

2.1.2 Theorem Proving and Proof Checking

A mechanical theorem prover for a given formal logic is a computer program that,

when given a formula of that logic, attempts to determine whether there is a proof

of the formula. A mechanical proof checker for a given formal logic is a computer

program that, when given a proof of a theorem, checks that it is a valid proof.

Theorem provers and proof checkers provide a powerful framework for veri�cation

and have been used to verify signi�cant designs.

HOL is a general theorem-proving system developed at the University of Cam-

2.1. FORMAL VERIFICATION SYSTEMS 9

bridge [31] based on higher-order logic [18]. Higher-order logic is predicate logic that

allows quanti�cation over predicates and functions. HOL is based on �ve primitive

axioms and eight primitive inference rules. All proofs reduce to the primitive axioms

and rules. The system has been used to verify several microprocessor designs.

Cohn [23, 24] veri�ed parts of the VIPER microprocessor in the HOL theorem

prover. VIPER was designed by Britain's Royal Signals and Radar Establishment

(RSRE) at Malvern to provide a high-integrity, formally veri�ed microprocessor for

use in safety-critical systems. More recently, Levitt et al. [48], applying Windley's

generic interpreter theory [74], used HOL to verify the VIPER instruction set. Brian

Graham et al. at the University of Calgary veri�ed an implementation of an SECD

machine [32] in HOL. The SECD is a specialized microprocessor for Lisp, �rst speci-

�ed by Peter Landin [46] in the 1960s. Joyce veri�ed the TAMARACK [45], a 16-bit

micro-coded microprocessor, in HOL. Joyce veri�ed TAMARACK at the transistor

level and fabricated an 8-bit version in CMOS. The design is based on early hardware

veri�cation e�orts by Gordon on the design and veri�cation of a simple computer [30]

using a precursor to HOL, the LCF-LSM theorem prover [29].

Nqthm is a quanti�er free, �rst order logic theorem prover based on the Boyer-

Moore Logic [11]. The logic is mechanized by a collection of Lisp programs that

permit the user to axiomatize inductively constructed data types, de�ne recursive

functions, and prove theorems about them.

In 1985, Hunt used the Nqthm theorem prover to verify a 16-bit general purpose

microprocessor called the FM8501 [34]. The architecture has eight 16-bit registers,

a 16-bit address space, 26 instructions, and four memory addressing modes. In the

FM8501 proof, Hunt established an equivalence relation between speci�cations of

an abstract programmer's model, called soft, and an implementation, a hardware

interpreter model, called big-machine. Subsequent work by Hunt scaled this proof

e�ort to a 32-bit version called FM8502.

2.1. FORMAL VERIFICATION SYSTEMS 10

Recent work by Hunt is the veri�cation of the FM9001 [35], a 32-bit general

purpose microprocessor. The FM9001 is de�ned in the Boyer-Moore logic and is

mechanically veri�ed using the Nqthm theorem prover. The proof establishes an

equivalence relation between four levels of speci�cation ranging from an instruction-

level programmer's model interpreter to an optimized gate-level description. Unlike

Hunt's previous veri�cation e�orts of the FM8501 and FM8502, the FM9001 is re-

alized in hardware. The FM9001 is packaged in a 121-pin gate-array fabricated by

LSI Logic, Inc. The chip has a 32-bit ALU, a 16�32-bit register-�le, a 32-bit data

I/O bus, a 32-bit address bus, a programmable program counter, a memory interface,

clock, reset, and a scan path.

PVS (Prototype Veri�cation System) [57] is a theorem prover for speci�cation and

veri�cation for simply typed higher-order logic. The system incorporates a fairly rich

set of built-in types and type constructors, and integrates a powerful proof checker

with the type system. PVS provides a combination of direct control by the user for

the higher levels of proof development, and powerful automation for the lower levels.

This combination, makes it a powerful and e�ective tool. Miner has used PVS in a

series of hardware veri�cation experiments [54].

2.1.3 Design by Algebraic Transformation

In\Synthesis of Digital Designs from Recursion Equations" [37], Johnson de�nes a

formal approach to hardware design based on the algebraic manipulation of purely

functional forms. The design methodology supports fundamental aspects of design in

a uni�ed framework. In this framework, the discipline of applicative programming is

adapted to hardware veri�cation.

This approach to design, called derivation, is a branch of formal veri�cation where

design is viewed as a translation of notation, starting with an abstract speci�cation

2.1. FORMAL VERIFICATION SYSTEMS 11

ranging over abstract data types and deriving an intended target implementation

by the application of correctness preserving transformations and constructions. The

implementation is said to be \correct-by-construction" eliminating the need for post-

factum veri�cation. This process is a translation between dialects of recursive expres-

sions

E0
�0
�! E1

�1
�! : : :

�k�1
�! Ek:

E0 represents a source expression and Ek an implementation. The arcs �0 to �k�1

represent applications of transformations. A design is determined by an initial spec-

i�cation E0, and a sequence of transformations < �0; � � � ; �k�1 >. The DDD digital

design derivation system is a mechanization of this theory.

Other approaches that follow closely to this methodology, include Sheeran's Ruby

relational algebra [66, 67, 68] that supports a transformational approach to veri�ca-

tion. In this method, a circuit is described by a binary relation, and the language

permits simple relations to be composed into more complex ones by using a variety

of combining forms. The algebra has been implemented in a rewriting tool called

T-Ruby [65]. Vemuri de�nes a set of transformations [71, 72] based on a free algebra

for register transfer level designs. Gaboury and M.I. Elmasry's PLUSH (Predicate

Logic Used for Synthesis Hardware) system [27] is a transformational approach based

on the Prolog language.

Johnson's work provides the theoretical foundation for the body of work surround-

ing the DDD system and serves as a context for several non-trivial design derivation

exercises. These derivation exercises provide a rich test bed for the development of

the DDD system as researchers investigate an algebraic approach to digital design.

Boyer used the DDD system to derive a stop-and-copy garbage collector for

Scheme [42]. The implementation was realized in MSI level EPAL (Erasable Pro-

2.2. INTEGRATING FORMAL SYSTEMS 12

grammable Array Logics) technology and demonstrated a derivation path from an

abstract behavior speci�cation to a hardware realization. Boyer subsequently re-

derived this design in a multi-chip VLSI implementation [10]. Wehrmeister used

DDD to derive the control and architecture of a computer based on Landin's SECD

machine [73]. The initial speci�cation was derived from Henderson's Lisp speci�ca-

tion [33]. Another derivation exercise was to derive an implementation of Winkel and

Prosser's state machine for playing the dealers hand in a game of Black Jack [41].

The experiences gained from these derivation exercises have been invaluable to the

understanding of hardware design in a formal framework and begin to demonstrate

the need to integrate formal systems.

Recent designs have included other formal systems in the derivation process. Early

experiments with Hunt's FM850x [34] series of veri�ed microprocessor designs were

initiated to study the interplay of derivation and veri�cation [44]. Details of this

experimentation is discussed in the next section. Miner derived a fault-tolerant clock

synchronization circuit for life-critical systems [54] integrating the DDD system, the

PVS theorem prover [57], and the COSMOS boolean veri�er. Burger derived a hard-

ware prototype for the execution of compiled Scheme using DDD and boolean veri-

�cation [70].

2.2 Integrating Formal Systems

The integration of formal systems has been an emerging thesis of this work. The

investigation grew out of recognition that although powerful veri�cation systems,

such as Nqthm and HOL, have been used to successfully verify non-trivial designs,

hardware veri�cation e�orts such as Cohn's VIPER proof [23], Joyce's TAMARACK

proof, and Hunt's FM8501 proof [34], were facing the same class of design problem.

A design description structured for the purpose of mechanical proof may have to be

2.2. INTEGRATING FORMAL SYSTEMS 13

restructured for the purpose of physical implementation. The re-veri�cation e�ort

is a non-trivial corollary to the correctness proof, and it is evident that this kind of

restructuring should be an algebraic process. On the other hand, a transformation

system depends on the correctness of the speci�cations, representations, and cannot

fully account for every aspect of design. In principle, a design methodology that

integrates various formal systems would allow the designer to use the most e�ective

method for a given task while maintaining a rigorous integrity of the design.

For example, the implementation of the FM8501 was compiled by Hunt by expand-

ing the internal register expressions. The design expanded to over 11 million gates.

The identi�cation of common sub-expressions reduced the description to 1,789 gates.

Although the 1,789 gates is tractable by today's logic synthesis systems, it represents

a \sea of gates", rather than a design decomposed into logical and physical structures

appropriate for a practical design. In addition, the scaling of this method to more

complex machines results in an exponential growth in the size of the expansion. For

example, going from the 16-bit FM8501 to the 32-bit FM8502 or 32-bit FM9001 could

not have been synthesized this way. As a solution to this problem, In the FM9001

veri�cation, Hunt embedded a formal hardware description language (HDL) within

the Boyer-Moore logic to describe the structure of the target speci�cation [36]. This

gave Hunt a real implementation language that he could manipulate formally.

The VIPER project involved an attempt to verify the speci�cation at three lev-

els of abstraction (Top Level, Major State, and Block), using Gordon's HOL theo-

rem prover [31], an attempt to verify a corresponding set of speci�cations written in

LCF LCM, a translation of the Block level LCF LSM speci�cation into the simulation

language ELLA [55], and a translation of the gate-level ELLA speci�cation into the

logic synthesis tools HILO and FDL for fabrication. The complete HOL proof of the

VIPER processor was not completed at the time the processor was fabricated [12].

The only formal proof in the VIPER design e�ort was Cohn's HOL proof of the Top

2.2. INTEGRATING FORMAL SYSTEMS 14

Level and Major State speci�cations. Cohn gives a detailed account of the di�culties

in completing the proof in [24].

Early experiments with Hunt's FM850x series of veri�ed processors [44] began to

explore the interdependence of both approaches. In the FM8501 proof [34], Hunt es-

tablished an equivalence relation between speci�cations of an abstract programmer's

model, called soft, and an implementation, a hardware interpreter model, called

big-machine. DDD was applied to both soft and big-machine. The derived archi-

tecture for soft was quite close to Hunt's implementation, however, it did not contain

certain key registers such as those associated with the memory protocol. These reg-

isters were not expected to arise in the derivation since they did not exist in the

original speci�cation of soft. In fact, this di�erence highlighted an essential aspect

of Hunt's proof establishing an equivalence relation between a functional model of

memory with that of a process model of memory.

In the second derivation, DDD was applied to the hardware interpreter model,

big-machine, to guide a top-down expansion of the design. Unlike Hunt's approach,

in which a bottom-up expansion of big-machine resulted in over 11 million gates

(reduced to 1,789 gates with the identi�cation of like terms), algebraic manipulations

were used to unfold, decompose, and restructure big-machine while containing the

size of the expansion. The derived architecture was identical to Hunt's block diagram.

From the FM8501 experiment two central ideas emerged. The derivation of soft

exposed elements of an implementation that could not be derived from a speci�cation.

These elements reected isolated components of a design that must be proved. The

big-machine derivation illustrated the need for transformational algebra to restruc-

ture and decompose a design in order to manage the logical and physical organization

necessary to construct a realization targeted to a particular technology. The experi-

ences with the FM8501 gave insight into the DDD-FM9001 derivation.

Other works to integrate various formal systems include Joyce's work in two-level

2.2. INTEGRATING FORMAL SYSTEMS 15

veri�cation methodology, where the HOL theorem prover is used for the ingenious as-

pects of system veri�cation and the COSMOS automatic BDD based methods are

used for other veri�cation tasks [64]. Schneider et al. [63] have also integrated

boolean veri�cation. Some preliminary work in this area, de�ning possible direc-

tions is Giunchiglia's work on Reasoning Structures [28]. In this work Giunchiglia et

al. propose a graph based reasoning structure that provide a basis for interaction and

sharing of information among inference procedures and with other reasoning systems.

Chapter 3

DDD - Design Derivation System

3.1 Introduction

DDD (Digital Design Derivation System) is a transformation system that implements

a basic design algebra for synthesizing digital circuit descriptions from high-level

functional speci�cations [42, 40, 6]. The system is a formalization of digital design

based on a functional algebra. DDD is much like a proof checker in the sense that it

automates the transformations needed for circuit synthesis, but requires substantial

guidance to perform a derivation. The system is implemented in the Lisp dialect

Scheme [26, 22] as a collection of transformations that operate on s-expressions. The

system is intended to provide a mechanized algebraic tool set for design derivation.

DDD is used interactively to transform higher level behavioral speci�cations into

hierarchical boolean systems [76, 75] to which logic synthesis tools are then applied.

The DDD system has been integrated with the Berkeley OCT Tools [69] to gener-

ate VLSI layouts, the Altera APLUS software [4] to generate MSI-level components,

and the ACTEL Action Logic System [1] to generate FPGA (Field Programmable

Gate Array) implementations. For the purpose of developing prototypes, the DDD

system has been integrated with the Logic Engine Hardware Development Plat-

form [78]. This hardware prototyping environment incorporates a transparent hard-

ware/software interface written in Scheme which allows for the execution of DDD

16

3.2. THE DERIVATION PATH 17

hardware descriptions interacting with the implemented hardware components.

3.2 The Derivation Path

In DDD, a sequence of transformations is applied to an initial speci�cation de�ning a

derivation path towards an implementation satisfying an intended set of design con-

straints. Design tactics and constraints imposed by the designer sketch a complex

design space with many possible paths between speci�cation and implementation.

In practice, however, the derivation path has distinct phases. The diagram below

expands on the characterization of derivation introduced earlier in Chapter 2, Sec-

tion 2.1.3. In the derivation path below, XB denotes a DDD expression, X , written

in terms of a ground type, B.

BhT;Ai �! B0
hT;Ai � � � behavior
??y

� � � C � ShT;Ai �! C � S 0
A k �A � � � structure

??y
x?? verify

� � � C � S 00
R k �R �! C � [P i

R] k �R physical org.
??y

logic synthesis

A sequence of transformations is applied to an initial behavioral speci�cation

BhT;Ai in order to derive an intended target realization. The initial behavior descrip-

tion BhT;Ai is in a restricted class of iterative function de�nition schemes expressed in

terms of a complex basis consisting of abstract operations and predicates, as well as

concrete operations and objects. Typically, the ground type hT;Ai contains complex

(T) and simple (A) components and might be parameterized. Examples of parameter-

3.2. THE DERIVATION PATH 18

ized types are memories parameterized by address and content, queues parameterized

by items and length and arithmetic operations parameterized by integers.

Design derivation in the DDD system has three major phases in which a typical

design may undergo many iterations. A class of transformations, called behavioral

transformations, manipulates the behavioral speci�cation. These transformations

usually involve manipulating control and architecture in a tightly integrated relation.

Some examples include folding and unfolding transformations to achieve a proper

scheduling of operations and transformations to move operations between control

and architecture [81].

From a suitable behavior description, DDD automatically builds an abstract se-

quential system description (B0
hT;Ai ! C � ShT;Ai) composed of a decision combinator,

C, representing control, and a structural component, ShT;Ai, representing an initial es-

timation of architecture. The system is expressed over the same ground type hT;Ai.

The � operator denotes simple composition. ShT;Ai is abstract because it may include

signals ranging over complex entities in the ground type.

A second class of transformations, called structural transformations, manipulates

the sequential system description. These transformations are intended to re�ne

the structural speci�cation to an architecture. A sequence of factorization steps

(C � ShT;Ai ! C � S 0
A k �A) decomposes S into a system of modules encapsulating

complex signals as co-processes, (e.g. �A), isolating components of the speci�cation

for veri�cation, mapping to existing hardware components, or further algebraic re�ne-

ment. The k operator denotes the composition of communicating subsystems. The

resulting expression is reduced to terms of the simpler type, A.

A third class of transformations, called projection transformations, introduces a

lower-level representation, R, in place of A for C � S 0
A. Veri�cation is necessary to

establish correctness of the representations.

3.3. AN EXAMPLE: FIBONACCI 19

Ultimately, this decomposition produces a hierarchy of boolean subsystems, which

are then partitioned into synthesizable subsystems (C � S 00
R k �R ! C � [P i

R] k

�R). These boolean subsystems are then passed to logic synthesis tools to generate

hardware realizations.

3.3 An Example: Fibonacci

This section introduces the phases of derivation in the DDD system in the context

of an example. The example is derived from Johnson's construction of the recursive

Fibonacci speci�cation [37]

fib(x) = lt?(x; 2)! add(fib(dec(dec(x))); f ib(dec(x)))

to an iterative form. The \!" denotes the conditional operator.

Beginning with an iterative de�nition of the Fibonacci function

g(x; y; z) = lt?(x; 2)! y; g(dec(x); z; add(y; z))

where

fib(x) = g(x; 1; 1):

The �rst phase in the derivation is to apply a series of transformations at the

behavioral level. In this phase the dec and add operations are serialized so that they

may be combined into a single logic unit later in the derivation. The �rst step is to

introduce a function h, such that the call to g will fold within the de�nition of h.

Introducing a de�nition h yields

g(x; y; z) = lt?(x; 2)! y; g(dec(x); z; add(y; z))

h(x; y; z) = g(x; z; add(y; z)):

3.3. AN EXAMPLE: FIBONACCI 20

The next step is to fold the call, g(dec(x); z; add(y; z)), in g into the de�nition of h

resulting in

g(x; y; z) = lt?(x; 2)! y; h(dec(x); y; z)

h(x; y; z) = g(x; z; add(y; z)):

The transformation rewrites the original call to g with a call to h with the appropriate

uni�cation of parameters. This has the e�ect of splitting the dec and add operations

between two separate de�nitions.

The next step in the derivation constructs a structural description from the behav-

ioral speci�cation. This is performed automatically by DDD and represents a pivotal

transformation in the derivation. The construction from behavior to structure is done

in two steps. The �rst step introduces a new parameter, w to encode which function

is in control and rewrites g and h as a single recursion equation

f(w; x; y; z) =
case w

g : lt?(x; 2)! y; f(w; dec(x); y; z)
h : f(g; x; z; add(y; z)).

The parameter w is de�ned to range over the set of control tokens fg, hg corresponding

to the de�nitions g and h respectively. The function f is constructed by adding w to

the formal parameter list, changing each recursive call to g and h to the corresponding

call to f , and constructing a case statement encoding which function is in control.

The second step is to decompose f into decision combinator representing control

and a system of equations representing an initial architecture. The key step is to

derive a selection combination from the conditional structure of the speci�cation.

3.3. AN EXAMPLE: FIBONACCI 21

The derived selector is

select([s; p0]; v0; v1; v2) =
case s

g : p0! v0; v1
h : v2

By distributing select over calls to equations, traces (see the expression below) of the

individual parameters are obtained. The derived system of equations is

w = g ! select(status; g; h; g)

x = n ! select(status; x; dec(x); x)

y = 1 ! select(status; y; y; z)

z = 1 ! select(status; z; z; add(y; z))

status = list(w; lt?(x; 2))

rdy = and(equal?(w; g); lt?(x; 2))

ans = y:

Each equation is of the form

X = S

which denotes an in�nite sequence of uniformly typed value traces, < S0; S1; : : : >.

The equation

X = v ! S

denotes the sequence of value traces < v; S0; S1; : : : > where the \!" introduces a delay

and is interpreted as a register. The construction guarantees that given a particular

sequence of input events, the structural description produces the same output-event

sequence as does the original behavior speci�cation and ans will contain fib(n) the

�rst time rdy is true. For example, given n = 4, tracing the sequence of values for

each of the equations yields the following value traces

3.3. AN EXAMPLE: FIBONACCI 22

w = < g; h; g; h; g; h; g; : : : >

x = < 4; 3; 3; 2; 2; 1; 1; : : : >

y = < 1; 1; 1; 1; 2; 2; 3; : : : >

z = < 1; 1; 2; 2; 3; 3; 5; : : : >

status = < (g; f); (h; f); (g; f); (h; f); (g; f); (h; t); (g; t); : : : >

rdy = < f; f; f; f; f; f; t; : : : >

ans = < 1; 1; 1; 1; 2; 2; 3; : : : > :

The second phase in the derivation is to re�ne the structural speci�cation to an

architecture. A sequence of factorization steps decomposes the system of equations

into a system of communicating modules. In this example, the architecture is re�ned

by subsuming the dec and add operations by a single component. The transformation

is possible since these two operations do not occur simultaneously, as imposed by the

earlier serialization of these two operations.

The results of factoring dec and add are the synthesis of an abstract component,

alu, and the derivation of four equations, alu out, inst, op a, and op b to communicate

with the factored component. The original occurrences of add and dec are replaced

with the output of the factored component. The resulting architecture is

w = g ! select(status; g; h; g)

x = n ! select(status; x; alu out; x)

y = 1 ! select(status; y; y; z)

z = 1 ! select(status; z; z; alu out)

status = list(w; lt?(x; 2))

rdy = and(equal?(w; g); lt?(x; 2))

ans = y

inst = select(status; nop; dec; add)

op a = select(status; ?; x; y)

op b = select(status; ?; ?; z)

alu out = alu(inst; op a; op b)

3.3. AN EXAMPLE: FIBONACCI 23

where

alu(inst; op a; op b) =
case inst

nop :?
dec : dec(op a)
add : add(op a; op b).

The third phase of the derivation is to introduce a lower-level representation. The

architecture is still abstract in the sense that signals represent integer values. To

obtain a concrete binary description, these signals are instantiated with bit-vectors

of appropriate width. Type declarations are used to project each variable, constant,

and operator to a binary representation. For instance, the projection of

y = 1 ! select(status; y; y; z)

to a binary representation of three bits is declared with

y) list(y0; y1; y2)

z) list(z0; z1; z2)

1) list(t; f; f)

This type information is used to rewrite equation y to a system of three equations,

y0, y1, and y2, one for each bit. The constant 1 and signal z are also projected to

their respective bit equivalence. The new system of equations is

y0 = t ! select(status; y0; y0; z0)

y1 = f ! select(status; y1; y1z1)

y2 = f ! select(status; y2; y2z2):

In a similar manner, the control speci�cation, select, and the rest of the architecture is

projected to a bit representation. At this stage the entire design is at the binary level.

Subsequent transformations manipulate the speci�cation for mapping to a particular

target technology.

3.4. THE SPECIFICATION LANGUAGE 24

3.4 The Speci�cation Language

Speci�cations are written in Scheme. The speci�cations are executable and veri�-

able, and written in a purely functional style where there are no side-e�ects. Descrip-

tions are built from applicative terms, constants, identi�ers, conditional expressions,

and function de�nitions, and express globally synchronized systems. The input de-

scription does not require �xed representations therefore allowing greater freedom in

exploring alternative architectures. Both control and architecture are derived from

such speci�cations. The control logic is automatically synthesized while the architec-

ture is derived by structural re�nement.

In DDD, there are two classes of speci�cations, behavioral and structural. A

construction from behavior to structure establishes the equivalence between the two

classes of speci�cation. In this section an informal introduction to a subset of Scheme

syntax, used in DDD speci�cations, is presented. A complete language de�nition and

formal semantics for Scheme can be found in [22]. This introduction is followed by

a description of the DDD behavioral and structural speci�cations.

3.4.1 Scheme Syntax

Scheme, a dialect of Lisp, is a statically scoped, applicative order, functional lan-

guage that is well suited for symbolic manipulation. The language de�nition is a small

core of syntactic forms from which all other forms are built. These core forms, a set

of extended syntactic forms derived from them, and a library of primitive procedures

make up the full Scheme

Scheme supports operations on structured data such as strings, denoted with

double quotes, "abcd"; lists, denoted by parenthesized sequences, (l1 l2 ... ln); and

vectors. Scheme also supports operations on more traditional data such as num-

bers and symbols. Programs are made up of forms (lists), identi�ers (symbols), and

3.4. THE SPECIFICATION LANGUAGE 25

constant data (strings, numbers, vectors, quoted lists, quoted symbols, etc.).

Procedures are de�ned with function expressions. A function expression has the

form

(lambda (id ...) exp1 exp2 : : :).

The identi�ers id ... are the formal parameters of the procedure and the sequence of

expressions exp1 exp2 : : : is its body. Unlike Scheme, DDD is a �rst-order system

and does not allow functions as values, so lambda expressions are seen only in de�ning

equations. In addition, DDD expressions only allow a single expression in the body

of a function expression.

Objects can be associated with a name at top level by a top-level de�nition. A

top-level de�nition has the form

(define id exp).

The identi�er id is bound at top-level to the value of the expression exp.

Two forms of conditional expressions are used in DDD. An if-then-else expression

(if test consequent alternative)

returns the consequent if test is true and the alternative otherwise. A case-expression

(case val (key exp ...) ...)

returns the value of the last exp if the corresponding label key equals val.

Local de�nitions are made with let and letrec expressions. A let expression

(let ([id val] ...) exp1 exp2 ...)

creates a local binding in which each identi�er id is bound to the value of the corre-

sponding expression val. These bindings are valid in the body of the let expression.

letrec is a form similar to let, but allows mutually recursive bindings. A letrec

3.4. THE SPECIFICATION LANGUAGE 26

expression has the form

(letrec ([id val] ...) exp1 exp2 ...).

Local stream bindings are de�ned by the language extension system-letrec. This

form is a derived from letrec, but de�nes mutually recursive stream bindings. This

is further discussed in Section 3.4.3. A system-letrec expression has the form

(system-letrec ([id val] ...) exp1 exp2 ...).

For each of the forms, let, letrec, and system-letrec, DDD expressions impose

the added restriction to the general Scheme form that only a single expression is

allowed in the body.

3.4.2 Behavior Speci�cation

A DDD behavior speci�cation is an abstract algorithmic description that de�nes

the functionality of the circuit by specifying a sequence of operations and control

decisions. The speci�cation describes what operations must occur, but not how they

are implemented in hardware. The speci�cation is abstract in the sense that the

underlying representations of the signals and operators are not speci�ed and may

exist at arbitrary levels of abstraction. A general form of behavioral speci�cation in

DDD is

(define hnamei
(lambda hinputsi
(letrec ([hstatei (lambda hregistersi hexpi] ...)
hinitial-statei)))

where

3.4. THE SPECIFICATION LANGUAGE 27

hnamei ::= hidenti�eri
hinputsi ::= (hvari ...)

hinitial-statei ::= hstate-calli
hstatei ::= hidenti�eri

hregistersi ::= (hvari ...)
hexpi ::= (let ((hvari hvali) ...) hexpi)

j (if hbooli hexpi hexpi)
j (case hvali (hkeyi hexpi) ...)
j hstate-calli

hstate-calli ::= (hstatei hvali ...)
hvari ::= hidentiferi
hvali ::= h?i j hvari j hconsti j (hvari hvali ...)
hkeyi ::= hidenti�eri

A hardware description is de�ned by a set of inputs, an initial state, and a set

of mutually recursive procedure de�nitions representing the internal states of the

machine, called state de�nitions, denoted by

(letrec

([hstatei (lambda hregistersi hexpi)] ...)

...)

The speci�cation must be iterative: each state de�nition is a conditional expression

in which the alternatives are tail-recursive and is equivalent to the class of schemata

associated with �nite-state machines. Each state de�nition represents a machine state

or computation in the algorithm de�ned by the expression. However, the notion of

state is abstract. A state at one level of speci�cation may correspond to several

micro-states at lower levels of abstraction.

Within each state de�nition, a uniform parameter list, hregistersi, denotes an

abstract set of registers and I/O ports. The notion of registers is abstract and may

contain arbitrary objects such as registers, memories, stacks, and communication

channels.

A state de�nition expression hexpi de�nes the body of the state de�nition. Each

expression is de�ned in terms of the binding construct, let, conditional statements, if

3.4. THE SPECIFICATION LANGUAGE 28

and case, or a call to another state, hstate-calli. The let expression provides a means

of de�ning combinational signals, and associating a name with that expression. The

if and case statements, implement a conditional control construct. A hstate-calli is

a function invocation that denotes a parallel assignment to a set of registers and a

transfer of control from one state to another.

A hvali denotes a value of a particular ground type at some intended level of

abstraction. Valid terms for hvali are ? (a special symbol that denotes a \don't

care" value), variables, constants, booleans, arithmetic operations, boolean opera-

tions, routing primitives, and operations on abstract data types.

As an example, the serialized Fibonacci de�nition presented in Section 3.3 is

written as a DDD behavioral speci�cation.

(define fib

(lambda (n)

(letrec

((g (lambda (x y z)

(if (lt? x 2)

y

(h (dec x) y z))))

(h (lambda (x y z)

(g x z (add y z)))))

(g n 1 1)))).

The speci�cation fib takes as input n, and computes the n-th Fibonacci number.

The circuit is de�ned as a two-state machine: g and h, with registers x, y and z.

The initial invocation of the circuit (g n 1 1) assigns values n, 1 and 1 to each of

the registers, x, y, and z respectively, and transfers control to state g. In state g the

machine, while the condition (lt? x 2) is false, transfers control to state h updating

the register x with (dec x). Registers y and z are unchanged. In state h the machine

transfers control to state g simultaneously updating register y with z and z with (add

y z). Once the condition (lt? x 2) is satis�ed, the algorithm terminates with the

3.4. THE SPECIFICATION LANGUAGE 29

value from register y.

3.4.3 Structural Speci�cation

A DDD structural speci�cation de�nes the components in a circuit and their con-

nectivity. The speci�cation expresses logical behavior and physical organization, but

does not address electrical characteristics of the circuit. Timing is coordinated by

storage elements called registers whose behavior in turn is governed by an external

synchronizing clock. The structural speci�cation is built from stream equations, which

denote in�nite sequences of values over time and a selection combinator de�ning the

control logic of the circuit.

A general form of structural speci�cation in DDD is

(define hnamei
(lambda hinputsi
(system-letrec
(hstreqnsi ...)
houtputsi)))

where

hnamei := hidenti�eri
hinputsi := (hvari ...)
houtputsi := hvari

j (list hvari ...)
hstreqnsi := [hvari (! hiniti hvali)]

j [hvari hvali]
hvari := hidenti�eri
hiniti := hvali
hvali ::= h?i j hvari j hconsti j (hvari hvali ...)

A structural description is de�ned by a set of inputs, outputs, and a set of mutually

recursive stream equations, denoted by

(system-letrec
(hstreqnsi ...)

...)

3.4. THE SPECIFICATION LANGUAGE 30

where hstrqnsi are of the form

(hvari (! hiniti hvali))
or
(hvari hvali)

A stream equation

X = S

denotes an in�nite sequence of uniformly typed values, < S0; S1; : : : >. The equation

X = v ! S

denotes the sequence of values < v; S0; S1; : : : >. The ! introduces a delay to the

sequence of values and is interpreted as a \register". A constant, c, denotes a con-

stant sequence of values, < c; c; : : : >. The expression f(S) applies the function f

element by element to the stream of values from S, denoting the sequence of values,

< f(S0); f(S1); : : : >.

As an example, consider a counter modeled as a stream.

X = 1 ! inc(X)

X denotes the stream of values < 1; 2; 3; 4; 5; ::: > de�ned over integers. X is a signal

with state, and represents the output of the equation. The equation is initialized

with the value 1. inc(X) denotes a combinational incrementor, whose input is X and

output is the result of applying the function inc to the value of X.

Another example is a memory modeled as a stream.

MEM = MEM0 ! if(WRITE, MemWrite(MEM, Addr, X), MEM)

MEM denotes a stream of memories< MEM0;MEM1;MEM2;MEM3; ::: >. MEM0

is the initial memory. If the WRITE signal is asserted, MemWrite will return a new

memory object, with address, Addr, updated with value X. Otherwise, the memory is

3.4. THE SPECIFICATION LANGUAGE 31

returned unchanged. It is important to note that the level of abstraction is arbitrary.

In the �rst example values ranged over integers. In the second example values ranged

over memories.

A system of stream equations is well-formed when it has the \no combinational

feedback" property. In order to establish this property, it is su�cient to guarantee

that every feedback cycle must contain a delay element. This corresponds to the

Ho�man model for sequential circuits. For example, in the system consisting of a

single equation, X = f(X), the sequence is nowhere de�ned, whereas X = v ! f(X),

Xi is, by induction, de�ned for all i. For example,

X1 = v

X2 = f(X1)
...

Xn = f(Xn�1):

Continuing with the Fibonacci example introduced in section 3.4.2, the corre-

sponding structural speci�cation is

(define fib

(lambda (n)

(system-letrec

([w (! g (select status g h g))]

[x (! n (select status x (dec x) x))]

[y (! 1 (select status y y z))]

[z (! 1 (select status z z (add y z)))]

[status (list w (lt? x 2))]

[rdy (and (equal? w g) (lt? x 2))]

[ans y])

(list w x y z status rdy ans))))

3.5. DESCRIPTION OF TRANSFORMATIONS 32

where

(define select

(lambda ([s, p0], v0, v1, v2)

(case s

(g (if p0 v0 v1))

(h v2)))).

The signals w, x, y, and z are registers with initial values g, n, 1, and 1, respectively.

There next value is computed as a result of the selection combinator select. select

computes its values based on the status signal. The components in the system

are a decrement operator, dec, and an adder operator, add. The status signal is a

composite signal of the w signal representing the current machine state and the (lt?

x 2) test. The rdy signal is a composite signal of when the state is g and the (lt?

x 2) test. The ans equation has the value of y. The interpretation is that ans will

contain the value of (fib n) the �rst time rdy is true.

3.5 Description of Transformations

This section presents the transformations in the DDD system. The �rst part presents

a set of de�nitions and vocabulary for the presentation of the transformations. Fol-

lowing sections describe behavioral and structural transformations, the construction

from behavior to structure, and projection which incorporates a representation. Small

examples are used to convey intuition about the transformations.

De�nition 3.5.1: Let E and E 0 be expressions.

E) E 0

denotes the application of a transformation from E to obtain E 0. Similarly,

E , E 0

3.5. DESCRIPTION OF TRANSFORMATIONS 33

denotes the application of an invertible transformation, from E to obtain E 0 or E 0 to

obtain E.

De�nition 3.5.2: A term is either a constant, a (typed) variable, or an application

f(T1; : : : ; Tn) of an operation f to the terms Ti, where i 2 f1; : : : ; ng.

De�nition 3.5.3: An identi�er is either a variable or a list of identi�ers (X1; : : : ; Xn).

De�nition 3.5.4: Let E be an expression over identi�er X and let T be an arbitrary

term.

E [T1=X1; : : : ; Tn=Xn]

denotes the expression obtained by simultaneous substitutions of Ti for Xi in E,

i 2 f1; : : : ; ng. The notion of substitution will later be extended to the notion of

expansion where the Ti may be arbitrary closed expressions.

De�nition 3.5.5: A decision combinator, C, is a selector that selects between n

alternatives based on a set of predicates, p. The binary selection operation is de�ned

as

sel(p; v1; v2) =

8>>>>><
>>>>>:

v1 if p is true

v2 if p is false

?� if p is ?bool

This binary selector is generalized to n-way selectors built from combinations of sel.

3.5. DESCRIPTION OF TRANSFORMATIONS 34

Some laws on sel are:

sel(p,?,a)) a

sel(p,a,?)) sel(p,a,b)

sel(p,?,b)) sel(p,a,b)

sel(p,a,a) , a

sel(true,a,b) , a

sel(false,a,b) , b

sel(p,sel(q,a,b),sel(q,c,d)) , sel(q,sel(p,a,c),sel(p,b,d)).

As an abbreviation of notation, the expression

selpfT1; : : : ; Tng

denotes the application of the selector, sel, based on predicate, p, and the set of terms

fT1; : : : ; Tng. The terms within the braces does not specify an ordering in the selector

alternatives. The notation

selpifT1; : : : ; Tng

denotes the term T i
n, which represents the i0th alternative in the selector term.

De�nition 3.5.6: s1 and s2 2 S, where S is the set of stream equations, are compat-

ible, denoted by, s1 �= s2, if they have the same (uni�able) types, � , and their right

hand sides are syntactically equivalent. Terms are syntactically equivalent if they are

the same term, or match on don't cares.

Two terms, v and v0 are compatible if they are provably equal. For example, if v

can be rewritten to v0 under the algebraic laws of the type. The notion of compatibility

extends inductively with the structure of signal expressions. Speci�cally, if u �= u0

and v �= v0, then (sel p u v) �= (sel p u0 v0) in the case of a selector.

3.5. DESCRIPTION OF TRANSFORMATIONS 35

3.5.1 Behavioral Transformations

The class of behavioral transformations manipulates the behavioral description.

Transformation 3.5.1: Distribute Conditional

Distribute conditional takes an if expression within a function application and

distributes the function application across the conditional. Given an arbitrary func-

tion application

f(T1; : : : ; Ti; : : : ; Tn)

and Ti is a conditional expression of the form p ! Tj; Tk, where j; k 2 f1; : : : ; ng,

then the conditional is moved outside the call to f giving

p! f(T1; : : : ; Tj; : : : ; Tn); f(T1; : : : ; Tk; : : : ; Tn)

where Ti is replaced with Tj in the consequent and Tk in the alternative.

For instance, distributing the conditional in

f(p! x; y), p! f(x); f(y):

Transformation 3.5.2: Unfolding/Folding

Unfolding replaces an application of a function with its de�nition. Folding is the

opposite of unfolding. Given an arbitrary function application

f(T1; : : : ; Tn)

and its de�nition

f(X1; : : : ; Xn) = E

then by unfolding, f(T1; : : : ; Tn) is replaced with E [T1=X1; : : : ; Tn=Xn], instantiating

the formal parameters with the actuals.

For instance, given the de�nition f(x) = g(x; 1) we can rewrite

f(a), g(a; 1)

3.5. DESCRIPTION OF TRANSFORMATIONS 36

Transformation 3.5.3: State Introduction/Elimination

State Introduction introduces a new state de�nition. Given a set of state de�nitions

f1(X1; : : : ; Xn) = E1

...

fm(X1; : : : ; Xn) = Em

a new state de�nition

fm+1(X1; : : : ; Xn) = Em+1

can be introduced where

fm+1 62 ff1; : : : ; fmg:

For instance, in the Fibonacci example, given state g

g(x; y; z) = lt?(x; 2)! y; g(dec(x); z; add(y; z))

introducing state h yields

g(x; y; z) = lt?(x; 2)! y; g(dec(x); z; add(y; z))

h(x; y; z) = g(x; z; add(y; z)):

In DDD, state introduction, and folding is used to serialize the behavioral spec-

i�cation. The transformations are used to replace a function call with a series of

function calls, whose composition is equivalent to the original term.

For example, the inc and dec operations are serialized by introducing a state g,

and folding the call f(inc(x); dec(y)) into g:

3.5. DESCRIPTION OF TRANSFORMATIONS 37

f(x; y) = p! r; f(inc(x); dec(y))

+ introduce g

f(x; y) = p! r; f(inc(x); dec(y))

g(x; y) = f(x; dec(y))

+ fold f(inc(x); dec(y)) in g

f(x; y) = p! r; g(inc(x); y)

g(x; y) = f(x; dec(y)):

Constraints on the design may impose restrictions on what can be accomplished

in a single state de�nition; hence, it is often necessary to introduce new state de�ni-

tions, and fold these into the existing speci�cation in order to reduce a complex state

de�nition to a series of simpler ones.

3.5.2 Behavior to Structure Construction

Transformation 3.5.4: ItrSys!SeqSys

ItrSys!SeqSys constructs a structural sequential system from an iterative behav-

ioral speci�cation. The construction provides a formal bridge between behavior and

structure.

The iterative recursion scheme

f(x1; : : : ; xn) = p! r; f(t1; : : : ; tn)

is realized by the simultaneous system of equations

X1 = x1 ! t1

X2 = x2 ! t2
...

Xn = xn ! tn

RDY = p

ANS = r

3.5. DESCRIPTION OF TRANSFORMATIONS 38

In DDD, a sequential system is composed of the decision combinator, sel, and a

system description of a set of equations. The decision combinator is derived from the

conditional structure implicit in the behavioral speci�cation. The set of equations

is derived from the formal parameters de�ned in the behavioral speci�cation. Each

equation is of the form:

Xi = x0 ! sel(p; t1; : : : ; tn)

where ! denotes the binary delay operator for registered values, x0 denotes an initial

value and sel(p; t1; : : : ; tn) denotes the selection of possible values, t1; : : : ; tn based on

predicate p.

3.5.3 Structural Transformations

The class of structural transformations manipulate the structural description.

Transformation 3.5.5: Identi�cation/Expansion

Identi�cation is giving a name to an expression by adding an equation for it.

Identi�cation of like terms by an equation has the e�ect of eliminating redundant

circuitry. Expansion is the inverse of identi�cation.

Suppose Xi = Si, i 2 f1; : : : ; ng is an arbitrary system of stream equations, and

T is an arbitrary term in Si, then an equation

Xn+1 = T

can be introduced, replacing all occurrences of T in S1; : : : ; Sn with Xn+1.

For instance, identifying add(a; b) with z in

x = sel(p; add(a; b); r) , x = sel(p; z; r)
z = add(a; b):

3.5. DESCRIPTION OF TRANSFORMATIONS 39

Transformation 3.5.6: Merge

Merge yields a merging of signal equations by instantiating don't cares, which are

denoted by ?, and like terms. A physical interpretation is that several signals share

a common bus when there are no value conicts.

Suppose Xi = Si, i 2 f1; : : : ; ng is an arbitrary system of stream equations, and

the S 0
is are compatible (see De�nition 3.5.6), then these n equations can be replaced

with

X1 = merge(Si)

X2 = X1

:::

Xn = X1:

Of course, normally all remaining occurrences of X2 : : :Xn in the original system

would be eliminated by replacing them with X1.

For instance, merging x and y in

x = n ! sel(p; y; ?; x)

y = n ! sel(p; ?; w; x)

returns

x = z

y = z

z = n ! sel(p; z; w; z):

Transformation 3.5.7: Generalization

Generalization yields the introduction of don't care arguments to normalize func-

tion calls across several functions. Suppose f(X1; : : : ; Xn) and g(X1; : : : ; Xm) are

functions with airity m and n respectively, and m > n, then f can be extended to f 0

such that the

f 0(X1; : : : ; Xn; : : : ; Xm) = f(X1; : : : ; Xn)

3.5. DESCRIPTION OF TRANSFORMATIONS 40

where the arguments to f 0 are padded with m� n don't care arguments.

In DDD, this transformation normalizes function calls across selectors. In partic-

ular, this is later used in a process called factorization in Transformation 3.5.9.

For instance, generalizing f(x; y) in

z = sel(p; f(x; y); g(u; v; w))

returns

z = sel(p; f 0(x; y; ?); g(u; v; w))

with f extended to

f 0(a; b; c) = f(a; b):

Transformation 3.5.8: Distribution

Distribution is the distribution of the decision combinator, sel, over a set of nor-

malized function applications. Given an arbitrary selector with normalized functions

sel(p; f(X1); : : : ; f(Xn))

the selector can be distributed over f as in

f(sel(p;X1; : : : ; Xm)):

For instance, distributing sel in

z = sel(p; f(x; y); f(u; v)

returns

z = f(sel(p; x; y); sel(p; u; v)):

Transformation 3.5.9: Factorization

Factorization encapsulates a set of operations or signals into a subsystem in or-

der to isolate them from the description. The encapsulated subsystem is called an

3.5. DESCRIPTION OF TRANSFORMATIONS 41

abstract component. The transformation maintains the correct connectivity between

the system description and the abstract component.

In DDD there are two ways of doing factorizations. The �rst, called a general

factorization, is to state the set of operations that are to be encapsulated. The

subject terms are those in which members of the set are applied. The second, called

a signal factorization, encapsulates a signal; in this case the subject terms are those

in which that signal's name occurs as an argument.

Given Xi = Si, i 2 f1::ng, is a system of stream equations, and f 1(T 1
1 ; : : : ; T

1
n),

f 2(T 2
1 ; : : : ; T

2
n), : : :, f

m(Tm
1 ; : : : ; Tm

n) are function applications occuring in one or more

of the Sis, then factorization synthesizes an abstract component

abs(i; v1; : : : ; vn) =
case i
f1 : f1(v1; : : : ; vn)
f2 : f2(v1; : : : ; vn)
...

fm : fm(v1; : : : ; vn)

and introduces the equation

Xabs = abs(selpff1; : : : ; fmg; selpfT 1
1 ; : : : ; T

m
1 g; : : : ; selpfT

1
n ; : : : ; T

m
n g)

to communicate with the abstract component.

Transformation 3.5.10: Simpli�cation

Simpli�cation takes the partial knowledge of the input in order to simplify an

expression. Given an arbitrary function application, f(T1; : : : ; Tn) and its de�nition

f(X1; : : : ; Xn) = E

3.5. DESCRIPTION OF TRANSFORMATIONS 42

then, f can be simpli�ed with respect to the known inputs T1; : : : ; Tn in E and

replaced with the specialized function f 0 where

f 0() = E [T1=X1; : : : ; Tn=Xn]

replacing f(T1; : : : ; Tn) with f 0().

In DDD, simpli�cation of selectors is used to derive the state generator, and

the various instruction generators found in a typical design. For instance, the state

equation from the Fibonacci example

w = g ! select(status; g; h; g)

where

select([s; p0]; v0; v1; v2) =
case s

g : p0! v0; v1
h : v2

is rewritten as

w = g ! nextw(status)

where

nextw([s; p0]) =
case s

g : p0! g; h
h : g:

The de�nition of nextw denotes the next-state generator for the Fibonacci speci-

�cation.

3.5.4 Projection Transformations

Projection is a mechanism of incorporating representations of a more abstract type

by another more concrete type. The notion of incorporating representations spans a

continuum:

3.5. DESCRIPTION OF TRANSFORMATIONS 43

a+ b tag pair cons(v1; v2)

.#&

ai +i bi : : :

8><
>:

alloc
store v1
store v2

(a) (b) (c)

Bit projection (a) is the simplest case of incorporating representations, but is

a necessary step that must be taken in any derivation of hardware. In this case,

variables and operators are projected to their equivalent bit entities. A slightly more

complex form of projection (b) is where complex data types are projected to simple

records. This can be a hierarchical process. The notion of projection is also extended

to the implementation of functions (c), where a single function is projected to a series

of function calls or a protocol in the target architecture.

DDD implements those forms of projection that allow the derivation of real hard-

ware from concrete behavioral speci�cations. This is at least as well as any existing

synthesis system does.

Transformation 3.5.11: Projection

Projection takes a set of binary type declarations and a structural description,

and returns a structural description at the target level of representation.

For instance, the projection of

x = 0 ! sel(p; x; ptr(y))

to a binary representation of three bits is declared with

x) list(x0; x1; x2)

y) list(y0; y1; y2; y3; y4)

0) list(f; f; f)

ptr) ptr(a) = firstn(a; 3):

3.5. DESCRIPTION OF TRANSFORMATIONS 44

The type information is used to rewrite equation x to a system of three equations,

x0, x1, and x2, one for each bit. The new system of equations is

x0 = f ! sel(p; x0; y0)

x1 = f ! sel(p; x1; y1)

x2 = f ! sel(p; x2; y2):

The constant 0 and signal y are projected to their respective bit equivalences. The

operation ptr coerces a 4-bit signal to the �rst three bits of its argument.

Chapter 4

Derivation of the DDD-FM9001

The DDD-FM9001 derivation was done interactively with the DDD system. The

transformations were applied to the speci�cation, developing a derivation path through

the design space satisfying an intended set of design constraints. An initial script was

a sequence of commands to the DDD system. Several derivation paths were explored

and the derivation re�ned. The �nal derivation script includes thirty coarsely grained

commands to the derivation system. The complete script, consisting of approximately

1,000 lines, can be found in Appendix A.

Figure 4.1 illustrates the derivation path from Hunt's FM9001 Speci�cation to

the DDD-FM9001 Realization. Transformations on the descriptions are shown as

labeled arcs, < �1:::�6; �1 >, where �n denotes the application of a transformation

and �r denotes veri�cation. The diagram is intended to characterize the distinct

phases of the derivation. A class of transformations called, behavioral transformations,

are applied to the initial speci�cation in order to achieve a proper scheduling of

operations. Once a suitable behavioral description is derived, DDD constructs an

abstract system description, composed of a decision combinator, Select, representing

control, and a structural component, System, representing an initial estimation of

architecture. A second class of transformations, called structural transformations,

imposed a logical organization on the design. In this phase of the derivation, the

structural description was re�ned to an architecture. A sequence of factorization

45

46

steps was applied to isolate the memory, register-�le, and arithmetic components from

the description. Implementations for the arithmetic components were engineered by

hand mechanically veri�ed with respect to the factored components. A third class

of transformations introduced a lower-level representation producing a hierarchy of

boolean subsystems. A �nal gate-level description was input to the ACTEL logic

synthesis tool.

fm9001 speci�cation??y
Behsys0

unfold let
�! Behsys1

expand if�
�! Behsys2

serialize
�! Behsys3

distribute if
�! Behsys4

behavior to structure ��
?

Select � System
factor
�! Select � System0

mem
regs
alu
inc
dec

partial eval
�! Select � System00

mem
regs
alu
inc
dec
next�state

project ��
?

6
verify

SelectR � System
00
R

 next�state
R
; < alu; inc; dec >R??y

logic synthesis

Figure 4.1: DDD-FM9001 Derivation Path

The block diagram for the DDD-FM9001 is shown in Figure 4.2. This diagram

illustrates the DDD-FM9001 architecture, showing the registers and the interconnec-

tivity between them. Shaded areas denote components that are veri�ed, while the

rest of the design is derived. The register-�le (R), is treated as a primitive as is the

47

IMM

control
C
V
N
Z

P I

A

B

ALU

INC

DEC

R

data−
out

BA addr−
out

0

1 data−
in

Figure 4.2: DDD-FM9001 Block Diagram

memory (not shown). Data enters the processor from the data input port (data-in)

and is either latched in the operand-a (A), operand-b (B), or instruction register (I).

Internally, data ows from the operand-b to the operand-a register, and from the

instruction register to the operand-a register. Input data may ow into the register-

�le or into latches for processing by the ALU. Output from the ALU can be stored

into the register-�le or memory. The data bus is bi-directional but is denoted here

as data-in and data-out. The register-�le and the memory are on the data bus. A

detailed account of the derivation follows.

4.1. FM9001 SPECIFICATION 48

4.1 FM9001 Speci�cation

The FM9001 speci�cation de�nes a 32-bit general purpose microprocessor architecture

with sixteen 32-bit registers, a programmable program counter, sixteen instructions,

and �ve addressing modes. The highest level of speci�cation is the abstract program-

mer's model, in which a collection of six recursive functions de�nes an instruction

level interpreter. The state of the machine consists of a memory, mem, a register-�le,

regs, four ags, flags, a register containing the address of the program counter,

pc-reg, an instruction register, i-reg, the A and B operand registers, operand-a

and operand-b, and an address calculation register, b-address.

The FM9001 has a 32-bit instruction word with the high order 4-bits unspeci�ed.

0 0 0 0| {z }
op�code

0 0 0 0| {z }
store�cc

0 0 0 0| {z }
set�ags

0 0| {z }
mode�b

0 0 0 0| {z }
rn�b

0|{z}
a�immediate�p

N=Az }| {
0 0 0

mode�az }| {
0 0

rn�az }| {
0 0 0 0| {z }

a�immediate

The instruction set is shown in Figure 4.3. A 4-bit op-code selects among sixteen in-

structions. A 4-bit store-cc �eld assigns the result conditionally according to flags. A

4-bit set-ags �eld sets the ags conditionally. The B operand is a 6-bit mode/register

(mode-b/rn-a) pair determining the addressing mode, and register address. The A

operand is a 10-bit �eld. If the high order bit a-immediate-p is set, the low order nine

bits are treated as a signed immediate. Otherwise, the low order six bits of the A

operand are a mode/register pair (mode-a/rn-a) identical to the B operand. The ad-

dressing modes are immediate, register direct, register indirect, register indirect with

pre-decrement, and register indirect with post-increment. Details of the instruction

set, condition codes, addressing modes, and register addresses are given in Appendix

A.

4.1. FM9001 SPECIFICATION 49

0000 b a Move
0001 b a + 1 Increment
0010 b a + b+ c Add with carry
0011 b a + b Add
0100 b 0� a Negation
0101 b a� 1 Decrement
0110 b b� a� c Subtract with borrow
0111 b b� a Subtract
1000 b a� 1 Rotate right, shifted through carry
1001 b a� 1 Arithmetic shift right, top bit copied
1010 b a� 1 Logical shift right, top bit zero
1011 b a� b Exclusive or
1100 b a _ a Or
1101 b a ^ b And
1110 b :a Not
1111 b a Move

Figure 4.3: FM9001 Instruction Set

Each of Hunt's six recursive functions are discussed in detail. The top-level de�-

nition which iterates the machine through instruction cycles is

(defn fm9001-intr (state oracle)

(if (nlistp oracle) state

(fm9001-intr (fm9001-step state (car oracle))

(cdr oracle))))

The oracle is used to determine which register is the program counter and a termi-

nation condition for the machine. If the (nlistp oracle) condition is satis�ed, the

algorithm terminates with the current state, otherwise the machine cycles executing

a single instruction and updating the oracle. The thread of control follows the state

sequence fm9001-step, fm9001-fetch, fm9001-operand-a, fm9001-operand-b, and

fm9001-alu-operation. Each of these functions is discussed in order to trace the

fetch-execute instruction cycle of the FM9001.

4.1. FM9001 SPECIFICATION 50

(defn fm9001-step (state pc-reg)

(let ((p-state (car state)) (mem (cadr state)))

(fm9001-fetch (regs p-state) (flags p-state) mem pc-reg)))

The fm9001-step function unpacks the state into the register-�le, regs, the ags,

flags, and the memory, mem. The function then calls the next state fm9001-fetch.

(defn fm9001-fetch (regs flags mem pc-reg)

(let ((pc (read-mem pc-reg regs)))

(let ((ins (read-mem pc mem)))

(let ((pc+1 (v-inc pc)))

(let ((new-regs (write-mem pc-reg regs pc+1)))

(fm9001-operand-a new-regs flags mem ins))))))

The fm9001-fetch function fetches the contents of the program counter, fetches the

instruction from memory, and increments and updates the program counter. Control

is then transferred to state fm9001-operand-a.

(defn fm9001-operand-a (regs flags mem ins)

(let ((a-immediate-p (a-immediate-p ins))

(a-immediate (sign-extend (a-immediate ins) 32))

(mode-a (mode-a ins))

(rn-a (rn-a ins)))

(let ((reg (read-mem rn-a regs)))

(let ((reg- (v-dec reg))

(reg+ (v-inc reg)))

(let ((operand-a (if* a-immediate-p a-immediate

(if* (reg-direct-p mode-a) reg

(if* (pre-dec-p mode-a)

(read-mem reg- mem)

(read-mem reg mem))))))

(let ((new-regs (if* a-immediate-p regs

(if* (pre-dec-p mode-a)

(write-mem rn-a regs reg-)

(if* (post-inc-p mode-a)

(write-mem rn-a regs reg+)

regs)))))

(fm9001-operand-b new-regs flags mem ins operand-a)))))))

The fm9001-operand-a function decodes the instruction and readies the A operand,

operand-a. First, the register index is loaded from the register-�le and stored in the

4.1. FM9001 SPECIFICATION 51

variable reg. Then, depending on the addressing mode, simultaneously, the register-

�le is updated and the A operand is loaded with the appropriate value. The indirect

addresses for pre-decrement and post-increment are computed and stored in variables

reg- and reg+, respectively. The following table shows the e�ect on the A operand

of the various addressing modes.

Operation Address Mode
operand-a a-immediate Immediate
operand-a @rn-a Register Direct
operand-a @(rn-a) Register Indirect
operand-a @-(rn-a) Register Indirect with Pre-decrement
operand-a @(rn-a)+ Register Indirect with Post-increment

Control is then transferred to state fm9001-operand-b.

(defn fm9001-operand-b (regs flags mem ins operand-a)

(let ((mode-b (mode-b ins))

(rn-b (rn-b ins)))

(let ((reg (read-mem rn-b regs)))

(let ((reg- (v-dec reg))

(reg+ (v-inc reg)))

(let ((b-address (if* (pre-dec-p mode-b) reg- reg)))

(let ((operand-b (if* (reg-direct-p mode-b)

reg

(read-mem b-address mem)))

(new-regs (if* (pre-dec-p mode-b)

(write-mem rn-b regs reg-)

(if* (post-inc-p mode-b)

(write-mem rn-b regs reg+)

regs))))

(fm9001-alu-operation new-regs flags mem ins operand-a

operand-b b-address)))))))

The fm9001-operand-b function decodes the instruction and readies the B operand,

operand-b. The instruction decode is similar to fm9001-operand-a, except there

is no immediate value computation, and the b-address is held for the �nal state,

fm9001-alu-operation.

4.2. TRANSFORMATIONS ON BEHAVIOR 52

(defn fm9001-alu-operation (regs flags mem ins operand-a operand-b b-address)

(let ((op-code (op-code ins))

(store-cc (store-cc ins))

(set-flags (set-flags ins))

(mode-b (mode-b ins))

(rn-b (rn-b ins)))

(let ((cvzbv (v-alu (c-flag flags) operand-a operand-b op-code))

(storep (store-resultp store-cc flags)))

(let ((bv (bv cvzbv)))

(let ((new-regs (if* (and* storep (reg-direct-p mode-b))

(write-mem rn-b regs bv)

regs))

(new-flags (update-flags flags set-flags cvzbv))

(new-mem (if* (and* storep (not* (reg-direct-p mode-b)))

(write-mem b-address mem bv)

mem)))

(list (list new-regs new-flags) new-mem))))))

The fm9001-alu-operation decodes the instruction, executes the instruction and

conditionally stores the result.

4.2 Transformations on Behavior

In the �rst phase of the derivation, a set of transformations is applied to the FM9001

behavioral speci�cation. These transformations preserve the meaning of the speci-

�cation while impacting the resulting structural model of the derived circuit. This

relationship between behavior and structure is based on how DDD interprets the be-

havior constructs of the speci�cation. Therefore, many of the transformations at this

stage prepare the speci�cation for the construction from behavior to structure. Other

transformations at this stage impose an ordering on operations. The transformations

applied are let unfolding, function expansion, serialization, and if distribution. These

steps are described in the following sections in the order in which they are applied.

4.2. TRANSFORMATIONS ON BEHAVIOR 53

4.2.1 Unfolding: let

In the FM9001, the initial speci�cation contains let expressions. In DDD, let expres-

sions denote combinational signals. These bindings refer to intermediate values that

are ultimately stored in registers.

For example, in the function de�nition fm9001-fetch

...

(fm9001-fetch

(lambda (regs flags mem pc-reg ins ...)

(let ((pc (read-mem pc-reg regs)))

(let ((ins (read-mem pc mem)))

(let ((pc+1 (v-inc pc)))

(let ((new-regs (write-mem pc-reg regs pc+1)))

(fm9001-operand-a new-regs flags mem pc-reg ins ...)))))))

...

let expressions are used to name intermediate values for computing the fm9001-fetch

state of the processor. Once these intermediate values are computed, the processor

stores the necessary results in its register set, and transfers control to the fm9001-operand-a

state. The true e�ect on the state of the processor in this step is to update the

register-�le, regs, with an incremented program counter and load the instruction

register, ins, from the memory location speci�ed with the value from the program

counter.

In DDD, let expressions provide a mechanism for naming a particular combina-

tional computation. When DDD derives a structural speci�cation, DDD maintains

the names of such signals. In the FM9001 speci�cation, maintaining signals such as

pc, pc+1, or new-regs, simply clutter the speci�cation. Although naming could be

done later, at this point these de�nitions are expanded to eliminate the intermediate

signal names.

For example, to eliminate the intermediate signal pc, a simple unfolding of the let

expression is done. This has the e�ect of replacing each occurrence of pc in the body

4.2. TRANSFORMATIONS ON BEHAVIOR 54

of the let expression with its binding.

...

(fm9001-fetch

(lambda (regs flags mem pc-reg ins ...)

(let ((ins (read-mem (read-mem pc-reg regs) mem)))

(let ((pc+1 (v-inc (read-mem pc-reg regs))))

(let ((new-regs (write-mem pc-reg regs pc+1)))

(fm9001-operand-a new-regs flags mem pc-reg ins ...))))))

...

Successive unfold let transformations are applied to the speci�cation until all the

let expressions and the bindings they denote are eliminated. The �nal result can be

seen below.

...

(fm9001-fetch

(lambda (regs flags mem pc-reg ins ...)

(fm9001-operand-a (write-mem pc-reg regs (v-inc (read-mem pc-reg regs)))

flags mem pc-reg (read-mem (read-mem pc-reg regs) mem)

...))))))

...

4.2.2 Expanding: if*

The conditional structure, denoted by if statements and case statements in speci-

�cations is key to DDD's fundamental transformation of decomposing control and

architecture. In the FM9001 top-level speci�cation the if statement is not visible be-

cause it is buried within the de�nition of the function if*. The speci�cation fragment

below illustrates the problem.

4.2. TRANSFORMATIONS ON BEHAVIOR 55

(fm9001-operand-a

(lambda (... operand-a ...)

(fm9001-operand-b

...
(if* (pre-dec-p (mode-a ins))

(read-mem (v-dec (read-mem (rn-a ins) regs)) mem)

(read-mem (read-mem (rn-a ins) regs) mem))

...)))

The de�nition of if*

(defn if* (a b c) (if a b c))

hides the if operation from the top-level speci�cation. To uncover the if in if*,

function expansion is applied to replace all applications of if* with its de�nition

and instantiated arguments. The resulting speci�cation fragment shows how the if*

operation is replaced with if.

(fm9001-operand-a

(lambda (... operand-a ...)

(fm9001-operand-b

...
(if (pre-dec-p (mode-a ins))

(read-mem (v-dec (read-mem (rn-a ins) regs)) mem)

(read-mem (read-mem (rn-a ins) regs) mem))

...)))

This example may seem trivial in terms of expand function. However, the trans-

formation is general and is used to replace an occurrence of a function application

with its body. In this example, the term if* is not simply being replaced with if,

but the formal parameters are being instantiated with the actual parameters in the

application of if* with the body of if*.

4.2.3 Scheduling mem-write and mem-read

In a process analogous to scheduling in high-level synthesis [50], the DDD system

is guided through a series of folding and unfolding transformations in order to im-

4.2. TRANSFORMATIONS ON BEHAVIOR 56

serialize

fm9001−intr

fm9001−fetch

fm9001−operand−b

fm9001−alu−operation

fm9001−operand−a

fm9001−intr

fm9001−fetch

fm9001−operand−a

fm9001−operand−b

fm9001−alu−operation

Figure 4.4: DDD-FM9001 Serialization

pose a desired scheduling of the memory and register-�le operations, mem-read and

mem-write. The goal is to reduce the parallelism in the original speci�cation. In this

phase, called serialization, a function call is replaced by a sequence of function calls,

whose composition is equivalent to the original term.

Seven serialization steps, adding seven new states to the design (Figure 4.4), are

necessary to produce a design in which abstract operations on the memory and the

register-�le are restricted to at most one memory access per state. The operations

are also serialized to insure that accesses to the memory and the register-�le can be

multiplexed. This is necessary because the target FPGA technology will not support

the entire logic of the FM9001 and the register-�le, thus forcing a design constraint

that the register-�le be implemented outside the chip. It will be necessary to have

the memory and register-�le share the bus in order to minimize the pins used.

Each of the four states, fm9001-fetch, fm9001-operand-a, fm9001-operand-b,

and fm9001-alu-operation are serialized. Each serialization transformation involves

the introduction of a new state and the folding of the new state into the state to be

serialized.

4.2. TRANSFORMATIONS ON BEHAVIOR 57

First, the fm9001-fetch state is serialized.

(fm9001-fetch

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-a (write-mem pc-reg regs (v-inc (read-mem pc-reg regs)))

flags mem pc-reg (read-mem (read-mem pc-reg regs) mem)

operand-a operand-b b-address oracle)))

The original state is decomposed into three states:

(fm9001-fetch

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-fetch_1 regs flags mem pc-reg ins operand-a

(read-mem pc-reg regs) b-address oracle)))

(fm9001-fetch_1

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-fetch_2 regs flags mem pc-reg (read-mem operand-b mem)

operand-a operand-b b-address oracle)))

(fm9001-fetch_2

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-a (write-mem pc-reg regs (v-inc operand-b))

flags mem pc-reg ins operand-a operand-b

b-address oracle)))

In state fm9001-fetch, the program counter is read from the register-�le and loaded

into the operand-b register. This register is used as a temporary hold for the program

counter. In state fm9001-fetch 1, the instruction is loaded from memory into the

instruction register. Finally, in state fm9001-fetch 2, the program counter value is

incremented and written to the register-�le.

4.2. TRANSFORMATIONS ON BEHAVIOR 58

Second, the fm9001-operand-a state is serialized.

[fm9001-operand-a

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-b

(if (a-immediate-p ins) regs

(if (pre-dec-p (mode-a ins))

(write-mem (rn-a ins) regs

(v-dec (read-mem (rn-a ins) regs)))

(if (post-inc-p (mode-a ins))

(write-mem (rn-a ins) regs

(v-inc (read-mem (rn-a ins) regs))) regs)))

flags mem pc-reg ins

(if (a-immediate-p ins) (sign-extend (a-immediate ins) thirty-two)

(if (reg-direct-p (mode-a ins)) (read-mem (rn-a ins) regs)

(if (pre-dec-p (mode-a ins))

(read-mem (v-dec (read-mem (rn-a ins) regs)) mem)

(read-mem (read-mem (rn-a ins) regs) mem))))

operand-b b-address oracle))]

The original state is decomposed into three states:

[fm9001-operand-a

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-a_1 regs flags mem pc-reg ins operand-a

(read-mem (rn-a ins) regs) b-address oracle))]

[fm9001-operand-a_1

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-a_2

(if (a-immediate-p ins) regs

(if (pre-dec-p (mode-a ins))

(write-mem (rn-a ins) regs (v-dec operand-b))

(if (post-inc-p (mode-a ins))

(write-mem (rn-a ins) regs (v-inc operand-b)) regs)))

flags mem pc-reg ins operand-a operand-b b-address oracle))]

[fm9001-operand-a_2

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-b

regs flags mem pc-reg ins

(if (a-immediate-p ins) (sign-extend (a-immediate ins) thirty-two)

(if (reg-direct-p (mode-a ins)) operand-b

(if (pre-dec-p (mode-a ins)) (read-mem (v-dec operand-b) mem)

(read-mem operand-b mem)))) operand-b b-address oracle))]

4.2. TRANSFORMATIONS ON BEHAVIOR 59

In the fm9001-operand-a state, the contents of the register index is loaded into the

operand-b register. As in the previous serialization step, the operand-b register is

used as a temporary. In the fm9001-operand-a 1 state, the register-�le is updated

depending on the addressing mode. Finally, in the fm9001-operand-a 2 state, the

operand-a register is loaded with either, the immediate �eld of the instruction, the

operand-b register, or a value from memory, depending on the addressing mode.

Third, the fm9001-operand-b state is serialized.

[fm9001-operand-b

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-alu-operation

(if (pre-dec-p (mode-b ins))

(write-mem (rn-b ins) regs

(v-dec (read-mem (rn-b ins) regs)))

(if (post-inc-p (mode-b ins))

(write-mem (rn-b ins) regs

(v-inc (read-mem (rn-b ins) regs)))

regs))

flags mem pc-reg ins operand-a

(if (reg-direct-p (mode-b ins))

(read-mem (rn-b ins) regs)

(read-mem

(if (pre-dec-p (mode-b ins))

(v-dec (read-mem (rn-b ins) regs))

(read-mem (rn-b ins) regs)) mem))

(if (pre-dec-p (mode-b ins)) (v-dec (read-mem (rn-b ins) regs))

(read-mem (rn-b ins) regs)) oracle))]

The original state is decomposed into three new states. As before, operand-b

register is used as a temporary to hold the value of the register index. In state

fm9001-operand-b 1 the register-�le is updated depending on the addressing mode.

Finally, in state fm9001-operand-b 2, the operand-b register is loaded with either,

the operand-b register or a value from memory depending on the addressing mode.

In addition, the b-address register is updated.

4.2. TRANSFORMATIONS ON BEHAVIOR 60

[fm9001-operand-b

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-b_1 regs flags mem pc-reg ins operand-a

(read-mem (rn-b ins) regs) b-address oracle))]

[fm9001-operand-b_1

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-b_2

(if (pre-dec-p (mode-b ins))

(write-mem (rn-b ins) regs (v-dec operand-b))

(if (post-inc-p (mode-b ins))

(write-mem (rn-b ins) regs (v-inc operand-b)) regs))

flags mem pc-reg ins operand-a operand-b b-address oracle))]

[fm9001-operand-b_2

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-alu-operation

regs flags mem pc-reg ins operand-a

(if (reg-direct-p (mode-b ins)) operand-b

(read-mem

(if (pre-dec-p (mode-b ins))

(v-dec operand-b) operand-b) mem))

(if (pre-dec-p (mode-b ins))

(v-dec operand-b) operand-b) oracle))]

Finally, the fm9001-alu-operation state is serialized.

[fm9001-alu-operation

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-intr

(if (and* (store-resultp (store-cc ins) flags)

(reg-direct-p (mode-b ins)))

(write-mem (rn-b ins)

regs

(bv (v-alu (c-flag flags) operand-a

operand-b (op-code ins)))) regs)

(update-flags flags (set-flags ins)

(v-alu (c-flag flags)

operand-a operand-b (op-code ins)))

(if (and* (store-resultp (store-cc ins) flags)

(not* (reg-direct-p (mode-b ins))))

(write-mem b-address mem

(bv (v-alu (c-flag flags)

operand-a operand-b (op-code ins)))) mem)

pc-reg ins operand-a operand-b b-address oracle))]

4.2. TRANSFORMATIONS ON BEHAVIOR 61

The original state is decomposed into two new states:

[fm9001-alu-operation

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-alu-operation_1

(if (and* (store-resultp (store-cc ins) flags)

(reg-direct-p (mode-b ins)))

(write-mem (rn-b ins) regs

(bv (v-alu (c-flag flags)

operand-a operand-b (op-code ins)))) regs)

flags mem pc-reg ins operand-a operand-b b-address oracle))]

[fm9001-alu-operation_1

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-intr

regs

(update-flags flags (set-flags ins)

(v-alu (c-flag flags)

operand-a operand-b (op-code ins)))

(if (and* (store-resultp (store-cc ins) flags)

(not* (reg-direct-p (mode-b ins))))

(write-mem b-address mem

(bv (v-alu (c-flag flags)

operand-a operand-b (op-code ins)))) mem)

pc-reg ins operand-a operand-b b-address oracle))]

The fm9001-alu-operation state executes the ALU operation and updates the

register-�le. The second state, fm9001-alu-operation 1 executes the ALU oper-

ation and updates the memory. The redundancy of the ALU operations is a conse-

quence of unfolding the let bindings earlier in the derivation process. This has no

consequence to the resulting implementation since the operations are merged into a

single instance during structural re�nement.

4.2.4 Distributing: if

Next, the if statements within each state call are distributed outside the call in order

to move the decision point from architecture to control. Conditional expressions in

DDD de�ne the control abstraction of the circuit. As a result of how DDD constructs

the control speci�cation from the behavioral description, if expressions located outside

4.2. TRANSFORMATIONS ON BEHAVIOR 62

the state call are captured in the control speci�cation, and if expressions inside a state

call are implemented in the architecture. The distribute if transformation allows for

the distribution of the if expression from a state call to outside the call, and thus has

the e�ect of moving the decision into the control speci�cation.

For example, in

...

[fm9001-operand-a_1

(lambda (regs ...)

(fm9001-operand-a_2

(if (a-immediate-p ins)

regs

(if (pre-dec-p (mode-a ins))

(write-mem (rn-a ins) regs (v-dec operand-b))

(if (post-inc-p (mode-a ins))

(write-mem (rn-a ins) regs (v-inc operand-b))

regs)))

flags mem pc-reg ins operand-a operand-b b-address oracle)

)] ...

three conditionals are nested within the call to fm9001-operand-a 2. The nested if

structure determines the next value for regs register. In this case, the other registers

within the system, such as flags, mem, pc-reg, etc., do not change.

Distributing the conditionals outside the function call results in four separate

functional calls to fm9001-operand-a 2 within the conditional branch structure, each

updating regs with the appropriate value.

4.3. BEHAVIOR TO STRUCTURE 63

...

[fm9001-operand-a_1

(lambda (regs ...)

(if (a-immediate-p ins)

(fm9001-operand-a_2

regs

flags mem pc-reg ins operand-a operand-b b-address oracle)

(if (pre-dec-p (mode-a ins))

(fm9001-operand-a_2

(write-mem (rn-a ins) regs (v-dec operand-b))

flags mem pc-reg ins operand-a operand-b b-address oracle)

(if (post-inc-p (mode-a ins))

(fm9001-operand-a_2

(write-mem (rn-a ins) regs (v-inc operand-b))

flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-a_2

regs

flags mem pc-reg ins operand-a operand-b b-address oracle)

))))] ...

Distributing if yields a textually larger speci�cation, with the decision points

moved into the control. This transformation adds approximately 1400 characters to

the speci�cation. This growth is essentially from the duplication that occurs when

distributing a conditional and copying the redundant information. Simpli�cation at

later stages of the design may negate the growth encountered at this stage.

The �nal behavioral form is fully serialized, all let bindings are unfolded, all if's

are distributed outside recursive function calls, and the if function is exposed. This

�nal behavioral form is su�cient to construct an initial structural description.

4.3 Behavior to Structure

The next phase in the derivation involves the application of the behavior to structure

construction in order to build a structural description from the behavioral speci�-

cation. The construction decomposes the behavioral speci�cation into a selection

combinator denoting control and a structural component denoting the initial archi-

4.3. BEHAVIOR TO STRUCTURE 64

tecture. The transformation is completely automatic and requires no user guidance.

The resulting description is still abstract in the sense that the description does not

detail the functional modules, nor reect any constraints on the datapath.

The behavior to structure construction is applied to the appropriate behavioral

form. This results in the selection combinator, select and an initial system descrip-

tion. An illustration of the sequential system is shown in Figure 4.5.

(define select

(lambda* ((s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

v19 v20 v21 v22 v23 v24)

(case s

[fm9001-intr (if p0 v0 v1)]

[fm9001-fetch v2]

[fm9001-fetch_1 v3]

[fm9001-fetch_2 v4]

[fm9001-operand-a v5]

[fm9001-operand-a_1 (if p1 v6 (if p2 v7 (if p3 v8 v6)))]

[fm9001-operand-a_2 (if p1 v9 (if p4 v10 (if p2 v11 v12)))]

[fm9001-operand-b v13]

[fm9001-operand-b_1 (if p5 v14 (if p6 v15 v16))]

[fm9001-operand-b_2 (if p7 (if p5 v17 v18) (if p5 v19 v20))]

[fm9001-alu-operation (if p8 v21 v22)]

[fm9001-alu-operation_1 (if p9 v23 v24)])))

The decision combinator, select, is a function of eleven predicates, s, and p0 ...

p9, and returns one of 25 alternatives, v0...v24. These parameters reduce as further

transformations are applied. However, this is not necessarily the goal that drives the

transformation process. It is in fact the re�nement of this structural description to

an architecture that drives this process.

The derived structural speci�cation consists of a system of 11 equations

4.3. BEHAVIOR TO STRUCTURE 65

datapath

operand−a

operand−b

b−address

ins

pc−reg

state

flags

mem

regs

oracle

status

selection
Control

Figure 4.5: DDD-FM9001 Initial Sequential System

(system-letrec

([status (xps state ...)]

[state (! fm9001-intr (select status ...))]

[regs (! init-regs (select status ...))]

[flags (! init-flags (select status ...))]

[mem (! init-mem (select status ...))]

[pc-reg (! init-pc-reg (select status ...))]

[ins (! ? (select status ...))]

[operand-a (! ? (select status ...))]

[operand-b (! ? (select status ...))]

[b-address (! ? (select status ...))]

[oracle (! init-oracle (select status ...))])

...)

The �rst equation, status, encapsulates the predicates used by select. The remain-

ing ten equations denote registered values and are de�ned by an initial value and

the decision combinator, select, to compute the next value. The equation state

encodes the states of the machine. The other equations correspond to the formal

parameters in the behavioral speci�cation.

The key step in the construction from behavior to structure is the abstraction of

the decision combinator. This isolates the notion of control from the description while

expressing the components and their connectivity. An overview of each equation is

detailed below.

4.3. BEHAVIOR TO STRUCTURE 66

[status

(xps state

(nlistp oracle)

(a-immediate-p ins)

(pre-dec-p (mode-a ins))

(post-inc-p (mode-a ins))

(reg-direct-p (mode-a ins))

(pre-dec-p (mode-b ins))

(post-inc-p (mode-b ins))

(reg-direct-p (mode-b ins))

(and* (store-resultp (store-cc ins) flags)

(reg-direct-p (mode-b ins)))

(and* (store-resultp (store-cc ins) flags)

(not* (reg-direct-p (mode-b ins)))))]

The status equation names the predicates in the system used by the selector in

determining the next value for the system of equations. The status equation contains

the present state value, corresponding to the s formal parameter in select, and the

ten predicates corresponding to p0 ... p9 in select.

[state

(! fm9001-intr

(select status fm9001-intr fm9001-fetch fm9001-fetch_1

fm9001-fetch_2 fm9001-operand-a fm9001-operand-a_1

fm9001-operand-a_2 fm9001-operand-a_2 fm9001-operand-a_2

fm9001-operand-b fm9001-operand-b fm9001-operand-b

fm9001-operand-b fm9001-operand-b_1 fm9001-operand-b_2

fm9001-operand-b_2 fm9001-operand-b_2 fm9001-alu-operation

fm9001-alu-operation fm9001-alu-operation

fm9001-alu-operation fm9001-alu-operation_1

fm9001-alu-operation_1 fm9001-intr fm9001-intr))]

The state equation encodes the transfer of control from each of the twelve original

state de�nitions, fm9001-intr, ..., fm9001-alu-operation 1. The state equation

represents the \next-state" function, where the state register holds the present con-

trol state and the result of the selector evaluation determines the next state.

4.3. BEHAVIOR TO STRUCTURE 67

[regs

(! init-regs

(select status (write-mem pc-reg regs (v-inc operand-b)) . .

(write-mem (rn-a ins) regs (v-dec operand-b))

(write-mem (rn-a ins) regs (v-inc operand-b))

(write-mem (rn-b ins) regs (v-dec operand-b))

(write-mem (rn-b ins) regs (v-inc operand-b))

(write-mem (rn-b ins) regs

(bv (v-alu (c-flag flags)

operand-a operand-b (op-code ins)))) . . .))]

The regs equation denotes the 16-word register-�le. The register-�le either holds its

value, or is updated by a write operation. (The \." is used as an abbreviation of

when the signal value remains unchanged).

[flags

(! init-flags

(select status .

(update-flags flags (set-flags ins)

(v-alu (c-flag flags)

operand-a operand-b (op-code ins)))

(update-flags flags (set-flags ins)

(v-alu (c-flag flags)

operand-a operand-b (op-code ins)))))]

The flags equation denotes the four ags, carry (c), overow (v), negative (n),

and zero (z). The ags either hold their value or are updated from the result of

update-flags.

[mem

(! init-mem

(select status .

(write-mem b-address mem

(bv (v-alu (c-flag flags)

operand-a operand-b (op-code ins)))) .))]

The mem equation denotes the memory. The memory either holds its value, or is up-

dated with the write operation. The memory address is determined by the b-address

register, and the data is the result of the v-alu operation.

4.3. BEHAVIOR TO STRUCTURE 68

[pc-reg

(! init-pc-reg

(select status . (car oracle) .))]

The pc-reg equation determines which register in the register-�le is the current pro-

gram counter. It updates its value from the oracle.

[ins

(! ins-?

(select status . . . (read-mem operand-b mem)

.))]

The ins equation denotes the instruction register. The instruction equation either

holds its value or is updated by a read operation on the memory.

[operand-a

(! operand-a-?

(select status (sign-extend (a-immediate ins) thirty-two)

operand-b (read-mem (v-dec operand-b) mem) (read-mem operand-b mem)

.))]

[operand-b

(! operand-b-?

(select status . . (read-mem pc-reg regs) . . (read-mem (rn-a ins) regs) .

. (read-mem (rn-b ins) regs)

(read-mem (v-dec operand-b) mem) (read-mem operand-b mem)))]

The operand-a and operand-b equations hold the A and B operands, respectively. In

addition, the operand-b register is used to hold intermediate values from the program

counter, register-�le, and memory. This is a consequence of the design decision made

during the serialization phase of the derivation (see Section 4.2.3).

[b-address

(! b-address-?

(select status (v-dec operand-b)

operand-b (v-dec operand-b) operand-b))]

The b-address equation denotes the address to memory for the write operation. The

register either holds its value, or is updated with a value from either the operand-b

register or the result of the v-dec operation.

4.4. FACTORING MEM, REGS, AND V-ALU 69

[oracle

(! init-oracle

(select status . (cdr oracle) .

.))])

The oracle equation polls values from the outside determining which register is

going to be the program counter and if the external termination condition has been

satis�ed.

4.4 Factoring mem, regs, and v-alu

The initial system description describes a structural speci�cation but is still abstract

in terms of an implementation. Further re�nement of the architecture is necessary to

move towards a more physically meaningful description in which complex data types

are isolated.

In this phase of the derivation, DDD's abstraction mechanisms, signal factoriza-

tion and general factorization, are used to transform the design into a reasonable

description of communicating functional components. The functional components

are the memory, mem, the register-�le, regs, and the arithmetic operations v-alu,

v-inc, and v-dec.

Factorization serves two purposes in this derivation exercise. First, signal factor-

ization is applied to the mem and regs signals in order to isolate them into a subsystem

for assembly into hardware. Second, general factorization is applied to the v-alu,

v-inc, and v-dec operations in order to isolate these operations for veri�cation.

4.4.1 Factoring mem

Signal factorization is applied to the mem equation in order to isolate the memory

from the description. The result of the memory factorization is the synthesis of an

4.4. FACTORING MEM, REGS, AND V-ALU 70

abstract component speci�cation that encapsulates the memory signal as a communi-

cating process, and the derivation of four equations to communicate with the factored

component.

The expression below isolates the key elements of the memory factorization before

signal factorization is applied.

(system-letrec

(...

[mem

(! init-mem

(select status .

(write-mem b-address mem

(bv (v-alu (c-flag flags)

operand-a operand-b

(op-code ins)))) .))]

[ins

(! ?

(select status . . . (read-mem operand-b mem)

.))]

[operand-a

(! ?

(select status

(sign-extend (a-immediate ins) thirty-two) operand-b

(read-mem (v-dec operand-b) mem) (read-mem operand-b mem)

.))]

[operand-b

(! ?

(select status . . (read-mem pc-reg regs) . .

(read-mem (rn-a ins) regs)

(read-mem (rn-b ins) regs)

(read-mem (v-dec operand-b) mem)

(read-mem operand-b mem)))]

...) ...)

Highlighted is the equation for memory, mem, which includes the write operation,

(write-mem ... mem). Also highlighted are the �ve read operations on the mem-

ory, (read-mem ... mem). The goal is to encapsulate the memory operations into

a single abstract component.

The result of applying signal factorization on the mem signal yields the system

4.4. FACTORING MEM, REGS, AND V-ALU 71

(system-letrec

(...

[ins

(! ?

(select status . . . mem-out

. . . .))]

[operand-a

(! ?

(select status

(sign-extend (a-immediate ins) thirty-two) operand-b

mem-out mem-out))]

[operand-b

(! ?

(select status . . (read-mem pc-reg regs) . .

(read-mem (rn-a ins) regs)

(read-mem (rn-b ins) regs)

mem-out mem-out))]

[mem-out (abs-mem init-mem mem-inst mem-addr mem-data)]

[mem-inst

(select status # # # mem-read-mem # # # # # # # mem-read-mem

mem-read-mem # # # # # # mem-read-mem mem-read-mem # #

mem-write-mem #)]

[mem-addr

(select status ? ? ? operand-b ? ? ? ? ? ? ? (v-dec operand-b)

operand-b ? ? ? ? ? ? (v-dec operand-b) operand-b ? ?

b-address ?)]

[mem-data

(select status ?

(bv (v-alu (c-flag flags)

operand-a operand-b (op-code ins))) ?)]

...) ...)

The four equations derived are memory instruction, mem-inst, memory address,

mem-addr, memory data, mem-data, and memory output, mem-out. Each occurrence

of the read operation, (read-mem ... mem), is replaced with the output of the

abstract component. DDD generates a \no operation" signal, #, in the memory

instruction, and appropriate \don't care" signals, ?, in the data and address equations,

corresponding to when the memory equation remains unchanged.

4.4. FACTORING MEM, REGS, AND V-ALU 72

The synthesized abstract component speci�cation is

(define abs-mem

(lambda (*mem* inst v0 v1)

(let ([constructor

(lambda (inst object v0 v1)

(case inst

[# object]

[mem-read-mem object]

[mem-write-mem (write-mem v0 object v1)]))]

[probe

(lambda (inst object v0)

(case inst

[# (read-mem v0 object)]

[mem-write-mem (read-mem v0 object)]

[mem-read-mem (read-mem v0 object)]))])

(system-letrec

([object (! *mem* ((stream constructor) inst object v0 v1))]

[probe ((stream probe) inst object v0)])

probe))))

The abstract component, abs-mem, takes an initial memory, an instruction, an ad-

dress, and data, and returns a value depending on the current address. The compo-

nent maintains the state of the memory internally.

4.4.2 Factoring regs

Signal factorization is applied to the regs equation in order to factor the register-

�le from the description. The transformation is identical to the memory factorization

except that it generates signals to communicate with the register-�le. This is expected

since mem and regs are de�ned by the same functional model of memory.

The result of the register-�le factorization is the synthesis of the abstract compo-

nent speci�cation that encapsulates the register-�le as a communicating process, and

the derivation of four equations to communicate with the factored component.

The expression below isolates the key elements of the register-�le factorization

before signal factorization is applied. Highlighted is the de�ning equation for the

4.4. FACTORING MEM, REGS, AND V-ALU 73

register-�le, regs, which includes the write operation, (write-mem ... regs). Also

highlighted, are the read operations on the register-�le, (read-mem ... regs).

(system-letrec

(...

[regs

(! init-regs

(select status

(write-mem pc-reg regs (v-inc operand-b)) . .

(write-mem (rn-a ins) regs (v-dec operand-b))

(write-mem (rn-a ins) regs (v-inc operand-b)) . . .

. . (write-mem (rn-b ins) regs (v-dec operand-b))

(write-mem (rn-b ins) regs (v-inc operand-b)) . . .

. . (write-mem (rn-b ins) regs

(bv (v-alu (c-flag flags)

operand-a operand-b

(op-code ins)))) . . .))]

[operand-b

(! ?

(select status . . (read-mem pc-reg regs) . .

(read-mem (rn-a ins) regs)

(read-mem (rn-b ins) regs) mem-out

mem-out))]

...) ...)

The result of applying signal factorization on the regs signal yields the system

4.4. FACTORING MEM, REGS, AND V-ALU 74

(system-letrec

(...

[operand-b

(! ?

(select status . . regs-out . . regs-out

regs-out mem-out mem-out))]

[regs-out (abs-regs init-regs regs-inst regs-addr regs-data)]

[regs-inst

(select status # # regs-read-mem # regs-write-mem

regs-read-mem # regs-write-mem regs-write-mem #

regs-read-mem regs-write-mem

regs-write-mem # # # # #

regs-write-mem # # #)]

[regs-addr

(select status ? ? pc-reg ? pc-reg (rn-a ins) ? (rn-a ins) (rn-a ins)

? ? ? ? (rn-b ins) (rn-b ins) (rn-b ins) ? ? ? ? ? (rn-b ins)

? ? ?)]

[regs-data

(select status ? ? ? ? (v-inc operand-b) ? ? (v-dec operand-b)

(v-inc operand-b) ? ? ? ? ? (v-dec operand-b)

(v-inc operand-b) ? ? ? ? ?

(bv (v-alu (c-flag flags)

operand-a operand-b (op-code ins))) ? ? ?)]

...) ...)

The four equations derived are the register-�le instruction, regs-inst, the register-

�le address, regs-addr, the register-�le data, regs-data, and the register-�le out-

put, regs-out. Each occurrence of the read operation, (read-mem ... regs), is

replaced with the output of the abstract component.

4.4. FACTORING MEM, REGS, AND V-ALU 75

The synthesized abstract component speci�cation is

(define abs-regs

(lambda (*regs* inst v0 v1)

(let ([constructor

(lambda (inst object v0 v1)

(case inst

[# object]

[regs-read-mem object]

[regs-write-mem (write-mem v0 object v1)]))]

[probe

(lambda (inst object v0)

(case inst

[# (read-mem v0 object)]

[regs-write-mem (read-mem v0 object)]

[regs-read-mem (read-mem v0 object)]))])

(system-letrec

([object (! *regs* ((stream constructor) inst object v0 v1))]

[probe ((stream probe) inst object v0)])

probe))))

The abstract component, abs-regs, takes an initial register-�le, an instruction, an

address, and data, and returns a value depending on the current address. The com-

ponent maintains the state of the register-�le internally.

4.4.3 Factoring v-alu

General factorization is applied to the v-alu operation in order to isolate the ALU

operation. The factorization of components into abstract modules provides a mecha-

nism by which multiple occurrences of operations are merged into a single component

and individual components can be veri�ed. Once factored, the v-alu operation is

replaced by an e�cient veri�ed implementation. Details of the veri�cation are found

in Section 4.5.

The result of the ALU factorization is the synthesis of an abstract component,

abs-v-alu. In addition, six equations are derived to communicate with the factored

component. The expression below isolates the key elements of the ALU factoriza-

4.4. FACTORING MEM, REGS, AND V-ALU 76

tion before general factorization is applied. Highlighted are the v-alu operations.

There are two calls to v-alu in the mem-regs-data equation, and two calls in the

update-flags-out equation.

(system-letrec

(...

[mem-regs-data

(select status ? ? data-in data-in (v-inc operand-b) data-in ?

(v-dec operand-b) (v-inc operand-b) ? ? data-in data-in data-in

(v-dec operand-b) (v-inc operand-b) ? ? ? data-in data-in

(bv (v-alu (c-flag flags) operand-a operand-b (op-code ins)))

? (bv (v-alu (c-flag flags) operand-a operand-b (op-code ins)))

?)]

[update-flags-out

(select status ?

(update-flags flags (set-flags ins)

(v-alu (c-flag flags) operand-a operand-b

(op-code ins)))

(update-flags flags (set-flags ins)

(v-alu (c-flag flags) operand-a operand-b

(op-code ins))))]

...) ...)

The result of applying general factorization on the v-alu signal yields the abstract

component:

(define abs-v-alu

(lambda (inst v0 v1 v2 v3)

(let ([constructor

(lambda (inst v0 v1 v2 v3)

(case inst

[# ?]

[v-alu-out-v-alu (v-alu v0 v1 v2 v3)]))])

(system-letrec

([object ((stream constructor) inst v0 v1 v2 v3)])

object))))

The abstract component, abs-v-alu, takes an instruction, a carry-in ag, two operands,

a and b, and an opcode, and returns the result of applying the command (v-alu ...)

to the arguments. Unlike signal factorization, general factorization encapsulates a set

4.4. FACTORING MEM, REGS, AND V-ALU 77

of combinational operations where there is no state to maintain.

The transformed system description is

(system-letrec

(...

[mem-regs-data

(select status ? ? data-in data-in (v-inc operand-b) data-in ?

(v-dec operand-b) (v-inc operand-b) ? ? data-in data-in data-in

(v-dec operand-b) (v-inc operand-b) ? ? ? data-in data-in

(bv v-alu-out) ? (bv v-alu-out) ?)]

[update-flags-out

(select status ?

(update-flags flags (set-flags ins) v-alu-out)

(update-flags flags (set-flags ins) v-alu-out))]

[v-alu-out

(abs-v-alu v-alu-out-inst v-alu-out-carryin

v-alu-out-opa v-alu-out-opb v-alu-out-opcode)]

[v-alu-out-inst

(select status #

v-alu-out-v-alu # v-alu-out-v-alu v-alu-out-v-alu)]

[v-alu-out-carryin

(select status ?

(c-flag flags) ? (c-flag flags) (c-flag flags))]

[v-alu-out-opa

(select status ?

operand-a ? operand-a operand-a)]

[v-alu-out-opb

(select status ?

operand-b ? operand-b operand-b)]

[v-alu-out-opcode

(select status ?

(op-code ins) ? (op-code ins) (op-code ins))]

...) ...)

The six equations derived are the instruction equation, v-alu-out-inst, the carry-in

equation, v-alu-out-carryin, the operand a equation, v-alu-out-opa, the operand

b equation, v-alu-out-opb, the opcode equation, v-alu-out-opcode, and the out-

put equation, v-alu-out. Each occurrence of the ALU operation, (v-alu ...), is

replaced with the output of the abstract component.

As a further re�nement to the system description, expand stream is applied to the

v-alu-out-opa and v-alu-out-opa equations in order to eliminate them from the

4.4. FACTORING MEM, REGS, AND V-ALU 78

description. The selectors are simpli�ed since each of the selector alternatives result

in the singleton operand-a and operand-b, respectively. The e�ect is the elimination

of the named equation and the replacement of each occurrence of that equation with

its de�nition. This works out nicely since the two equations were merely renaming

the existing operand-a and operand-b equations.

(system-letrec

(...

[mem-regs-data

(select status ? ? data-in data-in (v-inc operand-b) data-in ?

(v-dec operand-b) (v-inc operand-b) ? ? data-in data-in data-in

(v-dec operand-b) (v-inc operand-b) ? ? ? data-in data-in

(bv v-alu-out) ? (bv v-alu-out) ?)]

[update-flags-out

(select status ?

(update-flags flags (set-flags ins) v-alu-out)

(update-flags flags (set-flags ins) v-alu-out))]

[v-alu-out

(abs-v-alu v-alu-out-inst v-alu-out-carryin

operand-a operand-b v-alu-out-opcode)]

[v-alu-out-inst

(select status #

v-alu-out-v-alu # v-alu-out-v-alu v-alu-out-v-alu)]

[v-alu-out-carryin

(select status ?

(c-flag flags) ? (c-flag flags) (c-flag flags))]

[v-alu-out-opcode

(select status ?

(op-code ins) ? (op-code ins) (op-code ins))]

...) ...)

4.4.4 Factoring v-inc and v-dec

General factorization is applied to the incrementor, v-inc, and decrementor,v-dec,

operations in order to isolate them for veri�cation. The result of factoring the v-inc

and v-dec operations is the synthesis of two abstract components for each operation,

abs-v-inc and abs-v-dec, which encapsulates the v-inc and v-dec operations,

respectively. In addition, three equations for each operation are derived within the

4.4. FACTORING MEM, REGS, AND V-ALU 79

system description to communicate with the factored components.

The expression below isolates the key elements of the incrementor and decrementor

factorization. Highlighted are the v-inc and v-dec operations. The factorization

is done sequentially, applying it to the v-inc operation �rst and then the v-dec

operation, although the expression below highlights both operations.

(system-letrec

(...

[b-address

(! ?

(select status

(v-dec operand-b) operand-b (v-dec operand-b)

operand-b))]

[mem-addr

(select status ? ? ? operand-b ? ? ? ? ? ? ? (v-dec operand-b)

operand-b ? ? ? ? ? ? (v-dec operand-b) operand-b ? ?

b-address ?)]

[mem-regs-data

(select status ? ? data-in data-in (v-inc operand-b) data-in ?

(v-dec operand-b) (v-inc operand-b) ? ? data-in data-in data-in

(v-dec operand-b) (v-inc operand-b) ? ? ? data-in data-in

(bv v-alu-out)

? (bv v-alu-out)

?)]

...) ...)

The result of applying general factorization on the v-inc and v-dec signal yields

the abstract components:

(define abs-v-inc

(lambda (inst v0)

(let ([constructor

(lambda (inst v0)

(case inst

[# ?]

[v-inc-out-v-inc (v-inc v0)]))])

(system-letrec

((object ((stream constructor) inst v0)))

object))))

4.4. FACTORING MEM, REGS, AND V-ALU 80

and
(define abs-v-dec

(lambda (inst v0)

(let ([constructor

(lambda (inst v0)

(case inst

[# ?]

[v-dec-out-v-dec (v-dec v0)]))])

(system-letrec

((object ((stream constructor) inst v0)))

object)))).

The abstract components abs-v-inc and abs-v-dec each takes an instruction and

data signal, and return the result of applying (v-inc ...) and (v-dec ...) to the

appropriate arguments, respectively.

The transformed system description is

4.4. FACTORING MEM, REGS, AND V-ALU 81

(system-letrec

(...

[b-address

(! b-address-?

(select status v-dec-out

operand-b v-dec-out operand-b))]

[mem-addr

(select status ? ? ? operand-b ? ? ? ? ? ? ? v-dec-out operand-b

? ? ? ? ? ? v-dec-out operand-b ? ? b-address ?)]

[mem-regs-data

(select status ? ? data-in data-in v-inc-out data-in ? v-dec-out

v-inc-out ? ? data-in data-in data-in v-dec-out v-inc-out

? ? ? data-in data-in (bv v-alu-out) ? (bv v-alu-out) ?)]

[v-inc-out (abs-v-inc v-inc-out-inst v-inc-out-v0)]

[v-inc-out-inst

(select status # # # # v-inc-out-v-inc # # # v-inc-out-v-inc

v-inc-out-v-inc # # # # # # # # #)]

[v-inc-out-v0

(select status ? ? ? ? operand-b ? ? ? operand-b ? ? ? ? ? ?

operand-b ? ? ? ? ? ? ? ? ?)]

[v-dec-out (abs-v-dec v-dec-out-inst v-dec-out-v0)]

[v-dec-out-inst

(select status # # # # # # # v-dec-out-v-dec # # #

v-dec-out-v-dec # # v-dec-out-v-dec # # v-dec-out-v-dec

v-dec-out-v-dec # # # # #)]

[v-dec-out-v0

(select status ? ? ? ? ? ? ? operand-b ? ? ? operand-b ? ?

operand-b ? ? operand-b ? operand-b ? ? ? ? ?)]

...) ...)

For the v-inc factorization, the derived equations are the instruction equation,

v-inc-out-inst, the data equation, v-inc-out-v0, and the incrementor output

equation, v-inc-out. For the v-dec factorization, the derived equations are the

instruction equation, v-dec-out-inst, the data equation, v-dec-out-v0, and the

decrementor output equation, v-dec-out. Each occurrence of (v-inc ...) and

(v-dec ...) are replaced with the output of their respective abstract components.

As is the case in the derived equations in the v-inc factorization, the incrementor

and decrementor factorization generate redundant signals. The v-inc-out-v0 and

v-dec-out-v0 equations in the expression above reduce to the operand-b equation.

4.5. VERIFYING V-ALU, V-INC AND V-DEC . 82

Expand stream is applied to the redundant equations in order to eliminate them. The

e�ect on the system description is shown below. Both equations are eliminated and

their occurrence is replaced with the operand-b signal.

(system-letrec

(...

[b-address

(! b-address-?

(select status v-dec-out

operand-b v-dec-out operand-b))]

[mem-addr

(select status ? ? ? operand-b ? ? ? ? ? ? ? v-dec-out operand-b

? ? ? ? ? ? v-dec-out operand-b ? ? b-address ?)]

[mem-regs-data

(select status ? ? data-in data-in v-inc-out data-in ? v-dec-out

v-inc-out ? ? data-in data-in data-in v-dec-out v-inc-out

? ? ? data-in data-in (bv v-alu-out) ? (bv v-alu-out) ?)]

[v-inc-out (abs-v-inc v-inc-out-inst operand-b)]

[v-inc-out-inst

(select status # # # # v-inc-out-v-inc # # # v-inc-out-v-inc

v-inc-out-v-inc # # # # # # # # #)]

[v-dec-out (abs-v-dec v-dec-out-inst operand-b)]

[v-dec-out-inst

(select status # # # # # # # v-dec-out-v-dec # # #

v-dec-out-v-dec # # v-dec-out-v-dec # # v-dec-out-v-dec

v-dec-out-v-dec # # # # #)]

...) ...)

4.5 Verifying v-alu, v-inc and v-dec .

The DDD-FM9001 design is targeted to the ACTEL FPGA architecture. This ar-

chitecture is a matrix of logic modules, each implementing a four-input multiplexor.

Veri�cation of the arithmetic modules is necessary to replace the ripple-carry adder

in Hunt's speci�cation with an e�cient implementation designed speci�cally for the

target technology. The veri�cation of the arithmetic modules in the DDD-FM9001

reduces to verifying a boolean term, derived from the FM9001 speci�cation, against

a hand-designed multiplexor implementation. It is necessary to apply algebraic tech-

4.5. VERIFYING V-ALU, V-INC AND V-DEC . 83

niques to construct a boolean term from the FM9001 speci�cation.

First, a functional abstraction of a four-input multiplexor, mux (shown below),

is de�ned. This function is used as the basis for implementing the DDD-FM9001

ALU. The DDD-FM9001 ALU implementation is based on a carry-look-ahead adder

that optimizes the use of ACTEL logic modules and gate delays. The circuit is well

engineered and represents a signi�cant improvement over the ALU available from the

ACTEL library. The implementation consists of 367 logic modules.

mux = �(in0 in1 in2 in3 c1 c0):

or(and(not(c1)and(not(c0) in0))

or(and(not(c1) and(c0 in1))

or(and(c1 and(not(c0) in2))

and(c1 and(c0 in3)))))

Next, symbolic evaluation is applied to both the Nqthm speci�cation and the

multiplexor implementation of the ALU. This method is similar to symbolic evaluation

that is discussed by Darringer [25], in which the base operators are extended to return

symbolic values and symbols are introduced as input values in place of real data

objects, For example, suppose the symbolic inputs a and b are supplied as actual

data to a procedure with formal parameters A and B. Then the symbolic execution of

the assignment statement C = A+2�B would assign the symbolic formula (a+2� b)

to C. The symbolic execution of the arithmetic modules results in the construction

of boolean expressions denoting their function. Ordered binary decision diagrams

(OBDDs) are then constructed from the resulting boolean expressions and veri�ed

for equivalence. The method is illustrated in the following example.

4.5. VERIFYING V-ALU, V-INC AND V-DEC . 84

4.5.1 Boolean Veri�cation: An Example

Consider the example of a 1-bit full adder. The boolean equations de�ning the full-

adder are given below where a and b are the bits to be added and c is the carry input.

Figure 4.6 illustrates the OBDD for sum and carry.

sum = a� b� c (4.1)

carry = ab + c(a+ b) (4.2)

b

c

a

10

1

0

!

!

SUM

b

c c

a

10

1

0 1

0

0 1

CARRY

Figure 4.6: OBDDs of sum and carry

The full-adder equations may be de�ned by the following function de�nitions,

sum spec and carry spec. The functions sum spec and carry spec are speci�cations

that implement equations (4.1) and (4.2) respectively.

sum spec(c; a; b) = xor(a; xor(b; c))

carry spec(c; a; b) = or(and(a; b); and(c; or(a; b)))

Consider an implementation of a full-adder consisting of four 4-input multiplexors.

Both a schematic, (Figure 4.7), and a function de�nition of the implementation is

shown below.

4.5. VERIFYING V-ALU, V-INC AND V-DEC . 85

0
1
1
0

0
1
1
0

c

ab

sum 0
a

bc 1

carry

bc

Figure 4.7: Multiplexor Implementation: 1-Bit Full-Adder

sum imp(c; a; b) = mux(0; 1; 1; 0; mux(0; 1; 1; 0; a; b); c)

carry imp(c; a; b) = mux(mux(0; a; a; a; b; c);

mux(0; a; a; a; b; c);

mux(0; a; a; a; b; c); 1; b; c)

The goal is to verify that the 4-input multiplexor implementation, sum imp and

carry imp, implements the equations speci�ed by the functions sum spec and carry spec.

The next step is to symbolically evaluate sum spec, carry spec, sum imp, and carry imp

to construct boolean expressions denoting their respective de�nitions.

sum spec = (xor a (xor b c))

carry spec = (or (and a b) (and c (or a b)))

sum_imp = (or (and (not (or (and (not a) (and (not b) 0)) (or (and (not a)

(and b 1)) (or (and a (and (not b) 1)) (and a (and b 0))))))

(and (not c) 0)) (or (and (not (or (and (not a) (and (not b) 0))

(or (and (not a) (and b 1)) (or (and a (and (not b) 1))

(and a (and b 0)))))) (and c 1)) (or (and (or (and (not a)

(and (not b) 0)) (or (and (not a) (and b 1)) (or (and a (and

(not b) 1)) (and a (and b 0))))) (and (not c) 1)) (and (or (and

(not a) (and (not b) 0)) (or (and (not a) (and b 1)) (or (and a

(and (not b) 1)) (and a (and b 0))))) (and c 0)))))

4.5. VERIFYING V-ALU, V-INC AND V-DEC . 86

carry_imp = (or (and (not b) (and (not c) (or (and (not b) (and (not c) 0))

(or (and (not b) (and c a)) (or (and b (and (not c) a))

(and b (and c a))))))) (or (and (not b) (and c (or (and

(not b) (and (not c) 0)) (or (and (not b) (and c a)) (or

(and b (and (not c) a)) (and b (and c a))))))) (or (and b

(and (not c) (or (and (not b) (and (not c) 0)) (or (and

(not b) (and c a)) (or (and b (and (not c) a)) (and b

(and c a))))))) (and b (and c 1)))))

Finally, the task simpli�es to the veri�cation of two boolean systems. The re-

sults of symbolically evaluating the speci�cation and implementation are then passed

through a boolean veri�er.

sum spec = sum imp
carry spec = carry imp

4.5.2 Verifying v-alu

The top-level speci�cation of the FM9001 ALU is

(defn v-alu (c a b op)

(cond ((equal op [bvec "0000"]) (cvzbv f f (v-buf a)))

((equal op [bvec "0001"]) (cvzbv-inc a))

((equal op [bvec "0010"]) (cvzbv-v-adder c a b))

((equal op [bvec "0011"]) (cvzbv-v-adder f a b))

((equal op [bvec "0100"]) (cvzbv-neg a))

((equal op [bvec "0101"]) (cvzbv-dec a))

((equal op [bvec "0110"]) (cvzbv-v-subtracter c a b))

((equal op [bvec "0111"]) (cvzbv-v-subtracter f a b))

((equal op [bvec "1000"]) (cvzbv-v-ror c a))

((equal op [bvec "1001"]) (cvzbv-v-asr a))

((equal op [bvec "1010"]) (cvzbv-v-lsr a))

((equal op [bvec "1011"]) (cvzbv f f (v-xor a b)))

((equal op [bvec "1100"]) (cvzbv f f (v-or a b)))

((equal op [bvec "1101"]) (cvzbv f f (v-and a b)))

((equal op [bvec "1110"]) (cvzbv-v-not a))

(t (cvzbv f f (v-buf a))))).

The ALU speci�cation, v-alu, returns a bit-vector, (cvzbv), consisting of four com-

ponents: the carry-out c, overow bit v, zero bit z, and the result bit-vector bv.

The function takes a 4-bit op-code op, two 32-bit A and B registers a and b, and a

4.5. VERIFYING V-ALU, V-INC AND V-DEC . 87

carry-in bit c. The ACTEL mux implementation is veri�ed with respect to boolean

terms constructed from each branch of v-alu.

Consider the addition operation corresponding to the v-alu opcode, 0011, high-

lighted in the de�nition above. Given the de�nition of cvzbv-v-adder,

(defn cvzbv-v-adder (c a b)

(cvzbv (v-adder-carry-out c a b)

(v-adder-overflowp c a b)

(v-adder-output c a b)))

where

(defn v-adder-output (c a b)

(firstn (length a) (v-adder c a b)))

is de�ned by a recursive de�nition of a ripple-carry adder, v-adder

(defn v-adder (c a b)

(if (nlistp a)

(cons (boolfix c) nil)

(cons (b-xor3 c (car a) (car b))

(v-adder (b-or (b-and (car a) (car b))

(b-or (b-and (car a) c)

(b-and (car b) c)))

(cdr a)

(cdr b))))).

Symbolically evaluating (v-adder f a b) yields a bit-vector of boolean terms for

the ALU output, v-alu-out 0..31

v-alu-out_0 = (b-xor (b-xor f a0) b0)

v-alu-out_1 = (b-xor (b-xor c0 a1) b1)

...

v-alu-out_31 = (b-xor (b-xor c30 a31) b31)

and a bit-vector for carry, c0..c31

4.6. DERIVING THE NEXT-STATE AND COMMAND GENERATOR 88

c0 = (b-or (b-and a0 b0)

(b-or (b-and a0 f) (b-and b0 f)))

c1 = (b-or (b-and a1 b1)

(b-or (b-and a1 c0) (b-and b1 c0)))

...

c31 = (b-or (b-and a31 b31)

(b-or (b-and a31 c30) (b-and b31 c30))).

The result is then passed through a boolean veri�er to establish equivalence with

the ACTEL mux implementation.

4.5.3 Verifying v-inc and v-dec

The incrementor and decrementor were veri�ed using the same method.

(defn v-inc (x)

(v-adder-output t x (nat-to-v 0 (length x))))

(defn v-dec (x)

(v-subtracter-output t (nat-to-v 0 (length x)) x))

(defn v-subtracter-output (c a b)

(v-adder-output (b-not c) (v-not a) b))

4.6 Deriving the Next-State and Command Gen-

erator

The next stage of the derivation is to derive the command and next-state generators,

that represent the control for the DDD-FM9001. The command generator issues

command codes to the datapath to signal which register transfer to occur, while

the state generator computes the next-state function. The command generator's

computation depends on the status predicates that includes the current state.

4.6. DERIVING THE NEXT-STATE AND COMMAND GENERATOR 89

4.6.1 The Next-State Generator

The state generator computes the next-state function for the DDD-FM9001. Simpli-

�cation is applied to the selector, select, with respect to state.

Highlighting the state equation in

(system-letrec

(...

[state

(! fm9001-intr

(select status fm9001-intr fm9001-fetch fm9001-fetch_1 fm9001-fetch_2

fm9001-operand-a fm9001-operand-a_1 fm9001-operand-a_2

fm9001-operand-a_2 fm9001-operand-a_2 fm9001-operand-b

fm9001-operand-b fm9001-operand-b fm9001-operand-b

fm9001-operand-b_1 fm9001-operand-b_2 fm9001-operand-b_2

fm9001-operand-b_2 fm9001-alu-operation fm9001-alu-operation

fm9001-alu-operation fm9001-alu-operation fm9001-alu-operation_1

fm9001-alu-operation_1 fm9001-intr fm9001-intr))]

...) ...)

(define select

(lambda* ((s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9) v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24)

(case s

[fm9001-intr (if p0 v0 v1)]

[fm9001-fetch v2]

[fm9001-fetch_1 v3]

[fm9001-fetch_2 v4]

[fm9001-operand-a v5]

[fm9001-operand-a_1 (if p1 v6 (if p2 v7 (if p3 v8 v6)))]

[fm9001-operand-a_2 (if p1 v9 (if p4 v10 (if p2 v11 v12)))]

[fm9001-operand-b v13]

[fm9001-operand-b_1 (if p5 v14 (if p6 v15 v16))]

[fm9001-operand-b_2 (if p7 (if p5 v17 v18) (if p5 v19 v20))]

[fm9001-alu-operation (if p8 v21 v22)]

[fm9001-alu-operation_1 (if p9 v23 v24)])))

Simpli�cation of select with respect to state returns the state equation with

the updated expression. What is returned is the modi�ed system expression

4.6. DERIVING THE NEXT-STATE AND COMMAND GENERATOR 90

(system-letrec

(...

[state (! fm9001-intr (next-state state p0))]

...) ...)

and the de�nition for the next-state function

(define next-state

(lambda (s p0)

(case s

[fm9001-intr (if p0 fm9001-intr fm9001-fetch)]

[fm9001-fetch fm9001-fetch_1]

[fm9001-fetch_1 fm9001-fetch_2]

[fm9001-fetch_2 fm9001-operand-a]

[fm9001-operand-a fm9001-operand-a_1]

[fm9001-operand-a_1 fm9001-operand-a_2]

[fm9001-operand-a_2 fm9001-operand-b]

[fm9001-operand-b fm9001-operand-b_1]

[fm9001-operand-b_1 fm9001-operand-b_2]

[fm9001-operand-b_2 fm9001-alu-operation]

[fm9001-alu-operation fm9001-alu-operation_1]

[fm9001-alu-operation_1 fm9001-intr])))

In next-state, each of the original parameter v's in select, are instantiated with

the symbolic constants fm9001-intr, etc... The function next-state now computes

the same function as select applied to the state equation, however, it is de�ned in

a specialized selector.

4.6.2 The Command Generator

The command generator is derived from the function select. The command gen-

erator is a function from status predicates to commands. Simpli�cation is applied

to the select function with respect to a set of assignments to the command codes.

These assignments are automatically generated by DDD. This is a non-trivial state

assignment problem that can be manually guided. The bindings are simple sequential

assignments of values to command codes. For example, the command code, v0, is

interpreted as command code 0. These assignments are automatically generated and

4.6. DERIVING THE NEXT-STATE AND COMMAND GENERATOR 91

map symbolic values, v0,...,v22 to binary values.

Given the selector, select, and a set of assignments for each of the command

codes (Figure 4.8)

(define select

(lambda* ((s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9) v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22)

(case s

[fm9001-intr (if p0 v0 v1)]

[fm9001-fetch v2]

[fm9001-fetch_1 v3]

[fm9001-fetch_2 v4]

[fm9001-operand-a v5]

[fm9001-operand-a_1 (if p1 v6 (if p2 v7 (if p3 v8 v6)))]

[fm9001-operand-a_2 (if p1 v9 (if p4 v10 (if p2 v11 v12)))]

[fm9001-operand-b v13]

[fm9001-operand-b_1 (if p5 v14 (if p6 v15 v6))]

[fm9001-operand-b_2 (if p7 (if p5 v16 v17) (if p5 v18 v19))]

[fm9001-alu-operation (if p8 v20 v6)]

[fm9001-alu-operation_1 (if p9 v21 v22)])))

cmd value cmd value cmd value cmd value
v0 0 v6 6 v12 12 v18 18
v1 1 v7 7 v13 13 v19 19
v2 2 v8 8 v14 14 v20 20
v3 3 v9 9 v15 15 v21 21
v4 4 v10 10 v16 16 v22 22
v5 5 v11 11 v17 17

Figure 4.8: Command Code Assignments

The result of applying simpli�cation is the command generator:

4.7. PROJECTION 92

(define cmd

(lambda (s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

(case s

[fm9001-intr (if p0 v0 v1)]

[fm9001-fetch v2]

[fm9001-fetch_1 v3]

[fm9001-fetch_2 v4]

[fm9001-operand-a v5]

[fm9001-operand-a_1 (if p1 v6 (if p2 v7 (if p3 v8 v6)))]

[fm9001-operand-a_2 (if p1 v9 (if p4 v10 (if p2 v11 v12)))]

[fm9001-operand-b v13]

[fm9001-operand-b_1 (if p5 v14 (if p6 v15 v6))]

[fm9001-operand-b_2 (if p7 (if p5 v16 v17) (if p5 v18 v19))]

[fm9001-alu-operation (if p8 v20 v6)]

[fm9001-alu-operation_1 (if p9 v21 v22)])))

In cmd, values v0,...,v22 are now interpreted as command encodings rather than

parameters.

4.7 Projection

At this stage in the derivation, the structural speci�cation has been re�ned to an

architecture. Complex objects such as the memory and register-�le have been factored

and the arithmetic components have been veri�ed with respect to an implementation.

However, the architecture is still de�ned over an abstract basis.

In the next phase of the derivation, DDD's rewriting mechanism, projection, is

used to map the architecture to a binary basis. An essential component of projec-

tion is a set of mappings from symbolic entries de�ned over the abstract basis to the

target basis. The binary representations used in the derivation of the DDD-FM9001

are either generated automatically by DDD or derived from the FM9001 speci�ca-

tion. Projection is applied to the command generator, next-state generator and the

datapath.

4.7. PROJECTION 93

4.7.1 Projecting the Command Generator

Projecting cmd with the representations in �gure 4.9 derives �ve separate command

generators, one for each command bit. De�nitions for each bit are returned. Project-

ing:

(define cmd

(lambda (s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

(case s

[fm9001-intr (if p0 v0 v1)]

[fm9001-fetch v2]

[fm9001-fetch_1 v3]

[fm9001-fetch_2 v4]

[fm9001-operand-a v5]

[fm9001-operand-a_1 (if p1 v6 (if p2 v7 (if p3 v8 v6)))]

[fm9001-operand-a_2 (if p1 v9 (if p4 v10 (if p2 v11 v12)))]

[fm9001-operand-b v13]

[fm9001-operand-b_1 (if p5 v14 (if p6 v15 v6))]

[fm9001-operand-b_2 (if p7 (if p5 v16 v17) (if p5 v18 v19))]

[fm9001-alu-operation (if p8 v20 v6)]

[fm9001-alu-operation_1 (if p9 v21 v22)])))

returns

(define cmd_0

(lambda (s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

(case s

[fm9001-intr (if p0 0 1)]

[fm9001-fetch 0]

[fm9001-fetch_1 1]

[fm9001-fetch_2 0]

[fm9001-operand-a 1]

[fm9001-operand-a_1 (if p1 0 (if p2 1 (if p3 0 0)))]

[fm9001-operand-a_2 (if p1 1 (if p4 0 (if p2 1 0)))]

[fm9001-operand-b 1]

[fm9001-operand-b_1 (if p5 0 (if p6 1 0))]

[fm9001-operand-b_2 (if p7 (if p5 0 1) (if p5 0 1))]

[fm9001-alu-operation (if p8 0 0)]

[fm9001-alu-operation_1 (if p9 1 0)])))

4.7. PROJECTION 94

(define cmd_1

(lambda (s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

(case s

[fm9001-intr (if p0 0 0)]

[fm9001-fetch 1]

[fm9001-fetch_1 1]

[fm9001-fetch_2 0]

[fm9001-operand-a 0]

[fm9001-operand-a_1 (if p1 1 (if p2 1 (if p3 0 1)))]

[fm9001-operand-a_2 (if p1 0 (if p4 1 (if p2 1 0)))]

[fm9001-operand-b 0]

[fm9001-operand-b_1 (if p5 1 (if p6 1 1))]

[fm9001-operand-b_2 (if p7 (if p5 0 0) (if p5 1 1))]

[fm9001-alu-operation (if p8 0 1)]

[fm9001-alu-operation_1 (if p9 0 1)])))

(define cmd_2

(lambda (s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

(case s

[fm9001-intr (if p0 0 0)]

[fm9001-fetch 0]

[fm9001-fetch_1 0]

[fm9001-fetch_2 1]

[fm9001-operand-a 1]

[fm9001-operand-a_1 (if p1 1 (if p2 1 (if p3 0 1)))]

[fm9001-operand-a_2 (if p1 0 (if p4 0 (if p2 0 1)))]

[fm9001-operand-b 1]

[fm9001-operand-b_1 (if p5 1 (if p6 1 1))]

[fm9001-operand-b_2 (if p7 (if p5 0 0) (if p5 0 0))]

[fm9001-alu-operation (if p8 1 1)]

[fm9001-alu-operation_1 (if p9 1 1)])))

4.7. PROJECTION 95

(define cmd_3

(lambda (s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

(case s

[fm9001-intr (if p0 0 0)]

[fm9001-fetch 0]

[fm9001-fetch_1 0]

[fm9001-fetch_2 0]

[fm9001-operand-a 0]

[fm9001-operand-a_1 (if p1 0 (if p2 0 (if p3 1 0)))]

[fm9001-operand-a_2 (if p1 1 (if p4 1 (if p2 1 1)))]

[fm9001-operand-b 1]

[fm9001-operand-b_1 (if p5 1 (if p6 1 0))]

[fm9001-operand-b_2 (if p7 (if p5 0 0) (if p5 0 0))]

[fm9001-alu-operation (if p8 0 0)]

[fm9001-alu-operation_1 (if p9 0 0)])))

(define cmd_4

(lambda (s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

(case s

[fm9001-intr (if p0 0 0)]

[fm9001-fetch 0]

[fm9001-fetch_1 0]

[fm9001-fetch_2 0]

[fm9001-operand-a 0]

[fm9001-operand-a_1 (if p1 0 (if p2 0 (if p3 0 0)))]

[fm9001-operand-a_2 (if p1 0 (if p4 0 (if p2 0 0)))]

[fm9001-operand-b 0]

[fm9001-operand-b_1 (if p5 0 (if p6 0 0))]

[fm9001-operand-b_2 (if p7 (if p5 1 1) (if p5 1 1))]

[fm9001-alu-operation (if p8 1 0)]

[fm9001-alu-operation_1 (if p9 1 1)]))))

4.7.2 Projecting the Next-State Generator

Projecting next-state with the representations in �gure 4.9 derives four separate

next-state generators, one for each state bit. De�nitions for each bit are returned.

Projecting:

4.7. PROJECTION 96

cmd bits 0..4 cmd bits 0..4 state bits 0..3

v0 00000 v12 00110 fm9001-intr 0000

v1 10000 v13 10110 fm9001-fetch 1000

v2 01000 v14 01110 fm9001-fetch 1 0100

v3 11000 v15 11110 fm9001-fetch 2 1100

v4 00100 v16 00001 fm9001-operand-a 0010

v5 10100 v17 10001 fm9001-operand-a 1 1010

v6 01100 v18 01001 fm9001-operand-a 2 0110

v7 11100 v19 11001 fm9001-operand-b 1110

v8 00010 v20 00101 fm9001-operand-b 1 0001

v9 10010 v21 10101 fm9001-operand-b 2 1001

v10 01010 v22 01101 fm9001-alu-operation 0101

v11 11010 fm9001-alu-operation 1 1101

Figure 4.9: Representations

(define next-state

(lambda (s p0)

(case s

[fm9001-intr (if p0 fm9001-intr fm9001-fetch)]

[fm9001-fetch fm9001-fetch_1]

[fm9001-fetch_1 fm9001-fetch_2]

[fm9001-fetch_2 fm9001-operand-a]

[fm9001-operand-a fm9001-operand-a_1]

[fm9001-operand-a_1 fm9001-operand-a_2]

[fm9001-operand-a_2 fm9001-operand-b]

[fm9001-operand-b fm9001-operand-b_1]

[fm9001-operand-b_1 fm9001-operand-b_2]

[fm9001-operand-b_2 fm9001-alu-operation]

[fm9001-alu-operation fm9001-alu-operation_1]

[fm9001-alu-operation_1 fm9001-intr])))

returns

4.7. PROJECTION 97

(define next-state_0

(lambda (s p0)

(case s

[fm9001-intr (if p0 0 1)]

[fm9001-fetch 0]

[fm9001-fetch_1 1]

[fm9001-fetch_2 0]

[fm9001-operand-a 1]

[fm9001-operand-a_1 0]

[fm9001-operand-a_2 1]

[fm9001-operand-b 0]

[fm9001-operand-b_1 1]

[fm9001-operand-b_2 0]

[fm9001-alu-operation 1]

[fm9001-alu-operation_1 0])))

(define next-state_1

(lambda (s p0)

(case s

[fm9001-intr (if p0 0 0)]

[fm9001-fetch 1]

[fm9001-fetch_1 1]

[fm9001-fetch_2 0]

[fm9001-operand-a 0]

[fm9001-operand-a_1 1]

[fm9001-operand-a_2 1]

[fm9001-operand-b 0]

[fm9001-operand-b_1 0]

[fm9001-operand-b_2 1]

[fm9001-alu-operation 1]

[fm9001-alu-operation_1 0])))

4.7. PROJECTION 98

(define next-state_2

(lambda (s p0)

(case s

[fm9001-intr (if p0 0 0)]

[fm9001-fetch 0]

[fm9001-fetch_1 0]

[fm9001-fetch_2 1]

[fm9001-operand-a 1]

[fm9001-operand-a_1 1]

[fm9001-operand-a_2 1]

[fm9001-operand-b 0]

[fm9001-operand-b_1 0]

[fm9001-operand-b_2 0]

[fm9001-alu-operation 0]

[fm9001-alu-operation_1 0])))

(define next-state_3

(lambda (s p0)

(case s

[fm9001-intr (if p0 0 0)]

[fm9001-fetch 0]

[fm9001-fetch_1 0]

[fm9001-fetch_2 0]

[fm9001-operand-a 0]

[fm9001-operand-a_1 0]

[fm9001-operand-a_2 0]

[fm9001-operand-b 1]

[fm9001-operand-b_1 1]

[fm9001-operand-b_2 1]

[fm9001-alu-operation 1]

[fm9001-alu-operation_1 0]))))

4.7.3 Projecting the Datapath

The next step is to project the datapath. This process represents a massive trans-

formation in DDD. Each variable, constant, and operator is projected to a binary

representation. For example, consider the regs-addr equation that denotes the ad-

dress of the register-�le,

4.7. PROJECTION 99

(system-letrec

(...

[regs-addr

(select status pc-reg pc-reg pc-reg pc-reg pc-reg (rn-a ins)

pc-reg (rn-a ins) (rn-a ins) pc-reg pc-reg pc-reg pc-reg

(rn-b ins) (rn-b ins) (rn-b ins) pc-reg pc-reg pc-reg

pc-reg (rn-b ins) pc-reg pc-reg)]

...) ...).

The regs-addr equation is projected to a set of four equations. The result is a

system of four equations, each de�ned over a single bit.

(system-letrec

(...

[regs-addr_0

(select status pc-reg_0 pc-reg_0 pc-reg_0 pc-reg_0 pc-reg_0 ins_0

pc-reg_0 ins_0 ins_0 pc-reg_0 pc-reg_0 pc-reg_0 pc-reg_0

ins_10 ins_10 ins_10 pc-reg_0 pc-reg_0 pc-reg_0

pc-reg_0 ins_10 pc-reg_0 pc-reg_0)]

[regs-addr_1

(select status pc-reg_1 pc-reg_1 pc-reg_1 pc-reg_1 pc-reg_1 ins_1

pc-reg_1 ins_1 ins_1 pc-reg_1 pc-reg_1 pc-reg_1 pc-reg_1

ins_11 ins_11 ins_11 pc-reg_1 pc-reg_1 pc-reg_1

pc-reg_1 ins_11 pc-reg_1 pc-reg_1)]

[regs-addr_2

(select status pc-reg_2 pc-reg_2 pc-reg_2 pc-reg_2 pc-reg_2 ins_2

pc-reg_2 ins_2 ins_2 pc-reg_2 pc-reg_2 pc-reg_2 pc-reg_2

ins_12 ins_12 ins_12 pc-reg_2 pc-reg_2 pc-reg_2

pc-reg_2 ins_12 pc-reg_2 pc-reg_2)]

[regs-addr_3

(select status pc-reg_3 pc-reg_3 pc-reg_3 pc-reg_3 pc-reg_3 ins_3

pc-reg_3 ins_3 ins_3 pc-reg_3 pc-reg_3 pc-reg_3 pc-reg_3

ins_13 ins_13 ins_13 pc-reg_3 pc-reg_3 pc-reg_3

pc-reg_3 ins_13 pc-reg_3 pc-reg_3)]

...) ...)

De�nitions for each of the operations rn-a and rn-b are used from the FM9001

base de�nitions. These act as routing primitives that return the binary projection of

the expression (rn-a ins) or (rn-b ins).

Chapter 5

DDD-FM9001 Realization

ACTEL
Device: A1280
Package: PGA176

DDD−FM9001
Version 1.0

Register File
16x32 Array

clk

rst

hold

oracle 4

state flags ins28..31
4 4 4

MEMORY
ARRAY

rinst raddr42

2

maddr

data

minst

32

32

hdack

Figure 5.1: DDD-FM9001 Realization Schematic

The DDD-FM9001 is realized in a 176-pin Actel FPGA (Field Programmable Gate

Array) with an external register-�le. Figure 5.1 is a schematic of the processor and its

register-�le and memory subsystems. An external high speed cache SRAM module

implements the 16�32-bit register-�le. The FPGA module transfers data to and from

the register-�le via the 32-bit bi-directional data bus. The device pin assignments are

shown in Figure 5.2.

100

101

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLKD0

D1

D2

D3

D4

D5 D6

D7

D8

D9

D10 D11

D12

D13

D14 D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26 D27

D28

D29

D30

D31

A0

A1 A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17 A18

A19

A20

A21 A22

A23

A24

A25

A26

A27

A28

A29 A30

A31

Z

N

V C

I28I29

I30

I31

OR0

OR1

OR2

OR3

HLD

RA0

RA1

RA2

RA3

ST0

ST1

ST2ST3

RST

MI0

MI1

RI0

RI1

VDD GNDVDD

VDD

VDD

VDD

VDD

VDD

VDDVDD

VDD

VDDVDD

VDD

VDD

GND

GND

GND

GND

GND

GND GND GNDGND

GNDGND

GND

GND

GNDGNDGNDGNDGND

GND

GND

[Top View]

ACTEL
Device: A1280
Package: PGA176

DDD−FM9001
Version 1.0

HDACK

Figure 5.2: DDD-FM9001 Pin Assignments

The internal logic consists of 92 I/O modules including clock and reset, 1136 logic

modules, and 172 sequential modules. The FPGA contains three 4-bit registers for the

control state, status ags, and program counter address, four 32-bit registers for the

instruction, A and B operands, and b-address, a 32-bit ALU, a 32-bit bi-directional

data bus, a 32-bit address bus, four bits to select the program counter, a 2-bit memory

instruction signal, a hold and hold-acknowledge signal, and a set of observability pins

for the state, ags, and high four bits of the instruction register. In addition, there is

a 2-bit instruction and 4-bit address to communicate with the external register-�le.

The external I/O pins are de�ned in Table 5.1.

The DDD-FM9001 implements a simple bus protocol with the hold and hold-

acknowledge signals. Asserting the hold signal, the processor completes the current

5.1. DESIGN VALIDATION 102

External I/O Pins Description
Inputs:

CLK System clock.
RST Reset.
HLD Hold.
OR[0..3] Sets pc-reg input.

Bi-directionals:
D[0..31] Bidirectional data bus (tristate).

Outputs:
HDACK Hold acknowledge.
Z,N,V,C Flags (z, n, v, c).
ST[0..3] Control state.
I[28..31] High 4 bits of instruction register.

Memory Signals:
MI0 Memory read/write (tristate, active low).
MI1 Memory select (tristate, active low).
A[0..31] Memory address bus (tristate).

Register-File Signals:
RI0 Register-�le read/write (tristate, active low).
RI1 Register-�le select (tristate, active low).
RA[0..3] Register-�le address bus (tristate).

Table 5.1: DDD-FM9001 I/O Pin Descriptions

instruction and cycles in the hold state. While in the hold state, the memory, register-

�le and data signals are tri-stated.

5.1 Design Validation

The DDD-FM9001 was validated against:

� The Boyer-Moore Logic speci�cation of the FM9001.

� The LSI Logic FM9001 Chip.

Validation was necessary to bridge the gap between the formal derivation and the

physical hardware realization. The executable property of the Boyer-Moore Logic

was exploited during the validation phase of the design. A set of programs was

executed on the software model and validated against both the DDD-FM9001 and

5.1. DESIGN VALIDATION 103

DDD−FM9001

B
us

 C
on

tr
ol

 A
B

us
 C

on
tr

ol
 B

Register File

MEMORY

FM9001

Figure 5.3: Hardware Test Environment

FM9001 processors. The DDD-FM9001 was also subjected to extensive side-by-side

comparisons with the FM9001 chip. All modes of validation yielded consistent results.

5.1.1 Hardware Test Environment

The Logic Engine hardware development platform is used to build a test environment

for the DDD-FM9001. The test environment consists of the DDD-FM9001 processor,

the FM9001 processor, Scheme software running on a workstation, and control logic

to interface the workstation, FM9001, DDD-FM9001, and the memory subsystem.

Figure 5.3 illustrates the main systems on the test environment.

5.1.2 Software Interface

The software interface, written in Scheme, provides seamless integration between the

hardware objects on the Logic Engine and hardware descriptions in software. The

interface controls all aspects of the hardware implementations for executing programs

5.1. DESIGN VALIDATION 104

on either processor. Software functions provide access to the FM9001, DDD-FM9001,

memory, and external register-�le. Table 5.2 lists the set of functions.

Functions Description
Memory/Register-File Control Functions

mem := mem j regs
(read-mem addr mem) Read from mem.
(write-mem addr mem data) Write to mem.
(clear-mem n m mem) Clear mem range from n to m.
(list-mem n m mem) Return mem range from n to m.
(test-mem n m mem) Test mem range from n to m.
(load-mem n pgm mem) Loads pgm into mem starting from location n.

FM9001/DDD-FM9001 Control Functions
(dfm)/(fm) Set current processor to DDD-FM9001/FM9001.
(init-fm9001) Initialize.
(step-fm9001 n) Execute n instruction cycles.
(reset-fm9001) Reset.
(run-fm9001) Run.
(stop-fm9001) Stop.
(execute-fm9001 pgm [n]) Executes pgm n instruction cycles.

Table 5.2: DDD-FM9001 Logic Engine Interface

Programs are downloaded to the memory, and either processor or software CPU

model is run against the memory. The memory primitives, mem-read and mem-write,

access either the memory or register-�le. These functions are compatible with the

Boyer-Moore Logic functions and provide the ability to execute the software speci�-

cation against the hardware memory and/or register-�le. A set of functions provides

control over the DDD-FM9001 and FM9001 processors. The functions (dfm) and

(fm) toggle which processor is active. Either processor may be initialized, stepped

a set number of instruction cycles, reset, run, or stopped. A high-level function,

(execute-fm9001 pgm [n]), resets the active processor, loads the pgm into mem-

ory, and executes the program.

5.2. COMPARING THE FM9001 AND DDD-FM9001 105

FM9001 Veri�cation DDD-FM9001 Derivation
Script entries 2957 entries 1000 lines
Execution time 4hrs (Sparc 2) 30min (Sparc 2)
Netlist 91K characters 69K characters

2215 lines 1178 lines
I/O Pins 95 92

32 bi-directional 32 bi-directional

Figure 5.4: Quantitative Comparison

5.2 Comparing the FM9001 and DDD-FM9001

In terms of hardware realizations, the FM9001 and DDD-FM9001 execute the same

instruction set and exhibit the same state to state behavior for each instruction cycle.

At the end of each instruction, the contents of the register-�le, ags, and memory are

equivalent. However, the implementations di�er in several key respects.

Some of the quantitative di�erences between the FM9001 veri�cation and DDD-

FM9001 derivation are given in Figure 5.4. It is perhaps worth noting that a quantita-

tive comparison between both methodologies is naive. The statistics on Hunt's veri�-

cation does not reect the time involved in designing an implementation, whereas, in

the derivational approach, the implementation is a byproduct of the derivation. The

table provides some basis for analysis, however the interesting comparisons relate to

the di�erences in architecture.

The block diagrams for the FM9001 and DDD-FM9001 (Figure 5.6 and 5.5) show

similar yet distinct architectures. This is not a surprise since the goal of the derivation

was not to achieve the identical implementation as the FM9001, but to derive an

implementation that preserved the behavior of the initial speci�cation.

The DDD-FM9001 implements both an incrementor and decrementor. The FM9001

5.2. COMPARING THE FM9001 AND DDD-FM9001 106

IMM

control
C
V
N
Z

P I

A

B

ALU

INC

DEC

R

data−
out

BA addr−
out

0

1 data−
in

Figure 5.5: DDD-FM9001 Block Diagram

control
C
V
N
Z

P I

A

B

ALU

R BA

0

1

dtack hold

DEC/
PASS

IMM/
PASS

data−
indata−

out

addr−
out

Figure 5.6: FM9001 Block Diagram

5.2. COMPARING THE FM9001 AND DDD-FM9001 107

implements only a decrementor. The FM9001 ALU is used to implement the incre-

ment operation. In the DDD-FM9001 derivation, separate incrementors and decre-

mentors reect a design decision. An equally valid derivation path would have been to

serialize the design such that the ALU, incrementor and decrementor operations were

scheduled without any resource conicts. This would enable the factorization of the

arithmetic operations as a single component and verify it against an implementation.

The signi�cant di�erence between the FM9001 and the DDD-FM9001 is the ab-

sence of the dtack register and the scan path, in the derived design. The dtack signal

relates to the change in the model of memory from a functional abstraction to a pro-

cess abstraction. This di�erence isolates an aspect of the veri�cation of the FM9001

that could not be derived since it did not exist in the original speci�cation. A formal-

ism for process decomposition to address this issue has been developed by Rath[60],

however, at the time of this derivation exercise, the function was not integrated with

DDD.

Chapter 6

Conclusion

As researchers begin to understand the interplay of multiple formal systems and

how they interact in design, formal methods can move towards a design framework

that supports alternate forms of reasoning while maintaining integrity in the design

process. In this dissertation, I have investigated the interplay of derivation and ver-

i�cation in the context of a mechanically veri�ed design where the derivation of a

veri�ed microprocessor, the DDD-FM9001, is presented. The derivation involved the

use of three mechanical veri�cation tools: the DDD digital design derivation system,

the Nqthm theorem prover, and the COSMOS boolean tautology checker. However,

this work points toward the broader issues relating to how multiple reasoning systems

in a peer relationship interact in design. These subtle issues must be understood if

we are to formalize the design process.

6.1 The Interplay of Derivation and Veri�cation

The interplay of derivation and veri�cation is a �nely grained process with many

interdependent aspects. A derivation system depends on veri�cation to establish the

correctness of the speci�cations and representations, and provides a formal justi�ca-

tion for ad hoc transformations. On the other hand, derivation can be used to isolate

veri�cation problems to small building blocks. At lower levels, a design description

108

6.2. THE DDD SYSTEM 109

structured for the purpose of mechanical proof may have to be restructured for the

purpose of physical implementation. The re-veri�cation e�ort is a non-trivial corol-

lary to the correctness proof, and it is evident that this kind of restructuring should

be an algebraic process.

One area of future work is the need for secure interaction between formal systems.

The notion of interacting systems spans a broad range of possibilities ranging from

transformation systems, theorem provers, automatic tautology checkers, type systems,

and even the human engineer. Formalization of the interfaces and interaction of formal

systems remains an open problem.

6.2 The DDD System

The DDD system was conceived as a research vehicle for engineers and scientists to

study the formalization of hardware in an algebraic framework. Toward this goal,

DDD has provided an illuminating context for relating theory to practice. The sys-

tem and the algebra it implements is continually evolving as researchers attempt to

formalize the design process.

6.3 Design Derivation

Design derivation allows the designer the exibility to sketch a complex design space

with many possible paths between speci�cation and implementation. It is fairly easy

to explore a number of design possibilities in a formal manner, without committing

to a particular design decision. For example, various derivation paths were explored

during the factorization phase of the DDD-FM9001 derivation. Several alternatives to

the factorization of v-alu, v-inc and v-dec, were explored. One path explored was

to factor v-inc and v-dec into a single component. There was no gain in terms of the

6.4. THE DERIVATION SCRIPT 110

target hardware. Another path explored was to factor all the arithmetic operations

into a single component. This strategy provided the greatest gain, however, it was not

employed during the �rst version of the DDD-FM9001. This would be a reasonable

tactic in a new derivation.

Although the ability to safely explore the design space is secured by the DDD

algebra, development of tools in the areas of analysis, visualization, and automation

would provide practical support for design derivation. Analysis tools to estimate

the cost/bene�ts for various design decisions would provide an e�ective means of

navigation through the design space. Alternative forms of visual representation would

facilitate reasoning about speci�c facets of the design. Automation in the form of

tacticals would automate segments of the derivation process. These tacticals would

operate on top of the derivation system thus maintaining the integrity of the design.

6.4 The Derivation Script

The derivation script reects the designer's interaction with the DDD system. In a

formal sense, the derivation script is a correctness proof in which the implementation is

constructed as a byproduct. Although the �nal script is a top-down construction from

a speci�cation to an implementation, the intellectual e�ort might be characterized as

top-down, bottom-up, and even inside-out. It is common to apply a transformation,

analyze the result and gain some insight into the design, backtrack, and follow an

alternate path.

For example, in the DDD-FM9001, serialization of the memory and register-�le

operations was not done on the �rst iteration of the derivation. During the later

stages of structural re�nement of the architecture, the algebra would not allow for the

memory and register-�le to share a common bus because operations on the memory

and register-�le were occurring simultaneously. The solution was to return to the

6.5. CLOSING REMARKS 111

original behavioral speci�cation, serialize the memory and register-�le operations,

and continue with the rest of the derivation. Development of tools to aid in the

management of derivation scripts would provide another perspective understanding

the design process.

6.5 Closing Remarks

The need for heterogeneous reasoning stems from the observation that design is a

reasoning process that involves analysis, deduction, and generation. A design tool

should not de�ne a methodology, but rather it should reect the nature of design.

The idealized environment consists of multiple formal systems with secure interaction

between them. Each system is independent with a formal interface by which they

interact. Proofs in one system are interpreted as valid in another, eliminating the

need to re-validate proofs across system boundaries. The designer is able to employ

the most e�ective tool for any given design context. Through experimental research,

this dissertation takes a step toward this ideal but much more remains to be done. It

is my sincere hope that others will draw insight from this experience.

Bibliography

[1] Actel Corporation, Sunnyvale, CA. ACT Family Field Programmable Gate Array

Databook, 1991.

[2] D. Agnew, L. Claesen, and R. Camposano, editors. Computer Hardware De-

scription Languages. North-Holland, Amsterdam, 1993.

[3] S. B. Akers. Binary decision diagrams. IEEE Trans. on Comput., C-27:pages

509{516, June 1978.

[4] Altera. Altera Programmable Logic User System User Guide. Santa Clara, CA,

1985.

[5] Graham Birtwistle and P.A. Subrahmanyan, editors. VLSI Speci�cation, Veri�-

cation and Synthesis. Kluwer, Boston, 1988.

[6] Bhaskar Bose. DDD - a transformation system for digital design derivation

- reference manual. Technical Report 331, Computer Science Dept., Indiana

University, May 1991.

[7] Bhaskar Bose and Steven D. Johnson. DDD-FM9001: Derivation of a veri�ed

microprocessor. an exercise in integrating veri�cation with formal derivation.

In George J. Milne and Laurence Pierre, editors, Correct Hardware Design and

Veri�cation Methods, Lecture Notes in Computer Science, volume 683, pages

191{202. Springer, Berlin, 1993.

112

BIBLIOGRAPHY 113

[8] Bhaskar Bose, Steven D. Johnson, and Shyamsundar Pullela. Integrating boolean

veri�cation with formal derivation. In D. Agnew, L. Claesen, and R. Cam-

posano, editors, Computer Hardware Description Languages and their Applica-

tions, pages 139{146. North-Holland, Amsterdam, 1993.

[9] Bhaskar Bose, M. Esen Tuna, and Steven D. Johnson. System factorization in

codesign: A case study of the use of formal techniques to achieve hardware-

software decomposition. In 1993 IEEE International Conference on Computer

Design, pages 458{461. IEEE, October 1993.

[10] C. David Boyer and Steven D. Johnson. Using the digital design derivation

system: Case study of a VLSI garbage collector. In John A. Darringer and

Franz J. Rammig, editors, Computer Hardware Description Languages and their

Applications, pages 235{246. North-Holland, Amsterdam, 1990.

[11] Robert S. Boyer and J. Strother Moore. A Computational Logic Handbook. Aca-

demic Press, Boston, 1988.

[12] Bishop Brock and Warren A. Hunt, Jr. Report on the formal speci�cation and

partial veri�cation of the VIPER microprocessor. Technical Report 46, Compu-

tational Logic Inc., January 1990.

[13] Bishop Brock, Warren A. Hunt, Jr., Matt Kaufmann, and William D. Young.

The formal speci�cation and veri�cation of the FM9001 microprocessor. Tech-

nical Report 86, Computational Logic Inc., October 1994.

[14] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. on Comput., C-35:pages 677{691, August 1986.

[15] Randal E. Bryant. COSMOS: A Compiled Simulator for MOS Circuits. In 24th

ACM/IEEE Design Automation Conference, 1987.

BIBLIOGRAPHY 114

[16] J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking: 1020

states and beyond. In International Workshop on Formal methods in VLSI De-

sign, January 1991.

[17] R.M. Burstall and John Darlington. A transformation system for developing

recursive programs. Comm. ACM, 24(1):pages 44{67, January 1977.

[18] A. Church. A formulation of the simple theory of types. Symbolic Logic, 5(1),

1940.

[19] Luc J.M. Claesen, editor. Formal VLSI Correctness Veri�cation. North-Holland,

Amsterdam, 1990.

[20] Luc J.M. Claesen, editor. Formal VLSI Speci�cation and Synthesis. North-

Holland, Amsterdam, 1990.

[21] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh Jha, David E.

Long, and Linda A. Ness. Veri�cation of the futurebus+ cache coherence proto-

col. In D. Agnew, L. Claesen, and R. Camposano, editors, Computer Hardware

Description Languages and their Applications, pages 15{30. North-Holland, Am-

sterdam, 1993.

[22] William Clinger and Jonathan Rees. The revised4 report on the algorithmic

language scheme. ACM Lisp Pointers, 4(3):pages 1{55, 1991.

[23] Avra Cohn. A proof of correctness of the VIPER microprocessor: The �rst level.

Technical Report 104, University of Cambridge, Computer Laboratory, January

1987.

[24] Avra Cohn. Correctness properties of the VIPER block model: The second level.

In preliminary papers for the Ban� Hardware Veri�cation Workshop, June 1988.

BIBLIOGRAPHY 115

[25] John A. Darringer. The application of program veri�cation techniques to hard-

ware veri�cation. In 16th ACM/IEEE Design Automation Conference, 1979.

[26] R. Kent Dybvig. The SCHEME Programming Language. Prentice-Hall, Engle-

wood Cli�s, 1987.

[27] P. Gaboury and M.I. Elmasry. Using program transformation for VLSI design

automation. In Luc J.M. Claesen, editor, Formal VLSI Speci�cation and Syn-

thesis, pages 43{59. North-Holland, Amsterdam, 1990.

[28] Fausto Giunchiglia, Paolo Pecchiari, and Carolyn Talcott. Reasoning structures

- an architecture for open mechanized reasoning systems. Working Draft.

[29] Michael J.C. Gordon. LCF-LSM, a system for specifying and verifying hard-

ware. Technical Report 41, Computer Laboratory, The University of Cambridge,

September 1983.

[30] Michael J.C. Gordon. Proving a computer correct using the LCF-LSM hardware

veri�cation system. Technical Report 42, Computer Laboratory, The University

of Cambridge, September 1983.

[31] Michael J.C. Gordon. HOL: a proof generating system for higher-order logic. In

Graham Birtwistle and P.A. Subrahmanyam, editors, VLSI Speci�cation, Veri-

�cation and Synthesis, pages 73{128. Kluwer, Boston, 1988.

[32] Brian T. Graham. The SECD Microprocessor. Kluwer International Series in

Engineering and Computer Science. Kluwer Academic Publishers, Boston, 1992.

[33] Peter Henderson. Functional Programming, Application and Implementation.

Prentice-Hall, Englewood Cli�s, NJ, 1980. C. A. R. Hoare, Series Editor (inter-

national series in computer science).

BIBLIOGRAPHY 116

[34] Warren A. Hunt, Jr. FM8501: A Veri�ed Microprocessor. PhD thesis, University

of Texas at Austin, December 1985.

[35] Warren A. Hunt, Jr. Theorem provers in circuit design. In V. Stavridou, T.F.

Melham, and R.T. Boute, editors, International Conference on Theorem Provers

in Circuit Design { Theory, Practice, and Experience. North-Holland, June 1992.

[36] Warren A. Hunt, Jr. and Bishop Brock. A formal HDL and its use in the FM9001

veri�cation. In C.A.R. Hoare and M.J.C. Gordon, editors,Mechanized Reasoning

in Hardware Design, pages 35{48. Prentice-Hall, Englewood Cli�s, N.J., 1992.

[37] Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. The

MIT Press, Cambridge, 1984.

[38] Steven D. Johnson. Digital design in a functional calculus. In G.J. Milne and

P.A. Subrahmanyam, editors, Formal Aspects of VLSI Design, pages 45{58.

North-Holland, Amsterdam, 1986.

[39] Steven D. Johnson. Manipulating logical organization with system factorizations.

In M. Leeser and G. Brown, editors, Hardware Speci�cation, Veri�cation and

Sythesis: Mathematical Aspects, Lecture Notes in Computer Science, volume

408, pages 260{281. Springer, Berlin, 1989.

[40] Steven D. Johnson and Bhaskar Bose. A system for digital design derivation.

Technical Report 289, Computer Science Dept., Indiana University, August 1989.

[41] Steven D. Johnson and Bhaskar Bose. A system for mechanized digital design

derivation. In Subramanyam, editor, Proceedings of ACM International Work-

shop on Formal Methods in VLSI Design, January 1991.

BIBLIOGRAPHY 117

[42] Steven D. Johnson, Bhaskar Bose, and C. David Boyer. A tactical framework

for digital design. In Graham Birtwistle and P.A. Subrahmanyam, editors, VLSI

Speci�cation, Veri�cation and Synthesis, pages 349{383. Kluwer, Boston, 1988.

[43] Steven D. Johnson and C. David Boyer. Modelling transistors applicatively. In

George J. Milne, editor, The Fusion of Hardware Design and Veri�cation, pages

397{420. North-Holland, Amsterdam, 1988.

[44] Steven D. Johnson, Robert M. Wehrmeister, and Bhaskar Bose. On the interplay

of synthesis and veri�cation: Experiments with the FM8501 processor descrip-

tion. In Luc J.M. Claesen, editor, Formal VLSI Speci�cation and Synthesis,

pages 117{136. North-Holland, Amsterdam, 1990.

[45] Je�rey J. Joyce. Multi-level veri�cation of a simple microprocessor. Technical

report, Computer Laboratory, University of Cambridge, 1987. Progress Report.

[46] P.J. Landin. The mechanical evaluation of expressions. Computer Journal,

6(4):pages 308{320, 1964.

[47] M. Leeser and G. Brown, editors. Hardware Speci�cation, Veri�cation and Sythe-

sis: Mathematical Aspects, Lecture Notes in Computer Science, volume 408.

Springer, Berlin, 1989.

[48] Karl Levitt, Tejkumar Arora, Tony Leung, Sara Kalvala, E. Thomas Schubert,

Philip Windley, Mark Heckman, and Gerald C. Cohen. Formal Veri�cation of a

Microcoded VIPER Microprocessor using HOL. NASA Contractor Report 4489,

1993.

[49] J.C. Madre and J.P. Billon. Proving circuit correctness using formal compar-

ison between expected and extracted behaviour. In 25th ACM/IEEE Design

Automation Conference, June 1988.

BIBLIOGRAPHY 118

[50] Michael C. McFarland, Alice C. Parker, and Raul Camposano. Tutorial on

high-level synthesis. In 25th ACM/IEEE Design Automation Conference, pages

330{336, 1988.

[51] George J. Milne, editor. The Fusion of Hardware Design and Veri�cation. North-

Holland, Amsterdam, 1988.

[52] George J. Milne and Laurence Pierre, editors. Correct Hardware Design and

Veri�cation Methods, volume 683. Springer, Berlin, 1993.

[53] George J. Milne and P.A. Subrahmanyam, editors. Formal Aspects of VLSI

Design. North-Holland, Amsterdam, 1986.

[54] Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interaction of for-

mal design systems in the development of a fault-tolerant clock synchronization

circuit. In 13th Symp. on Reliable Distributed Systems, pages 128{137, October

1994.

[55] J.D. Morison, N.E. Peeling, and T.L. Thorp. The design rationale of ELLA, a

hardware design and description language. In CHDL'85, 1985.

[56] John T. O'Donnell. Hydra: Hardware description in a functional language using

recursion equations and high order combining forms. In George J. Milne, editor,

The Fusion of Hardware Design and Veri�cation, pages 309{328. North-Holland,

Amsterdam, 1988.

[57] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype veri�cation system.

In Deepak Kapur, editor, 11th International Conference on Automated Deduction

(CADE), volume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752,

Saratoga, NY, June 1992. Springer-Verlag.

BIBLIOGRAPHY 119

[58] Kamlesh Rath, Bhaskar Bose, and Steven D. Johnson. Derivation of a DRAM

memory interface by sequential decomposition. In Proceedings of the Interna-

tional Conference on Computer Design (ICCD), pages 438{441. IEEE, October

1993.

[59] Kamlesh Rath, Ignacio Celis, and Robert M. Wehrmeister. RTBA: A generic bit-

sliced bus architecture for datapath synthesis. Technical Report 321, Computer

Science Dept., Indiana University, December 1990.

[60] Kamlesh Rath and Steven D. Johnson. Toward a basis for protocol speci�cation

and process decomposition. In D. Agnew, L. Claesen, and R. Camposano, ed-

itors, Computer Hardware Description Languages and their Applications, pages

169{186. North-Holland, Amsterdam, 1993.

[61] Kamlesh Rath, M. Esen Tuna, and Steven D. Johnson. Behavior tables: A basis

for system representation and transformational system synthesis. In Proceedings

of the International Conference on Computer Aided Design (ICCAD), pages 736{

740. IEEE, November 1993.

[62] Kamlesh Rath, M. Esen Tuna, and Steven D. Johnson. Speci�cation and syn-

thesis of bounded indirection. Technical Report 398, Computer Science Dept.,

Indiana University, February 1994.

[63] Klaus Schneider, Ramayya Kumar, and Thomas Kropf. Hardware veri�cation

using �rst order BDDs. In D. Agnew, L. Claesen, and R. Camposano, editors,

Computer Hardware Description Languages and their Applications, pages 45{62.

North-Holland, Amsterdam, 1993.

[64] Carl-Johan Seger and Je�rey J. Joyce. A two-level formal veri�cation methodol-

ogy using HOL and COSMOS. In K.G. Larsen and A. Skou, editors, Computer

BIBLIOGRAPHY 120

Aided Veri�cation, Lecture Notes in Computer Science, volume 575, pages 299{

309. Springer, 1991.

[65] Robin Sharp and Ole Rasmussen. Rewriting and constraints in T-Ruby. In

George J. Milne and Laurence Pierre, editors, Correct Hardware Design and

Veri�cation Methods, Lecture Notes in Computer Science, volume 683, pages

226{241. Springer, Berlin, 1993.

[66] Mary Sheeran. uFP, a Language for VLSI Design. PhD thesis, Programming

Research Group, Oxford University, 1983.

[67] Mary Sheeran. muFP, an algebraic VLSI design language. In Proceedings of the

ACM Symp. on LISP and Functional Programming, 1984.

[68] Mary Sheeran. Retiming and slowdown in Ruby. In George J. Milne, editor,

The Fusion of Hardware Design and Veri�cation, pages 289{308. North-Holland,

Amsterdam, 1988.

[69] Rick L. Spickelmier. Release Notes for Oct Tools Distribution 5.1. Electronics

Research Laboratory, University of California, Berkeley, August 1991.

[70] M. Esen Tuna, Steven D. Johnson, and Bob Burger. Continuations in hardware-

software codesign. In 1994 IEEE International Conference on Computer Design,

pages 264{269. IEEE, October 1994.

[71] Ranganadha R. Vemuri. A Transformational Approach to Register-Transfer-

Level Design-Space Exploration. PhD thesis, Case Western Reserve University,

January 1989.

[72] Ranganadha R. Vemuri and Christos A. Papachristou. On control-step assign-

ment in a transformational synthesis system: c-expressions and their algebra.

BIBLIOGRAPHY 121

In Gabriele Saucier and Paul Michael McLellan, editors, Logic and Architecture

Synthesis for Silicon Compilers, pages 177{199. North-Holland, 1989.

[73] Robert M. Wehrmeister. Derivation of an SECD machine: Experience with a

transformational approach to synthesis. Technical Report 290, Computer Science

Dept., Indiana University, September 1989.

[74] P.J. Windley. The Formal Veri�cation of Generic Interpreters. PhD thesis,

University of California, Davis, 1990.

[75] David Winkel. The use of PALs in CPU design. Technical Report 204, Computer

Science Dept., Indiana University, October 1986.

[76] David Winkel. What next for PAL-DEVICES - the second generation challenge.

Technical Report 188, Computer Science Dept., Indiana University, May 1986.

[77] David Winkel and Frank Prosser. The Art of Digital Design. Prentice-Hall,

Englewood Cli�s, N.J., 1980.

[78] David Winkel, Franklin Prosser, Robert Wehrmeister, William C. Hunt, and

Caleb Hess. A student VLSI hardware tester. In Proceedings of the Microelec-

tronic Systems Education Conference and Exposition, pages 15{24, 1990.

[79] Zheng Zhu. Structured Hardware Design Transformations. PhD thesis, Com-

puter Science Dept., Indiana University, 1992.

[80] Zheng Zhu and Steven D. Johnson. An algebraic characterization of structural

synthesis for hardware. In Luc J.M. Claesen, editor, Formal VLSI Speci�cation

and Synthesis, pages 261{270. North-Holland, Amsterdam, 1990.

BIBLIOGRAPHY 122

[81] Zheng Zhu and Steven D. Johnson. An algebraic framework for data abstraction

in hardware description. In Geraint Jones and Mary Sheeran, editors, Designing

Correct Circuits, pages 50{67. Springer, Berlin, 1990.

[82] Zheng Zhu and Steven D. Johnson. An example of interactive hardware transfor-

mation. In Subramanyam, editor, Proceedings of ACM International Workshop

on Formal Methods in VLSI Design, January 1991.

[83] Zheng Zhu and Steven D. Johnson. Capturing synchronization speci�cations for

sequential compositions. In 1994 IEEE International Conference on Computer

Design, pages 117{121. IEEE, October 1994.

Appendix A

The FM9001 Speci�cation

(defn fm9001-intr (state oracle)

(if (nlistp oracle)

state

(fm9001-intr (fm9001-step state (car oracle))

(cdr oracle))))

(defn fm9001-step (state pc-reg)

(let ((p-state (car state))

(mem (cadr state)))

(fm9001-fetch (regs p-state) (flags p-state) mem pc-reg)))

(defn fm9001-fetch (regs flags mem pc-reg)

(let ((pc (read-mem pc-reg regs)))

(let ((ins (read-mem pc mem)))

(let ((pc+1 (v-inc pc)))

(let ((new-regs (write-mem pc-reg regs pc+1)))

(fm9001-operand-a new-regs flags mem ins))))))

(defn fm9001-operand-a (regs flags mem ins)

(let ((a-immediate-p (a-immediate-p ins))

(a-immediate (sign-extend (a-immediate ins) 32))

(mode-a (mode-a ins))

(rn-a (rn-a ins)))

(let ((reg (read-mem rn-a regs)))

(let ((reg- (v-dec reg))

(reg+ (v-inc reg)))

(let ((operand-a (if* a-immediate-p

a-immediate

(if* (reg-direct-p mode-a)

reg

(if* (pre-dec-p mode-a)

(read-mem reg- mem)

123

124

(read-mem reg mem))))))

(let ((new-regs (if* a-immediate-p

regs

(if* (pre-dec-p mode-a)

(write-mem rn-a regs reg-)

(if* (post-inc-p mode-a)

(write-mem rn-a regs reg+)

regs)))))

(fm9001-operand-b new-regs flags mem ins operand-a)))))))

(defn fm9001-operand-b (regs flags mem ins operand-a)

(let ((mode-b (mode-b ins))

(rn-b (rn-b ins)))

(let ((reg (read-mem rn-b regs)))

(let ((reg- (v-dec reg))

(reg+ (v-inc reg)))

(let ((b-address (if* (pre-dec-p mode-b)

reg-

reg)))

(let ((operand-b (if* (reg-direct-p mode-b)

reg

(read-mem b-address mem)))

(new-regs (if* (pre-dec-p mode-b)

(write-mem rn-b regs reg-)

(if* (post-inc-p mode-b)

(write-mem rn-b regs reg+)

regs))))

(fm9001-alu-operation new-regs flags mem ins operand-a operand-b

b-address)))))))

(defn fm9001-alu-operation (regs flags mem ins operand-a operand-b b-address)

(let ((op-code (op-code ins))

(store-cc (store-cc ins))

(set-flags (set-flags ins))

(mode-b (mode-b ins))

(rn-b (rn-b ins)))

(let ((cvzbv (v-alu (c-flag flags) operand-a operand-b op-code))

(storep (store-resultp store-cc flags)))

(let ((bv (bv cvzbv)))

(let ((new-regs (if* (and* storep (reg-direct-p mode-b))

125

(write-mem rn-b regs bv)

regs))

(new-flags (update-flags flags set-flags cvzbv))

(new-mem (if* (and* storep (not* (reg-direct-p mode-b)))

(write-mem b-address mem bv)

mem)))

(list (list new-regs new-flags) new-mem))))))

126

FM9001 32-bit Instruction (high 4-bits unspeci�ed):

0 0 0 0| {z }
op�code

0 0 0 0| {z }
store�cc

0 0 0 0| {z }
set�ags

0 0| {z }
mode�b

0 0 0 0| {z }
rn�b

0|{z}
a�immediate�p

N=Az }| {
0 0 0

mode�az }| {
0 0

rn�az }| {
0 0 0 0| {z }

a�immediate

Interpretation of the op-code:
0000 b a Move
0001 b a+ 1 Increment
0010 b a+ b+ c Add with carry
0011 b a+ b Add
0100 b 0� a Negation
0101 b a� 1 Decrement
0110 b b� a� c Subtract with borrow
0111 b b� a Subtract
1000 b a� 1 Rotate right, shifted through carry
1001 b a� 1 Arithmetic shift right, top bit copied
1010 b a� 1 Logical shift right, top bit zero
1011 b a� b Exclusive or
1100 b a _ a Or
1101 b a ^ b And
1110 b :a Not
1111 b a Move

127

Condition codes for store-cc:
0000 (:c) Carry clear
0001 (c) Carry set
0010 (:v) Overow clear
0011 (v) Overow set
0100 (:n) Plus
0101 (n) Negative
0110 (:z) Not equal
0111 (z) Equal
1000 (:c ^ :z) High
1001 (c _ z) Low or same
1010 (n ^ v _ :n ^ :v) Greater or equal
1011 (n ^ :v _ :n ^ v) Less than
1100 (n ^ v ^ :z _ :n ^ :v ^ :z) Greater than
1101 (z _ n ^ :v _ :n ^ v) Less or equal
1110 (t) True
1111 (nil) False

Condition codes for set-ags:
0000 - - - -
0001 - - - z
0010 - - n -
0011 - - n z
0100 - v - -
0101 - v - z
0110 - v n -
0111 - v n z
1000 c - - -
1001 c - - z
1010 c - n -
1011 c - n z
1100 c v - -
1101 c v - z
1110 c v n -
1111 c v n z

128

The A operand is a 10 bit �eld. If the high order bit is set, the low order 9 bits are
treated as a signed immediate. Otherwise, the low order six bits of the A operand are a
mode/register pair identical to the B operand.

Addressing Modes for A and B operands:
00 Register Direct
01 Register Indirect
10 Register Indirect with Pre-decrement
11 Register Indirect with Post-increment

Register numbers: (register 15 is usually used as the program counter)
0000 Register 0
0001 Register 1
0010 Register 2
0011 Register 3
0100 Register 4
0101 Register 5
0110 Register 6
0111 Register 7
1000 Register 8
1001 Register 9
1010 Register 10
1011 Register 11
1100 Register 12
1101 Register 13
1110 Register 14
1111 Register 15

Appendix B

The DDD-FM9001 Derivation

Script

;; **

;; * *

;; * DDD-FM9001: Derivation Script *

;; * Author: Bhaskar Bose *

;; * File: script.ss *

;; * *

;; **

;; Load iterative specification

;; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(define ITRSYS_0 (read-file "DFM9001/ITRSYS_0"))

;; **

;; * Transformations on Behavior *

;; * --------------------------- *

;; * *

;; * Transformations applied: *

;; * unfold-let: Remove all let bindings *

;; * expand-function: Expand if* *

;; * add-spec: Serialize *

;; * order-state-defs: Order state definitions *

;; * distribute-iterative: Distribute if conditional *

;; **

;; Remove all let bindings

;; ~~~~~~~~~~~~~~~~~~~~~~~

(define ITRSYS_0.1

(unfold-let '(pc ins pc+1 new-regs) 'fm9001-fetch ITRSYS_0))

129

130

(define ITRSYS_0.2

(unfold-let '(a-immediate-p a-immediate mode-a

rn-a reg reg- reg+ operand-a new-regs)

'fm9001-operand-a ITRSYS_0.1))

(define ITRSYS_0.3

(unfold-let '(mode-b rn-b reg reg- reg+ b-address operand-b new-regs)

'fm9001-operand-b ITRSYS_0.2))

(define ITRSYS_1

(unfold-let '(op-code store-cc set-flags mode-b rn-b cvzbv storep bv

new-regs new-flags new-mem)

'fm9001-alu-operation ITRSYS_0.3))

;; Unfold applications of if*

;; ~~~~~~~~~~~~~~~~~~~~~~~~~~

(define ITRSYS_2 (expand-function '(defn if* (a b c) (if a b c)) ITRSYS_1))

;; Serialize fm9001-fetch -> fetch,fetch_1,fetch_2

;;~~

(define ITRSYS_2.1

(add-spec

'[fm9001-fetch_1

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-a

(write-mem pc-reg regs (v-inc operand-b))

flags

mem

pc-reg

(read-mem operand-b mem)

operand-a

operand-b

b-address

oracle

))] ITRSYS_2))

(define ITRSYS_2.2

(add-spec

'[fm9001-fetch_2

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-a

(write-mem pc-reg regs (v-inc operand-b))

131

flags

mem

pc-reg

ins

operand-a

operand-b

b-address

oracle

))] ITRSYS_2.1))

;; Serialize fm9001-operand-a -> operand-a,operand-a_1,operand-a_2

;; ~~~

(define ITRSYS_2.3

(add-spec

'[fm9001-operand-a_1

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-b

(if (a-immediate-p ins)

regs

(if (pre-dec-p (mode-a ins))

(write-mem (rn-a ins) regs (v-dec operand-b))

(if (post-inc-p (mode-a ins))

(write-mem (rn-a ins) regs (v-inc operand-b))

regs)))

flags

mem

pc-reg

ins

(if (a-immediate-p ins)

(sign-extend (a-immediate ins) thirty-two)

(if (reg-direct-p (mode-a ins))

operand-b

(if (pre-dec-p (mode-a ins))

(read-mem (v-dec operand-b) mem)

(read-mem operand-b mem))))

operand-b

b-address

oracle))] ITRSYS_2.2))

(define ITRSYS_2.4

(add-spec

'[fm9001-operand-a_2

132

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-operand-b

regs

flags

mem

pc-reg

ins

(if (a-immediate-p ins)

(sign-extend (a-immediate ins) thirty-two)

(if (reg-direct-p (mode-a ins))

operand-b

(if (pre-dec-p (mode-a ins))

(read-mem (v-dec operand-b) mem)

(read-mem operand-b mem))))

operand-b

b-address

oracle))] ITRSYS_2.3))

;; Serialize fm9001-operand-b -> operand-b,operand-b_1,operand-b_2

;; ~~~

(define ITRSYS_2.5

(add-spec

'[fm9001-operand-b_1

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-alu-operation

(if (pre-dec-p (mode-b ins))

(write-mem (rn-b ins) regs (v-dec operand-b))

(if (post-inc-p (mode-b ins))

(write-mem (rn-b ins) regs (v-inc operand-b))

regs))

flags

mem

pc-reg

ins

operand-a

(if (reg-direct-p (mode-b ins))

operand-b

(read-mem (if (pre-dec-p (mode-b ins))

(v-dec operand-b)

operand-b)

mem))

(if (pre-dec-p (mode-b ins))

133

(v-dec operand-b)

operand-b)

oracle))] ITRSYS_2.4))

(define ITRSYS_2.6

(add-spec

'[fm9001-operand-b_2

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-alu-operation

regs

flags

mem

pc-reg

ins

operand-a

(if (reg-direct-p (mode-b ins))

operand-b

(read-mem (if (pre-dec-p (mode-b ins))

(v-dec operand-b)

operand-b)

mem))

(if (pre-dec-p (mode-b ins))

(v-dec operand-b)

operand-b)

oracle))] ITRSYS_2.5))

;; Serialize fm9001-alu-operation -> alu-operation,alu-operation_1

;; ~~~

(define ITRSYS_3

(add-spec

'[fm9001-alu-operation_1

(lambda (regs flags mem pc-reg ins operand-a operand-b b-address oracle)

(fm9001-intr

regs

(update-flags flags (set-flags ins)

(v-alu (c-flag flags) operand-a operand-b (op-code ins)))

(if (and* (store-resultp (store-cc ins) flags)

(not* (reg-direct-p (mode-b ins))))

(write-mem b-address mem

(bv (v-alu (c-flag flags)

operand-a operand-b (op-code ins))))

mem)

134

pc-reg

ins

operand-a

operand-b

b-address

oracle))] ITRSYS_2.6))

135

;; Order state definitions

;; ~~~~~~~~~~~~~~~~~~~~~~~

(define ITRSYS_3.1

(order-state-defs ITRSYS_3

'(fm9001-intr

fm9001-fetch

fm9001-fetch_1

fm9001-fetch_2

fm9001-operand-a

fm9001-operand-a_1

fm9001-operand-a_2

fm9001-operand-b

fm9001-operand-b_1

fm9001-operand-b_2

fm9001-alu-operation

fm9001-alu-operation_1)))

;; Distribute if conditional

;; ~~~~~~~~~~~~~~~~~~~~~~~~~

(define ITRSYS_4 (distribute-iterative ITRSYS_3.1))

136

;; **

;; * Behavior to Structure *

;; * --------------------- *

;; * *

;; * Transformations applied: *

;; * itrsys->seqsys: behavior to structure construction *

;; * *

;; **

;; Behavior to Structure

;; ~~~~~~~~~~~~~~~~~~~~~

(define SEQSYS_1 (itrsys->seqsys ITRSYS_4))

(define SELECT_1 (seqsys.select SEQSYS_1))

(define SYSTEM_1 (seqsys.system SEQSYS_1))

(define BASE_1 (seqsys.base SEQSYS_1))

137

;; **

;; * Transformations on Structure *

;; * --------------------------- *

;; * *

;; * Transformations applied: *

;; * factor-streqn: Factor MEM equation *

;; * factor-streqn: Factor REGS equation *

;; * factor-general: Factor V-ALU operations *

;; * factor-general: Factor V-INC operations *

;; * factor-general: Factor V-DEC operations *

;; * *

;; **

;; factor MEM

;; ~~~~~~~~~~

(define SYSTEM_2.1+abs+base

(factor-streqn 'MEM-OUT 'ABS-MEM 'MEM SYSTEM_1 '(READ-MEM * MEM)))

(define SYSTEM_2.1 (factor.system SYSTEM_2.1+abs+base))

(define ABS_2.1 (factor.abs SYSTEM_2.1+abs+base))

(define BASE_2.1 (factor.base SYSTEM_2.1+abs+base))

(define SYSTEM_2.2

(let* ([SYSTEM SYSTEM_2.1]

[SYSTEM (merge-streams 'MEM-INST 'MEM-PROBE-0-INST 'MEM-INST SYSTEM)]

[SYSTEM (merge-streams 'MEM-V0 'MEM-PROBE-0-V0 'MEM-V0 SYSTEM)]

[SYSTEM (merge-streams 'MEM-V1 'MEM-PROBE-0-V1 'MEM-V1 SYSTEM)]

[SYSTEM (remove-stream 'MEM-V1 SYSTEM)]

[SYSTEM (rename-stream 'MEM-V2 'MEM-V1 SYSTEM)]

[SYSTEM (rename-stream 'MEM-V0 'MEM-ADDR SYSTEM)]

[SYSTEM (rename-stream 'MEM-V1 'MEM-DATA SYSTEM)]

[SYSTEM (rename-stream 'MEM-V0-? 'MEM-ADDR-? SYSTEM)]

[SYSTEM (rename-stream 'MEM-V1-? 'MEM-DATA-? SYSTEM)]

)

SYSTEM))

;; Factor REGS

;; ~~~~~~~~~~~

(define SYSTEM_3.1+abs+base

(factor-streqn 'REGS-OUT 'ABS-REGS 'REGS SYSTEM_2.2 '(READ-MEM * REGS)))

(define SYSTEM_3.1 (factor.system SYSTEM_3.1+abs+base))

138

(define ABS_3.1 (factor.abs SYSTEM_3.1+abs+base))

(define BASE_3.1 (factor.base SYSTEM_3.1+abs+base))

(define SYSTEM_3.2

(let* ([SYSTEM SYSTEM_3.1]

[SYSTEM (merge-streams 'REGS-INST 'REGS-PROBE-0-INST 'REGS-INST SYSTEM)]

[SYSTEM (merge-streams 'REGS-V0 'REGS-PROBE-0-V0 'REGS-V0 SYSTEM)]

[SYSTEM (merge-streams 'REGS-V1 'REGS-PROBE-0-V1 'REGS-V1 SYSTEM)]

[SYSTEM (remove-stream 'REGS-V1 SYSTEM)]

[SYSTEM (rename-stream 'REGS-V2 'REGS-V1 SYSTEM)]

[SYSTEM (rename-stream 'REGS-V0 'REGS-ADDR SYSTEM)]

[SYSTEM (rename-stream 'REGS-V1 'REGS-DATA SYSTEM)]

[SYSTEM (rename-stream 'REGS-V0-? 'REGS-ADDR-? SYSTEM)]

[SYSTEM (rename-stream 'REGS-V1-? 'REGS-DATA-? SYSTEM)]

)

SYSTEM))

;; Further optimizations

;; Merge MEM-DATA,REGS-DATA,make bidirec

;; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(define SYSTEM_4.1

(let* ([SYSTEM SYSTEM_3.2]

[SYSTEM (merge-streams 'MEM-DATA 'REGS-DATA 'MEM-REGS-DATA SYSTEM)])

SYSTEM))

(define SYSTEM_4.2

(let* ([SYSTEM SYSTEM_4.1]

;make v1 bidirectional

[SYSTEM (identify-stream 'A 'MEM-OUT SYSTEM)]

[SYSTEM (identify-stream 'B 'REGS-OUT SYSTEM)]

[SYSTEM (merge-streams 'A 'B 'C SYSTEM)] ;; creates data-in

;; merge data-in/out

[SYSTEM (merge-streams 'C 'MEM-REGS-DATA 'MEM-REGS-DATA SYSTEM)]

;; make mem-regs-data have data-in

[SYSTEM (identify-stream 'A 'MEM-OUT SYSTEM)]

[SYSTEM (identify-stream 'B 'REGS-OUT SYSTEM)]

[SYSTEM (merge-streams 'A 'B 'DATA-IN SYSTEM)]

[SYSTEM2 (identify-stream 'A 'MEM-WRITE-MEM SYSTEM)]

[SYSTEM2 (identify-stream 'B 'REGS-WRITE-MEM SYSTEM2)]

[SYSTEM2 (merge-streams 'A 'B 'C SYSTEM2)]

139

[SYSTEM2 (generate-load

'(MEM-WRITE-MEM REGS-WRITE-MEM) 'C 'DATA-OUT-ENABLE SYSTEM2)]

[SYSTEM (add-stream (extract-stream 'DATA-OUT-ENABLE SYSTEM2) SYSTEM)]

;generate tri-state signal for memory address and instruction

[SYSTEM (generate-load-cmd '(0) 'MEM-TRISTATE SYSTEM)]

;identify update-flags

[SYSTEM (identify-stream 'UPDATE-FLAGS-OUT '(UPDATE-FLAGS * * *) SYSTEM)])

SYSTEM))

;; Factor V-ALU

;; ~~~~~~~~~~~~

(define SYSTEM_5.1+abs+base

(factor-general 'V-ALU-OUT 'ABS-V-ALU '(V-ALU) SYSTEM_4.2))

(define SYSTEM_5.1 (factor.system SYSTEM_5.1+abs+base))

(define ABS_5.1 (factor.abs SYSTEM_5.1+abs+base))

(define BASE_5.1 (factor.base SYSTEM_5.1+abs+base))

(define SYSTEM_5.2

(let* ([SYSTEM SYSTEM_5.1]

[SYSTEM (rename-stream 'V-ALU-OUT-V0 'V-ALU-OUT-CARRYIN SYSTEM)]

[SYSTEM (rename-stream 'V-ALU-OUT-V1 'V-ALU-OUT-OPA SYSTEM)]

[SYSTEM (rename-stream 'V-ALU-OUT-V2 'V-ALU-OUT-OPB SYSTEM)]

[SYSTEM (rename-stream 'V-ALU-OUT-V3 'V-ALU-OUT-OPCODE SYSTEM)]

;; Expand ALU port

[SYSTEM (expand-stream 'V-ALU-OUT-OPA SYSTEM)]

[SYSTEM (expand-stream 'V-ALU-OUT-OPB SYSTEM)]

;; nops should be better named

[SYSTEM (rename-stream 'V-ALU-OUT-INST-NOP 'V-ALU-OUT-NOP SYSTEM)])

SYSTEM))

;; Factor V-INC,V-DEC

;; ~~~~~~~~~~~~~~~~~~

(define SYSTEM_6.1+abs+base

(factor-general 'V-INC-OUT 'ABS-V-INC '(V-INC) SYSTEM_5.2))

(define SYSTEM_6.1 (factor.system SYSTEM_6.1+abs+base))

(define ABS_6.1 (factor.abs SYSTEM_6.1+abs+base))

(define BASE_6.1 (factor.base SYSTEM_6.1+abs+base))

140

(define SYSTEM_6.2+abs+base

(factor-general 'V-DEC-OUT 'ABS-V-DEC '(V-DEC) SYSTEM_6.1))

(define SYSTEM_6.2 (factor.system SYSTEM_6.2+abs+base))

(define ABS_6.2 (factor.abs SYSTEM_6.2+abs+base))

(define BASE_6.2 (factor.base SYSTEM_6.2+abs+base))

(define SYSTEM_6.3

(let* ([SYSTEM SYSTEM_6.2]

;; Expand V-INC, V-DEC port

[SYSTEM (expand-stream 'V-INC-OUT-V0 SYSTEM)]

[SYSTEM (expand-stream 'V-DEC-OUT-V0 SYSTEM)]

;; nops should be better named

[SYSTEM (rename-stream 'V-INC-OUT-INST-NOP 'V-INC-OUT-NOP SYSTEM)]

[SYSTEM (rename-stream 'V-DEC-OUT-INST-NOP 'V-DEC-OUT-NOP SYSTEM)]

)

SYSTEM))

(define BASE_6 (list BASE_1

BASE_2.1 ABS_2.1

BASE_3.1 ABS_3.1

BASE_5.1 ABS_5.1

BASE_6.1 ABS_6.1

BASE_6.2 ABS_6.2

))

(define SEQSYS_6 (build-seqsys SELECT_1 SYSTEM_6.3 BASE_6))

;; Instantiate don't care values

;; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(define SYSTEM_7

(let* ([SYSTEM SYSTEM_6.3]

[SYSTEM (rename-stream 'MEM-ADDR-? 'OPERAND-B SYSTEM)]

[SYSTEM (rename-stream 'REGS-ADDR-? 'PC-REG SYSTEM)]

[SYSTEM (rename-stream 'MEM-REGS-DATA-? 'V-INC-OUT SYSTEM)]

[SYSTEM (rename-stream 'V-ALU-OUT-CARRYIN-? '(C-FLAG FLAGS) SYSTEM)]

[SYSTEM (rename-stream 'V-ALU-OUT-OPCODE-? '(OP-CODE INS) SYSTEM)]

[SYSTEM (rename-stream 'UPDATE-FLAGS-OUT-?

'(UPDATE-FLAGS FLAGS (SET-FLAGS INS)

V-ALU-OUT) SYSTEM)])

SYSTEM))

141

(define SELECT_7 (seqsys.select SEQSYS_6))

(define BASE_7 (seqsys.base SEQSYS_6))

;; Define next state objects

;; ~~~~~~~~~~~~~~~~~~~~~~~~~

; make next-state & instruction generators

(define STATE (extract-stream 'STATE SYSTEM_7))

(define ORACLE (extract-stream 'ORACLE SYSTEM_7))

(define NEXT-STATE (optimize-sel (partial-eval STATE SELECT_7)))

(define NEXT-ORACLE (optimize-sel (partial-eval ORACLE SELECT_7)))

(define V-INC-OUT (extract-stream 'V-INC-OUT SYSTEM_7))

(define V-DEC-OUT (extract-stream 'V-DEC-OUT SYSTEM_7))

(define UPDATE-FLAGS-OUT (extract-stream 'UPDATE-FLAGS-OUT SYSTEM_7))

(define SYSTEM_7 (rename-stream 'DATA-IN-? 'MEM-OUT SYSTEM_7))

(define SYSTEM_7.2

(remove-streams '(STATE

V-ALU-OUT-INST

V-ALU-OUT

MEM-OUT

REGS-OUT

V-INC-OUT-INST

V-INC-OUT

V-DEC-OUT-INST

V-DEC-OUT

ORACLE

)

SYSTEM_7))

(define SEQSYS_8 (optimize-seqsys SELECT_7 SYSTEM_7.2))

(define SYSTEM_8 (seqsys.system SEQSYS_8))

(define SELECT_8 (seqsys.select SEQSYS_8))

142

;; **

;; * Projection *

;; * ---------- *

;; * *

;; * Transformations applied: *

;; * project: Project DATAPATH *

;; * project-sel: Project SELECT *

;; * project-sel: Project NEXT-STATE *

;; * *

;; **

;; Project DATAPATH

;; ~~~~~~~~~~~~~~~~

(define DATAPATH.BIN

(sort-streqns

(project-streqns ddd-fm9001.rep (system.streams DATAPATH) 32)))

(define REGISTERS.BIN

(append (eval-slice 'STATE ddd-fm9001.rep)

(eval-slice 'B-ADDRESS ddd-fm9001.rep)

(eval-slice 'FLAGS ddd-fm9001.rep)

(eval-slice 'INS ddd-fm9001.rep)

(eval-slice 'OPERAND-A ddd-fm9001.rep)

(eval-slice 'OPERAND-B ddd-fm9001.rep)

(eval-slice 'PC-REG ddd-fm9001.rep)))

;; Project NEXT-STATE and SELECT

;; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(define SELECT_8.BIN (project-sel cmd.rep SELECT_8))

(define NEXT-STATE.BIN (project-sel state.rep NEXT-STATE))

Appendix C

The DDD-FM9001 Structural

Speci�cation

;; **

;; * *

;; * DDD-FM9001: Initial Structural Description *

;; * Author: Bhaskar Bose *

;; * File: seqsys_1.ss *

;; * *

;; **

(define select

(lambda* ((s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

v19 v20 v21 v22 v23 v24)

(case s

[fm9001-intr (if p0 v0 v1)]

[fm9001-fetch v2]

[fm9001-fetch_1 v3]

[fm9001-fetch_2 v4]

[fm9001-operand-a v5]

[fm9001-operand-a_1 (if p1 v6 (if p2 v7 (if p3 v8 v6)))]

[fm9001-operand-a_2 (if p1 v9 (if p4 v10 (if p2 v11 v12)))]

[fm9001-operand-b v13]

[fm9001-operand-b_1 (if p5 v14 (if p6 v15 v16))]

[fm9001-operand-b_2 (if p7 (if p5 v17 v18) (if p5 v19 v20))]

[fm9001-alu-operation (if p8 v21 v22)]

[fm9001-alu-operation_1 (if p9 v23 v24)])))

(define DDD-FM9001

(lambda (init-regs init-flags init-mem init-pc-reg init-oracle)

(system-letrec

([STATUS

(XPS STATE (NLISTP ORACLE) (A-IMMEDIATE-P INS) (PRE-DEC-P (MODE-A INS))

143

144

(POST-INC-P (MODE-A INS)) (REG-DIRECT-P (MODE-A INS))

(PRE-DEC-P (MODE-B INS)) (POST-INC-P (MODE-B INS))

(REG-DIRECT-P (MODE-B INS))

(AND* (STORE-RESULTP (STORE-CC INS) FLAGS)

(REG-DIRECT-P (MODE-B INS)))

(AND* (STORE-RESULTP (STORE-CC INS) FLAGS)

(NOT* (REG-DIRECT-P (MODE-B INS)))))]

[STATE

(! fm9001-intr

(SELECT STATUS FM9001-INTR FM9001-FETCH FM9001-FETCH_1

FM9001-FETCH_2 FM9001-OPERAND-A FM9001-OPERAND-A_1

FM9001-OPERAND-A_2 FM9001-OPERAND-A_2 FM9001-OPERAND-A_2

FM9001-OPERAND-B FM9001-OPERAND-B FM9001-OPERAND-B

FM9001-OPERAND-B FM9001-OPERAND-B_1 FM9001-OPERAND-B_2

FM9001-OPERAND-B_2 FM9001-OPERAND-B_2 FM9001-ALU-OPERATION

FM9001-ALU-OPERATION FM9001-ALU-OPERATION

FM9001-ALU-OPERATION FM9001-ALU-OPERATION_1

FM9001-ALU-OPERATION_1 FM9001-INTR FM9001-INTR))]

[REGS

(! init-regs

(SELECT STATUS REGS REGS REGS REGS

(WRITE-MEM PC-REG REGS (V-INC OPERAND-B)) REGS REGS

(WRITE-MEM (RN-A INS) REGS (V-DEC OPERAND-B))

(WRITE-MEM (RN-A INS) REGS (V-INC OPERAND-B)) REGS REGS REGS

REGS REGS (WRITE-MEM (RN-B INS) REGS (V-DEC OPERAND-B))

(WRITE-MEM (RN-B INS) REGS (V-INC OPERAND-B)) REGS REGS REGS

REGS REGS (WRITE-MEM (RN-B INS) REGS

(BV (V-ALU (C-FLAG FLAGS)

OPERAND-A OPERAND-B

(OP-CODE INS))))

REGS REGS REGS))]

[FLAGS

(! init-flags

(SELECT STATUS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS

FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS

FLAGS FLAGS FLAGS FLAGS

(UPDATE-FLAGS FLAGS (SET-FLAGS INS)

(V-ALU (C-FLAG FLAGS) OPERAND-A OPERAND-B (OP-CODE INS)))

(UPDATE-FLAGS FLAGS (SET-FLAGS INS)

(V-ALU (C-FLAG FLAGS) OPERAND-A OPERAND-B (OP-CODE INS)))))]

[MEM

(! init-mem

145

(SELECT STATUS MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

(WRITE-MEM B-ADDRESS MEM

(BV (V-ALU (C-FLAG FLAGS)

OPERAND-A OPERAND-B

(OP-CODE INS)))) MEM))]

[PC-REG

(! init-pc-reg

(SELECT STATUS PC-REG (CAR ORACLE) PC-REG PC-REG PC-REG PC-REG

PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG

PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG

PC-REG PC-REG PC-REG))]

[INS

(! ins-?

(SELECT STATUS INS INS INS (READ-MEM OPERAND-B MEM) INS INS

INS INS INS INS INS INS INS INS INS INS INS INS INS

INS INS INS INS INS INS))]

[OPERAND-A

(! operand-a-?

(SELECT STATUS OPERAND-A OPERAND-A OPERAND-A OPERAND-A OPERAND-A

OPERAND-A OPERAND-A OPERAND-A OPERAND-A

(SIGN-EXTEND (A-IMMEDIATE INS) THIRTY-TWO) OPERAND-B

(READ-MEM (V-DEC OPERAND-B) MEM) (READ-MEM OPERAND-B MEM)

OPERAND-A OPERAND-A OPERAND-A OPERAND-A OPERAND-A OPERAND-A

OPERAND-A OPERAND-A OPERAND-A OPERAND-A OPERAND-A

OPERAND-A))]

[OPERAND-B

(! operand-b-?

(SELECT STATUS OPERAND-B OPERAND-B (READ-MEM PC-REG REGS) OPERAND-B

OPERAND-B (READ-MEM (RN-A INS) REGS) OPERAND-B OPERAND-B

OPERAND-B OPERAND-B OPERAND-B OPERAND-B OPERAND-B

(READ-MEM (RN-B INS) REGS) OPERAND-B OPERAND-B OPERAND-B

OPERAND-B OPERAND-B (READ-MEM (V-DEC OPERAND-B) MEM)

(READ-MEM OPERAND-B MEM) OPERAND-B OPERAND-B OPERAND-B

OPERAND-B))]

[B-ADDRESS

(! b-address-?

(SELECT STATUS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS

B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS

B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS

(V-DEC OPERAND-B) OPERAND-B (V-DEC OPERAND-B) OPERAND-B

B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS))]

146

[ORACLE

(! init-oracle

(SELECT STATUS ORACLE (CDR ORACLE) ORACLE ORACLE ORACLE ORACLE

ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE

ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE

ORACLE ORACLE ORACLE))]

)

(XPS STATUS STATE REGS FLAGS MEM PC-REG INS OPERAND-A OPERAND-B

B-ADDRESS ORACLE))))

147

;; **

;; * *

;; * DDD-FM9001: Refined Structural Description *

;; * Author: Bhaskar Bose *

;; * File: seqsys_6.3.ss *

;; * *

;; **

(define select

(lambda* ((s p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

v19 v20 v21 v22 v23 v24)

(case s

[fm9001-intr (if p0 v0 v1)]

[fm9001-fetch v2]

[fm9001-fetch_1 v3]

[fm9001-fetch_2 v4]

[fm9001-operand-a v5]

[fm9001-operand-a_1 (if p1 v6 (if p2 v7 (if p3 v8 v6)))]

[fm9001-operand-a_2 (if p1 v9 (if p4 v10 (if p2 v11 v12)))]

[fm9001-operand-b v13]

[fm9001-operand-b_1 (if p5 v14 (if p6 v15 v16))]

[fm9001-operand-b_2 (if p7 (if p5 v17 v18) (if p5 v19 v20))]

[fm9001-alu-operation (if p8 v21 v22)]

[fm9001-alu-operation_1 (if p9 v23 v24)])))

(define DDD-FM9001

(lambda (init-regs init-flags init-mem init-pc-reg init-oracle)

(system-letrec

([STATUS

(XPS STATE (NLISTP ORACLE) (A-IMMEDIATE-P INS) (PRE-DEC-P (MODE-A INS))

(POST-INC-P (MODE-A INS)) (REG-DIRECT-P (MODE-A INS))

(PRE-DEC-P (MODE-B INS)) (POST-INC-P (MODE-B INS))

(REG-DIRECT-P (MODE-B INS))

(AND* (STORE-RESULTP (STORE-CC INS) FLAGS)

(REG-DIRECT-P (MODE-B INS)))

(AND* (STORE-RESULTP (STORE-CC INS) FLAGS)

(NOT* (REG-DIRECT-P (MODE-B INS)))))]

[STATE

(! fm9001-intr

(SELECT STATUS FM9001-INTR FM9001-FETCH FM9001-FETCH_1

FM9001-FETCH_2 FM9001-OPERAND-A FM9001-OPERAND-A_1

148

FM9001-OPERAND-A_2 FM9001-OPERAND-A_2 FM9001-OPERAND-A_2

FM9001-OPERAND-B FM9001-OPERAND-B FM9001-OPERAND-B

FM9001-OPERAND-B FM9001-OPERAND-B_1 FM9001-OPERAND-B_2

FM9001-OPERAND-B_2 FM9001-OPERAND-B_2 FM9001-ALU-OPERATION

FM9001-ALU-OPERATION FM9001-ALU-OPERATION

FM9001-ALU-OPERATION FM9001-ALU-OPERATION_1

FM9001-ALU-OPERATION_1 FM9001-INTR FM9001-INTR))]

[FLAGS

(! init-flags

(SELECT STATUS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS

FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS FLAGS

FLAGS FLAGS FLAGS FLAGS UPDATE-FLAGS-OUT UPDATE-FLAGS-OUT))]

[PC-REG

(! init-pc-reg

(SELECT STATUS PC-REG (CAR ORACLE) PC-REG PC-REG PC-REG PC-REG

PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG

PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG PC-REG

PC-REG PC-REG PC-REG))]

[INS

(! ins-?

(SELECT STATUS INS INS INS MEM-REGS-DATA INS INS INS INS INS INS INS

INS INS INS INS INS INS INS INS INS INS INS INS INS INS))]

[OPERAND-A

(! operand-a-?

(SELECT STATUS OPERAND-A OPERAND-A OPERAND-A OPERAND-A OPERAND-A

OPERAND-A OPERAND-A OPERAND-A OPERAND-A

(SIGN-EXTEND (A-IMMEDIATE INS) THIRTY-TWO) OPERAND-B

MEM-REGS-DATA MEM-REGS-DATA OPERAND-A OPERAND-A OPERAND-A

OPERAND-A OPERAND-A OPERAND-A OPERAND-A OPERAND-A OPERAND-A

OPERAND-A OPERAND-A OPERAND-A))]

[OPERAND-B

(! operand-b-?

(SELECT STATUS OPERAND-B OPERAND-B MEM-REGS-DATA OPERAND-B OPERAND-B

MEM-REGS-DATA OPERAND-B OPERAND-B OPERAND-B OPERAND-B

OPERAND-B OPERAND-B OPERAND-B MEM-REGS-DATA OPERAND-B

OPERAND-B OPERAND-B OPERAND-B OPERAND-B MEM-REGS-DATA

MEM-REGS-DATA OPERAND-B OPERAND-B OPERAND-B OPERAND-B))]

[B-ADDRESS

(! b-address-?

(SELECT STATUS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS

B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS

B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS B-ADDRESS

149

V-DEC-OUT OPERAND-B V-DEC-OUT OPERAND-B B-ADDRESS B-ADDRESS

B-ADDRESS B-ADDRESS))]

[ORACLE

(! init-oracle

(SELECT STATUS ORACLE (CDR ORACLE) ORACLE ORACLE ORACLE ORACLE

ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE

ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE ORACLE

ORACLE ORACLE ORACLE))]

[[MEM MEM-OUT] (ABS-MEM init-mem MEM-INST MEM-ADDR MEM-REGS-DATA)]

[MEM-INST

(SELECT STATUS MEM-NOP MEM-NOP MEM-NOP MEM-READ-MEM MEM-NOP MEM-NOP

MEM-NOP MEM-NOP MEM-NOP MEM-NOP MEM-NOP MEM-READ-MEM

MEM-READ-MEM MEM-NOP MEM-NOP MEM-NOP MEM-NOP MEM-NOP MEM-NOP

MEM-READ-MEM MEM-READ-MEM MEM-NOP MEM-NOP MEM-WRITE-MEM

MEM-NOP)]

[MEM-ADDR

(SELECT STATUS MEM-ADDR-? MEM-ADDR-? MEM-ADDR-? OPERAND-B MEM-ADDR-?

MEM-ADDR-? MEM-ADDR-? MEM-ADDR-? MEM-ADDR-? MEM-ADDR-?

MEM-ADDR-? V-DEC-OUT OPERAND-B MEM-ADDR-? MEM-ADDR-?

MEM-ADDR-? MEM-ADDR-? MEM-ADDR-? MEM-ADDR-? V-DEC-OUT

OPERAND-B MEM-ADDR-? MEM-ADDR-? B-ADDRESS MEM-ADDR-?)]

[[REGS REGS-OUT] (ABS-REGS init-regs REGS-INST REGS-ADDR MEM-REGS-DATA)]

[REGS-INST

(SELECT STATUS REGS-NOP REGS-NOP REGS-READ-MEM REGS-NOP REGS-WRITE-MEM

REGS-READ-MEM REGS-NOP REGS-WRITE-MEM REGS-WRITE-MEM REGS-NOP

REGS-NOP REGS-NOP REGS-NOP REGS-READ-MEM REGS-WRITE-MEM

REGS-WRITE-MEM REGS-NOP REGS-NOP REGS-NOP REGS-NOP REGS-NOP

REGS-WRITE-MEM REGS-NOP REGS-NOP REGS-NOP)]

[REGS-ADDR

(SELECT STATUS REGS-ADDR-? REGS-ADDR-? PC-REG REGS-ADDR-? PC-REG

(RN-A INS) REGS-ADDR-? (RN-A INS) (RN-A INS) REGS-ADDR-?

REGS-ADDR-? REGS-ADDR-? REGS-ADDR-? (RN-B INS) (RN-B INS)

(RN-B INS) REGS-ADDR-? REGS-ADDR-? REGS-ADDR-? REGS-ADDR-?

REGS-ADDR-? (RN-B INS) REGS-ADDR-? REGS-ADDR-? REGS-ADDR-?)]

[MEM-REGS-DATA

(SELECT STATUS MEM-REGS-DATA-? MEM-REGS-DATA-? DATA-IN DATA-IN

V-INC-OUT DATA-IN MEM-REGS-DATA-? V-DEC-OUT V-INC-OUT

MEM-REGS-DATA-? MEM-REGS-DATA-? DATA-IN DATA-IN DATA-IN

V-DEC-OUT V-INC-OUT MEM-REGS-DATA-? MEM-REGS-DATA-?

MEM-REGS-DATA-? DATA-IN DATA-IN (BV V-ALU-OUT) MEM-REGS-DATA-?

(BV V-ALU-OUT) MEM-REGS-DATA-?)]

[DATA-IN

150

(SELECT STATUS DATA-IN-? DATA-IN-? REGS-OUT MEM-OUT DATA-IN-? REGS-OUT

DATA-IN-? DATA-IN-? DATA-IN-? DATA-IN-? DATA-IN-? MEM-OUT

MEM-OUT REGS-OUT DATA-IN-? DATA-IN-? DATA-IN-? DATA-IN-?

DATA-IN-? MEM-OUT MEM-OUT DATA-IN-? DATA-IN-? DATA-IN-?

DATA-IN-?)]

[DATA-OUT-ENABLE

(SELECT STATUS DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-FF

DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-TT DATA-OUT-ENABLE-FF

DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-TT DATA-OUT-ENABLE-TT

DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-FF

DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-TT

DATA-OUT-ENABLE-TT DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-FF

DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-FF

DATA-OUT-ENABLE-TT DATA-OUT-ENABLE-FF DATA-OUT-ENABLE-TT

DATA-OUT-ENABLE-FF)]

[MEM-TRISTATE

(SELECT STATUS MEM-TRISTATE-TT MEM-TRISTATE-FF MEM-TRISTATE-FF

MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF

MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF

MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF

MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF

MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF MEM-TRISTATE-FF

MEM-TRISTATE-FF MEM-TRISTATE-FF)]

[UPDATE-FLAGS-OUT

(SELECT STATUS UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-?

UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-?

UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-?

UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-?

UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-?

UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-?

UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-?

UPDATE-FLAGS-OUT-? UPDATE-FLAGS-OUT-?

(UPDATE-FLAGS FLAGS (SET-FLAGS INS) V-ALU-OUT)

(UPDATE-FLAGS FLAGS (SET-FLAGS INS) V-ALU-OUT))]

[V-ALU-OUT-INST

(SELECT STATUS V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP

V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP

V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP

V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP

V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP V-ALU-OUT-NOP

V-ALU-OUT-NOP V-ALU-OUT-V-ALU V-ALU-OUT-NOP V-ALU-OUT-V-ALU

V-ALU-OUT-V-ALU)]

151

[V-ALU-OUT-CARRYIN

(SELECT STATUS V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-?

V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-?

V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-?

V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-?

V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-?

V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-?

V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-? V-ALU-OUT-CARRYIN-?

V-ALU-OUT-CARRYIN-? (C-FLAG FLAGS) V-ALU-OUT-CARRYIN-?

(C-FLAG FLAGS) (C-FLAG FLAGS))]

[V-ALU-OUT-OPCODE

(SELECT STATUS V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-?

V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-?

V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-?

V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-?

V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-?

V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-?

V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-? V-ALU-OUT-OPCODE-?

(OP-CODE INS) V-ALU-OUT-OPCODE-? (OP-CODE INS) (OP-CODE INS))]

[V-ALU-OUT

(ABS-V-ALU

V-ALU-OUT-INST V-ALU-OUT-CARRYIN OPERAND-A OPERAND-B V-ALU-OUT-OPCODE)]

[V-INC-OUT-INST

(SELECT STATUS V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP

V-INC-OUT-V-INC V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP

V-INC-OUT-V-INC V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP

V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-V-INC

V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP

V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP V-INC-OUT-NOP

V-INC-OUT-NOP)]

[V-INC-OUT (ABS-V-INC V-INC-OUT-INST OPERAND-B)]

[V-DEC-OUT-INST

(SELECT STATUS V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-NOP

V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-V-DEC

V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-V-DEC

V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-V-DEC V-DEC-OUT-NOP

V-DEC-OUT-NOP V-DEC-OUT-V-DEC V-DEC-OUT-NOP V-DEC-OUT-V-DEC

V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-NOP V-DEC-OUT-NOP

V-DEC-OUT-NOP)]

[V-DEC-OUT (ABS-V-DEC V-DEC-OUT-INST OPERAND-B)]

)

(XPS STATUS STATE FLAGS PC-REG INS OPERAND-A OPERAND-B B-ADDRESS ORACLE

152

MEM-OUT MEM-INST MEM-ADDR REGS-OUT REGS-INST REGS-ADDR

MEM-REGS-DATA DATA-IN DATA-OUT-ENABLE MEM-TRISTATE

UPDATE-FLAGS-OUT V-ALU-OUT-INST V-ALU-OUT-CARRYIN V-ALU-OUT-OPCODE

V-ALU-OUT V-INC-OUT-INST V-INC-OUT V-DEC-OUT-INST V-DEC-OUT MEM REGS))))

153

;; **

;; * *

;; * Abstract Component Specifications *

;; * --------------------------------- *

;; * *

;; * Abstract components: *

;; * ABS-MEM: memory ABS-V-ALU: alu *

;; * ABS-REGS: register file ABS-V-INC: incrementor *

;; * ABS-V-DEC: decrementor *

;; * *

;; **

;; MEM Abstract Component

;; ~~~~~~~~~~~~~~~~~~~~~~

(define ABS-MEM

(lambda (*mem* INST V0 V1)

(let ([constructor

(lambda (inst object v0 v1)

(case inst

[mem-nop object]

[mem-read-mem object]

[mem-write-mem (write-mem v0 object v1)]))]

[probe

(lambda (inst object v0)

(case inst

[mem-nop (read-mem v0 object)]

[mem-write-mem (read-mem v0 object)]

[mem-read-mem (read-mem v0 object)]))])

(system-letrec

([OBJECT (! *mem* ((stream constructor) INST OBJECT V0 V1))]

[PROBE ((stream probe) INST OBJECT V0)])

(XPS OBJECT PROBE)))))

154

;; REGS Abstract Component

;; ~~~~~~~~~~~~~~~~~~~~~~~

(define ABS-REGS

(lambda (*regs* INST V0 V1)

(let ([constructor

(lambda (inst object v0 v1)

(case inst

[regs-nop object]

[regs-read-mem object]

[regs-write-mem (write-mem v0 object v1)]))]

[probe

(lambda (inst object v0)

(case inst

[regs-nop (read-mem v0 object)]

[regs-write-mem (read-mem v0 object)]

[regs-read-mem (read-mem v0 object)]))])

(system-letrec

([OBJECT (! *regs* ((stream constructor) INST OBJECT V0 V1))]

[PROBE ((stream probe) INST OBJECT V0)])

(XPS OBJECT PROBE)))))

155

;; V-ALU Abstract Component

;; ~~~~~~~~~~~~~~~~~~~~~~~~

(define ABS-V-ALU

(lambda (INST V0 V1 V2 V3)

(let ([constructor

(lambda (inst v0 v1 v2 v3)

(case inst

[v-alu-out-nop (v-alu v0 v1 v2 v3)]

[v-alu-out-v-alu (v-alu v0 v1 v2 v3)]))])

(system-letrec

([OBJECT ((stream constructor) INST V0 V1 V2 V3)])

OBJECT))))

;; V-INC Abstract Component

;; ~~~~~~~~~~~~~~~~~~~~~~~~

(define ABS-V-INC

(lambda (INST V0)

(let ([constructor

(lambda (inst v0)

(case inst

[v-inc-out-nop (v-inc v0)]

[v-inc-out-v-inc (v-inc v0)]))])

(system-letrec

((OBJECT ((stream constructor) INST V0)))

OBJECT))))

;; V-DEC Abstract Component

;; ~~~~~~~~~~~~~~~~~~~~~~~~

(define ABS-V-DEC

(lambda (INST V0)

(let ([constructor

(lambda (inst v0)

(case inst

[v-dec-out-nop (v-dec v0)]

[v-dec-out-v-dec (v-dec v0)]))])

(system-letrec

((OBJECT ((stream constructor) INST V0)))

OBJECT))))

