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Abstract

This paper presents some methods for implementing efficient and general non-linear magni-
fication transformations. Techniques are provided for combining linear and non-linear magnifi-
cations, for constraining the domain of magnifications, and for combining multiple transforma-
tions. In addition piecewise linear methods are introduced which allow greater efficiency and
expressiveness than their continuous counterparts.
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1 Introduction

Since the introduction of the video display terminal, computer users have had to deal with the
problem of limited screen space. This problem is becoming increasingly significant as modern
computer systems and applications become more graphics oriented. Although current screen sizes
of 1000 x 800 pixels are increasingly common, they are still not adequate to completely display
many complex visual scenes.

Conversely, an argument can also be made that screen sizes have become too large. As resolution
increases, more graphical information can be displayed on a single frame, oftentimes beyond an
user’s perceptual limit. Well designed layouts can help in many cases, although a general purpose
mechanism for allowing the user to explicitly enhance visualization of some area(s) of the screen
would facilitate better focus on items of interest.

Magnification is one tool that can be brought to bear on both of these problems. This paper will
discuss general, efficient techniques for performing magnification. All of the examples discussed in
this paper were obtained from the FAD magnification toolkit ! being developed by the author, which
allows highly interactive construction and application of magnifications, as well as a programmer’s
interface to a library of transformation routines. All transformations provide interactive frame rates

as the user moves the magnification over a domain and adjusts the magnification parameters 2.

2 Magnification Transformations

The available literature on normal and distortion-based magnification abounds with a full range of
terminologies to describe the techniques and characteristics of magnification/zoom/distortion/warp/etc.
Where possible we follow the lead of Leung and Apperley [12], whose review and taxonomy of these
techniques provides a basis for discussion. In particular, Leung and Apperley make the distinction
between transformation functions and magnification functions, and show the relationship between
them. Figure 1 shows a simple linear transformation function on the left, and the corresponding
magnification function on the right. The magnification function is the derivative of the transforma-
tion function. It will be shown in this paper that it is useful to be able to translate between these
two functions. Related work illustrating a technique for visualizing these transformations has been
done by Furnas and Bederson [6].

2.1 Linear Transformations

The most familiar magnification technique involves the application of linear transformation func-
tions as shown in Figure 1. The result of these transformations is a constant level of magnification

!'FAD = Future Acronym in Development
2A video of these capabilities is in the works, but not available at the time of this paper’s submission.



across the domain, very much similar to what someone would perceive through an ordinary magni-
fying glass. Such techniques have an advantage of providing a close analogy to familiar experiences
for the user, however certain limitations are inherent with this approach:

Linear Transformation: f(x) = 2x Constant Magnification: f’(x) =2

Figure 1: Linear Transformation and Constant Magnification Functions

e The user is forced to create a mapping between disjoint levels of resolution in the image.
While it can be argued that the user will already be somewhat familiar with this task, it
can also be argued that very rarely in the real-world does our perception of objects follow
this type of behaviour: when viewing a physical object, our levels of perceived detail tend to
follow a smooth continuum, rather than jump in and out to different levels of resolution.

We would like to implement a system which more naturally mimics the continuous levels of
detail offered in real world systems. The user should be able to gradually draw closer to
areas of interest (thus increasing the resolution) and move away from areas of disinterest
(decreasing the resolution).

e If the magnified representation of some area of the screen is to appear in some other part of the
screen (i.e. a separate window), then the user will be forced to make abrupt transitions on two
cognitive/perceptual levels to tie the representations together. The first transition is spatial:
the eyes (and possibly input devices) will have to move from the normal resolution version
of the image to the higher resolution version. The second transition is that of resolution, the
user will be forced to create a mapping between the displayed levels of resolution.

o If we attempt to use in situ linear magnification techniques, where the magnified image sits
on top of the normal resolution image, then we introduce an additional problem, that of
occluston. Because of the linear nature of this magnification, the magnified representation
of an image must necessarily be larger than the non-magnified representation, the result of
this is that the magnified image will block neighboring areas of the non-magnified image, so
that the user is no longer able to see the entire image (at any resolution) without moving the
magnifying area to see what is underneath it.



2.2 Non-Linear Transformations

In order to overcome some of the problems with linear magnification, several different non-linear
(or distortion-based) magnifications have been developed. These systems all share the properties of
enhanced local resolution with some preservation of global context.

2.2.1 Fisheye Zoom

The fisheye lens is one mechanism for dealing with the problems incurred by linear magnification.
In this schema, the user is provided with a view which is distorted in a manner similar to that
produced by a very wide-angle camera lens. Furnas popularized this idea in 1986 [5], and it has
since been used in other systems such as Sarkar and Brown [17]. Several different mechanisms
can be used to implement the fisheye lens effect. It is not in general necessary to construct an
explicit lens model, rather the effect can be achieved through simple geometric transformations. A
thorough discussion of one mechanism for implementing fisheye transformations can be found in
works by Sarkar and Brown [16] [17].

2.2.2 Hyperbolic

Hyperbolic geometries provide a natural means for producing local resolution enhancement and
global context. This approach allows infinite Euclidean space to be mapped into a finite disk in
a continuous, non-occluding manner so that the space is “bigger” near the center of the disk, and
“smaller” near the periphery. Examples of work using such geometries can be found in [11] and

[13].

2.2.3 General Non-Linear

The fisheye lens and hyperbolic geometry are special cases of a class of transformations called non-
linear or distortion based transformations. A general property of these non-linear transformations
is localized enhancement of detail while still preserving some of the global context for the viewer.
There have been a number of papers describing different approaches to this, a survey of many of
these can be found in [12]. The remainder of this subsection will describe some approaches and
techniques for non-linear transformations.

e One Dimensional

A desirable property for a 1D base function for non-linear transformations is that it should
have a smoothly varying slope over some well defined domain, such that some segment(s) of
the curve will have slope > 1 (areas of magnification) and some other segment(s) of the curve



G(x)

have slope < 1 (areas of demagnification or minification). In addition, the function chosen
should be such that a parameter exists for increasing the slope of the function in some areas,
and will also cause a corresponding decrease of the slope in other areas. These requirements
on the function reflect the common sense notion that “you can’t get something for nothing”.
Every extra level of magnification must incur a corresponding decrease in magnification at
some other location if the range boundaries are not to exceed the domain boundaries (which
is a requirement for non-occluding magnification).

Several different choices exist for a 1D base transformation function. Furnas [5] and Sarkar
and Brown [17] use the function G(z) = (‘(11;—_11_)11’ to perform this transformation. G(z) is well
behaved and has desirable non-linear characteristics over the domain [0, 1], so that G(z) :
[0,1] — [0,1]. Although this function is by itself relatively inexpensive computationally, all
coordinates to be transformed by this function must first be normalized or constrained to the

[0,1] domain.

Alternatively, it is possible to use a function which is well behaved over an infinite domain
h(z): R — (—=C,C). Such a function maps points at infinity to some fixed point. There are
many possible functions which can be used to accomplish this, however the most straightfor-
ward approach is to use the hyperbolic tangent function h(z) = tanh(z). To this function we
can add a parameter (3 which controls the degree of magnification, so that h(x, ) = tanh(z(3).
h(z) is well behaved across all domains, and there is no need to normalize the domain co-
ordinates to some specific range before applying the magnification. Note also that several
functions exist which can produce a similar effect to that of tanh(z). In particular a modified
version of the logistic function (h(z,3) = W
on many machines. It will also be shown in section 6.1 that piecewise linear functions can be

— 1.0) is computationally less expensive
used to provide a reasonable approximation. Figure 2 shows a comparison of 1D functions for

fisheye, tanh and logistic transformation functions at different levels of magnification. Figure
3 shows the tanh transformation function and its associated magnification function.

FishEye: d={0,1.5} Tanh Hyperbolic: beta={0.5,1,2} Logistic Hyperbolic: beta={0.5,1.4}

Figure 2: Fisheye, Tanh, and Modified Logistic Basis Functions



Non-Linear Transformation: f(x) = tanh(x) Non-Linear Magnification: f’(x) = tanh’(x)

0.5

f(x)
(=]
(x)

-0.5

Figure 3: Tanh Transformation and Magnification Functions

What is still required is a mechanism for moving the center of magnification across the domain.
This is easily achieved: if we want z( to be the center of magnification, we simply replace h(x)
with (h(z — z¢) + x¢), and the center of maximal magnification will automatically translate
to the desired location.

As will be shown in the following section, a 1D function can be used as the base function
for transformations in two or more dimensions. It can also be used for magnification in one
dimension only; Keahey and Marley [9] have shown that using such a “magnification bar”
can be superior to scrolling for viewing highly structured text documents.

Two Dimensional

By applying these simple 1D transformation functions to two dimensional coordinate spaces in
various ways, many different effects can be produced. Figure 4 shows just a few of the possible
effects of applying such transformation to a regular grid of two dimensional points (these are
described below). Many other transformations are possible and have been implemented.

Radial (Fisheye):
The fisheye lens effect can be produced by transforming each point in the domain as

follows:

1. Given a center point of magnification H and a point to transform P, let P=P-H

2. Find the radius component of the polar coordinates of P so that r = ,/133 + ]3;
3. The new coordinates are then H + ﬂTQP

This transformation has the nice property that it preserves angles relative to the center
of the magnification image. Additionally, the fisheye effect is familiar to most users, and
provides a ready analogy for the user to relate to. One potential limitation is that there
is only a single magnification parameter, which controls degree of magnification in all
directions.



Orthogonal:

This transformation is the result of applying the 1D transformation to the « and y coor-
dinates of a point separately, thus making the magnification in one dimension orthogonal
to magnification in other dimensions. This transformation has the advantage of preserv-
ing horizontal and vertical lines within the domain, as well as allowing for independent
control of the magnification parameters for the x and y axes. It has the disadvantage
however, of not preserving angles relative to the center of magnification.

Bi-Radial:
The bi-radial transformation is a combination of the radial and orthogonal transforma-
tions. The transformation is achieved by making the direction of transformation the
same as in the radial case, however the magnitude is weighted by the z and y component
as in the orthogonal transformation. This transformation offers the advantages of pre-

serving angles relative to the center of magnification, as well as providing some degree
of independence for x and y magnification parameters.
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Figure 4: Orthogonal, Radial and Bi-radial Transformations

2.2.4 Combined Linear/Non-Linear

The motivation for linear transformations is that they produce distortion-free zooming (when the
magnification factor is the same in both dimensions). For example, a user viewing textual data
would prefer to see the letters at the area of maximal magnification without the distortions presented
by non-linear transformations. This is relevant with a technique developed by the author where
arbitrary images (often containing text) are texture-mapped to a grid which is transformed via the
techniques presented in this paper. As the grid points are transformed, the image is transformed
along with them.

We can combine the advantages of linear and non-linear transformations by linearly transforming
all points within a certain area A, and all points not falling within A are interpolated into the
area surrounding the linearly magnified area of A and subsequently transformed with a suitable
non-linear transformation. Note that the maximum degree of magnification that can be used in
the linearly magnified area is constrained by: 1) the size of the domain to be magnified (inversely



proportional), and 2) the size of the target domain (directly proportional). If we want the entire
image to fit in some bounded domain, then we can only linearly magnify an area so far before
presenting problems with expansion beyond the boundaries of the target domain.

Figure 11 shows what a combined linear/non-linear transformation might look like on a regular
grid of points, and Figure 5 shows two examples of this type of transformation. In the left image, a
round area is used for the linear magnification, with the surrounding points being treated by a radial
non-linear magnification. In the right image, a rectangular area is used for the linear magnification
and the surrounding points are transformed by an orthogonal non-linear magnification.
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Figure 5: Combining Linear and Non-Linear Transformations

2.2.5 Non-Geometric (Semantic)

This type of transformation typically involves a semantic level change in the representation of
objects based on their level of magnification. Very often this is used in conjunction with some
type of non-linear transformation. A full discussion of these approaches is beyond the scope of this
paper, however the techniques that we present here are relevant to many of them. The interested
reader is referred to [2], [1], [4] and [7].

2.3 Continuous/Discrete Domain Characteristics

For tasks such as graph visualization, the domain consists of discrete objects in a continuous coor-
dinate space, and (in general) adjacencies between nodes can be maintained through rendering of
edges directly between then, regardless of the type or level of distortion introduced by the transfor-
mation. For this reason, graph visualization tasks are very amenable to non-linear transformation
techniques, and there are many graph visualization systems which take advantage of this [14], [10],
[17] and [5].



For discrete domains (such as the texture mapping example just presented), adjacency requirements
become more of a concern. This is particularly the case when linear/non-linear combinations
or constrained boundaries are introduced. In these cases, boundaries between areas of different
transformations must be carefully thought out to preserve adjacency information. The basic task
is to ensure that all mappings between areas generate boundary conditions which are consistent
with the other transformation functions that are used. Referring to figure 6, we can say that the
boundary conditions at the perimeter of A should be the same for both f(A) and g(~ A).

~A
9(~A)

Figure 6: Boundary Conditions

3 Constraining Transformation Domains

Often it is the case that we do not want the transformation to apply to the entire source domain, but
would rather perform non-occluding magnification on some sub-area of the domain, constraining
the transformed points from that sub-area to the same sub-area (to avoid overlap). This allows
for a localized, non-occluding magnification which can be moved over the source domain. This
localization offers the benefits that the global context now remains more static, and the boundaries
of that context remain fixed even as the center of the magnification is changed. Figure 7 shows
examples of applying these constrained domains to the texture mapping example described above,
compare these results with Figure 5.

The mechanism for performing these domain constrained transformation is similar to that used for
the linear /non-linear combined transformations described in section 2.2.4, except that we perform
the non-linear transformation inside the sub-area of the domain, and all points outside the domain
remain untransformed. Note that it is often desirable to map the points inside the sub-area to some
regular domain (e.g. [—1,1] x [—1,1]) before performing the actual transformation on them, and
then mapping the transformed points back into the original sub-area. If we choose a transformation
function with a fixed range (such as R — (—1,1) these mappings are more easily facilitated.
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Figure 7: Constraining Transformation Domains

4 Compound Transformations

Work on static transformations with multiple areas of magnification began with [8]. Other authors
[5] [16] [17] have discussed the possibility of combining multiple centers of magnification within a
single domain. This section will consider methods for combining transformations from multiple
individual transformations. These techniques fall into three general categories, each with their own
distinct questions and characteristics: 1) restricting the transformations so they do not overlap, 2)
globally combining the transformations, and 3) applying the transformations in succession. The
images in Figure 8 are the result of applying instances of these three approaches to a regular two
dimensional grid.

Maximal Ray Clipping:

In this schema, each point in the domain is transformed only by the transformation whose
center of magnification is closest to that point. After the transformation has been performed,
the point is clipped back along the ray between itself and the transformation center (if any
other centers of magnifications are closer to the transformed point) until the clipped point is
again closer to the original transformation center than to any other transformation center.

This approach produces a partitioning of the domain space similar to Voronoi diagram par-
titioning methods from computational geometry [15]. The effect of this technique is a parti-
tioning of the space in which each transformation has its own “domain of influence”.

Weighted Averaging:

This is achieved by independently applying each transformation to a point in the original
domain, and then making the final transformed point the weighted average of the independent
transformations. The weights are inversely proportional to the distance between the center
of magnification and the point in the original domain.

10



Composition:

Here we apply each transformation in sequence to the points in the domain. This raises
issues of what order the transformations should be applied in, since the magnifications will
in general be non-commutative. The system used to produce the images below allowed for
this through an interface to a stack of transformations, and all transformations were applied
to the domain in order from the bottom to the top of the stack. The effect of this is that of
a stack of lenses layered on top of the display, each of which can be controlled independently.

Figure 8: Clipped, Weighted Average, and Composition Transformations

5 Filtering Transformations

Independent of the complexity of the transformations employed, it is often useful to have a single
mechanism for determining the degree to which the warping transformations are to take effect.
This can allow the user to smoothly zoom between the warped and unwarped representations of
the space being displayed. Such functionality can be provided through a simple filter applied to the
transformed and untransformed points. This filter allows a variable weighting of the points. Let s
be the weight attached to the source point, and d be the weight attached to the transformed point.
We make the conditions that 0 < s <1 and d =1 —s. Figure 9 shows an example of changing the
filter parameters to alter the degree of the effect of several transformations simultaneously.

] Z ;! N

T

Figure 9: Filtered Transformations for s = 1.0,0.65,0.35,0.0
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6 Piecewise Transformations

In addition to the continuous transformations described above, it is also possible to approximate
these transformations using piecewise linear functions. Such functions offer the potential for per-
formance gains, and also allow for a more general class of transformations.

6.1 Simple Piecewise Transformations

This class of transformations involves piecewise linear approximations of the single-variable trans-
formation basis functions which are used to drive the higher-order (2D and 3D) transformations
(as described in section 2.2.3). As an example of this, a piecewise approximation of tanh(z) can
be used to replace that computationally expensive non-linear function call with a simple table
lookup and a linear interpolation. Since we can easily parameterize the resolution of the piecewise
approximation, it is possible to produce a step function that is arbitrarily close to the continuous
one, at a reduced computational cost. Table 1 shows some timing results ? for the simple radial
transformation using different 1D basis functions which are shown in Figure 10.

Figure 10: Comparison of 1D Bases for Radial: tanh, Piecewise (n = 8,16, 32)

Note that Table 1 shows the time for the piecewise approximations to be slightly slower than the
fisheye transformation time, and that there is no time increase for the piecewise function as the
number of components in the approximation is increased. However, the expressive power of the
fisheye basis transformation is limited to altering the degree of curvature of the function based on
a single parameter. With piecewise functions on the other hand, it is possible to transform points
with 1D transformations of arbitrary complexity at no extra computational cost.

We can see a simple example of the additional expressiveness of the piecewise transformation,
by considering the methods used for producing the linear/non-linear combined transformations

3This timing results were obtained on a 150MHZ MIPS R4400 processor using the sum of stime and utime as
reported by the unix times() command. Times shown are average times (in seconds) for computing a transformation
on a single point (based on applying the transformation to a grid of points multiple times). Normalized times reflect
the difference between the transformation time for the distortion function and a “Null” transformation which returns
the original point, thus eliminating overhead common to all transformations (such as calling overhead).

12



Function Time | Normalized

Null 2.15e-06 0.0
tanh 7.23e-06 5.08e-06
logistic 6.64e-06 4.49¢-06
fisheye 5.47e-06 3.32e-06

Piecewise 8 Steps | 6.05e-06 3.90e-06
Piecewise 16 Steps | 6.05e-06 3.90e-06
Piecewise 32 Steps | 6.05e-06 3.90e-06

Table 1: Timing Results for Radial Transformation With Different Bases

discussed in section 2.2.4. Using a continuous warping function such as tanh or the fisheye trans-
formation, it is necessary to treat points inside the area of linear magnification as a special case.
However piecewise linear transformations can automatically provide the desired area of flat magni-
fication. Figure 11 shows a comparison of the results of these transformations (the piecewise version
was obtained by using the piecewise radial transformation with 6 segments). Table 2 shows some
timing results for the different methods (the final entries in this figure and table will be described
in the following section). Note that the times for the piecewise function are identical to the times
for the simpler step radial function in Table 1. These data clearly show a performance potential

for the piecewise transformation.

Figure 11: Flat/Radial Transformation for Continuous, Simple and Complex Piecewise Bases

Function Time | Normalized
tanh 1.30e-05 1.09e-05
fisheye 1.19e-05 9.75e-06

Simple Piecewise 6.05e-06 3.90e-06
Complex Piecewise | 7.42e-06 5.27e-06

Table 2: Timing Results for Flat/Radial Transformation With Different Bases

In addition to the performance gains offered by such functions however, piecewise functions gen-
eralize much more readily to arbitrary shapes. In general we can say that a suitable piecewise
transformation function is one composed of linear segments having zero-order parametric continu-
ity C° (i.e. the endpoints of adjacent segments meet). The degree of magnification provided by
the function is directly proportional to the slope of the segment at that point. Segments with slope

13



greater than 1 will magnify, and segments with slope less than 1 will minify.

There are several ways in which such functions can be constructed. The simple piecewise functions
used in this paper were all generated through automatic routines which sample a continuous function
at a parameterized resolution to obtain the resulting piecewise function.

It is also possible to provide an interface which allows an user to drag control points on the piecewise
transformation function and thus design customized functions with multiple areas of magnification.
Not all functions constructed in this manner will be useful, the loose restriction of C* continuity
will allow the user to construct wildly distorting transformations with sharp transitions rather
than smooth curves. This problem can be alleviated by using spline functions with higher degrees
of continuity [3] to construct a “transformation curve”, and then sampling the spline function to
obtain an approximating piecewise linear function.

Piecewise transformations can also be constructed through manipulation of the values of the mag-
nification function (which is the derivative of the transformation function). By placing a grid over
some domain and creating suitable magnification values (perhaps corresponding to a degree of
interest) for each cell in grid, we can integrate over the magnification values to obtain the cor-
responding transformation function. This allows the user to construct a transformation function
without having to be aware of the slope/magnification relation, instead the user is able to construct
such a function by simply expressing a degree of interest in certain areas of the domain. Since we
are integrating the magnification values to obtain the transformation function, we automatically
obtain C? continuity in the resulting transformation function. As with the direct construction of
transformation functions described in the previous paragraph, this process is also amenable to the
use of spline functions to smooth out the construction of these values.

6.2 Complex Piecewise Transformations

In the previous subsection, we explored methods for using piecewise linear functions to approximate
the 1D basis functions described in section 2.2.3. Such piecewise approximations are called simple
piecewise transformations because we are approximating single variable functions. In this subsec-
tion, we will examine a more powerful set of piecewise transformations, where an approximation
is made of a complete two dimensional transformation. These approximations are called complex
piecewise transformations, since we are now approximating multi-variable functions.

The most straightforward method to construct a complex piecewise linear transformation of this
type is to sample an existing transformation with a regular grid of two dimensional points to
construct a grid of the transformed points. After this grid has been computed, any number of
points can be transformed through table lookup and linear interpolation on the « and y coordinates
independently. The accuracy of the piecewise approximation is determined by the resolution of the
“sampling grid” that is used 4.

*In the system developed by the author, grid resolution is parameterized and user-controllable, both for complex
and simple piecewise transformations.
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Table 2 shows that even for slightly complicated transformations such as the Flat/Radial com-
bination (shown in Figure 11), construction of a complex piecewise transformation can result in
significantly faster transformation times than for the procedural fisheye technique. As with the
simple piecewise transform, the time required for the complex piecewise transformation remains
constant with increasing complexity of the function, and increasing grid size (within memory and
cache constraints). Note however that the simple piecewise approach is the fastest of the three,
requires much less memory than the complex, and would be a better choice for this particular
transformation.

When we moved from continuous basis transformation functions to their simple piecewise transfor-
mation counterparts, we found that a new level of expressiveness became possible. Similarly, we
can express an even richer set of transformations with a single complex piecewise transformation
function than with a continuous 2D transformation.

There are several ways in which this potential increase in expressiveness can be realized. One
method that offers large performance benefits is the ability to combine multiple transformations
(as described in section 4) and express them in terms of a single complex piecewise transformation.
This can be achieved in a manner similar to that described above for construction from a single
existing transformation, the difference being that the entire set of transformations is applied to
the sampling grid before it is used to construct the single complex piecewise transformation grid.
The timing results shown in Table 3 ® indicate better than a magnitude of order increase in perfor-
mance when comparing the procedural (fisheye) and complex piecewise approaches to producing
the transformation shown in Figure 12.
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Figure 12: Multiple Transformations used for Table 3

Function Time | Normalized
Null 4.59¢-06 0.0
Fisheye 7.10e-05 6.64e-05
Complex Piecewise | 1.02e-05 5.61e-06

Table 3: Timing Results for Multiple and Complex Transformations

Because of the overhead involved in construction of complex piecewise transformations, they are

5The timing for the Null transformation is different in this case than for previous timings. The difference is
reflective of the fact that we now have the additional overhead of passing points through a list (possibly of length 1)
of transformations rather than through a single transformation.
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best suited to tasks which are dynamic in time and placement rather than in shape. Once com-
puted, these complex transforms can be translated over a domain (or the domain “underneath”
the transform can change through time) efficiently without recomputing the transformation grid.
Whenever the shape of the transformation changes however, it becomes necessary to recompute the
transformation grid, thus simple piecewise or continuous functions might be better suited to those
applications where the shape of the transformation changes frequently.

The same techniques for constructing simple piecewise transformations through direct manipulation
of either the transformation or magnification values can also be applied to complex transformations.
However additional issues arise in increased complexity of the user interaction task, as well as
in methods for effectively converting magnification values to the corresponding transformation
function.

7 Conclusions

In this paper we have shown several techniques for constructing and using non-linear magnifica-
tion. We have shown that it is possible to construct sophisticated transformations by building
up from simpler ones. A hierarchy of transformations emerges from these constructions which
allows for categorization of new classes of transformations. Some of the construction tools that
we have introduced include: combination with linear magnifications, constrained transformation
domains, combining multiple transformations, and enhanced control of the overall degree to which
a transformation(s) should take effect.

In addition, we have shown how piecewise linear transformations can be used to approximate
continuous non-linear transformations of one or two dimensions. Timing data clearly indicate a
potential for increased efficiency with these piecewise transformations. In addition, a greater degree
of expressiveness becomes possible with the piecewise functions, which provides greater flexibility
for the designer of more sophiticated magnification systems.

8 Further Work

General methods for enforcing the consistency of domain boundary conditions in aggregate trans-
formations should be addressed. These problems need to be addressed in the areas of domain
constraints and combinations of transformations.

More work is currently being done on effective techniques for constructing the piecewise linear
transformations. We are investigating interactive methods for construction of these transforms
which will be more natural for an user to deal with. Also, several issues arise in the conversion
between the transformation and magnification grids for the complex piecewise functions. Different
conversion techniques exist, each giving different results. A significant area of work centers on
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the question of how to best utilize the additional expressiveness possible with these piecewise

transformations.
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