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Abstract

Relational database systems do not effectively support com-
plex queries containing quantifiers (quantified queries) that
are increasingly becoming important in decision support ap-
plications. Generalized quantifiers provide an effective way
of expressing such queries naturally. In this paper, we con-
sider the problem of processing quantified queries within
the generalized quantifier framework. We demonstrate that
current relational systems are ill-equipped, both at the lan-
guage and at the query processing level, to deal with such
queries. We also provide insights into the intrinsic difficul-
ties associated with processing such queries. We then de-
scribe the implementation of a quantified query processor,
Q?P, that is based on multidimensional and boolean ma-
trix structures. We provide results of performance experi-
ments run on Q’P that demonstrate superior performance
on quantified queries. Our results indicate that it is fea-
sible to augment relational systems with query subsystems
like QP for significant performance benefits for quantified
queries in decision support applications.

1 Introduction

Several recent papers have pointed out that users often
use embedded and correlated queries [6, 18].  These
queries aggregate data into sets of entities and - (1) pro-
duce a statistical summary by applying aggregate func-
tions on these sets or (2) show complex relationships
amongst such sets of entities. The first type of queries
are an important subset of the aggregate queries
that are commonly used in decision support applica-
tions. The second type of queries are often expressed
as quantified queries, i.e., the queries are expressed
using quantifiers [8]. Quantified queries are becom-
ing increasingly important in decision support applica-
tions in general, and in the insurance and health-care
sectors in particular. Typical applications involve de-
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termining the most frequently (least frequently,
etc.) wused health-care services,the percentage
degree of donor-recipient type matches for organ
transplants, the cases of diseases not seen in
the last five years, and so on.!

In this paper, we address the issue of supporting
the class of quantified decision support queries.? Our
position is that quantified queries are inadequately
supported in current relational database management
systems. The support that is lacking is both at the
language level and in the underlying query processing
system. There are two essential problems:

o SQL’s syntaz is too restricted to express quantified
queries. While SQL allows subqueries to form sets,
the relationships that can be expressed over sets
are limited, and must be written in awkward and
complicated ways.

o SQL queries that simulate quantifiers are frequently
ill-supported by existing relational query processors.
While relational systems are already equipped with
multiple access methods, join algorithms, etc., al-
lowing very good performance on a wide range of
queries, there is very little support for quantified
queries.

In two recent papers, Hsu and Parker [16] and, inde-
pendently, Badia, Van Gucht, and Gyssens [1], showed
that generalized quantifiers in query languages are an
effective way of expressing quantified queries naturally.
It then becomes important to demonstrate that such
quantified queries can be supported effectively. In this
paper, we demonstrate the feasibility of augmenting ex-
isting relational database systems with appropriate data
structures and algorithms for supporting the critical

1A recent report on the future of database systems has
identified health-care information systems as part of the next
generation application areas [12].

2Quantified queries are expressed in SQL using the GROUP
BY, (NOT) EXISTS, and (NOT) IN clauses. It is significant
that the TPC-D (Decision Support) Benchmark Specification
by the Transaction Processing Council includes two quantified
queries (Q4 and Q16) that involve these clauses for measuring
performance in a decision support environment [28].



operations necessary in the evaluation of quantified
queries.

The main contributions of this paper are - 1)
an implementation of a Quantified Query Processor,
Q?P, employing sophisticated algebraic primitives to
support generalized quantifiers, 2) an adoption of
novel techniques and variations of known structures
and algorithms to efficiently support a wide range of
generalized quantifiers, and 3) results of performance
experiments demonstrating superior performance on
quantified queries. The Q2P system has been designed
with a view towards the facilitation of its integration
into relational systems.

The paper is organized as follows. In Section 2, we
provide a discussion of quantification, and show how it
is currently expressed and supported in relational lan-
guages. In Section 3, we discuss results of performance
experiments run on several relational database systems
that demonstrate SQL’s shortcomings. In Section 4, we
describe the implementation of Q2P, its data structures
and algorithms, and compare the performance of our
system with that of relational systems. In Section 5,
we describe related work and point out its limitations.
Finally, in Section 6 we offer some preliminary conclu-
sions that seem to be supported by our tests and point
out further work.

2 Quantification

We are often interested in queries that seek relationships
between objects by performing complex operations on
sets that are parameterized by said objects (i.e. the
sets represent information associated with the given
object). Calling these queries quantified comes from
the fact that it is usually necessary to use some form of
quantification in order to express the proper relationship
between the sets. The relationships, however, are not
limited to the standard first order logic quantifiers,
exists (3) and all (V). While they are obviously very
important?, the quantifiers 3 and V are only two among
many possible. Other examples are: (exists) exactly
one, (exists) at least ten, at least 10%, exactly as many.

2.1 Generalized Quantifiers

Declarative query languages use embedded sub-queries
and some form of quantification or set predicates to
express relationships between sets of the sort just
described (SQL [17], OQL [5], CORAL [23], RC/S [21]

30ne may argue that uses of NOT EXISTS (which is used
to express universal quantification in SQL) are rarely seen. We
suspect that, while this is true, the reason is not a lack of
usefulness, but the fact that programmers avoid them for two
reasons: (1) the usage of NOT EXISTS subqueries can get
tricky, and (2) they are very inefficiently supported. So most
quantifiers, like all, (exists) at least ten, at least 10%, and so
on, are simulated with the use of the GROUP BY and HAVING
clauses in combination with the COUNT function, which goes
against the declarative spirit of the language.

etc.). It is often argued that these features enhance the
declarativeness of the query language. In two recent
papers, Hsu and Parker [16] and, independently, Badia,
Van Gucht, and Gyssens [1], validated this argument
by establishing a link between the phenomenon of sub-
query syntax in query languages and the theory of
generalized quantifiers as it was introduced by Barwise
and Cooper [2] for natural language formalization.

We illustrate the use of generalized quantifiers through
an example. Consider, as part of a health-care study, a
database with the relations

disease(dname,dtype)
patient-symptom(pname,symptom)
disease-symptom(dname,symptom)

We first need the notion of a set term. Since gen-
eralized quantifiers are relationships between sets, the
language needs to express set formation and manipula-
tion in a simple and direct manner. For this we use the
standard set abstraction mechanism, where the set of
x such that ¢(x), with ¢(z) some well-formed formula
(with x its free variable) is written as {x | ¢(z)}.

We will also use parametric sets, in which there are
free variables or parameters which will be captured
later by a larger set expression. For instance, the
set {s | patient-symptom(x,s)} has the parameter z,
and is intended to represent a set of sets: for any
x that appears as a first argument of the relation
patient-symptom, the set of all symptoms that z has.
Intuitively, it corresponds to a grouping of the relation
patient-symptom by the first argument.

Our queries will then be set expressions, where
the formula can be formed by applying a generalized
quantifier to a series of sets. We view quantifiers as
binary set predicates.* For example, the quantifier
some is such that “some(S,T")” is true if and only if
“SNT # (7, the quantifier no is such that “no(S,T)”
is true if and only if “SNT = (", the quantifier (not)
all is such that “(not) all(S,T)” is true if and only
if “(=)S C T and the quantifier at least 10% is
such that “at least 10%(S,T)” is true if and only if
“SNT|>1S]*0.1".

For example, consider the queries “Find the patient-
disease pairs (p,d) such that patient p has [some | all |
at least 10%] of the symptoms associated with disease
d.” The some query can be formalized as follows
(the all and at least 10% queries are similar and

4All the generalized quantifiers in the example sentences are
binary. There are, however, natural unary, as well as higher
arity, generalized quantifiers [30]. A well-known example in the
database community of a unary generalized quantifier is SQL’s
EXISTS. In SQL, EXISTS(S) is true if and only if the set S # 0.

5The all quantifier described in this paper should not be
confused with SQL’s ALL predicate which is used for quantified
comparison [17]. SQL’s ALL predicate is used to compare a scalar
value with all the values returned by a sub-query.



SELECT P.pname, D.dname
FROM patient-symptom P, disease-symptom D
WHERE [some | all | no | not all]
(SELECT P.symptom
FROM patient-symptom p
WHERE P.pname = p.pname) IS A
(SELECT d.symptom
FROM disease-symptom d
WHERE D.dname = d.dname)

Figure 1: The some, all, no, and not all queries expressed
using Hsu and Parker’s extended-SQL.

can be obtained by replacing some by the appropriate
quantifiers).

{p, d| some({s | patient-symptom(p,s)},
{s | disease-symptom(d,s)})}

Intuitively, these queries are evaluated as follows: group
the relation patient-symptom by the first argument, so
that for each patient name p, we have the set of all the
related symptoms; group the relation disease-symptom
by its first argument, so that for each disease name d,
we have the set of all the related symptoms. Finally, for
each pair of patient-disease values p,d (as obtained in
the previous step), find out if the set associated with p
is in the relation [some | all | at least 10%] with the
set associated with d. If it is, then the pair p, d qualifies
as part of the answer; otherwise it doesn’t. Formulas
like these, with parameters (free variables), set terms
and generalized quantifiers, will be called GQ-queries.
They are intended to express the Quantified Queries
that were described before.

We can have any level of nesting in GQ-queries
for expressing complicated queries. For instance, the
query “Find the patients that have at least 10% of
the symptoms of any disease except those symptoms
belonging to heart diseases” is expressed as

{p| at least 10%
({s | patient-symptom(p,s)}
{sn | no ({d | disease-symptom(d,sn)})}
{d | disease(d, heart-disease)})})}

Hsu and Parker [16] discussed the syntactic limita-
tions of SQL to express GQ-queries. To overcome these
limitations, they syntactically extended SQL and pro-
vided a translation mechanism from extended-SQL to
SQL2 [17].

Reconsider the health-care database and the queries
we used as an example: “Find the patient-disease pairs
(p,d) such that patient p has [some|all|nojnot all]
symptoms associated with disease d.” In Hsu and
Parker’s extended-SQL, these queries can be formulated
as shown in Figure 1. These queries are used for
discussion in the rest of the paper.

SELECT P.pname, D.dname
FROM patient-symptom P,disease-symptom D
WHERE [NOT] EXISTS
(SELECT *
FROM patient-symptom p
WHERE p.pname = P.pname AND
[NOT] EXISTS
(SELECT *
FROM disease-symptom d
WHERE d.dname = D.dname and
d.symptom = p.symptom))

SELECT P.pname, D.dname
FROM patient-symptom P,disease-symptom D
WHERE P.symptom = D.symptom
GROUP BY P.pname, D.dname
HAVING count(P.symptom)
= (SELECT count(P1.symptom)
FROM patient-symptom P1
WHERE P1.pname = P.pname)

Figure 2: Top: SQL formulation for the [some | all | no |
not all] queries. Bottom: SQL formulation for the all query
using GROUP BY and COUNT.

We now present a more real-world application for
generalized quantifiers. Consider a scenario in a health-
care database, where information is to be gathered on
recipient-donor pairs for an organ transplant. An organ
transplant from a donor to a recipient is said to have
a high probability of success if the match between the
donor’s and recipient’s Human Leukocyte Antigen types
(hla_types) is high [3]. The query using the at least
90% quantifier “Find the recipient-donor pairs (r,d)
such that the recipient r has at least 90% of his/her
hla_types match the hla_types of the donor d.” looks for
a type match that implies a high probability of success
for an organ transplant.

3 Quantified Query Processing in
Relational Systems

The patient-disease quantified queries (some, all, no,
and not all queries) can be translated into SQL using
the EXISTS unary generalized quantifier. These four
queries are expressed by various combinations of the
presence or absence of the NOT operation in the SQL
query in the top box in Figure 2.5

As we stated before, some quantified queries can also
be expressed in SQL through the use of grouping and
counting. The importance of this technique is that it
allows the query optimizer to choose better plans than
would be possible with the NOT EXISTS predicate.
This strategy is also advocated by Hsu and Parker
([16]). The bottom box in Figure 2 shows the all-query
expressed using GROUP BY and COUNT in SQL.”

6Note that in the case of the some query a direct join-predicate
could be used instead of an EXISTS predicate as shown here.

"In practice, the COUNT clauses will require the DISTINCT
keyword if duplicates are present. Our experimental setup



We ran these queries in the University-INGRES
system and in two commercial relational database
management systems using the experimental setup
described in Appendix E.2

The performance of these systems was very poor
for all queries other than the some query, and this
was already the case for very small relations. Using
the reformulation of the all-query with grouping and
counting, the performance of the commercial relational
systems improved dramatically.

Unfortunately, reformulating the no-query and the
not all-query via grouping and counting mechanisms
([9]) will not result in a similar speed-up. The reason
for this is simple; both these queries contain a hidden
complementation, which means, for all practical pur-
poses, that a cartesian product needs to be attempted
to account for the negation.

4 Quantified Query Processing

In this section, we discuss the implementation issues
for Q?P, a Quantified Query Processor. The main
thrust of the implementation is to support operators
corresponding to the generalized quantifiers some, all,
no, and not all directly.

An important criterion for Q?P was that its data
structures be implementable as run-time structures so
as to facilitate Q2P’s integration into relational sys-
tems. Relational database literature is replete with
data structures and algorithms. In general, these struc-
tures are targeted to support particular relational opera-
tors (selection, join) or query types (PSJ queries, range
queries), and therefore are not directly applicable for
our purposes. Our approach is - 1) to use novel vari-
ations of known structures, and 2) to integrate these
variations into a general system for supporting an al-
gebra on run-time structures for generalized quantifier
operators. Furthermore, it is important to observe that
our system is closed with respect to this algebra, i.e.,
expressions in the algebra map a run-time structure to
another run-time structure in the system. Hence com-
positionality of operations is supported which removes
the overhead of re-building intermediate structures from
their corresponding relations.

We first describe the mapping mechanisms that form
a basis for our structures. We then describe the
implementation details of these data structures followed
by the operator algorithms. Following this we show
comparative performance results.

involved a dataset without duplicates.

8We are not publishing the performance figures for the
commercial RDBMSs due to legal concerns. However, we fully
describe the details of the experiments in [25].

4.1 Conceptualization

In relational query processors, hash-based join (= some)
algorithms have been known to perform well [10]. They
map relations at run-time to a 1-dimensional space by
hashing on the join attribute values (each hash-value
represents a point in this space). However, this scheme
is inadequate for supporting the all, no, and not all
operators efficiently.

The all operator can be supported as a composition
of certain basic operators by adopting a general map-
ping scheme that could be exploited by all the basic
operators. Mapping a k-ary relation to a k-dimensional
space (i.e., every tuple [a;,,a;,, .- .,a; ] is mapped to a
point [i1,2,...,0], i; > 1,1 < j < k) provides a gen-
eral scheme not biased towards any particular operator.
The no and not all operators can be expressed again in
terms of simpler operators as no = complement(some)
and not all = complement(all). The complement op-
eration can be efficiently performed in a 2-dimensional
space. The 2-dimensional mapping is achieved by par-
titioning each k-dimensional point [é1,42,...,i;] (from
the earlier k-dimensional mapping) into two components
by grouping particular attributes together to form two
composite-attribute groupings which is mapped to a
point [j1, jo] in a 2-dimensional space.

We use a multi-attribute structure (similar to those
in [19, 20]) for providing the mapping to a multidimen-
sional space. We use a boolean matrix structure for pro-
viding the mapping to a 2-dimensional space and there-
fore to support the complement operator. The boolean
matrix lends itself well to computations that take place
in a cartesian-product space, i.e., when the boolean ma-
trix tends to be dense (which is the case since either the
input or output matrix for a complement is going to be
dense).” Other operators are also built in to transform
one structural representation to another.

4.2 Storage Structures

Certain auxiliary storage structures are required to
aid in mapping a relation to a boolean matrix or
to a multidimensional structure, before performing
query operations, and vice-versa after performing the
operations.!? These structures also provide information
on relation and attribute domain cardinalities which are
required at run-time. For the rest of the implementation
discussion, assume R is a relation over domains A, B,
and C (i.e., R C Ax B x C) and S is a relation
over domains C' and D (S C C x D). For simplicity,
all attributes belonging to a common domain in the

90therwise the high sparsity will prove expensive in terms of
disk space usage and I/O operations.

10Run-time hash table structures can be used for providing
this mapping information [14]. This is an acceptable alternative
if these structures can be constructed efficiently with minimal
overhead.  Otherwise, the incremental cost of maintaining
auxiliary storage structures can be amortized in the long run.



database are named after the domain.

The base relations R and S are stored as file
structures with tuples [a;,b;,¢x) in R and [¢,dy] in S
(i,j,k,l,m > 1). Each one of the attribute domains
A, B, C, and D is supported by a domain index (the
one for C is shared by both R and S).!' Each domain
index maintains a mapping that associates domain
values to points (unique non-negative integers serving
as surrogate values). For instance, a value a; € A
is mapped to i € [1...]A]]. Each attribute domain
also has an associated file structure that helps map the
surrogate values back to the original attribute domain
values. The domain file structure for, say A, holds each
value a; at an offset that is a multiple of i. R’ and S’
are surrogate relations of R and S respectively that are
stored as flat file structures containing surrogate tuples
(i.e., tuples [i, j, k] corresponding to the original tuples
[ai, by, ck])-

Now given a tuple [a;, b;, cx] for R, it is mapped using
the domain indexes of A, B, and C to a surrogate tuple
[i,7,k] in the surrogate relation R'. R’ is later used
to construct the run-time structures. After performing
query operations, each surrogate tuple [i,7,k] from
the output structure is mapped back to a tuple like
[a;, bj, ] using the domain file structures.

We have not discussed the steps involved in insert-
operations or the cost of such operations here. This
is because Q?P is designed for systems with com-
plex query work-loads as in Decision Support systems.
These database systems undergo batch-updates with
data from an OLTP environment. Conventional tech-
niques like data-partitioning and pre-sorting would be
extremely useful in efficiently populating the storage
structures we maintain.

4.3 Run-time Structures

At run-time, the surrogate relation for each relation
queried upon is projected on all the attributes required
in the query and is used to construct the multidimen-
sional structure. This structure is constructed by par-
titioning the multidimensional space represented by the
projected surrogate relation. The structure is repre-
sented by a set of flat-file partitions and a flat-file di-
rectory providing pointers to these partitions. Figure
3 shows the multidimensional structure constructed for
relation R using its surrogate relation R’. The directory
has four columns A’, B, C' (corresponding to A, B,
and C' which are the attributes from R required in the
query) and pointer. The pointer column stores point-
ers to the partitions in the structure. Each partition
has three columns A", B", and C".'2

HEvery attribute domain is supported by an index because any
attribute can potentially be queried upon.

12 A relation with k non-join attributes and [ join attributes is
represented by a (k 4 [)-dimensional structure with a directory
having k£ 4+ [ 4+ 1 columns having pointers to partitions that have
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Figure 3: A ternary relation R implemented as a 3-dimensional
structure.

The partitioning is done so as to satisfy the following
constraints - 1) each partition should have an adequate
number of points mapped from the relation, 2) each
partition should fit into main memory, and 3) the
directory should fit into main memory.

This multidimensional structure has several advan-
tages in an ad-hoc querying environment. Since it rep-
resents the query-time component of the relation in its
entirety, it can be used directly for all operators except
non-equijoin operators.'®> It presents a partitioning of
the relation which can be exploited regardless of the at-
tributes queried upon. Moreover, the closure property
on the operators creates output structures that inherit
the partitioning.

We next describe the partitioning scheme keeping the
constraints in view.

In Figure 3, N4 refers to the total number of
divisions along the dimension corresponding to attribute
domain A while F 4, the cluster-factor, refers to the
unit-length on that dimension. The partitioning is
done by applying a simple hash function to each
surrogate tuple [i,7,k] so as to split each co-ordinate
value into two components, a directory component and
a partition component (for instance i = (i',i") =
(¢ div Fa,i mod Fa)). The directory tuple [i’, ', k']
(=1[i div Fa,j div F,k div F¢]) is used to compute
the index value (i’ * Ng + j') * No + k' of the partition

k + [ columns.

13 Join-based operators require a normalization step that facil-
itates bringing matching partitions together. Selection operators
(not discussed in this paper) would use the domain indexes and
the multidimensional structure for exact match queries and do-
main indexes (based on sorted order) for range-queries. Projection
operators would project out some of the dimensions.



boolean matrix for T
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Figure 4: Relation T = R some S represented as a boolean
matrix for a subsequent complement operation. {A,B,C},
{C,D}, and {A,B,D} are the schemas of R, S, and T
respectively.

to which the tuple belongs. This partition index value
serves as the offset for an entry in the directory for the
structure for R. The directory tuple is stored at that
entry in the directory. The partition tuple [i", ", k"]
( =[i mod Fa,j mod Fp,k mod F¢]) is stored in the
partition determined by the computed index value. The
surrogate tuple can be easily computed back again as
i,k = [+ Fa+ "), (' * Fg + "), ('  Fo + k"))

The cluster-factors for the joining attributes of the
structures participating in a join-based operator are
normalized. In Appendix A, we present the steps used
to compute the cluster-factor values and for subsequent
normalization.

A boolean matrix is constructed only if a complemen-
tation is necessary during the computation of a query.
For example, for a no operation on R and S with C as
the join attribute a some operation is performed first
between R and S, resulting in a multidimensional out-
put structure for the resultant relation 7. The next
step involves a complement operation on 7'. To achieve
this, the boolean matrix for T is constructed with one
dimension representing AB formed by grouping the at-
tributes A and B derived from R and the other di-
mension representing D derived from S (see Figure 4
- refer Appendix B for an intuitive proof on the cor-
rectness of this complementation). To construct the
boolean matrix structure, we first map the surrogate tu-
ples (multidimensional points) derived from 7’s multidi-
mensional structure to 2-dimensional points correspond-
ing to {AB, D}. The 2-dimensional points are then used
to set bits in the boolean matrix. The boolean matrix
structure is also implemented as a directory providing
pointers to partitions which are of the size of a buffer
page. The cluster-factor values are made the same for
both the dimensions and are determined by the buffer
page size and the number of bits that fit into a page.

4.4 Algorithms

The basic operators currently built into the system are
the quantifier operator some and the operators group ™4,

M The group operator was built in for two reasons - 1) the all
operators and other variations like at least k [}], etc., can use a
general parameterized algorithm which uses counting mechanisms

some(input: multidim_str multio, mltidim_str multii,
output: multidim_str multi)
sort_on_join_attributes(multio — dir)
sort_on_join_attributes(multiy, — dir)
multi — dir = create_dir(multioc — dir, multin — dir)
allocate_memory_for_partitions(multi)
for each partition party in multio — dir
/* Entries matching on the join-attributes are
looked for.*/
for each matching partition part; in multi; — dir
hash_tbl = build_hash_tables(parto)
hash_and_probe(parti, hash_tbl)

/*For successful probes, hash_and_probe saves
output tuples in an in-memory partition. When
an in-memory partition is full, it is appended
to its disk partition and multi — dir updated.*/

return multi

Figure 5: some operator algorithm

complement, rel2multi, multi2bool, bool2multi,
multi2rel, and bool2rel.!® The all, no, and not
all quantifier operators are implemented in terms of
the other operators. The algorithms for the quantifier
operators are given in Figures 5 through 8 and the algo-
rithms for the remaining operators are given in Figures
9 through 10 in Appendix C. 1 We use the arrow (—)
notation in the algorithms to refer to substructures or
related structures; for e.g., “multiy — dir” refers to the
directory of the multidimensional structure multiy.
The rel2multi operator (see Figure 9 in Appendix C)
is used to construct a multidimensional structure given a
surrogate relation. The multi2bool operator (Figure 11
in Appendix C) is used to transform a multidimensional
structure to a boolean matrix. Each tuple from the in-
put multidimensional structure is split into two parts
corresponding to the two dimensions and mapped to a
pair of non-negative integers. The mappings for the left
and right components of all the pairs are stored in two
flat composite-domain structures (to be used later - for
instance, for relation 7" in Figure 4 a composite-domain
structure is created for AB, whereas D doesn’t require
one being a single attribute). These pairs are used to
set bits in the output boolean matrix structure. The
bool2multi operator (not shown in any figure) trans-
forms a boolean matrix to a multidimensional structure.
Figure 5 describes the algorithm for the some oper-
ator. The idea behind some is to perform a conven-
tional join. Here, the directories of the two operand

and 2) for later support for aggregate queries.

15These latter operators permit a migration of a relation
between multidimensional and boolean matrix representations
depending on whether the computation is in a cartesian-product
space or not. We have run experiments on the some and
all operator algorithms for boolean matrices which show good
characteristics [24].

16Fvery operator has access to information on the join,
non-join, and grouping attributes of the input structures. These
aspects are not shown in the algorithms to keep the algorithm
description simple.



all(input: multidim_str multip, multidim_str multiy,
output: multidim str multi)
tmp_-multioy = some(multio, multiy)
update_group_parameters(tmp_multip)
tmp_multios = group(tmp_multio1)
update_group_para.meters(multio)
tmp_multioc = group(multip)
update_join_para.meters(tmp_multim)
update_join_parameters(tmp_multip)
return some(tmp_multio, tmp-multior)

Figure 6: all operator algorithm

group(input: multidim str multi;y,
output: multidim str multiout)
multioyt — dir = create_dir(multi;, — dir)
for each partition part;, in multi;, — dir
allocate_memory_for_partition(multiout,partiy)
hash_tbl = build_hash_tbl_for_group(part;, )
/*build _hash_tbl_for_group hashes each tuple in part;,
on the grouping attributes and inserts into in-
memory hash tables. If a duplicate is found it
increments the count field.*/
save_hash_buckets_to_partitions(multiout,hash_tbl)
return multioyt

Figure 7: group operator algorithm

multidimensional structures are first sorted on the join-
attributes to bring together matching partitions. Then
a join is performed on the matching partition pairs us-
ing in-memory hash tables. The group operator (de-
scribed in Figure 7) also uses conventional in-memory
hash-tables to group and perform a count. The struc-
ture here is upgraded to hold an additional count field in
the partitions. The complement operator (not shown in
any figure) retrieves every partition of the input boolean
matrix, performs a bit-wise complement operation and
places the partition in the output boolean matrix.

The all operator (described in Figure 6) uses some
and group operator applications. The all quantifier
semantics (for any two relations R and §) is captured
by the expression

[Rall S]={z,y| {z|R(z,2)AS(z,y)} = {z|R(x,2)}}

Briefly, the algorithm uses the same semantics as given
in the expression below

[R all S] = {z,y | count({z|R(x, 2)})
= count({z|R(z,2) A 5(z,9)})}

A join is first performed on the two operands. The
next grouping operation groups the result on the non-
join attributes and keeps a count for each unique tuple.
This gives the number of join-attribute values on which
the two operands matched to produce duplicate output
tuples. The subsequent group operation groups the
left operand on the non-join attributes coming from the
left operand and then performs a count. The resulting

[no | not_all](input: multidim_str multio,
multidim_str multi,
output: boolmatrix bool)
tmp_multi = [some | all](multio, multii)
tmp_bool = multi2bool(tmp_multi)
return complement(tmp_bool)

Figure 8: [no | not_all] operator algorithm

relations from the two grouping operations are then
joined on the non-join attributes of the left operand
and the count field values to produce the result. Note
that this algorithm can be extended as a parameterized
algorithm to compute other generalized quantifiers like
at least k%, at most k%, exactly k%, etc., as follows

[R®S]={z,y | (%*count({zm(m,z)}))
6 count({z|R(z,2) A S(z,y)})}

given the generalized quantifier operator ®, the com-
parision operator 6, and the percentage value k. The
no and not all operator algorithms (see Figure 8) are
self-explanatory.

The multi2rel (see Figure 10 in Appendix C) and
bool2rel operators are used to transform a multidi-
mensional and a boolean matrix structure respectively
to a flat-file structure and to output the result. These
operators basically use the domain file structures to map
the surrogate values back to the original attribute values
to produce the output tuples.

The complexity analysis of the quantifier operator al-
gorithms is covered in [25]. The I/O time complexity
for the some, group, and all operators is O(n), where
n is the size of the input relations, unless the output
relations dominate the cost. The multi2bool opera-
tor is O(n?) for sparse matrices since the output matrix
would then be O(n?) in size relative to the input struc-
ture. Otherwise, it is O(n). The bool2multi operator
has similar characteristics. The complement operator,
by itself, is linear in the size of the input matrix. Hence,
the no and not all operators are O(n?) for sparse in-
puts. During query evaluation, the total space utilized
is linear in the size of the relations represented. This
is because the multidimensional structures are compact
and represent un-complemented relations while boolean
matrix structures represent complemented relations. As
a consequence of the former, the rel2multi operator
is O(n). An assumption made for the bool2rel and
multi2rel operators is that the number of domain file
structures required for a query at the output stage are
very few ([18]) and can almost all be cached into mem-
ory for the kind of queries we are targeting.

Q2P was implemented on top of the EXODUS storage
manager [11].



|| PS | DS || some | all | not all | no ||
2k 2k 1.26 2.77 5.32 4.36
4k | 2.1k 1.47 4.60 7.84 6.23
8k | 2.2k 2.17 6.36 14.32 11.56
16k | 2.3k 3.63 | 11.67 24.94 22.40
32k | 2.4k 7.09 | 22.55 49.57 51.85

64k | 2.5k 13.46 | 47.94 103.20 111.8
128k | 2.6k 26.43 | 88.65 206.65 280.5
256k | 2.8k 62.83 | 193.6 468.42 988.7
512k | 2.9k 157.2 | 410.0 1045.9 | 2904.2

Table 1: This table gives performance figures for our Q2P system
on the patient-disease queries. The PS and DS columns refer to
the size (in tuples) of the patient-symptom and disease-symptom
relations respectively. All timing figures are in seconds.

4.5 Performance Results

We ran the queries described in Section 3 on Q*P
for comparison. The experimental setup is described
in Appendix E. The queries were run by composing
the appropriate operators on the system. We compared
the results obtained on these experiments for the com-
mercial relational database systems with those of our
Q?P system. Table 1 gives all the performance figures
for Q?P (all timing figures include the time required
for building the run-time structures and transforming
them appropriately). To demonstrate the generality of
the system, in Table 2 we show results for the all and
not all queries run on a ternary relation.

The performance behavior of Q2P for some, all, and
not all are linear all the way upto half a million tuples.
The non-linear behavior for the no query, however, is
evidence that we are working in a cartesian-product
space. Using boolean matrices for no and not all
queries pushes the region of non-linear performance
behavior beyond relations several times larger than is
possible with current relational systems. With the
inclusion of selection operations in queries, as would
be the case with most queries in practice, the region
of non-linear behavior gets pushed further by a factor
determined by the selectivity of the restriction.

Our comparative experiments indicated the follow-
ing:

e some (= join) query — Q?P was better than the
relational database systems by a factor that was
not very significant, i.e., relational database systems
were quite efficient on joins.

e all query (GROUP BY formulation) — Q?P was bet-
ter than relational database systems by a significant
factor, indicating that relational database systems
can be improved much further.

e all no, and not all queries (NOT EXISTS for-
mulation) — Q?P was better than the relational
database systems by several orders of magnitude,
which indicates that relational database systems can

[ Pat-Inv [ all | not all ||
2k 4.93 5.41
4k 6.64 9.63
8k 12.41 16.43
16k 23.94 28.10
32k 46.32 57.59
64k 90.50 116.9
128k 189.9 225.4
256k 355.3 502.5

Table 2: The table gives performance figures for our Q2P sys-
tem on queries using a ternary relation. Pat-Inv is the Patient-
Investigation relation with schema {patient,doctor,investigation}.
Lab-Investigation is the second input relation with schema
{lab,investigation}. The query used for the experiment was:
List the (patient,doctor,lab) triplets where the patient had
[all|not all] of their investigations (as prescribed by the doctor)
done in the same lab. The Lab-Investigation relation had 5k
tuples for all the experiments. All timing figures are in seconds.

benefit a good deal by employing techniques from
Q?P.
Our figures in the table give an idea of the kind of
performance that can be obtained on quantified queries
with structures suited for quantifier operations.

5 Related Work

The research that applies to the problem of efficiently
supporting quantified and other complex queries has
been done in at least three areas: extended query lan-
guages, extended algebraic primitives and new imple-
mentations.

As for extended query languages, there has been
work on extending relational languages with primitives
that can manipulate sets. An early example is Ozsoyo-
glu and Wang’s work [21], where the operations on sets
are limited. Sets have also been incorporated into log-
ical query languages (for a recent example, see [23]).
However, the idea of using the general notion of quanti-
fier and explicitly making sets part of the language does
not seem to appear until [16] and [1].

As seen in the examples, Hsu and Parker try to
integrate their system on top of SQL, and propose a
translation of their extension back into SQL2. While
this has a clear implementation advantage, we have seen
that the queries resulting from the translation process
are highly inefficient, and most relational systems do
not support them very well.

As for extended algebraic primitives, there has
been considerable work at the algebraic level to sup-
port more sophisticated primitives. Carlis presents a
division operator that allows a wide variety of set op-
erations to be considered [4]. Dadashzadeh [7] presents
an extended division operator (GCD) that also allows
more flexibility on the set operations and relates div-
idend and divisor values. Dayal presented generalized



join and aggregate primitives for nested queries with
quantifiers [9]. However, there is no discussion on how
these operators perform in practice or on queries with
more than one nesting level. The approach in [1] tries
to be more general, by considering the quantification as
an explicit operation on the sets, and several ways to
construct the sets involved. As a result, the kind of uni-
versal quantification queries captured using relational
division are a special case of the all quantifier.

As for efficient implementations, there is work
on new structures with algorithms, and query opti-
mization. With respect to the former, researchers and
database system vendors have always looked at alter-
native structures for performance based on the require-
ments of their areas of application or on the kind of
queries targeted. Scientific and statistical databases
have used multidimensional structures for performance
on statistical queries [26]. Multidimensional database
products like Essbase from Arbor Software, Express
from Oracle and so on are available in the market that
target aggregate queries in an on-line analytical pro-
cessing environment. Multidimensional structures have
been suggested for support for range-queries for rela-
tional databases [19, 20]. Sybase, a major relational
database vendor, has in recent times offered a product,
Sybase IQ, which uses bit-vector indexes for better per-
formance on queries with multiple restriction and join
predicates [27]. Bit-mapped join indexes have also been
proposed for multi-way joins in relational systems [15].
As far as we know, though, no structure is specially
devoted to support quantified queries.

Graefe presented four algorithms for relational divi-
sion with performance experiments [14]. Relational di-
vision, unlike our all operator, is an asymmetric op-
erator in that no part of the result can come from the
divisor. Observe also that other attributes in the di-
visor cannot be asked to match the grouping attribute
of the dividend, as it happens on Dadashzadeh’s GCD
operator. Finally, observe that both Dadashzadeh and
Carlis propose a limited number of set operators, while
our approach for all allows the implementation of many
different operators. Our general algorithm for all uses
hash-based aggregation techniques similar to those of
Graefe’s, but with different structures.

With respect to optimization, there have been many
papers on query transformations and optimizations for
performance benefits [9, 13, 22]. As Pirahesh et. al.
point out in [22], there has not been any implementation
for performance testing before theirs. Even their paper
does not discuss performance benefits for the NOT
EXISTS and EXCEPT predicates in SQL.

6 Conclusion

Our primary objective was to explore the feasibility of
extending relational systems for supporting quantified

queries efficiently. We used the generalized quantifier
framework as the basis for supporting quantified
queries. We implemented Q?P, a system based
on multidimensional and boolean matrix structures,
with suitable algorithms for the generalized quantifier
operators some, all, no, and not all. We also
showed that quantifiers like at least kJ, at most
k%, exactly k%, etc., can be supported easily by a
parameterized version of the all operator algorithm.
The main contributions of the paper are:

e A single framework under which quantified queries
using a wide range of quantifiers can be processed ef-
ficiently.

e Introducing an algebra on run-time structures for
the potential benefits of lowering overheads of re-
building such structures.

e Demonstrating that a combination of multidimen-
sional and boolean matrix structures with associ-
ated algorithms exhibit a performance that is bet-
ter by several orders of magnitude over similar SQL
queries using NOT EXISTS, and by significant fac-
tors over SQL formulations that use GROUP BY
and COUNT mechanisms.

Our implementation experience and comparative per-
formance studies on quantified queriesindicate that:
1) relational systems lack good support for such queries,
2) alternative structures like multidimensional and
boolean matrix structures can provide significant per-
formance benefits for such queries, and 3) relational sys-
tems can be more competitive in the decision support
market by incorporating query sub-systems like Q?P.
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Appendix

A Computing Cluster-factors

The cluster-factors and number of divisions (for each
dimension) are computed by taking into account main
memory capacity and the cardinalities of R, A, B, and
C (see Figure 3). For any attribute domain A, F4
and N4 are related by the equation F4 = AL where
N4 > 1. Let P represent the allowable size of a
partition considering main memory capacity. Let the
number of partitions in R be N = B

N =Ny xNp* No= f%]*f@]*f‘%]
— (A0 Tl Tl

2EA 2EB 2EC
where E4, Eg, Ec > 0. Fj, for instance, is calculated
as follows:
5, — Al logy (LIRS
A =
|A] +|B| + |C|

, Fq=2Fa



rel2multi(input: surrogate_rel rel,
output: multidim_str multi)
multi — cluster_factors = compute_factors(rel)
multi — partition_-num = determine_partitions(multi)
multi — dir = create_dir(multi — dir)
allocate_memory_for_partitions(multi)
for each tuple in rel
dir_component = compute_dir_component (tuple)
part_component = compute_part_component(tuple)
insert_dir_component(multi — dir, dir_component)
insert_part_component(multi — dir, part_component)
/* Insert partition component uses the in-memory part-
itions and copies it to the corresponding disk partition
when any of the in-memory partition becomes full.*/
return multe

Figure 9: rel2multi operator algorithm

This scheme partitions the tuple space with respect to
an attribute domain based on its cardinality relative to
the cardinalities of the other attribute domains. The
above formulas can be extended to relations of any
arity. For join-based operators (like some and all), the
cluster-factors for join-attributes of the participating
relations are normalized. When the structures are not
already constructed the cluster-factor values are made
the same, otherwise a structure normalization stage
should be incorporated. The experiments described in
this paper have not required this latter stage.

B Correctness of complement for no and not all

Let T be the result of a some or all operation on R
and S (see Figure 4). The boolean matrix for T will
have AB along one dimension and D along the other.
The complement operation on a boolean matrix such
as T is correct only when the functional dependencies
or the derived relationships amongst the attributes are
not broken. Note that in 7" the functional dependency
or the relationship between A and B (from R) is not
destroyed. After the binary operation between R and
S, we would have a new derived relationship between
AB and D and complement seeks to introduce all those
(AB, D) pairs that are not present in 7" while continuing
to hold the relationship between A and B intact. Thus,
a complement after some or all will always be correct.

C Algorithms for Q?>P’s Operators

Algorithms for re12multi, multi2rel, and multi2bool
are given in Figures 9, 10, and 11.

D Analysis of Algorithms

Let R; and R> be the two relations to be operated upon.
Let n; be the number of partitions in the structure for
R;. Since the multidimensional structure is compact,
n; x |R;|. Let the domain for the composite values of
the non-join attributes be represented by Dom,,;; in R;.
Let the domain for the composite values of the join-
attributes be represented by Dom;. Let |Dom;| and
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multi2rel(input: multidim str multi)
for each attribute attr; associated with multi
dom_file_str[i] = attr; — domain_file_structure
for each directory tuple dir_tup in multi — dir
for each partition tuple part_tup in dir_tup — partition|
surro-tuple = surrogate_tuple(dir_tup, part_tup)
for each attribute attr; in rel
tuple[i] = dom_file_str[surro_tuple[i]]
print_tuple(tuple)
/* Currently, this results in an output tuple stream|
Alternatively, a relation with the original tuple
can be constructed. */

Figure 10: multi2rel operator algorithm

multi2bool(input: multidim_str mults,
output: bool matrix bool)

bool — cluster_factors = determine_factors()

bool — dir = create_bool_dir(bool)

bool — dimo = init_dimensionO(multi — attributes)

bool — dimy = init_dimensionl(multi — attributes)

rel = multi2rel(multi)

/* bld_composite_domain_str projects out multi on
attributes corresponding to the given dimension and
sorts or hashes the projected relation to assign unique
surrogate values and then constructs the composite
domain file str.*/

if composite_attr_domain_reqd(bool — dimo)

bool — dimo — dom_str = bld_composite_domain_str(
multi, bool — dimg)

rel = map_dim0_attr_values_to_surrogates(rel,
bool — dimgo — dom_str)

if composite_attr_domain_reqd(bool — dim;)

bool — dimi — dom_str = bld_composite_domain_str(
multi, bool — dim)

rel = map_diml_attr_values_to_surrogates(rel,
bool — dimi — dom_str)

/* create a temporary 2-dimensional “non-boolean”
structure temp (to streamline I/O accesses). */

temp = rel2multi(rel)

for each partition part in temp
bool_part = allocate_space_for_partition(bool)
for each pair (7, j) in part

set_bit_ij(bool_part)
save_partition(bool, bool_part)
return bool

Figure 11: multi2bool operator algorithm



|Domy,;j,| be in terms of number of partitions. For the

analysis, let I'ﬁ—ml =k;, 1 = 1,2 i.e. every k; directory
2

entries in the structures agree on all the join-columns.

D.1 I/O Costs for the some operator

During the join, matching pairs of partitions from R;
and R, are brought together with a merge-join on the
directories of their structures. At each stage during
the merge-join ki * ko matching pairs of partitions are
brought together. The total number of matching pairs is
then given by ZDomj kixks = |Dom|*kixks = %.
The total I/O cost is proportional to the total number
of matching pairs of partitions. Now if k; is constant,
i = 1,2, then the I/O cost is O(n;) (j = 1,2 and j # i)
in complexity. If in the worst case |[Dom;| is constant,
then the I/O cost is O(n?) in complexity.!”

D.2 I/O Costs for the complement operator

Since either the output matrix or the input matrix is
dense in this case the I/O cost is dominated by the dense
matrix i.e. the complexity is O(l%lo*m"jl). Note that a
complement as in the case of no and not all operators
is performed after an earlier some or all operation.

Hence, the reference to n; and ns.

D.3 I/0 Costs for the all operator

The first some operation (refer Figure 6) costs O(

n1*N2 )
|Domg|

depending on whether |Dom;| is a constant or varies
with n. The cost of the subsequent grouping and ag-
gregation operations is of the same order of magnitude
as the size of the input structures. The cost of the last
some operation is dominated by the output cost of the
first some operation.

E The Experimental Setup

The experimental setup is described below in terms of
the platform configuration and the benchmark dataset.

E.1 System Configuration

Table 3 gives details of the platform used for the ex-
periments. The buffer size used for the systems was
12.5 MB. For the commercial systems, this translates
to configuring the system’s resource requirements ap-
propriately. In the case of Q?P, the Exodus Storage
Manager was configured to have a 12.5 MB buffer with
approximately 1 MB used for the server cache and the
balance for the client local cache. The client and server
processes were run on the same machine for all systems
to avoid network related variances in the performance.

17Note that |T£)1o*m"?|
J

by the cost model given in chapter 11 of [29]. This implies that
conventional relational join algorithms also are subjected to this
O(n?) behavior in such a case.

is the cost of generating the output relation
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Device
/ Value

System Configuration
/ Parameter

Platform SPARCstation 10
Operating System SunOS
(version 4.1.3.U1)
Main Memory 64 MB

Disk Fujitsu M2266SA

(1 GB)

Table 3: Parameters and configuration for the experi-
mental platform.

E.2 The Benchmark Dataset
The relations used in the benchmark are as follows:

patient-symptom(pname,symptom)
disease-symptom(dname,symptom)

Each of the attributes was defined to be a string
of size 16 chars. The data sets were randomly gen-
erated to satisfy certain constraints. FEach patient
had 5 symptoms on average. The initial domain sizes
were as follows: |pname| = 400, |dname| = 400, and
|symptom| = 1000. During the course of the experi-
ments, the patient domain (pname) size grew propor-
tionally with the size of the patient-symptom relation
while the other domains and the disease-symptom re-
lation grew more slowly to better simulate realistic sit-
uations. The dname and symptom domains, and the
disease-symptom relation grew by a factor of 1.05 at
each iteration of the experiment, for e.g., at iteration
|dname| = (1.05)¢ x 400 and so on. The size of the
patient-symptom relation was doubled at each itera-
tion starting with |patient-symptom| = 2000.

A C++ program was used to generate the datasets for
the patient-symptom and disease-symptom relations.
The random number generator ‘random()’ from the C
Standard Library was used to generate the attribute
values as numbers. The datasets were saved in Unix
files corresponding to each relation. The Unix utilities
sort and wuniq were used to eliminate duplicates from
these files. The relations in each database management
system were populated from the corresponding files
using utilities provided by each system.

The C++ program that was used to generate the
dataset is given next.



#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>

/* This program creates a dataset each for the patient-symptom relation and
for the disease-symptom relation. The dataset is stored in Unix files
named as patient_symptom and disease_symptom. Each of the files contains
data in two columns meant for the corresponding attributes in the
relations. The program expects the size of the patient-symptom relation
as a command-line argument (for e.g., to generate a dataset with 1000
tuples for the patient-symptom relation the command
‘<executable-for-this-program> 1000’ is issued.

The disease-symptom relation size and the domain sizes for disease and
symptom are progressively increased by a factor of 1.05. This is
achieved by initially storing a value of 1.0 in a file named ‘constant’.
The program is run starting with 2k tuples for the patient-symptom
relation. For each run of the program, the program multiplies the
constant value in ‘constant’ by 1.05. This value is then used for the
next run of the program.

*/
/*
‘symptom_num’ is the initial symptom domain size.
*/
const unsigned int symptom_num = 1000;
/*
‘disease_num’ is the initial disease domain size.
*/
const unsigned int disease_num = 400;
/*
‘initial_ds_num’ is the initial number of tuples in the disease-symptom
relation.
*/

const unsigned initial_ds_num = 2000;
const float constant = 1.0;

int main(int argc, char *argv[])
{

unsigned int i,ps_num;

/* ps_num gives the new patient-symptom relation size while
ds_num, dis_num, and symp_num give the new disease-symptom,
disease-domain, and symptom-domain sizes respectively.

*/

unsigned int dis_num, symp_num, ds_num,tmp;

float cnst;

/* ODutput file stream for the patient_symptom file. */

ofstream patient_symptom("patient_symptom");

/* Output file stream for the disease_symptom file. */

ofstream disease_symptom("disease_symptom");

/* Input file stream for the constant file. */

ifstream in("constant");

if (arge != 2)
{
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cout << "Usage: <executable> <patient-symptom-size> " << endl;
exit (0);
X

else ps_num = atoi(argv([1]);

if('in.eof())
in >> cnst;
else cnst = constant;

symp_num = (unsigned int) (symptom_num * cnst);
dis_num = (unsigned int) (disease_num * cnst);
ds_num = (unsigned int) (initial_ds_num * cnst);
srandom(1) ;

/* Using ‘random()’%(ps_num/5)’ for patient ensures that the
number of patients does not exceed ‘ps_num/5’ and consequently
every patient has on average 5 symptoms.

*/

for(i=0;i< ds_num;i++)

{
patient_symptom << random()%(ps_num/5) << 7 ’;
patient_symptom << (tmp=(random()jsymp_num)) << endl;
disease_symptom << tmp << ’ ’;
disease_symptom << random()’dis_num << endl;

}

/* The first loop was to ensure that some symptoms across patients
and diseases were common. This will ensure that the result for
very complex queries is non-null for the most part.

*/
for(i=ds_num;i< ps_num;i++)
{
patient_symptom << random()%(ps_num/5) << 7 ’;
patient_symptom << random()?%symp_num << endl;
}

/* Output file stream for the constant file for generating the next
value of the constant. */
ofstream nextval("constant");

/* Store next value of the constant. */

nextval << (float) (cnst*1.05);

/* Display details of sizes of relations for this run. */
cout << "patient-symptom: " << ps_num << " tuples " ;

cout << '"disease-symptom: " << ds_num << " tuples" << endl;
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