RECURSIVE PROGRAMMING THROUGH TABLE LOOK-UP*¥
Daniel P. Friedman
David S. Wise
Mitchell Wand
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNicAL ReporT No. 45

REcUrRsI1VE PROGRAMMING THROUGH
TABLE Look-UP

DanieEL P. FRIEDMAN
Davip S, WisE
MITCHELL WAND

MarcH, 1976

¥Research reported herein was supported (in part) by
the National Science Foundatlon under grant no.
DCR75-06678 and no. MCS75-08145.

To be presented at 1976 ACM Symposium on Symbolic
and Algebraic Computation.



Recursive Programming through Table Look-up¥

Daniel P. Friedman
David S. Wise
Mitchell Wand

Computer Science Department
Indiana University
Bloomington, Indiana 47401

Abstract - The maintenance of arbitrarily
Targe tables of previously computed values
for functions on integer domains becomes
practical when those tables are bullt using
constructor functions which suspend evalu-
ation of their arguments. Two styles of
programming with such tables are presented.
The first results from replacing recursive
invocations within standard recursive
funection definitions with a reference into
a table which is predefined to be all the
possible results of the funetion. The
second, more sophisticated, style requires
that the table be defined strictly through
a generation scheme. In either case the
table may be avallable to the user as a
data structure exclusive of the function
definition with entries still being mani-
fested only when they are actually used.

Keywords and Phrases - suspended evaluatlon,
generation, streams, infinite lists, dynamic
owns, LISP.

CR Categories - 4.13, 4.22, 5.7, 4.12.

Introduction

The goal of this paper is to demon-
strate that standard recursive definitions
may easily be transformed to permit the
specification of a table of arbitrary size.
The table, built with "suicidal suspensions"
[Friedman and Wise 1976], only manifests
itself for values which have been explicitly
used; these values remain easily accessible
for later reuse. The values which are
computed from an algorithm expressed 1in
"top-down" recursive code are computed
through a bottom-up computation sequence
which is time-optimal for that algorithm
in the sense of Berry [1976]. Such tables
may also be specified by generating func-
tions based on an unconventional formulation
of traditional recurrence relations
requiring the concept of a suspended
structure.

The technigue of purely recursive
expression was popularized by McCarthy

#Research reported herein was supported
(in part) by the National Science
Foundation under grant no. DCR75-06678
and no. MCS75-08145.

[1960] in the fundamentals of the language
LISP, referred to here as pure LISP and
elsewhere as LISP 1.0. As this language
became more popular, different researchers
with varying needs added more and more
"enhancements" to the language; notable
versions, like LISP 1.5, LISP 1.6, MACLISP,
and INTERLISP found their way into common
use. 1In this paper we build on recent
results which provide the least-fixed-point
semantics for pure LISP, demonstrating new
programming styles available within pure
LISP with the new semantics. These new
styles provide a means for accomplishing
many of the goals which motivated the
expanded versions of LISP, without the
addition of extra structures to the basic
language.

The new progremming style allows
function application as the only control
structure and lambda-binding of parameters
as the only dynamic association between
identifier and value. We provide static
bindings, which are not explicitly part of
pure LISP, in order to simplify the identi-
fication of globally defined functions and
globally defined constants. ‘These may be
subsumed into classic. definitions of pure
LISP by regarding such bindings as part of
the global associlation list which exists
pefore run-time. These static globals will
pe declared explicitly with the use of the
symbol "=". =

The concept of suspended evaluation is
introduced for LISP by Friedman and Wise
[1976] and is similar to lazy evaluation
[Henderson and Morris 1976] in its theore-
tical fmpact. It is easily implemented by
changing the semantics of the elementary
functions car, cdr, and cons. Instead of
placing the final values in the node
alloecated by cons, each unevaluated argument
with the current environment is placed there
in a distinguishable structure called a
suspension. The value of a call on cons is
unchanged. When either of the two projec-
tion functions is invoked on that node,
the argument is evaluated in the preserved
environment. The resulting value takes the
place of the suspension in the node and is
returned. As a result the LISP evaluator
is invoked no more under this interpretation
of elementary functions than under
McCarthy's classic interpretation, and in



many instances the evaluator is called
significantly less. Thus when the inter-
preter itself is interpreted under these
semantics the least-fixed-point semantics
for LISP results.

In this paper we study the effects of
this interpretation on programming style
and treatment of data structures. This
treatment does not depend on a different
interpreter, but only on the treatment of
the structure manipulation functions car,
edr, and cons. The results generalize
trivially to records [Hoare 1975] of more
than two fields.

The LISP syntax used here is standard
with two minor exceptions. Conditional
expressions are presented as alternating
sequences of predicates and selections with
the commenting keywords if, then, elseif,
and else interspersed in order to suggest
the pairing which in traditional code is
expressed by extra parentheses, creating
the appearance of bogus function calls.

We have shown elsewhere that under the new
semantics cond can be just another function,
as it appears in this syntax [Friedman and
Wise 1976]. The other syntactilc change is
‘related to subscripting of arrays. The
form <1 1lis> where i is an integer and lis
is a 1ist returns the ith element in 1lis.

.Infinite Lists

Let us begin with a simple LISP func-
tion which no programmer would dare invoke
under the old interpretation scheme.
Successors is globally defined here as a
function and naturals is defined as a
constant.

(successors n) =
(cons (addl n)
(successors (addl n)) ) ;

naturals = (successors o) .

Assuming that the call to successors
is not dispatched from the top level of
LISP (which includes an impliecit print
function which traverses the result using
car and cdr), we encounter no difficulty
in the evaiuation of naturals. Its value
is a reference to a single node whose A-
field, cAr field, is a suspension which
would evaluate to 1 if ever coerced and
whose D-field, c¢Dr field, is a suspension
which would evaluate to another node
initially filled with similar suspensions,
were 1t coerced.
is, of course, never seen by the user.
Naturals is perceived as a structure to be
manipulated, and all reasonable manipulations
are well-defined.

For instance, one might ask to see the
value of <4 naturals>, the fourth element
on the list, sometimes phrased
(cadddr naturals). As the interpreter
finishes three successive c¢dr's and then a
car, four coercions occur, creating three
new nodes and filling in four fields perma-
nently. The result is that 4 is returned,
and a change to the invisible physical data
structure takes place. A later invocation
of <4 naturals> creates no new nodes and

This structure of naturals

2

causes no coercions. We say the actual data

"structure is invisible because it reacts to

manipulation as if car and cdr were probes

into a delicately balanced physical system:

whenever a field is accessed its final

contents Aappear.

(terms n) = (cons (reciprocal (square n))
(terms (addl n))) .

This sequence should be familiar to
analysts: the sum of the elements (terms 1)
converges to m%/6. If one made the mistake
of printing (terms 1) then the output would
begin

(1.0 0.25 0.1111 0.0625 0.04

until the capacity of the local machine were
exhausted. The sequence is infinite so of
course this behavior is to be expected.
Under the old interpretation of cons nothing
would be printed at all because the traverszl
of a result by print does not begin until
that result is completely manifested as a
data structure. Because the suspending cons
creates the data structure as the top-down
traversal proceeds,we have the net effect of
top-down evaluation of recursive code.
Landin [1965] defines a stream as, in
effect, a cons which evaluates its first
argument but suspends its second. If terms
were defined using the stream model then
the result of printing (terms 1) would be
the same finite prefix of an infinite list
as indicated above. The difference 1s
apparent when one considers <3 (terms 0)>.
Under the stream model the entire prefix of
the list (terms 0) must be coerced up to
and including the third element; this
coerclon diverges because the first element
diverges. Under the completely suspending
cons, <3 (terms 0)> converges to 1/4 or
0.25 because the value of 1/0% is not
coerced in obtaining the value which 1s the
third on the list.

efte.

Global Tables

With the elementary concept of Infinite
lists it is possible to define global struc-
tures which are conceptually unbounded but
which are, in fact, of a finite length
determined by past use. The effect is
similar to the dynamic own array of ALGOL
60, but without the associated difficulties.
Consider the following function for the ith
Fibonacci number, which assumes unused own
variables are always initialized to zero.

integer procedure Fibonacci(n);

value n; integer n;
begin
own integer array fib[1l:n];
Fibonacci := (if n < 0 then 0 else
If n = 0_then 1 else
if fib[nl # 0 then fib[n]
else (fib[n] :=
Fibonacci(n-2) +
Fibonacci(n-1) ))
end.



This procedure has the property that
no value of Fibonacci 1s computed more than
once. Thus the sequence of states of the
array fib is a time-optimal bottom-up com-
putation sequence in the sense of Berry
[1976]. This property is characteristic of
the programs we consider.

i The procedure runs in time 0(n) if the
operation of array access is presumed to
take constant time. As elegant as that
pbehavior appears when compared with o(2n)
pehavior of the classic recursion

else (Fibonacci(n-2) + Fibonacci(n=1))
it is not a fair bound when the problems of
dynamic own arrays are considered. If such
an array grows larger and larger with
successive calls to its enclosing block,
the system will either be forced to recopy
a sequentially stored vector into a larger
puffer, or it will be forced to successively
"1ink additional storage onto the pre-
existing structure on successive calls. In
either case access into such a structure of
size n should be charged time 0(n),and the
net run-time of Fibonacci is 0(n?).

Compare the ALGOL-llke code above,
with its gross assumptions on initialization
of variables and its exclusively local
array, to the LISP globals developed below.
Due to subscripting conventions,

1 <n fibtable>
is equal to :
(fibonacci (subl n)) .

fibtable

= (fibtail 0);
(fibtail n) =

(cons (fibonacel n)
(fibtail (addl n)) ) ;

(fibonaceci n) = (cond
if (lessp n 0) then 0
elselif (lessp n 1) then 1
else (sum (fibonacci (sub2 n))
<n fibtable>:) ) o

In order to replace the recursive call
(fibonacci (sub2 n)) by a table reference
we must be sure that the table entries
always exist. This can be accomplished
by a minor alteration in the bases:

(fibonacei n) = (cond
. Af (lessp n 0) then O
elseif (lessp n 2) then 1
else (sum <(subl n) fibtable”
<n fibtable> ) ) -

The structure fibtable 1is accessible
throughout the system. Atoms may be lambda-
pound to 1t; a wasteful user might even
attempt to see it, abusing LISP for a peek
at its prefix. The time to compute

<n fibtable> is bounded by 0(n?), taking
into account the 0(1) time needed to

traverse to the ith element on a list.

We believe that the implementation of
infinite structures through suspending cons
is far sounder than through other programming
styles. The technigue of dynamic own arrays
is far more powerful and correspondingly
more complex than the LISP approach. The
contents of dynamic own arrays may be
changed at any time while the values within
a2 LISP structure are constant with respect
to the binding to the structure, hence pre-
ordained, if not already extant. Some care
is necessary in constructing the array so
that recurrence relations which reference
other entries in the array doin fact converge,
but this is the same as determining that a
highly recursive function definition defines
a2 total function. Such references parallel
recursive function calls, asking only a
natural extension of LISPers' already
refined concepts of recursion and cons,
whereas the manipulation of dynamic own
arrays require some appreciation of imple-
mentation details, such as initialization
conventions.

Multi-dimensioned Tables

A recursive (numeric) function of
several parameters may use a similarly

‘structured table to retain its values. The

dimension is determined by the number of
arguments. Interestingly, depending upon
the recursion pattern, some entries in this
table may never be created no matter what
arguments are supplied to the associated
function. A familiar example 1s available
in the combination (binomial coefficient)
function. Defined in ALGOL and taking 1into
account a well known symmetry it appears as

integer procedure Choose (m, )i
value m, n; integer m, 1n;
Thoose := (if n < 0 then 0 else
if n = 0 then 1 else
if n+n > W then Choose(m, m-n)
else Choose(m-1, n) +
Choose(m-1, n-1) .

This recursion is that often associated
with Pascal's triangle, which is the table
of values associated with Choose. The ~
subscripting convention again requires that
<n <m triangle>> 1s equal to (choose (subl m)
(subl n)); a matrix is represented as a list
of vectors so that this ex ression refers
to the nth entry in the mth vector.

triangle = (rows 0) ;

(rows m) = (cons (tail m 0)
(rows (addl m)) ) 3
(tail m n) = (cons (choose m n)

(tail m (addl n)) ) ;

(choose m n) = (cond
if (lessp n 0) then O
elseif (zerop n) then 1
ziseif (greaterp (sum n n) m)
then (choose m (diff m n))
else (sum <(addl n)<m triangle>>
<n <m triangle>> ) ) .



As before triangle is a globally defined
list which may be inspected or traversed by
any function which accesses it as a free
variable, but the bindings associated with
it cannot be permanently altered. It may
be treated as an infinite two-dimensional
array,but only part of 1t will ever be
actually created by any single program.

In fact, if its only use is as a free
variable to choose then only the quarter
below a "south-by-southeast" diagonal will
ever have manifested values (where the
"southeast" diagonal is the main diagonal
and all entries above 1t are zero upon
access. See Figure 1.) :

To see more clearly which values are
created, let us consider some examples.
One can evaluate (choose m 0) and
(choose m m) without causing any more of
triangle to appear than the single node
(containing suspensions) which was origi-
nally allocated to be its value. Assuming
that no entries of triangle have yet been
coerced and that 0 < n < m/2 then a call of
(choose m n) will cause the

n(m-n) + 2(m-1)

nodes to be allocated which build an upper-
left corner of triangle (Figure 1) with a
capacity for

n(m-n) + (m-1),
values, but only

n{n+l) - %(Bn—l) -1

values are actually entered. Surprisingly
the entry in <(addl n)<(addl m) triangle>>
is not made as a result of this call even
though the value is at hand.

A dramatically different behavior
occurs if the programmer accesses
<n <m triangle>> directly rather than
calling (choose (subl m) (subl n)). In
this case the value 1s entered into the
table and then returned. In this way the
zero entries above the main diagnonal of

_triangle may be called into existence as
can never happen when the structure 1s only
accessed via the function choose.

Table accesses are a convenient sub-
stitute for recursion whenever the function
is commonly used and has the integers as
its domain. It is particularly convenient
when the recursion pattern is irregular so
that the necessary recurrent values are not
easily predicted and are supplied through
additional clever arguments. Such a recur-
sion pattern is analogous to course-of=-
values induction.

The programmer, having established a
table of the values for a function, is free
to access the table or to call the function.
If the function contains clever code, such
as the symmetry handler within choose, then
our advice is to stick with the function.
However, if the function requires multiple
accesses into the table then the expense
of accessing the dynamic data structure can
drive the running time bound up to polyno-
mials of degree higher than that warranted
by the recursion pattern. In the next

section we provide a way to avoid this cost.

Generative Programming

If the programmer uses a table to
preserve the values of the function and has
that table around at the same time as a
potentially useful data structure, then he
can define the values in terms of the table
alone. We claim that the expression of
functions as generated tables is naturally
related to the kind of programming exhibited
above and we shall demonstrate some advantages
of that form of expression.

We briefly present generative forms for
the functional tables discussed above.

fibtable = (fibtail 0 1) ;

(fibtail m n) =
(cons n (fibtail n (sum m n))) .

Now the function call (fibonacci n) 1is
replaced by a table reference

<(addl n) fibtable> Since only one table
traversal is performed, the time for all
traversals collapses to 0(n) and so the
total time becomes linear.

triangle = (pascal (cons 1 (zeros))) ;.

(zeros) = (cons 0 (zeros)) ;
(pascal row) =
(cons row
(pascal (cons 1
(pairsum row) )) );

(pairsum row) =
(cons (sum (car row)
(car (ecdr row)) )
(pairsum (cdr row)) ) .

As before <n <m triangle>> 1is synonomous
with (choose (subl m) (subl n)) but without
the other definition of choose this compu-
tation method, including a single subscripted
access, is the only way to recover the
binomial coefficients.

Expression of functions through
generated tables also allows the table to be
built locally and maintained through a tempo-
rary lambda-binding instead of through a
global declaration. In the examples of the
earlier section we accessed the table from
within the function which was used to deter-
mine other entries in it. This very nearly
circular definition was possible because
the referenced object was declared to be
global at the expense of 1ts being static
in interpretation (although not in physical
structure). When the same table is
expressed generatively its generator may be
passed as an argument for local binding and
interpretation only withln a temporary
environment. Upon exit from that inner
environment the structure is recovered. A
function call 1like <7 (fibtail 0 2)> returns



26, having established a table for a
different Fibonacecil sequence which is parti-
ally manifested and then lost.

A property of the table generators
above is that they do not use the funetion
cond in their definitions. That is a
symptom of a very regular recurrence which
is not always possible.

As an example of table generated using
cond within the code we offer the following
closed form for the Sieve of Eratosthenes
which generates a list of all the prime
numbers without a multiplicative operation.
(Henderson and Morris [1976] offer a similar
example.) The critical function is
removemult which removes values of mult +
I7inc for all i from the monotonié 11st of
integers lis, where inc, mult, and lis are
its parameters.

primes = (sieve (successors 1)) ;

(sieve nums) =
| (cons (car nums)
(sieve (removemult
(car nums)
(double (car nums))
(edr nums) )) ) ;

(removemult inc mult 1is) = (cond
if (lessp (car 1is) mult)
then (cons (car 1lis)
(removemult ine
mult
(edr 1is). ))
elseif (greaterp (car 1is) mult)
then (removemult inec
(sum mult inec)

else (removemult inc
mult
(edr 11s8) ) ) .

The function call (double n) meaning

(sum n n) might be replaced by (square n)
by a programmer tolerant of multiplication
and familiar with number theory. So the
primitive recursive function (prime i)
which returns the ith prime is merely

<i primes> ; the recursive definition of
this function is rather complex without
a.table or with a table reference used
only as a replacement for a recursive
call as in the previous section.

Conclusions

The use of an arbitraily large table
made possible by the suspending cons was
shown to be convenient in efficiently ex-
pressing recursive numeric procedures. It is
often very easy to replace recursive function
calls by accesses into a global structure
which preserves the results of earlier calls
usable for just the cost of finding them.

At this level, such tables may be simulated
by dynamic own arrays in block structured
languages but at some expense in expression
and compiler difficulties.

A more sophisticated use of these
structures, although one which asks more

lis) .

than classic recursive.definitions of
functions, is their use as the explicit
function definition. In order to meet this
use, the arbitrarily large structure must

be expressed as a result of a generating
function which is in closed form (exclusive
of the table). The computation performance
will be slightly more efficient in this form
but the required expression may be a problem
because such definitions are not in common
use. The user can achieve improvements in
performance with either choice if the
functions are commonly used or highly recur-
slve, Jjust by avoiding wasted effort.

Acknowledgement

We thank Cynthia Brown for her careful
reading of the manuscript and for her.
suggestions which improved it.:

References ; .
G. Berry. Bottom-up computation of recursive
programs. Revue Francaise d'Informatique
et de Recherche Operationaelle 10, 3
(March, 1976), 4/-82.
W.H. Burge. Recursive Programming Technigues,
Addison-Wesley, Reading, MA (1975).
D.P. Friedman and D.3. Wise. Cons should not
evaluate its arguments. Third Interna-
tional Colloquium on Automata, Languages
and Programming, Edinburgh University
Press (July, 1976).
Henderson and J.H. Morris, Jr. A lazy
evaluator. Third ACM Symposium on
Principles of Programming Languages
(January, 1976), 95-103.
C.A.R. Hoare. Recursive data structures.
International Journal of Computer and
Information Sciences 2, (June, 1975),
105-132.
McCarthy. Recursive functions of symbolic
expressions and their computation by
machine - I. Comm. ACM 3, 4 (April,
1960), 184-195. — %

FIGURE 1.
Southeast
M—
South South-Southeast
Allocations coerced by (CHOOSE M N) .

The hatched area indicates nodes allocated
due to coercion of cdr fields. The cross-
hatched-area indicates nodes whose car
fields are evaluated as well.

\J1



