
An Architecture for Parallel Symbolic

Processing Based on Suspending Construction

Eric R. Jeschke

Submitted to the faculty of the Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

April 1995

c Copyright 1995

Eric R. Jeschke

All rights reserved

ii

Accepted by the Graduate Faculty, Indiana University, in partial ful-

�llment of the requirements of the degree of Doctor of Philosophy.

Dr. Steven D. Johnson
(Principal Adviser)

Dr. David S. Wise

Dr. Dennis B. Gannon

Bloomington, Indiana

April 3, 1995. Dr. Jonathan W. Mills

iii

To Charmaine

iv

abstract

Symbolic languages relieve the programmer from many resource management consid-

erations that are required for traditional programming languages, such as memory

and process management. This makes them promising candidates for solving a large,

general class of programming problems on shared-memory MIMD-class parallel com-

puters. The incorporation of these resource management problems into the parallel

language implementation domain is a topic of active research.

This dissertation discusses the design of a list processing engine for implementing par-

allel symbolic languages on stock multiprocessors. The design results from experience

implementing an applicative language on the BBN Buttery multiprocessor. The lan-

guage and engine are based on suspending construction, a �ne-grained, concurrent,

non-strict computation model.

The contributions of the dissertation are:

1. A virtual machine architecture for �ne-grained parallel list multiprocessing.

This virtual machine design identi�es key areas where hardware support would

accelerate the execution of programs using computational models similar to

suspending construction, such as Lisp with futures.

2. A microkernel providing memory management, process management and device

management for high level parallel symbolic programs. The resource manage-

ment techniques described represent new approaches to these problems for many

parallel symbolic languages.

3. An analysis of Daisy, a language based on suspending construction and imple-

mented on this architecture and microkernel.

v

acknowledgements

I would like to thank my advisor and mentor, Steve Johnson, for introducing me to

an interesting research project and for his guidance, support and warm friendship. I

am also grateful to my research committee members: David Wise, Dennis Gannon

and Jonathan Mills, for their help and suggestions. Assistant Dean Frank Hoole at

the Graduate School funded my assistantship while I �nished my dissertation. I am

also indebted to the secretaries and sta� of the IU Computer Science Department for

innumerable favors and friendly, courteous service.

My family's support and encouragement has meant a great deal to me during my years

at Indiana. Love and thanks to the Jeschke's: Marlin, Charmaine, David, Margaret,

and Bart Miller.

I have made many wonderful friends during my \tenure" in Bloomington. The fol-

lowing people have directly contributed to my well being as a graduate student:

{ Will Reilly, Charles Da�nger, Anand Deshpande and Terri Paullette;

{ Tim Bridges and the rest of the crew at Data Parallel Systems for good camer-

aderie and all the cheese crackers I could eat;

{ Dear housemates Judy Augsburger and Susan Coleman;

{ Good buddies Lisa Meeden, Gary McGraw, Amy Barley, Paul and Doug Steury,

Ethan Go�man, Darrin Pratt and Shelly Barnard.

Extra special thanks to Stash, Hoadley, Sophie, and especially, Amy Baum, for the

peace and happiness you have given me.

vi

contents

Abstract v

Acknowledgements vi

1 Introduction 1

1.1 Overview of the Dissertation : 3

1.2 Parallel Symbolic Processing : 4

1.3 Suspending Construction : 5

1.3.1 A Concurrent Computation Model : : : : : : : : : : : : : : : 7

1.3.2 Suspensions and Evaluation Semantics : : : : : : : : : : : : : 8

1.3.3 Side-e�ects and Parallelism : : : : : : : : : : : : : : : : : : : 10

1.3.4 Identifying Parallelism : 12

1.3.5 A Cost Analysis of Suspending Construction : : : : : : : : : : 13

1.4 History of the Daisy/DSI Project : 15

2 A Primer 18

2.1 Virtual Machine Issues : 18

2.2 Kernel Issues : 20

2.2.1 Memory Management : 21

2.2.2 Process Management : 23

2.2.3 Device Management : 25

2.3 Daisy : 26

2.3.1 Syntax : 27

2.3.2 Semantics : 28

2.3.3 Annotation : 30

vii

3 Architecture of the DSI Machine 31

3.1 Memory Interface : 32

3.1.1 Tags and Types : 33

3.2 Processor State : 34

3.3 Instruction Set : 36

3.4 Signals : 37

3.4.1 Signal Routing : 38

3.4.2 Per-process Signals : 39

3.5 Interconnection Topology : 40

3.5.1 LiMP : 41

3.5.2 The BBN Buttery Architecture : : : : : : : : : : : : : : : : 42

3.6 Summary : 42

4 The DSI Kernel 45

4.1 Resource Management in Symbolic Programs : : : : : : : : : : : : : : 45

4.2 Kernel Structure : 47

4.2.1 Monolithic vs. Micro Kernel : : : : : : : : : : : : : : : : : : : 47

4.2.2 Distributed vs. Non-Distributed : : : : : : : : : : : : : : : : : 48

4.2.3 Kernel Organization : 49

4.3 The Kernel Interface : 49

4.3.1 Message Requests : 50

4.3.2 Traps : 51

4.3.3 Interruption : 52

4.4 Summary : 52

5 Memory Management 54

5.1 Memory Organization : 54

5.2 Storage Allocation : 55

5.2.1 Data Distribution : 59

5.2.2 Load Balancing : 60

5.2.3 Locality : 62

5.3 Storage Reclamation : 63

5.3.1 Garbage Collection : 64

5.3.2 Minor Phases : 66

viii

5.3.3 Garbage Collection: Observations : : : : : : : : : : : : : : : : 67

5.4 Summary : 67

6 Process Management 69

6.1 The Process Life Cycle : 69

6.2 Interprocess Synchronization : 71

6.3 Tracking Dependences : 73

6.3.1 Distributed Demand-Driven Scheduling : : : : : : : : : : : : : 74

6.4 Creating Parallelism : 75

6.5 Static vs. Dynamic Parallelism : 75

6.6 Controlling Parallelism : 76

6.7 Conservative vs. Speculative Parallelism : : : : : : : : : : : : : : : : 78

6.7.1 Managing Speculative Computation : : : : : : : : : : : : : : : 79

6.7.2 Demand Coe�cients : 82

6.8 Sharing and Cycles : 84

6.8.1 Embedding Dependences : 85

6.8.2 Cycles : 86

6.9 Increasing Granularity : 86

7 Device Management 88

7.1 The DSI I/O Model : 88

7.2 Device Drivers : 89

7.3 Input Devices : 91

7.3.1 The Device Manager : 92

7.3.2 I/O Signals : 93

7.3.3 Garbage Collecting Devices : : : : : : : : : : : : : : : : : : : 94

7.3.4 Flavors of Input Devices : 95

7.4 Output Devices : 97

7.4.1 Flavors of Output Devices : 98

7.4.2 Output Driven Computation : : : : : : : : : : : : : : : : : : : 99

7.5 Bidirectional Devices : 99

7.6 Limitations of DSI's I/O Model : 101

7.6.1 Interleaved Terminal I/O : 101

7.6.2 Non-Character Mode Devices : : : : : : : : : : : : : : : : : : 104

ix

7.6.3 Stateful Devices : 104

8 An Analysis of Daisy 106

8.1 Demand Driven Computation : 106

8.2 Limitations of Suspending Construction : : : : : : : : : : : : : : : : : 108

8.3 Excessive Laziness : 108

8.3.1 Bounded Eagerness : 111

8.3.2 Granularity Revisited : 112

8.3.3 Strictness Analysis : 112

8.4 Program Annotations : 112

9 Conclusion 115

9.1 Summary of Results : 115

9.1.1 Implementation Notes : 116

9.2 Future Work : 117

9.2.1 Incremental Enhancements : 117

9.2.2 Implementing Other Languages : : : : : : : : : : : : : : : : : 120

9.3 Related work : 121

9.3.1 Parallel Functional Languages : : : : : : : : : : : : : : : : : : 122

9.3.2 General-Purpose Symbolic Processing Kernels : : : : : : : : : 123

9.3.3 Parallel Lisp : 125

9.3.4 Parallel Lisp: Summary : 133

9.4 Conclusion : 135

Index 146

Curriculum Vitae 153

x

list of tables

1 DSI Signals and Handlers. : 53

2 Possible gc Bit Con�gurations : 65

3 Host Interface Layer I/O Calls : 91

4 Daisy I/O Primitives : 93

5 Standard Keyboard Filter Actions : 97

xi

list of figures

1 Suspending construction : 7

2 Coercing a Suspension : 8

3 A Suspending Construction Data Space : : : : : : : : : : : : : : : : : 9

4 DSI Virtual Machine : 31

5 Cell Storage Types : 33

6 A Processor Node's Register State : 35

7 Signal Handling : 43

8 A banyan network : 44

9 DSI Memory: Physical Layout : 55

10 DSI Memory: Logical Layout : 56

11 Heap Segment Organization : 57

12 Cell Allocation Vector : 58

13 Garbage Collection Execution : 64

14 Process Dependences : 72

15 A Speculative Conditional : 81

16 Heap Sharing : 85

17 DSI Character Representation : 89

18 Character Stream I/O : 90

19 DSI Device Descriptors : 92

20 Input Device Handling : 94

21 Input TTY Handling : 96

22 An Output Process : 97

23 A Bidirectional Unix Pipe \Device" : : : : : : : : : : : : : : : : : : : 102

24 An xdsi Session : 105

25 The Daisy Interpretation Pipeline : 107

26 The Quicksort Algorithm in Daisy : 109

xii

chapter one

Introduction

High-level programming languages for symbolic processing have been widely studied

since the inception of Lisp in the late 1950's. The family of symbolic languages is now

a diverse group, encompassing Lisp and its derivatives, purely functional languages

like Haskell, logic programming (e.g. Prolog), Smalltalk, and many more. One of the

attractive properties of these languages is that they unburden the programmer from

storage management considerations such as allocation and reclamation of objects.

By automating these low-level implementation details, programs written in these

languages are rapidly developed and are usually simpler to understand and maintain.

Interest in symbolic processing has further increased in recent years as paral-

lel computers have made inroads into the mainstream computer market. Small- to

medium-sized RISC-based shared memory MIMD architectures will characterize the

servers and workstations of the next decade. Symbolic languages are good candi-

dates for programming these machines; their heap-orientation maps well to the shared

memory architecture and their underlying computational models often facilitate par-

allelism. As with storage management, symbolic languages can subsume low-level

concurrent programming details such as process creation, communication, synchro-

nization, load balancing, scheduling and data distribution; detail that seriously com-

plicates programs written in traditional imperative languages. Symbolic languages

remove much of this \noise" from programs, improving readability, portability, and

scalability of the code. Additional bene�ts are reduced software development cycles

and maintenance costs. Removing these details from the language shifts the burden of

memory and process management from the programmer to the language implementa-

tion. The incorporation of these di�cult problems into the language implementation

1

1 Introduction

domain is a topic of active research.

The subject of this dissertation is the design and implementation of DSI ; a virtual

machine and microkernel for list-based, symbolic multiprocessing. I also describe and

briey analyze the operation of Daisy, an applicative language built on top of DSI.

DSI and Daisy are designed around suspending construction, a Lisp-derived, demand-

driven, parallel computation model developed at Indiana University. This dissertation

provides insights into the problems, issues and solutions involved in a real parallel

implementation of a language based on suspending construction. Previous incarna-

tions of DSI/Daisy have been multi-threaded sequential implementations, designed

primarily to explore the demand-driven, lazy aspect of suspending construction-based

computation. The premise of suspending construction as a parallel processing vehicle,

while much discussed, was not realized in an actual implementation. This disserta-

tion work extends DSI's virtual machine architecture to handle the complexities of

a shared-memory, MIMD parallel implementation. The DSI kernel, an embedded

operating system that handles resource management for programs running on this

architecture, is redesigned from the ground up to handle parallel task, memory and

device management in parallel, using a loosely-coupled, distributed design. The al-

gorithms presented here are based on an implementation of DSI/Daisy on the BBN

Buttery, a commercial multiprocessor.

In a practical sense, this work results in a platform for further exploration of

parallel and system-level computing based on suspending construction, with a richer

development environment and improved language, interfaces and tools. In a broader

sense, the contributions herein can be categorized into three main areas. First, the

virtual machine description highlights the key hardware needs of suspending construc-

tion and how that di�erentiates DSI's machine design from conventional architecture.

This suggests speci�c enhancements to stock hardware that would greatly bene�t exe-

cution of languages oriented toward �ne-grained list processing. Secondly, we present

the design of a low-level, general kernel for �ne-grained parallel symbolic process-

ing based on this architecture. The kernel is described in terms of memory, process

and device management algorithms. My approaches to these problems suggest new,

alternative strategies for resource management in parallel symbolic languages of all

avors. Finally, a discussion of suspending construction in the context of the Daisy

2

1.1 Overview of the Dissertation

language highlights the e�ectiveness and limitations of this computing model for par-

allel processing, and suggests ways in which the latent parallelism of the model might

be better exploited in future designs of the language.

The topics discussed in this thesis are a cross-section of the areas of programming

languages, computer architecture and parallel processing. As such, this dissertation

will primarily be of interest to language implementors and, to a lesser degree, other

researchers in the aforementioned areas. In particular, much of this work is applicable

to other parallel symbolic language implementations, especially applicative languages.

1.1 Overview of the Dissertation

As with many symbolic languages, the architecture and resource management sys-

tem (DSI) are strongly inuenced by the surface language (Daisy) and computation

model (suspending construction). Therefore it is important to provide a thorough

background to explain the model that motivated our design and implementation de-

cisions. The remainder of this chapter introduces symbolic processing and the sus-

pending construction model and concludes with a brief history behind the Daisy/DSI

project.

Chapter 2 provides general background and introduction to the topics and issues

discussed in the rest of the thesis, particularly resource management problems for

dynamic, �ne-grained parallelism. Chapter 3 discusses the design of DSI's virtual

machine. Chapter 4 describes the overall structure of DSI's kernel, which provides

background for references to relevant implementation details in the following chap-

ters. Chapters 5{7 present the design and implementation of the kernel's resource

management algorithms along memory, process and device categories.

Chapter 8 discusses aspects of suspending construction in the Daisy language. The

language itself is only tangentially relevant to this thesis as a vehicle for expressing

suspending construction programs, and a brief introduction to the language and its

primitives are all that is required. A more thorough introduction and tutorial to the

Daisy language is the Daisy Programming Manual [Joh89b] and associated research

papers (see bibliography).

3

1.2 Parallel Symbolic Processing

Chapter 9 summarizes the work accomplished, indicates directions for future re-

search and references related work in Lisp-based parallel symbolic processing (com-

parisons are sprinkled throughout the thesis).

1.2 Parallel Symbolic Processing

In the terminology of parallel processing, applications are sometimes characterized as

falling into the domain of either symbolic or numerical computation [AG94, p. 37].

The distinction between these two categories is somewhat fuzzy; Almasi and Gottlieb

[AG94] distinguish the two by the ratio of calculation to data motion. Numerical

processing is arithmetic-intensive; example applications include particle calculations,

uid dynamics, and CAD. Symbolic processing emphasizes the rearrangement of data.

Examples of applications in this category include searching, non-numerical sorting,

lexical analysis, database management, arti�cial intelligence problems, etc. Tradi-

tionally, imperative languages such as Fortran and C have been used for numerical

programming, while languages like Lisp, Smalltalk, and Prolog have been used to

write symbolic programs.

Halstead [RHH85] notes that numerical computation generally has a relatively

data-independent ow of control compared to symbolic computation. Compiler de-

pendence analysis can turn this data independence into a fair degree of parallelism

that is amenable to vector, pipelined and SIMD approaches. The parallelism of sym-

bolic computation, on the other hand, can be very data-dependent ; this suggests

a MIMD approach in which parallelism is primarily generated and controlled dy-

namically. Although parallel symbolic languages are quite diverse and may di�er

substantially in many ways, they all share a core set of resource management prob-

lems associated with this dynamic control of parallelism: task scheduling and load

balancing, dynamic memory management, etc. Chapter 2 provides an introduction

to many of these problems from a Lisp perspective.

The number of parallel symbolic language implementations has grown consider-

ably in the last ten years or so. Most of these languages fall into one of the following

broad categories:

� parallel dialects and descendants of the Lisp family (we include Daisy here);

4

1.3 Suspending Construction

� parallel PROLOG and concurrent logic/constraint languages;

� purely functional languages (including dataow), and

� concurrent object-oriented languages.

There are undoubtedly more than a few parallel symbolic languages that can't be

comfortably lumped into one of these areas, but the bulk of working parallel imple-

mentations certainly do. The di�erences between these various languages are due to

many factors, including:

1. an emphasis on particular data types or operations (e.g. list processing, tuples,

objects, etc.);

2. an orientation toward a particular reduction or computation model (e.g. uni�-

cation, graph reduction, data ow, etc.);

3. within the same language family, in syntax and semantics;

4. the type of architecture an implementation is targeting (e.g. distributed/message

passing vs. shared memory);

5. speci�c approaches to parallelism and resource management (i.e. dynamic man-

agement of processes, memory and I/O).

In the course of this report we will elucidate in these terms how and where Daisy/DSI

�ts into the symbolic processing �eld. For now, su�ce it to say that Daisy is a

descendant of Lisp (although syntactically and semantically, it shouldn't really be

called a Lisp variant). This heritage is reected in its underlying architecture, DSI,

which is designed as a list-multiprocessing engine.

1.3 Suspending Construction

Suspending construction is a non-strict, concurrent evaluation model for list-oriented,

applicative languages. Suspending construction inspired the development of the Daisy

language and the DSI platform on top of which Daisy is constructed.

5

1.3 Suspending Construction

The basis of suspending construction is a transparent decoupling of structure for-

mation from determination of its content in a symbolic domain of lists and atoms.

Under most Lisp variants, structure is built recursively by applicative-order evalua-

tion of subexpressions, whose results form the template for initializing the structure

(usually a list). For example, evaluating the Lisp expression

(list (fact 5) (fact 7) (fact 10))

where fact is the factorial function, preforms three subexpression evaluations of

(fact 5), (fact 7) and (fact 10) before cons-ing the results into a list. Under

suspending construction, suspensions are created in lieu of subexpression evaluation,

and a structure is returned containing references to the suspensions.

A suspension is an independent, �ne-grained, suspended process that contains

any information necessary to compute the subexpression it represents. Normally a

suspension remains dormant until an attempt is made to access it from a structure

(a probe), which causes a kernel trap. At that point the system intervenes, activating

the target suspension and temporarily blocking the probing process (which itself is a

suspension). Once activated, a suspension attempts to compute its subexpression and

replace its own reference in the structure with that of the result. When a suspension

has converged in this manner, subsequent accesses (probes) to the same location

fetch the expected manifest object. This cycle of probing|activation|convergence is

known as coercing a suspension, and it is entirely transparent to programs, which are

simply creating and manipulating data structures as usual. The system is responsible

for detecting and scheduling suspensions as necessary.

We visualize suspensions as clouds; �gure 1 shows the result of a suspending

version of list construction applied to the previous example. If we attempt to access

the second element of this list it results in two probes that coerce the tail of �rst cell

and the head of the second cell into existence, as shown in �gure 2.

Between activation and convergence a suspension will usually traverse some por-

tion of its inputs, coercing any existing suspensions that it happens to probe, and

it will also create its own data structures, forming new suspensions as a byproduct.

Thus, a running program creates a dynamic web in the heap of many thousands of

suspensions all linked together through data structures, as shown in �gure 3. The

locus of control shifts from one suspension to another as they probe each other. The

6

1.3 Suspending Construction

(fact 7) (fact 10)(fact 5)

Figure 1: Suspending construction

web expands as new suspensions are added at the fringe of the computation and

contracts as suspensions converge and dereferenced structure is garbage collected.

1.3.1 A Concurrent Computation Model

Suspending construction has several properties that make it an attractive basis for a

parallel language implementation. First, it provides a natural, transparent decompo-

sition of programs into networks of �ne-grained processes, as described above. Second,

it provides transparent communication and synchronization between processes. Pro-

cesses communicate by producing and consuming shared data structures in the heap,

without any global knowledge of their role in the network of processes. Synchroniza-

tion between suspensions is implicitly handled by the system; there are no explicit

synchronization constructs needed.

Thus, suspending construction provides a simple but complete automation of the

important details of parallel programming: process decomposition, communication,

and synchronization. Just as with automated storage management in Lisp programs,

the programmer is not required to handle any of the complicated aspects of parallel

task management and can concentrate on writing a suitably parallel algorithm. This

leaves the \hard details" of parallel process management to the implementation, which

is what this thesis describes.

7

1.3 Suspending Construction

(car
(cdr L))

(fact 10)
5040

(fact 5)

Figure 2: Coercing a Suspension

1.3.2 Suspensions and Evaluation Semantics

Suspending construction is based on the premise that many system primitives (no-

tably cons) and user-de�ned functions are not fully strict, allowing some latitude

in if and when their arguments are actually needed. Lazy or non-strict languages

try to exploit this property of programs by explicitly avoiding evaluation of function

arguments until they are needed. A language using suspending construction, on the

other hand, derives its evaluation semantics implicitly from the underlying suspen-

sion scheduling policy rather than explicit laziness on the part of an interpreter or

compiler.

To see this, consider two scheduling policies at the extreme ends of the scale:

� If a suspension is immediately activated upon creation, the result is eager eval-

uation of the associated subexpression1.

� If activation is delayed until the suspension is probed, the result is lazy or

1The term eager does not have a universally agreed-upon de�nition in the programming languages
community. In particular, it is occasionally confused in a semantic scope with the term strict. We use
it here in the operational sense as described by [AG94, p.268] and others to mean early concurrent
evaluation of the subexpression.

8

1.3 Suspending Construction

Figure 3: A Suspending Construction Data Space
Drawing by Steven D. Johnson, 1980. Reproduced with permission.

demand-driven evaluation of the subexpression.

By extension, an interpreter that uses a suspending constructor uniformly throughout,

including the construction of environments from function arguments, will inherit its

evaluation semantics from the scheduling policy. This renders the evaluation-order

issue orthogonal to the language implementation; an interpreter can be made eager or

lazy depending upon the scheduling policy used. The same remarks apply to compiled

code. Daisy, which uses a lazy constructor by default, leverages a program's inherent

laziness by deferring computations stored in structures until they are actually needed.

This gives Daisy a call-by-need semantics.

9

1.3 Suspending Construction

The eager vs. demand-driven scheduling policies referred to above can really be

viewed as two endpoints of a continuum [AG94, p.267], [Liv88]. By itself, demand-

driven scheduling provides maximum laziness, computing no more than is absolutely

necessary, but forgoes some opportunities for parallelism. Eager scheduling can gen-

erate too much parallelism. The ideal situation seems to lie somewhere between the

endpoints of this scheduling continuum, and a number of ideas have been published

in this area. Some of these, notably data ow reduction, start from an eager perspec-

tive and attempt to reduce parallelism. Lenient evaluation [Tra91] tries to take the

middle ground, forgoing laziness but still attempting to achieve non-strict semantics

where possible, making some sacri�ces in expressiveness as a result. Still others, like

DSI's approach, start from the demand-driven (lazy) perspective and relax it to allow

safe eager parallelism and constrained speculative parallelism.

1.3.3 Side-e�ects and Parallelism

Parallel languages that include side-e�ects (e.g. assignment, destructive updating)

usually adopt an intuitive (e.g. applicative) evaluation order so that programmers can

reason about the ordering of e�ects in the program. The languages are then endowed

with explicit constructs for parallelism or alternative (e.g. delayed) evaluation orders.

Such languages must also supply explicit locks and other synchronization tools to

allow the programmer to explicitly handle the extra dependences imposed by side-

e�ects.

To extract implicit parallelism, an imperative language can employ dependence

analysis and other compiler analytic techniques; this approach is popular for many

\dusty-deck" Fortran applications, as well as for imperative symbolic programs [Lar91].

These methods are not always e�ective, however, primarily due to the increased num-

ber of dependences involved, as well as aliasing and other artifacts of imperative

programming [AG94].

One alternative to these analytic techniques is to provide a history roll-back mech-

anism to be able to roll back the computation when conicts occur due to side ef-

fects. At least one implementation of the Scheme language is based on this technique

[TK88].

10

1.3 Suspending Construction

All of these techniques impose complications in various ways, either on the pro-

grammer to explicitly synchronize his program, on the compiler for analysis, or on

the run-time system to roll back computation. Alternatively, a language can restrict

or eliminate side-e�ects and not su�er these complications; such is the approach of

the declarative family of languages, which includes \pure" functional languages, and

also certain quasi-functional languages, like Daisy.

Daisy does not have side-e�ects in the traditional sense (it does provide top-

level assignment of global function identi�ers). There are two main reasons for this:

laziness and implicit parallelism. Suspending construction does not preclude the use

of side-e�ects, but their inclusion in the surface language would make it extremely

di�cult to reason about programs because demand-driven scheduling results in non-

intuitive evaluation orders. A lack of side-e�ects also allows Daisy to take advantage

of implicit parallelism opportunities. Removing side-e�ects removes all dependences

from the program with the exception of ow dependences [AG94], which are handled

by the probe/coercion mechanism described earlier. This makes suspensions mutually

independent, and allows the system considerable exibility in scheduling them. The

consequences of this exibility are particularly important for parallelism; suspensions

can execute in any order, including lazily or concurrently, without a�ecting the result.

This e�ectively reduces scheduling from a problem of e�ciency and correctness and

to one of e�ciency only. That problem is determining which subset of suspensions to

execute at a given time to achieve maximum system throughput, while minimizing

the overhead of communicating scheduling information between processors. We want

to avoid scheduling suspensions that are simply blocked awaiting the convergence of

other suspensions.

Although Daisy lacks explicit side-e�ects, it is not referentially transparent, a

property shared by many declarative languages. Many computing problems arise

that are inherently nondeterministic, especially in the realm of systems program-

ming. Daisy addresses these problems by providing an applicative nondeterministic

construct. Daisy's set primitive returns a copy of its list argument, the copy per-

muted in an order determined by the convergence of the suspensions in the argument

list. For example, the following Daisy expression

set:[fact:10 fact:5 fact:7]

would likely return

11

1.3 Suspending Construction

[120 5040 3628800]

The order reects the cost of computing the three subexpressions. The set primitive

can be used to implement fair merge, for expressing explicit speculative computation

and concurrency, and many asynchronous applications.

The rationale for including side-e�ects in parallel symbolic languages is elegantly

laid out by Halstead in [RHH85], who appeals to arguments of expressiveness and

e�ciency. However, this approach negates many implicit opportunities for laziness or

parallelism and leaves the problem of creating and synchronizing parallel processes

in the programmer's domain. In this research we adopt the view that these details

should be left to the underlying implementation as much as possible. Our concern

is not with the expression of parallelism or concurrency in the language (see below),

but rather with the inherent limitations on parallelism imposed by side-e�ects.

In regard to e�ciency, a language with automated process management is unlikely

to be as e�cient as a more traditional imperative language such as Scheme or C. Just

as there is a cost associated with doing automated storage management under Lisp

(as opposed to explicit storage management under, say, C), there is a cost added

with automating process management. The ever-increasing speed and capacity of

hardware and gradual improvements in language implementation technology make

this trade-o� worthwhile in most situations.

The property of laziness can be considered as much a factor in language expres-

siveness as the inclusion of side-e�ects. Daisy's lack of side e�ects is a pragmatic

approach to achieving laziness and parallelism rather than a means of upholding

language purity. Similarly, the inclusion of indeterministic operators is a practical

means to o�setting the constraints imposed by our choice to abandon side e�ects.

Thus, we deemphasize equational reasoning in favor of expressiveness. This philoso-

phy may help explain Daisy's seemingly odd position \straddling the fence" between

imperative and pure functional languages.

1.3.4 Identifying Parallelism

One of the main issues relating to parallel symbolic processing is where the parallelism

originates. There are three levels at which parallelism can be identi�ed:

12

1.3 Suspending Construction

� Parallelism at the system level relies on the system being able to determine

when two tasks can run in parallel. A good example of system-level parallelism

is the data ow computation model.

� Parallelism at the language level uses the knowledge of the language to try to

generate parallelism. This type of information includes whether side-e�ects are

allowed or not, strictness and dependence information from analysis and the

behavior of primitives. Functional languages fall into this area, as does Daisy.

� Parallelism at the programmer level relies on the programmer to specify the

parallelism and may also require him to handle synchronization in the presence

of side-e�ects.

These types of parallelism can also be considered \bottom-up" to \top-down": data

ow corresponds to a bottom-up approach, while programmer-explicit parallelism is

top-down.

Note that these distinctions are not always clear-cut; in actuality languages may

overlap one or more of these areas. For example, Scheme with futures [RHH85]

falls into the last category, but overlaps the second somewhat, since futures are not

strictly semantically required to be parallel and thus may be optimized in certain

ways [Moh90]2. This is similar to the notion of para-functional programming [HS86,

Hud86]; the idea that programmers annotate programs to provide clues for the system

without actually changing the semantics of the program or getting involved in resource

management issues (although the latter approach is also a possibility [Bur84]). This

is a step backward from complete automated parallelism, but still does not cross the

line into explicit parallel decomposition of tasks or synchronization for side-e�ects,

etc. Daisy straddles the second and third categories, for reasons which are explained

in chapter 8.

1.3.5 A Cost Analysis of Suspending Construction

There is a computational cost associated with the creation and coercion of suspen-

sions over and above that of strict evaluation of subexpressions. After all, for each

2Eager parallelism is intrinsic in the notion of a future, however; see [RHH85] for details.

13

1.3 Suspending Construction

subexpression we are creating a new (albeit �ne-grained) process, completely decou-

pled from the current one. The suspension will execute roughly the same code that

it would if the expression were being strictly evaluated3.

The cost of suspending construction for a given expression can be analyzed as

follows:

� Creating a suspension. This is essentially the cost of allocating a suspension

record from the heap and initializing it from processor registers; it is a constant-

time operation, modulo garbage collection.

� The space used by suspensions. In addition to the space used by the suspension

record itself, there is the space used by retaining references to environments

and forms that would normally be discarded after strict evaluation. There is an

implicit trade-o� here against the space required for the result.

� Checking for suspension references. Except in certain optimized cases, the vir-

tual machine must test the result of all probes that could return a suspension

reference. This would not be a factor on specialized hardware, but must be

taken into account on most stock architectures.

� Context switching. When a suspension is probed the system must suspend the

current task and schedule the probed suspension for future execution. This

scheduling may involve the manipulation of scheduling data structures and pos-

sibly interprocessor communication. At some point the suspension will be acti-

vated, requiring it to be loaded from memory into registers. When the suspen-

sion converges the probing task must be resumed.

These overheads are o�set by any potential gains due to laziness and/or implicit

parallelism in the program. All other things being equal, whether or not a program

will run faster under suspending construction primarily depends on the degree of

strictness and inherent parallelism in the algorithms used. Nevertheless, this overhead

is signi�cant, and we would like to minimize it.

3Not quite. Since it is running in a separate task, the suspended version usually does not have
to save and restore as many registers on the stack. This is signi�cant; depending on the amount of
data it can be cheaper to allocate a suspension and garbage collect it than to save and restore a lot
of registers on the stack.

14

1.4 History of the Daisy/DSI Project

To avoid it, we could revert to strict evaluation in cases where neither concurrency

nor laziness is possible or desirable. Strictness analysis [Hal87, HW87] can reveal

instances in a program where evaluation could be safely strict, but doing so may forgo

opportunities for parallelism. Determining whether or not to evaluate an expression

in parallel depends on the cost of the computation as well as dynamic factors such

as the input data and current system load. All in all, determining when not to

suspend is a di�cult problem. Daisy manages some suspension avoidance by unrolling

evaluation code to test for trivial cases before suspending them, allowing programming

annotations for strictness, and under compilation, using strictness analysis [Hal87,

HW87].

A more \brute force" approach to e�ciency is to optimize suspension handling to

make it more competitive with strict evaluation; more progress has been made at the

DSI level in this regard. There are three main areas targeted for optimization:

� Minimizing process state. The smaller the task size, the faster it is to perform

a context switch. There is a trade-o� here: smaller state leads to more stack

activity as registers are saved and restored. DSI uses a �ned-grained suspension

size of 32 bytes. This is all that needs to be saved or restored on a context switch.

� Optimizing suspension manipulation primitives. DSI implements suspension

creation and detection in the virtual machine. This allows the most e�cient

mapping of these operations to the host's architecture and operating system

capabilities.

� Intelligent scheduling. DSI's virtual register set uses context windows to hold

multiple active processes. DSI's kernel takes advantage of this to accelerate

context switching between processes.

1.4 History of the Daisy/DSI Project

The Daisy/DSI project had its genesis in research on purely functional Lisp in the

mid-to-late 1970s at Indiana University. In their seminal paper \CONS Should Not

Evaluate its Arguments" [FW76a] Friedman and Wise outline a simpli�ed form of

suspending construction (as described in section 1.3) with suspensions essentially

15

1.4 History of the Daisy/DSI Project

implemented as special thunks4 with convergence (i.e. they overwrite their respective

references upon completion). In a sense they are like memoized thunks without the

extra overhead of coercing the thunk on each invocation.

Friedman and Wise demonstrated that a pure applicative-order Lisp interpreter

built using a suspending cons and suspension-aware versions of car and cdr has call-

by-need semantics, resulting from suspended environment construction. They went

on to describe how Landin's streams are naturally subsumed into such a system and

how conditionals and other special forms can be implemented as simple functions due

to the non-strict evaluation of function arguments [FW78e]. These revelations led to

further observations on the ability to manipulate large or in�nite data structures in

constant space [FW78e].

Suspending construction naturally leads to output- or demand-driven computation

[FW76c], because structure is coerced by an in-order traversal of the top-level data

structures by the printer or other output devices. Printing a structure (and in the

process, traversing it) propagates demand through suspension coercion to the fringe of

the computation tree; in short, the output devices are the ultimate source of demand

that drive the system.

In short order the connection was drawn between suspensions and multiprogram-

ming [FW76b]. Since suspensions are mutually independent, self-contained objects,

they can be coerced in parallel without mutual interference or synchronization. The

problem is determining how to express parallelism in a demand-driven environment,

which is naturally non-parallel. A few inherently parallel applicative constructs were

developed, including functional combination [FW77, FW78c], a form of collateral

function application; and multisets [FW78a, FW78b, FW79, FW81, FW80b], a non-

determinate form of list constructor which was the precursor to Daisy's current set

construct.

These successive discoveries led to iterative re�nements of the underlying suspend-

ing construction model, including the evolution of suspensions from simple thunks to

processes and various proposals for architectural enhancements to support suspending

construction on multiprocessors [FW78d, FW80a, Wis85a]. Much of the credit for

this is due to Johnson [Joh81, Joh85, Joh89c, Joh89a, Joh89b] who was the primary

4A thunk is a closure with no arguments, capturing a form with an environment needed to
evaluate the form when the thunk is thawed.

16

1.4 History of the Daisy/DSI Project

developer on the early Daisy implementations.

The motivation behind the Daisy/DSI project is to explore systems-level and

parallel programming from an applicative perspective. The division into the Daisy

and DSI components allows us to study facets of this research at both a high and

low level of implementation. Several sequential implementations of Daisy (and later,

DSI) were developed, combining various aspects of this research. Each release has

provided increasing levels of performance and features. The underlying list processing

engine, dubbed DSI [Joh77, JK81], has undergone four major revisions. The surface

language implemented on DSI is Daisy [Koh81, Joh89b], a pure language internally

similar to Scheme, that is the high-level vehicle for exploring various ideas borne out

of this research.

Daisy has been actively used for hardware- and systems-level modeling [Joh83,

Joh84b, Joh84a, Joh86, JBB87, JB88, O'D87], applicative debugging [O'D85, OH87,

O'D] matrix algebra [Wis84b, Wis84a, Wis85b, Wis86a, Wis86b, Wis87, WF87] and

experimental parallel applicative programming.

17

chapter two

A Primer

This chapter is an introduction to the topics discussed in the rest of the thesis.

The sections below mirror the organization of chapters. Each section provides a short

introduction to the topics within and raises some pertinent issues which are addressed

in the chapters that follow.

2.1 Virtual Machine Issues

In the late 1970's and 1980's, it was popular to design (and even to build) architectures

designed around a speci�c language. Today, the construction of hardware tailored to

non-traditional programming languages is out of vogue. Economics, coupled with

the rapid pace of RISC technology in the mainstream microprocessor industry has

discouraged the development of specialized hardware for symbolic processing (witness

the slow demise of the Symbolics Lisp machine). The reasons outlined above are

doubly true for multiprocessors; there have been very few symbolic multiprocessing

machines ever built, and fewer still on the way. The prospects for parallel symbolic

processing are still bright, however, because stock hardware turns out to be reasonably

good at supporting the implementation of parallel symbolic languages1.

In the absence of specialized hardware, the next best thing may be to use a virtual

machine. This is a common approach to the implementation of symbolic languages. A

virtual machine provides a low level abstraction of the actual hardware and provides

a portable base for implementing a language (and more recently, entire operating

1This has also been a factor in the decline of alternative, language-speci�c architectures.

18

2.1 Virtual Machine Issues

systems) across various target architectures. The level of abstraction provided by the

virtual machine depends on the needs of the implementor, but generally speaking, the

higher the level of abstraction, the less it remains a virtual machine and the more it

becomes a native implementation of the language2. DSI's virtual machine is quite low

level, with registers and instructions that would have close correspondence to those

on the target machine, as opposed to intermediate-level instructions that would be

further compiled, such as in [FM90].

The special needs of a language or its computation model are often distilled into

speci�c features or instructions in the virtual machine to facilitate and accelerate

execution. This aspect of the virtual machine approach can identify architecture

support that would be useful for accelerating language execution on actual hardware

[Tra84, Veg84]. For example, dynamic tag-checking has long been considered a prime

candidate for hardware support of Lisp programs [SH91]. Such a feature would be a

relatively minor enhancement to current microprocessor designs. By some estimates

it could increase performance of Lisp programs by as much as 35 percent, at a cost

of an additional 2 percent of CPU logic [Joh90]. By analyzing the design of DSI's

virtual machine we can determine those architecture features that would accelerate the

execution of �ne-grained parallel symbolic programs; in particular, programs based

on the suspending construction model of execution. We describe the virtual machine

in terms of its components: the register model, memory interface, instruction set,

exception handling mechanism, and processor interconnection network. This provides

a basis for comparison against their counterparts in current architectures.

Some of the important issues surrounding the design of the virtual machine are:

� How is the orientation toward list and symbol processing reected in the view

of memory and registers?

� What is the importance of tags and how are they used?

� How is suspending construction supported at the hardware level?

� How does the process grain size inuence the register model?

� How are exceptions handled in a �ne-grained process context?

2Virtual machines are sometimes called abstract machines in the literature. This term may denote
a higher level of abstraction than virtual machine implies.

19

2.2 Kernel Issues

An important issue in parallel architecture design is the processor-memory inter-

connection model. Designs fall into two categories: shared or distributed memory.

Although there are certainly examples of distributed symbolic language implemen-

tations, they are the exception rather than the norm. The extensive sharing rela-

tionships of most heap-oriented reduction models make a strong argument in favor of

true shared memory. Lazy languages promote even more sharing, which further tips

the scales toward shared memory. Thus we can assume shared memory, but that still

leaves a lot of room for design variations.

We distinguish between two shared memory designs: one in which accesses to

memory from any processor have constant time (disregarding interprocessor con-

tention and caching) and one that does not. Multiprocessor architectures using

the latter type are called Non-Uniform Memory Access (NUMA) designs [AG94].

NUMA architectures are generally more scalable, since they are designed using a

many processor-to-many memory network [LD88] as opposed to several processors

attached to one or more memory banks on a bus, which limits scalability due to

bandwidth limitations. DSI's kernel is designed to handle both types of architecture.

2.2 Kernel Issues

At the core of most parallel symbolic language implementations is a kernel that

handles the low-level dynamic resource management for processes running on the

system. This resource management typically includes the allocation and sharing of

memory, processors and devices. This is also what an operating system provides; the

distinction between a kernel and an operating system is that the latter also includes

many services and administration tools for users, including a �le system for managing

disk space, quotas and user accounts, login sessions, etc.

Symbolic languages have to reimplement their own resource management kernel

because operating systems oriented toward traditional languages do not adequately

address the resource management needs of symbolic languages. The di�erences can

be summed up along memory, process and device management lines:

� Traditional languages require the programmer to handle their own memory allo-

cation and deallocation. Symbolic languages usually provide automatic storage

allocation and reclamation of objects.

20

2.2 Kernel Issues

� The process granularity for traditional languages is much greater than for sym-

bolic languages and is normally de�ned by separate address spaces. In contrast,

parallel symbolic languages have much �ner grained processes that normally op-

erate in a shared memory space. Symbolic languages may also provide automa-

tion for other process handling such as implicit process creation, interprocess

synchronization and even process reclamation.

� For lazy symbolic languages, the traditional imperative model of I/O is not

compatible with the non-sequential scheduling orders imposed by the system.

Symbolic languages may also provide automatic device reclamation (closing

dereferenced �le descriptors via garbage collection).

The traditional implementation of a kernel is a protected layer of code underlying

every process that is accessed by a function call-type interface; data is passed between

user process and kernel on the stack. Modern microkernels are a stripped down ver-

sion of the kernel providing just the essential resource management described above,

relegating all other services to external implementation (sort of a RISC-like minimal-

ist philosophy applied to operating system design). In addition, these microkernels

are often implemented as a separate process rather than in the traditional approach

described above. Programs interact with the kernel through a form of interprocess

communication.

Another issue in multiprocessor kernel design is whether a single kernel controls

all the processors in a sort of master-slave design, or whether the kernel is a reentrant,

distributed design that runs on each processor. In the latter case, some mechanism is

required to communicate between kernels on each processor so that they can operate

as a whole to manage the machine.

2.2.1 Memory Management

Memory management in symbolic systems is fundamentally di�erent than in con-

ventional languages and operating systems. In the latter, \memory management" is

almost solely concerned with implementing demand-paged virtual memory. Processes

are required to do their own memory allocation and reclamation, although the system

is expected to be able to recover the physical memory used by a process when it termi-

nates. In contrast, memory management for symbolic languages amounts to handling

21

2.2 Kernel Issues

automatic storage allocation and reclamation. This may or may not be addressed in

the context of virtual memory and protected address spaces, for reasons discussed in

chapter 4. Allocation is an important issue for parallel symbolic languages because

these languages allocate and recover memory in smaller granules and at a greater rate

than in traditional languages. This is particularly true of pure applicative languages

which discourage the notion of state.

Parallel memory management adds additional complexity to the problems of �ne-

grained allocation and reclamation. The most fundamental consideration in parallel

memory management is the physical organization of memory; it a�ects all other

implementation decisions. The distinction between NUMA and non-NUMA architec-

tures is important because on NUMA architectures memory access patterns have a

signi�cant e�ect on performance3. These concerns constrain the way that the heap

is allocated, how objects are allocated within the heap, and how processors coop-

erate to manage the heap. In this regard, there are two relevant considerations for

NUMA architectures. One is the presence of network \hot spots" [PCYL87] where

excess memory contention between processors can degrade performance (non-NUMA

designs also su�er from memory contention, but it is mitigated by the use of heavy

coherent caching). A second concern with NUMA architectures is locality. By

this we refer to a processor's memory accesses in relation to its distance from other

memories and position in the interconnection network. This concern is related to

the hot-spot issue, because good locality minimizes contention, but it is also a more

general concern about achieving good memory access times in a system where not

all memory accesses are equal. For example, on the BBN Buttery multiprocessor

there is an average 4-to-1 di�erence in access times between a local memory access

and a network memory access, even in the absence of contention. We would like to

take advantage of locality where the opportunity presents itself, while still retain-

ing the advantages of heap sharing. In a traditional system these concerns impact

the programmer; in symbolic systems these concerns impact the implementation of

automatic storage allocation and reclamation schemes.

Here is a partial listing of issues which are addressed in chapter 5:

� How do we structure our heap across processors?

3Strictly speaking, this is true for non-NUMA designs too, but for caching and virtual memory
reasons, not network design.

22

2.2 Kernel Issues

� How can we perform distributed storage allocation (i.e. allocation occurring in

parallel, with minimal synchronization)?

� How do we balance memory allocation, so that heavy allocation does not ad-

versely a�ect any one processor?

� How do we allocate memory to avoid hot spots?

� How does allocation a�ect process scheduling?

� Where can we take advantage of locality?

� How can we perform distributed storage reclamation (parallel garbage collec-

tion)?

� How does garbage collection a�ect locality?

2.2.2 Process Management

The second major area of support that a kernel provides is process management. The

kernel provides system calls for process scheduling and termination, and manages

processes over the course of their life-cycles. Under eager parallel systems, process

scheduling is implicitly associated with creation; in lazy languages like Daisy, process

scheduling is deferred until the suspension is probed (demand-driven scheduling) or

explicitly scheduled by a concurrent language primitive.

The issue of process granularity is related to process creation; if creation is explicit

in the surface language (e.g. futures [RHH85]), the grain size is generally larger than

if process creation is implicit, such as in Daisy; in either case process granularity is

�ner and less stateful than in traditional languages. This �ner granularity leads to

increased amounts of context switching, which must be handled in an e�cient way.

A related issue is the problem of controlling excessive parallelism. Once the ma-

chine is fully utilized it is counterproductive to schedule additional tasks. The addi-

tional parallelism causes higher peak memory usage and increased context switching,

reducing throughput. If the language has eager semantics, one solution to the prob-

lem is to revert to in-lining the computation [Moh90], thus increasing the grain size.

If the language is lazy, there may be less choice in reducing granularity, but also less

23

2.2 Kernel Issues

parallelism to contend with. In either case, the kernel should provide a way to auto-

matically control the growth of parallelism in the system. Similarly, parallel symbolic

systems are expected to load balance themselves, so that all processors are kept busy.

The primary issue here is whether the system migrates processes and if so, how this

a�ects locality.

Two concerns that eventually confront a parallel language implementor are how

to handle interprocess communication and synchronization. Interprocess communi-

cation for shared-memory symbolic languages is implicitly handled by heap sharing.

Languages with explicit side-e�ects need to provide synchronization constructs (locks,

mutexes, etc.) to arbitrate read/write access between processes for mutually shared

structures; pure applicative languages like Daisy do not. However, another type of

implicit synchronization is required even for applicative languages to handle the de-

pendences that arise between processes. When a running process probes a suspension

it sets up a dynamic dependence between the probing process and the suspension.

The probing process cannot make any headway until its demand is satis�ed. The

kernel must transparently schedule the target suspension and handle the execution

synchronization between the two processes (see section 1.3). Two broad strategies for

this synchronization are possible: polling and blocking. The method used can have

a large impact on performance; blocking synchronization, while generally considered

more e�cient, has inherent problems (see below) that require workarounds elsewhere

in the system.

An idea that has gained momentum in symbolic languages in recent years is the

concept of speculative computation [Bur85a, Bur85b]. Speculative parallelism refers

to scheduling parallel tasks that may not be needed (on the chance that they might)

to increase available parallelism over that provided by regular conservative parallelism

[Jon87]. For example, the two arms of a conditional might be scheduled in parallel

with the evaluation of the predicate so that the system will have a head start on the

overall result of the conditional regardless of the outcome of the predicate.

The presence of speculative processes complicates scheduling; it exacerbates the

problem of controlling parallelism and introduces the problem of of removing spec-

ulative tasks that have become useless, both from the schedule and from the heap.

There is also the question of establishing the priority of conservative tasks over spec-

ulative tasks for resource allocation decisions; otherwise speculative tasks can reduce

24

2.2 Kernel Issues

throughput for needed processes. Distinguishing between conservative and specula-

tive tasks is complicated by heap sharing, which can lead to multiple perspectives

on a task's actual need, and the fact that a task's status can change dynamically

over the course of its life. Finally, systems with side-e�ects must also deal with the

decision of whether to abort or to \roll-back" side-e�ects that are the result of useless

speculation [Osb90].

One solution to these problem (assuming that the speculative tasks can be distin-

guished) is to spawn a \termination process" to kill them [GP81, Hem85]. Another

approach is to implement some kind of priority mechanism that dynamically upgrades

or downgrades the status of a speculative process and its descendants [Osb90]. This is

usually coupled with a suitably-modi�ed garbage collector to remove pointers to the

speculative tasks from the scheduling infrastructure if they have been unreferenced

from the programs data structures [BH77, Mil87].

2.2.3 Device Management

The third major area of kernel support is for device management. A number of lazy

languages use a stream model of I/O interface [Hud89] in which data is read or written

from devices in streams. This model elegantly handles the interaction with demand

driven computation, which would be di�cult with an imperative, temporal I/O in-

terface, such as that used in Lisp. In DSI this support is integrated into the kernel,

so that a seamless stream I/O interface is available to any language implemented on

the kernel without having to implement this in the language itself.

One of the problems with implementing the stream model is that most I/O is not

inherently demand-driven, even though data may be accessed that way. I/O is, in

fact, event-driven at the lowest level of implementation, and it is the responsibility of

the kernel's device drivers to bridge the gap between the demand-driven access and

the event-driven I/O. DSI's kernel uses the interrupt mechanism of the DSI virtual

machine to handle event-driven I/O using a special type of device driver process. This

process is unique in that it can be scheduled by a probe to release its data (demand-

driven) or scheduled by an I/O event occurring on the system (event-driven) to service

interrupts in a timely fashion.

DSI's device manager allows some types of I/O, like keyboard input, to be handled

25

2.3 Daisy

at a very low level. Keyboard input is implemented as a stream of raw characters. To

share this stream among multiple processes it becomes necessary to split the stream

on a demand-driven basis, and we describe how this can be accomplished, along with

�ltering and interleaving of prompts.

Another device problem that is common to symbolic languages is that of dangling

descriptors. This refers to the problem of an I/O device that is left in an \open"

state by a process that has become unreferenced. This problem may manifest itself

in slightly di�erent forms depending on the I/O model and constructs of the surface

language, but it is a common issue to all lazy language implementations as well as

imperative languages that allow speculative computation. A common solution to the

problem is to endow the garbage collector with the capability to \close" the device,

possibly through a generic �nalization facility [Mil87]. This problem is an artifact of

an underlying imperative model of I/O that could be avoided using a functional �le

system [HW92].

The stream model of computing, while elegant, has its limitations. One of these is

the di�culty of handling interactive terminal I/O, which must be synchronized by ar-

ti�cial strictness measures [HS88]. This problem may be quickly becoming irrelevant

with the advent of modern GUI windowing shells. The stream interface turns out to

be very adept at handling a windowing interface; DSI's approach uses a client-server

model to handle character-based interaction with multiple input windows.

2.3 Daisy

Although this thesis is primarily about how suspending construction-based paral-

lelism is managed in our DSI implementation, it is helpful to understand how this

parallelism arises in the surface language. In this section we introduce Daisy and

describe how suspending list construction gives rise to parallel programs. This de-

scription is necessarily brief; for a fuller description of the language, see The Daisy

Programming Manual [Joh89b]. Daisy is a descendant of pure Lisp and is a contem-

porary of Scheme. It is a statically-scoped, lazy, applicative language. It provides a

few atomic objects, such as numbers and literals (atoms). Lists glue together atomic

objects and other lists to create complex structures.

26

2.3 Daisy

2.3.1 Syntax

Daisy's syntax is a departure from standard Lisp S-expressions, yet is still relatively

simple. Brackets [] are used to denote list structure, and used with ! (like Lisp's

.) creates dotted pairs. The default interpretation of a bare list is evaluation/list

construction, not application; application is expressed by in�x colon. So, for example

mpy:[x y]

means to multiply the values of x and y. Expressions can be quoted with the hat

character to suppress evaluation.

Lambda forms use a syntax reminiscent of the lambda calculus:

\ formals . body

where formals is a single identi�er or an arbitrarily bushy formal argument list, and

body is a Daisy expression. Assignment can occur at top level only, and is speci�ed

by the form

identifier = value

So, for example,

add5 = \ x. add:[x 5]

de�nes the function add5.

Numbers are expressed in standard decimal or oating point notation. Literals

(identi�ers and strings) are expressed as an alphanumeric sequence beginning with a

letter; optionally, double quotes can be used to quote literals with embedded spaces

and other characters.

Special Forms

Daisy has two main local binding forms that extend the environment for the scope of

the form.

let: [formals actuals body]

27

2.3 Daisy

extends the environment by locally binding the formals to actuals, both of which

may be arbitrarily bushy structures. body is evaluated in the extended environment.

The rec form is similar, but creates recursive bindings. It is somewhat similar to

Scheme's letrec, but is fully general, allowing data recursions. For example,

rec: [L [0 ! map:[inc L]] L]

speci�es the list of integers.

An Example

Here is an example of the Quicksort program, written in Daisy:

quick = \L.

rec:[loop

\[dc L]. let:[[X ! Xs] L

if:[nil?:L dc

nil?:Xs [X ! dc]

let:[[lo hi] partition:[X Xs]

loop:[[X ! loop:[dc hi]] lo]

]

]]

loop: [[] L]

]

partition = \[p L].

rec:[part

\[p L lo hi]. let:[[X ! Xs] L

if:[nil?:L [lo hi]

le?:[X p] part:[p Xs [X ! lo] hi]

part:[p Xs lo [X ! hi]]

]]

part: [p L [] []]

]

2.3.2 Semantics

Daisy's laziness is a byproduct of list construction, not lazy interpretation or com-

pilation [FW76a] (there are exceptions, such as the binding forms described above).

28

2.3 Daisy

The evaluation of a list of expressions yields a list of suspensions for evaluating those

expressions; in essence, lists are suspended-process builders. Application is strict; the

application of a primitive to a list applies a demand pattern to the list, coercing some

of the suspensions in it. The demand pattern of a primitive depends on the semantics

and implementation of the primitive. For example,

seq:[exp1 exp2 ... expN]

is a sequencer, which coerces suspensions sequentially from left to right.

Many demand-patterns allow parallelism. For example, the add operator referred

to earlier is strict in both its arguments, which could be evaluated in parallel. In

general, this is true of all strict Daisy primitives that take lists as arguments. This

concurrency is possible because Daisy lacks side-e�ects, a property which allows sus-

pensions to execute in any order. Daisy does not explicitly specify whether most of

its primitives actually coerce arguments in parallel, since

1. the de�nition of these operators does not imply concurrency, even though the

opportunity exists, and

2. it leaves the choice up to the implementation. On a sequential machine they

would not be coerced in parallel, but on a parallel machine they might.

Some Daisy primitives do imply concurrency semantics. seq, from above, implies

sequential coercion of its argument. The only Daisy primitive that directly implies

concurrency is set:

set:[exp1 exp2 ... expN]

set returns a new list of values corrosponding to the order that the suspensions

converge in its argument list. This implies that the expressions will be concurrently

evaluated, at least until the �rst one to converge. If the tenth element of the result

is requested, one can assume that the expressions will be concurrently evaluated at

least until ten of them have converged, and so forth.

Many Daisy primitives have potential concurrency. add is an example of conserva-

tive parallelism [Jon87]; Daisy has many more opportunites for speculative parallelism

[Jon87]. For example, a speculative OR-parallelism can be speci�ed by

29

2.3 Daisy

any?:[exp1 exp2 ... expN]

which returns true if any of its arguments are non-nil. Similarly, a speculative AND-

parallelism is

all?:[exp1 exp2 ... expN]

which returns nil if any of its arguments are nil.

Even if is potentially (speculatively) parallel:

if:[pred1 then1 pred2 then2 ... else]

if can speculatively schedule all its then, else, and subsequent (all but the �rst)

predicate arguments, and evaluate the �rst predicate sequentially.

There is also abundant potential parallelism in all mapping primitives.

map:function

is an example of a higher-order primitive. It returns a closure that maps function

over a list. That mapping, of course, can be entirely parallel.

Many other potential sources of concurrency exist in Daisy; it has vast amounts

of latent parallelism. This section illustrates how the language a�ords abundant

implicit parallelism. The DSI kernel is charged with managing this concurrency so

that it does not overwhelm the machine. Daisy primitives can freely schedule their

arguments without worrying about resource management issues. Chapter 6 explains

how the DSI kernel throttles parallelism.

2.3.3 Annotation

As we have seen, Daisy has large amounts of latent parallelism. Nevertheless, there

are cases where it cannot be exploited due to the limitations of laziness and demand-

driven computation. Chapter 8 explains how these situations can occur.

For this reason, Daisy also includes parallelism annotations. Recall from chapter

1 that we are not philosophically opposed to parallel annotation, but rather the

inclusion of side e�ects that limit opportunities for implicit parallelism.

30

chapter three

Architecture of the DSI Machine

This chapter describes the design of DSI's virtual machine, the lowest level component

of the DSI hierarchy (see �gure 4).

Daisy Interpreter

DSI Microkernel

Host Operating System

Host Machine

Daisy Code
Compiled

Daisy Source

DSI Virtual Machine

Figure 4: DSI Virtual Machine

DSI's virtual machine provides a low-level abstraction of the physical machine

architecture (memory interface, processor state, instruction set, interrupt mechanism

and processor interconnection topology) that forms a portable foundation upon which

the rest of DSI and Daisy is implemented. The virtual machine approach provides

several signi�cant bene�ts:

� It provides a modular way to port DSI to new target architectures. The rest

31

3.1 Memory Interface

of DSI is implemented on top of the virtual machine, and Daisy on top of DSI,

so the virtual machine isolates most of the machine-speci�c implementation

dependences. For reasonably similar architectures, only the virtual machine

layer needs to be ported. Substantially di�erent architectures may require parts

of the microkernel to be rewritten for performance optimization, however.

� It allows critical or missing functionality to be implemented as virtual instruc-

tions which can be mapped as e�ciently as possible to the host architecture.

This helps identify key areas in which hardware support could be helpful. For

example, cell allocation is such a frequent occurrence during applicative lan-

guage execution that it is supported by instructions in the virtual machine.

This indicates that hardware support for allocation would be extremely helpful

for e�cient execution of applicative languages. We summarize these areas in

section 3.6.

� It documents the minimum hardware capabilities and functionality required to

implement the system, and delineates (potential) hardware components from

software. This provides a sort of high-level blueprint for constructing a machine

for a native, self-hosted DSI environment or for implementing DSI directly on

a target machine, bypassing the host operating system.

3.1 Memory Interface

DSI's virtual machine speci�es an architecture oriented toward list processing, and its

memory interface reects this orientation. The elemental addressable unit of memory

is the cell, a 64-bit word that conforms to one of several �xed formats. Cells are

classi�ed at the storage management level by a particular con�guration of data and

pointer �elds. Figure 5 shows three storage classi�cations for cells.

� Unary cells contain thirty-two bits of raw data and a reference. The data �eld

can be accessed and interpreted in one of several formats, including signed

integer, single-precision oating point or packed bytes.

� Binary cells have �elds head and tail, each containing a reference.

32

3.1 Memory Interface

tailgcch0 ch1 ch2 ch3

8 bits 8 bits 8 bits 8 bits

s

taildata gc s

28 bits32 bits

tailhead gc s

byte

8 bits

taillink gc s

Unary views

Binary views

Stack views

24 bits

Figure 5: Cell Storage Types

� Stack cells contain a byte of data, a pointer and a reference.

Cells have additional small bit �elds used for various purposes such as garbage collec-

tion and processor synchronization. These �elds are described where applicable. The

memory interface is facilitated by processor registers that conform to one or more

of these cell views and machine instructions for accessing or allocating cells in those

views.

3.1.1 Tags and Types

All scalar data types and compound data structures are represented by cells or linked

graphs of cells. Tagged pointers are used to accelerate suspension detection and run-

time type checking [Joh90, SH91] . We will hereafter refer to a tagged pointer as

a reference or citation; a raw or untagged pointer is simply a pointer. A reference

contains three bits of tag information and twenty-four bits of pointer information.

33

3.2 Processor State

A reference's tag implies something about the storage class of the cell to which it

is pointing, and vice versa, but tags and storage classes are di�erent entities; the

distinction is clari�ed in chapter 5. Briey, a tag is a logical typing mechanism; it

says that the object to which the reference points is a list, a number, etc. These objects

have underlying representations using one or more cells conforming to a particular

storage class; e.g. a list reference points to a binary cell. We may refer to a cell's type

as either the cell's storage class or its logical (reference tag) type. In the former case

the types are unary, binary and stack ; in the latter case the types are list, number,

and so forth.

3.2 Processor State

Figure 6 depicts the virtual machine state for a single processor node. The register

�le consists of a set of context windows. Each context window holds a single process

(suspension) context. The context window pointer (CWP) always points to the cur-

rently running process. Control is transferred from one resident process to another

by directly or indirectly changing the CWP. This method of context switching allows

several processes to be multiplexed rapidly on the same node, and provides a mecha-

nism for interrupt handling. The number of context windows (and consequently the

maximum number of simultaneously register-resident processes) is implementation

dependent1 Many current RISC-type architectures implement some form of register

windows (e.g. the Sparc architecture) or have a large register set with renaming capa-

bility, both of which are capable of implementing our context window model. Context

windows can also be implemented in memory, using register-based pointer indirection

for the CWP.

Each context contains four �xed storage class cell registers: DMC , of type unary,

STK , of type stack, ENV , of type binary and VAL, type unary. These registers are

further subdivided into smaller addressable �elds reecting the cell views as described

above. Registers C , X , F, A and R are references, B is a byte, L is a pointer and D

and K are 32-bit raw data words. A context window's state is identical to that of a

suspension's, and the kernel swaps suspensions in and out of the context windows as

necessary using the ldctx and stctx instructions.

1The current DSI microkernel requires at least four.

34

3.2 Processor State

D

LB

F

K R

A

X

C

ctx0 ctx1 ctx7

DMC

STK

ENV

VAL

ctx2 ctx3 ctx5 ctx6

CWP

Context Windows

Context Window Pointer

Context Registers

Transient Registers

Q WRK VRKP

Figure 6: A Processor Node's Register State

Suspending construction provides the basis for the design of DSI's process struc-

ture. Suspension creation and coercion is the implicit behavior of any code that

builds, traverses, or otherwise manipulates data structures. Process granularity is

much �ner than in conventional languages; accordingly, suspension manipulation is

a critical performance issue. This is reected in DSI's suspension design. Its small,

�xed-size state (32 bytes) can be quickly allocated, initialized, loaded and stored.

Conditional probes (e.g. hdc, tlc) provide implicit detection and dispatch. Because

these and other suspension manipulation operations (e.g. suspend, ldctx, stctx)

are implemented as DSI instructions, they can be optimized at the lowest level of

implementation for best performance on the host architecture.

In addition to the context windows, there are several global transient registers

that are accessible from any context on the node. These are used as �xed operands

by certain instructions and are also used as general-purpose registers for passing data

between processes in di�erent context windows. Registers P and Q are references.

35

3.3 Instruction Set

WRK and VRK are untyped cell registers; they can be accessed in any storage format

via the appropriate �eld name (e.g. WRK.ch1 or WRK.hd). A process can only access

the registers in its own context window and the transient registers; the kernel is the

only process that has global access to all windows.

The memory subsystem has some private registers that are described in chapter

5. There are also some registers devoted to signal handling that are described below

in section 3.4.

3.3 Instruction Set

DSI employs a load/store architecture that is similar in many respects to general-

purpose RISC microprocessors. Its instruction set di�ers primarily in that it is very

list (cell) oriented with dedicated instructions for allocation. Instructions operate on

registers or immediate constants. There are explicit instructions for reading from

and writing to memory in the cell format. Instructions fall into the following general

categories:

� Load instructions read cells and cell �elds from memory into registers. We

use the terms fetch and load interchangeably. There are two kinds of loads:

conditional loads generate a trap if a suspension reference would be returned to

the destination operand, unconditional loads do not. Conditional loads are the

basis of suspension transparency and e�cient detection, supported right down

to the machine level2.

� Store instructions write register contents to memory. Like loads, there are

conditional and unconditional versions of stores. The conditional versions will

fail on any attempt to overwrite a non-suspension reference; this feature can be

used to arbitrate interprocessor suspension scheduling (see [FW78d]), although

DSI has more generalized primitives (e.g. atomic add/and/or) that can be used

for more sophisticated coordination schemes.

� Allocation instructions allocate cells from memory and initialize them using

register contents in a single operation. This could be considered a special type of

2At least for detection; suspension creation is still an explicit operation at this level.

36

3.4 Signals

store operation. Data creation (i.e. cell allocation) is such a frequent occurrence

in applicative systems that it warrants special consideration at the machine

instruction level. This is discussed in more detail in section 3.5.1 and chapter

5.

� ALU instructions provide simple arithmetic and logical operations on registers.

These instructions are similar to those found on any traditional microprocessor.

� Signal handling instructions are used to control and manipulate the hardware

exception state.

3.4 Signals

DSI exceptions and interrupts are handled under a common signal mechanism. Sig-

nals may be generated by hardware interrupts (e.g. timers, devices), instruction traps

(e.g. a conditional load) or explicitly by the signal instruction. Some common uses

of signals are:

� Conditional loads whose result is a suspension reference.

� Allocation instructions which invoke garbage collection.

� I/O activity associated with a device.

� Timer interrupts for context switching.

� Bad references or ALU errors.

� Tracing and machine-level debugging.

� Interprocessor synchronization.

There are 32 possible signals, enumerated and prioritized from lowest (0) to highest

(31). Depending on its use, a signal can be sent to a single processor or multicast

to all processors. An example of the former case is a localized conditional-load trap

occurring on a processor/memory board; an example of the latter is a barrier syn-

chronization signal such as used in garbage collection. The signals are assigned by

the kernel and are listed in Table 1 in chapter 4.

37

3.4 Signals

DSI uses a process-oriented approach to signal handling, in contrast to the stack-

oriented approach used in most imperative systems. The latter usually handle excep-

tions by pushing state on the currently executing process stack (or a system stack)

and invoking an exception-handling procedure. Under DSI, when a signal is delivered

to a processor node it causes a context switch via a change of the context-window

pointer (CWP) to an alternative resident handler process. The handler might be the

kernel or another process (subsystem) designated to handle that signal. The currently

executing process is suspended by the context switch, but its state is not side-e�ected.

Neither is the state of the handler process; that is, no continuation is forced upon the

handler, it simply resumes at the point where it had left o� previously. Thus, the only

action of a signal is to context switch to a handler process, which must be designed

as an iterative signal handling loop. DSI instructions are designed to be restarted

in the event of a signal preemption3, so the preempted process can be restarted (if

necessary) by changing the CWP back to the appropriate context window. However,

since process state is not side-e�ected by signals (and assuming none in the surface

language), it is not necessary to maintain a stack or other structure to recover from

the e�ects of some permutation of delivered signals. All that is required is a schedul-

ing algorithm that results in the the proper processes being rescheduled, and this is

provided by DSI's demand-driven scheduling4. This approach to exception handling

�ts well with the applicative framework that underpins the rest of DSI.

3.4.1 Signal Routing

Figure 7 shows DSI's signal handling architecture, which works like a state machine.

The signal lookup table maps incoming signals (on- or o�-node) with the current

value of the CWP to determine the new value of the CWP. This allows the same signal

to be mapped to di�erent handlers depending on which context window is active.

Arbitration between multiple pending signals is handled by the �xed priorities of the

individual signals; the highest numbered unblocked signal has priority. The kernel

takes this into account when assigning signals to services.

Delivery of signals is controlled by a pair of 32-bit registers: SIGLATCH and

3Actually, in the current implementation preemption is allowed only on certain instructions,
because transient registers are not saved across context switches.

4See chapter 6 for clari�cation.

38

3.4 Signals

SIGMASK. Each bit in SIGLATCH corresponds to one of the 32 signals; when a signal is

delivered to the node it sets the corresponding bit. SIGMASK is used to block action on

signals registered in SIGLATCH. If a bit is clear in SIGMASK it inhibits the processing

of the corresponding signal in SIGLATCH; i.e. the signal is e�ectively blocked. This

capability can be used to mask interrupts for critical sections, to implement polled

device drivers, etc. The signal, tstsig, setsigmask and clrsigmask instructions

are used for manipulating the bits in these registers.

3.4.2 Per-process Signals

The preceeding discussion is concerned with signal handling at the system level, on

a per-node basis. Signals are a system phenomenon and transitions are speci�ed in

terms of context windows, not individual suspensions. It is the kernel's job to micro-

manage the context windows to map the signals between the individual processes.

In order to handle the signal mappings of thousands of suspensions the kernel has

to handle some signals itself and swap suspensions between the �nite set of context

windows and the heap as necessary. Currently, this is done only for a few signals

with �xed, implicit mappings, such as the the conditional load and timer signals.

However, it should be possible to generalize this mechanism, and by overloading one

or more unused system signals, to carry a variable number of user-de�ned \signals"

on a per-suspension basis. This capability would provide the foundation for user-

extensible signaling and exception handling. Assuming that a usable construct could

be formulated for Daisy, such a mechanism could be used for error recovery, event-

driven scheduling, port-based message passing and other systems-level applications.

It is unclear at present whether and how demand-driven system scheduling would

conict with event-driven user scheduling. The incorporation of this kind of primitive

would add another source of non-determinism (besides multisets) into the system,

but given the underlying implementation of signals it is likely to be \safe" non-

determinism. This is an interesting area that deserves further consideration.

39

3.5 Interconnection Topology

3.5 Interconnection Topology

DSI assumes a shared memory, MIMD architecture. Aside from that, the virtual

machine does not specify a particular processor interconnection topology, primarily

because that aspect of the architecture does not �gure as prominently in the pro-

gramming of the machine given those assumptions. However, the host platform must

provide a certain core functionality to successfully implement DSI. This includes:

1. A globally-shared and addressable heap memory. DSI's reduction and com-

munication models rely heavily on shared data structures. Those models are

unlikely to be viably implemented on anything other than a physical shared

memory machine (i.e. non-message passing). The shared memory can be orga-

nized as a NUMA architecture (see section 2.2.1), however. NUMA architectures

require special considerations for locality that are not isolated within the vir-

tual machine. These locality issues a�ect the process (chapter 6) and memory

management (chapter 5) subsystems, and are discussed in those chapters.

2. Symmetric MIMD multiprocessing. DSI assumes that all processors have the

same basic con�guration and functionality, and are not organized hierarchi-

cally. The distributed algorithms used assume a logical enumeration of proces-

sor nodes, and a given node must be able to determine its index.

3. E�cient implementation of atomic 32-bit add, or, load and store operations.

Atomic loads and stores are necessary to insure the integrity of references in

the heap. The logical, bitwise atomic operations are used for interprocessor

synchronization and updates on shared data structures.

4. The ability to interrupt any processor in a \timely" fashion. DSI's signals can

be piggybacked on a single user-programmable host exception, provided the

overhead of native exception handling is not signi�cantly greater than DSI's

own signal handling model implies. A polling approach can also be used, if

necessary.

Any parallel architecture that shares these characteristics is a suitable candidate for

hosting DSI. This type of architecture (MIMD shared-memory symmetric multipro-

cessor) is common in emerging multiprocessors.

40

3.5 Interconnection Topology

3.5.1 LiMP

Although the virtual machine does not specify a particular network design, special

architectures have been proposed. In a series of papers, Johnson ([Joh81, Joh85,

Joh89c]) re�nes a bu�ered routing network as the basis for a DSI multiprocessor.

Wise describes a layout scheme for implementing such a network in [Wis81]. The

network described is a Banyan design (see �gure 8) connecting a set of List Processing

Elements (LPEs) to a corresponding set of List Storage Elements (LSE's). LPE's

have roughly the same architecture described for DSI processors in section 3.2 above,

but lack multiple context windows and signals. LSE's are intelligent memory banks,

participating actively with the network in supporting the LPE's. Johnson [Joh81]

classi�es memory access instructions into fetch (RSVP), store (Sting) and allocation

(NEW) requests, each having a distinct network transaction pro�le between LPE's

and LSE's. RSVPs require a round-trip message from LPE to LSE and back to

furnish the result. Stings are one-way requests requiring no acknowledgment. NEWs

are handled in unit time by a cell routing arrangement called a NEW-sink, in which

LSE's combine with the network switches to route the addresses of free list cells back

towards the LPE's. Switches are endowed with bu�ers for the addresses; whenever

a switch transfers an address out of its holding area to its outputs it requests a new

one from its inputs. The switches are biased to transfer addresses directly across the

network, but will transfer from the alternate input if demand is high. The idea is to

preserve locality under normal allocation rates, minimizing contention at the switches

for loads and stores, but to disperse high allocation rates across the machine so as to

minimize hot spots. Johnson presents simulation results of LiMP in [Joh81].

The fundamental motivation behind the NEW-sink is to move resource manage-

ment problems from software into hardware. If the goal of the NEW-sink is to handle

data distribution then the goal of the Process-sink [Joh89c] is to manage load bal-

ancing. The Process-sink is a complementary operation in which LPE's route free

suspension blocks through the network to LSE's. If LPE's only multi-task suspensions

in their \local" space, then idle LPE's will be able to provide more free suspension

blocks to the system than busy LPE's, e�ectively migrating new processes to idle

nodes and balancing the load over the system. The behaviors of the NEW-sink and

Process-sink are modeled in DSI by a load-based allocation strategy described in

chapter 5.

41

3.6 Summary

3.5.2 The BBN Buttery Architecture

DSI's has been implemented on a BBN Buttery multiprocessor, selected because its

shared-memory (NUMA) network architecture is similar to the LiMP architecture

described above. The Buttery di�ers from LiMP in that it uses a circuit-switched

(non-bu�ered) enhanced banyan network. Each processing node contains a processor,

a memory bank and network interface called the PNC (Processor Node Controller).

Processors are tightly-coupled to their local memory bank, but all banks are accessible

through the switch, as though the graph in �gure 8 was folded laterally into a cylin-

der. Each processor actually has two paths for memory access: to its local memory

over a local bus, or through the switch to any other node's memory bank. Each PNC

arbitrates access to its memory bank between the processor and the network. Exper-

iments indicate that in the absence of contention switch access to memory is about

four times as slow as local access; with contention the switch access memory latency

degrades even further. This leads to special considerations for memory management,

which we generalize to all NUMA architectures.

3.6 Summary

Although DSI's instruction set is oriented towards list processing it otherwise pro-

vides much of the same functionality as a stock microprocessor, most of which are

adequate for emulating a DSI virtual machine. It is encouraging that stock hardware

performance is improving so rapidly and carrying with it the performance of sym-

bolic languages. Nevertheless, we could do much better, because there are a number

of areas in which relatively minor hardware enhancements would reap great rewards

in the execution e�ciency of these languages, and narrow the performance gap with

traditional languages. The key areas in which DSI would bene�t from hardware

support are context windows, allocation instructions and DSI-style signals, especially

signals for trapping on reference tags, which would bene�t dynamic type checking and

suspension detection. Wise has identi�ed a number of other features that would be

useful for hardware-assisted heap management, such as support for reference counts

[Wis85a, DW94].

42

3.6 Summary

Super
visor

Device
Manager

User
Process

User
Process

User
Process

Context
Windows

Kernel GC TraceHandler

SIGVEC

SIGMASK

SIGLATCH

SIGNAL

Figure 7: Signal Handling

43

3.6 Summary

Figure 8: A banyan network

44

chapter four

The DSI Kernel

DSI refers not only to our virtual hardware architecture, but also to a kernel written

for that architecture (see �gure 4, p. 31). In this chapter we describe the role of the

kernel and its overall organization and operation.

4.1 Resource Management in Symbolic Programs

DSI's kernel provides much of the same core functionality as an operating system. Its

main purpose is to provide run-time resource management for programs running on

the DSI architecture. We de�ne resource management as:

� Memory management, in the form of distributed storage allocation and recla-

mation.

� Process management, in the form of distributed, demand-driven scheduling of

processes, with system calls for parallel task scheduling. The kernel handles in-

terprocess synchronization, excess parallelism throttling, system load balancing,

and support for speculative parallelism.

� Device management, in the form of event-driven device scheduling, a character-

stream I/O interface and garbage collection of open devices.

DSI's kernel di�ers substantially from conventional operating system and paral-

lel language kernels due to its particular orientation toward �ne-grained symbolic

processing. The di�erences in processing requirements is reected in the emphasis or

45

4.1 Resource Management in Symbolic Programs

deemphasis of certain features. For example, a �ner process grain size leads to greatly

increased emphasis on the e�ciency of process manipulation. Suspension grain size is

much smaller than in conventional operating systems; smaller than kernel-supported

threads in conventional processes, and even smaller than that of many symbolic lan-

guages such as Multilisp, where grain size is speci�ed by the programmer. Process

manipulation overhead (creation, scheduling, synchronization, context switching) is

therefore signi�cantly more critical to system performance than in conventional sys-

tems, where it is typically a fraction of overall computation e�ort. This is reected

in DSI's use of context windows and demand driven scheduling traps in the virtual

machine.

Another major di�erence is in virtual memory support, or lack thereof. Studies of

the interaction between virtual memory and heap-based, symbolic languages [Moo84]

reveal that the large memory requirements of symbolic languages plus the non-locality

of heap allocation and garbage collection do not mesh well with conventional virtual

memory systems which depend heavily on spatial locality. The development of gen-

erational garbage collection has reduced the problem somewhat [PRWM92], but the

issue is still a topic of active research. Lazy languages such as Daisy may have even

worse virtual-memory locality than applicative-order languages such as Scheme, which

can make heavy use of stack frames. In any case, the task granularity of symbolic

processes is much too �ne to associate with virtual memory table ushes on every

context switch.

Another reason for a deemphasis on virtual memory is that it is often used in

conventional systems to support protected address spaces. In symbolic processing

the dominant communication paradigm is shared memory; i.e. shared memory is

the norm, rather than the exception. There has been some work in using shared

virtual memory to support type-checking, memory barriers and other features needed

by symbolic languages (e.g. [AL91]). This approach exploits the trapping aspect

of memory management units on stock hardware for purposes that might also be

handled by appropriate processor modi�cations.

Finally, symbolic languages do not have visible pointers as traditional languages

do. Memory protection is accomplished at the language level by the simple fact that

if you do not have a reference to an object you cannot modify it, even in systems

with side-e�ects. Of more concern is the issue of conicting global name-spaces. Most

46

4.2 Kernel Structure

systems have some notion of a global namespace for identi�ers. On systems with

simple shallow binding or similar schemes, this leads to shared identi�er references;

on a concurrent system this is not always what is actually desired, especially for

concurrent users. This problem might be addressed at the language level with a

suitably designed module or package system, as opposed to the use of protected

address spaces.

4.2 Kernel Structure

We distinguish between the design of the kernel's resource-management algorithms

and the design of its structure and interface. DSI's design in the former sense is the

subject of the following three chapters. The remainder of this chapter discusses the

latter; the structure, interface and operation of DSI's kernel.

4.2.1 Monolithic vs. Micro Kernel

In traditional operating systems such as Unix, the majority of system resource man-

agement is encapsulated by a set of system services provided by a monolithic kernel.

The kernel is implemented as a protected layer (or layers) of code underlying every

process. System services are accessed by exceptions or special \function" calls, both

of which are handled on the user or system stacks. These calls put the calling pro-

cess in supervisor or kernel mode, which allows the called kernel routines to execute

privileged operations on behalf of that process or other processes in the system. In

other words, the kernel is a special mode (and code) that is executed by all processes

and executes as a part of their respective address spaces.

Many modern operating systems are structured so that most system services are

handled outside of the kernel by special user-mode processes. The resulting stripped-

down microkernel provides only the absolute core supervisor-mode functionality re-

quired to manage the machine resources: processor scheduling, memory management,

and interrupt handling. The microkernel itself is implemented as a separate process

to which ordinary processes make requests for services, not as a special code layer in

processes' own address spaces. This provides certain advantages over the traditional

47

4.2 Kernel Structure

kernel implementation model, such as increased robustness, distributability, and con-

currency in the operating system itself. A microkernel design results in a modular

decomposition of operating system functionality into a few separate processes that

operate interdependently to manage the system as a whole. This modularity greatly

simpli�es understanding, extending and debugging system-level code.

Many symbolic language kernels share aspects of the monolithic design; they may

not be nearly as large and they may use very di�erent resource management tech-

niques, but they still implement the kernel as a low-level code layer interfaced through

the stack of every process. In contrast, DSI borrows the microkernel design philos-

ophy in the structure of its own kernel (we will hereafter not distinguish between

the terms kernel and microkernel when referring to DSI's kernel). DSI's kernel is

implemented as a set of special processes, not as layers of code accessed through a

stack interface. Interfacing with the kernel is a kind of interprocess communication.

This is not nearly as expensive as in conventional IPC, since

1. interprocess communication in DSI is through shared memory;

2. DSI's processes are very lightweight;

3. DSI's context window architecture allows multiple processes to be register res-

ident.

These factors blur the distinction between traditional notions of interprocess com-

munication and, say, shared-memory coroutining. However, from a programming

perspective our approach o�ers the modularity and loose coupling of the former with

the e�ciency of the latter. The kernel interface is discussed in more detail below.

4.2.2 Distributed vs. Non-Distributed

Another issue in parallel kernel design is whether a single kernel controls all the

processors in a sort of master-slave relationship, or whether the kernel is distributed

and runs on each processor.

Master-slave arrangements are common in systems that do not use symmetric

multiprocessing; i.e. in a processor arrangement in which one processor controls the

others. In this case the \master" processor might run the kernel and distribute work

48

4.3 The Kernel Interface

to the slave processors. The advantage of this kind of design is that no locks or spe-

cial synchronizations are needed for the kernel, since only one processor is running

it. In symmetric multiprocessing systems all processors have the same functionality

and capabilities. This kind of system encourages a distributed kernel design where

all processors have kernel functionality, an approach that requires more care in deter-

mining how the processors interact, but pays o� in greater parallelism in the kernel

itself.

Although this issue is somewhat orthogonal to the issue of macro vs. microkernel,

the two issues impact one another. If a distributed kernel is combined with a mono-

lithic kernel design, the processors may need to use shared locks and other measures

to arbitrate access to shared kernel structures. A microkernel design allows the ker-

nels to use interprocess communication to inter-operate with each other, resulting in

a more loosely-coupled design that is easier to scale and results in less bottlenecks.

Many parallel symbolic processing kernels use a distributed design. The macrokernel

approach of most of them is reected in in the use of locks to control access to global

allocation pointers, shared schedules, and other shared kernel structures. DSI uses a

distributed design in which the kernel processes are distributed across all processor

nodes. There are no shared kernel structures; the only synchronization required is

to the queues of each processor's message area. The kernels communicate with each

other through these queues to manage the machine as a whole.

4.2.3 Kernel Organization

The DSI kernel consists of four main processes. The supervisor handles process

scheduling, context swapping, and miscellaneous other kernel duties. The garbage

collector handles storage reclamation. The device manager handles device I/O, and

the tracer handles machine level tracing and debugging. At system startup, each

processor constructs this same con�guration of processes.

4.3 The Kernel Interface

Kernel services are accessed in one of two ways: traps and message requests. Both

types of communication are implemented with signals. Traps are associated with

49

4.3 The Kernel Interface

high-priority hardware interrupts or instruction exceptions. Examples of traps include

device I/O signals, conditional load traps, garbage collection, etc. Message requests

correspond to traditional \system call" type services such as scheduling and allocation

requests. The term message request is not meant to imply copying data between

processors, as is done in message passing systems; rather it refers to the loosely

coupled, asynchronous communication that is required by our microkernel design.

4.3.1 Message Requests

Kernel \messages" are simply pointers to data (cells) in the heap that are passed to

the kernel to act upon. Each message contains an indication of the type of request

and some optional data. Common requests (e.g. scheduling requests) are encoded in

the reference tag of the message itself; others are encoded in the head of the message.

The data (tail) includes any further data being passed to the kernel. This may include

a pointer to a location where data is to be returned to the sender; a sort of call-by-

reference mechanism1. For example, this is how allocation requests are handled across

processors (see chapter 5).

Message communication is handled with streams, a natural choice for communi-

cation in DSI. There are two parts to a message request: appending the message to

the appropriate stream and (optionally) signaling the processor that a message of the

appropriate priority has been sent. The signaling part may not be used for messages

that are routinely handled, such as allocation requests. This approach is used both

for local and remote kernel requests.

In normal stream communication under DSI there may be many readers but only

one writer2; the only synchronization required is an atomic store operation, which is

provided by the virtual machine. With message requests, there are multiple writers

and only one reader; namely, the kernel handling the requests. Thus, some syn-

chronization is required to arbitrate access between processors to the tail of the

communication streams for the purposes of appending messages. Note that since

message streams are distributed over the processors (each processor has several mes-

sage streams), synchronization e�ciency is not overly critical, and simple spin locks

will su�ce to arbitrate access among writers.

1Note that we are not talking about a side-e�ect visible in Daisy.
2Due to a locality scheduling constraint that is explained in chapters 5 and 6.

50

4.3 The Kernel Interface

Implementation

The kernel's message streams are implemented as a set of queues. The queue pointers

are stored as a contiguous vector of cells in the static data area of each processor's heap

segment3. The vector resides at the same o�set in each heap segment; a particular

queue can be accessed by adding the o�set and queue number to the heap segment

base pointer for the target processor.

Each queue of a processor's set of message queues is associated with a signal (see

table 1). After appending a message, the sender signals the processor with the signal

associated with that queue. The priority of the signals assigned to queues establishes

the priority of the queues themselves; messages in a higher priority queue will always

be serviced before messages in the next lower priority queue, and so forth. This

provides a way to prioritize various types of requests; see chapter 6 for an example of

how this is used.

4.3.2 Traps

A special method is available for passing data between the kernel and a running

process on the same node. The transient registers are globally accessible from any

context window and allow small �xed amounts of data to be passed from resident

process to resident process much faster than allocating storage in the heap. This

method is used for implementing the conditional probe traps and other frequent

kernel trap interruptions. Using these optimizations, a round-trip system trap in DSI

is faster than issuing a message request, since no allocation operations are performed.

The catch is that this technique can only be used with very high priority signals or

with careful masking, because data in the transient registers is volatile. If a trap

occurs when a higher priority signal is pending4 then the transient registers may be

overwritten before the kernel gets around to reading them. Message requests are

relegated to the lower priority signals so as not to disrupt trap handling.

3See chapter 5.
4If possible, signals are delivered to a processor using the actual exception mechanism of the host

(if this is too expensive simple polling is used). However, because of DSI's transient register design
they can only be delivered in DSI code at certain virtual instruction boundaries. Therefore, they
may get delivered in batches; see chapter 3 for further details.

51

4.4 Summary

4.3.3 Interruption

We have described how signals are used to prioritize the kernel's response; as discussed

in chapter 3, DSI employs a number of optimizations to accelerate these transactions.

Context switching speed between regular and kernel processes must be as e�cient as

possible to make this interface viable. The use of context windows allows both regular

and kernel processes to be simultaneously register-resident5. The kernel maps signals

to the context windows to allow direct transitions between programs and the handler

processes; e.g. tracing signals directly invoke the tracer, etc. Signals have �xed

priorities, which naturally provides a mechanism for arbitrating among them (this

can be overridden by masking). The kernel assigns symbolic names to the values and

exports the names (using the assembler module system) so that the actual values can

be changed transparently without disrupting other modules. Table 1 lists some of the

signals and their respective handlers used in the current implementation.

4.4 Summary

The development of DSI's kernel and virtual machine was motivated by the desire to

support suspending construction at target levels; i.e. hardware and low-level soft-

ware. Thus it is oriented toward applicative languages based on list processing,

and using a �ne-grained, largely demand-driven concurrency model. Nevertheless,

we have attempted to draw clear boundaries between the language (chapter 8), the

virtual hardware architecture (chapter 3) and the kernel (chapters 4{7). DSI's ker-

nel is independent of the Daisy language and could easily support other applicative

languages (see section 9.2). In this regard, the DSI kernel can be compared to other

generalized parallel symbolic processing kernels such as STING [JP92b, JP92a], which

was built around parallel Scheme, and Chare [KS88], which was motivated by con-

current Prolog. The DSI kernel di�ers from these systems, among other things, in

that it is generally targeting a lower level of implementation. It also provides device

management for lazy languages and uses di�erent resource management algorithms.

5In some cases context windows cannot be fully mapped to registers in the host and are par-
tially implemented in memory; this still speeds context switching by avoiding intermediate structure
manipulation and suspension swapping.

52

4.4 Summary

Signal Name Type Description Handler
SIG EXIT sw Exit signal. Supervisor
SIG ABORT sw Abort signal. Tracer
SIG TRACE sw Tracing. Tracer
SIG PROBERR hw Invalid probe. Supervisor
SIG GC sw Garbage collection. Garbage

Collector
SIG GC DUMP sw Dump heap. Garbage

Collector
SIG HDC hw Conditional head. Supervisor
SIG TLC hw Conditional tail. Supervisor
SIG RESET hw/sw Boot/reboot. Supervisor
SIG SYNC sw Synchronize nodes. Supervisor
SIG TIMER hw Interval timer. Supervisor
SIG IO hw An input event. Device

Manager
SIG IOBLOCK hw I/O blocked. Supervisor
SIG DETACH sw Detach request. Supervisor
SIG QUEUE8 sw Message in queue 8. Supervisor
SIG QUEUE7 sw Message in queue 7. Supervisor
SIG QUEUE6 sw Message in queue 6. Supervisor
SIG QUEUE5 sw Message in queue 5. Supervisor
SIG QUEUE4 sw Message in queue 4. Supervisor
SIG QUEUE3 sw Message in queue 3. Supervisor
SIG QUEUE2 sw Message in queue 2. Supervisor
SIG QUEUE1 sw Message in queue 1. Supervisor

Table 1: DSI Signals and Handlers.

53

chapter five

Memory Management

DSI's kernel provides complete memory management for processes. In this chap-

ter we discuss the organization of DSI's memory space and the techniques used for

distributed storage allocation and reclamation.

5.1 Memory Organization

DSI memory requirements are divided into three categories:

� a large, shared heap of untyped cells;

� a small, per-processor private data area;

� the DSI implementation code in host executable format.

If the host architecture supports distributed shared-memory (e.g. the BBN Buttery),

the heap is allocated as identically-sized segments distributed across all nodes, as

shown in �gure 9. These individual heap segments are mapped into the logical address

space of all processors as one large contiguous heap. The DSI implementation code

is replicated across processors for maximum instruction locality. If only non-NUMA

shared memory is supported, a single, large heap is allocated in shared memory, and is

arti�cially divided up into equal segments. Thus, regardless of the underlying shared

memory implementation, the heap as a whole is globally shared, and each processor

is assigned responsibility for a particular segment of the heap. Figure 10 shows the

view from one processor.

54

5.2 Storage Allocation

DSI Code DSI Code DSI Code

Private
Data

Private
Data

Private
Data

Heap
Segment

0

Heap
Segment

1

Heap
Segment

N

Processor 0 Processor 1 Processor N

. . .

Figure 9: DSI Memory: Physical Layout

5.2 Storage Allocation

DSI uses a three-level distributed storage allocation scheme. Each level builds upon

the level below it to provide its functionality.

At the lowest level, a processor manages its own heap segment, and only allocates

from its own area. Each segment is organized as shown in �gure 11. Ordinary

cells are allocated in blocks from the low end of available space (MEMLO) upward,

while suspensions are allocated in blocks from the high end of the segment (MEMHI)

downward. The registers AVLLST and AVLSPN track the respective allocation regions;

when they meet, available space is exhausted (for that node) and garbage collection

must be performed to recover space. The reason for the bidirectional allocation has to

do with garbage collection; its compaction algorithm is designed to relocate objects

of the same size. This will become clearer in section 5.3; for now, su�ce it to say

that if DSI had a more sophisticated storage reclamation scheme this would not be

necessary.

The second level handles the distributed aspect of allocation. Each heap segment

maintains two allocation vectors stored in the Static Data area shown in �gure 11. The

allocation vectors contain pointers to reserved blocks of free space on other processors.

55

5.2 Storage Allocation

DSI Code

Private
Data

Heap
Seg N

Heap
Seg 0
Heap
Seg 1

Processor N

.

.

.

Figure 10: DSI Memory: Logical Layout

One vector is for free cell space, the other is for free suspension space1. Each vector is

organized as a region of contiguous unary cells, indexed by logical processor number.

Each element's tail points to a block of free space on the associated processor and the

data �eld contains the size of the block (in cells). Figure 12 depicts a cell allocation

vector.

The allocation vectors provide a general mechanism by which data can be allocated

on any particular processor in the system. The technique of allocating larger blocks

of free space and then suballocating out of it improves e�ciency by reducing the

frequency of communication costs between processors [MRSL88]. The free blocks

pointed to by the allocation vector are preallocated and reserved ; there are no mutual

exclusion problems to contend with to arbitrate access to the blocks. The kernel

can explicitly allocate objects on remote processors by manipulating the allocation

vector directly, but most processes will typically use the allocation instructions new

and suspend instead, the operation of which are described below.

1Again, with a di�erent compaction scheme we would need only one vector.

56

5.2 Storage Allocation

AVLLST

MEMLO

MBASE

MEMHI

AVLSPN

Allocated
Suspensions

Allocated
Cells

Unallocated
Heap

Static Data

Figure 11: Heap Segment Organization

When a processor exhausts a block of free space in its allocation vector it sends

a request to the remote processor in question to supply another free block. The

requesting processor will be unable to allocate objects of that type (cells or suspen-

sions) on that particular remote processor until it receives another free block from

that processor. An allocation server on each processor handles these requests from

other processors for blocks of free space. A request contains a pointer to the appro-

priate cell in the allocation vector of the requesting processor. The allocation server

will allocate a block of cells or suspensions locally from its own AVLLST or AVLSPN

(respectively) and store the location and size of the block into the remote allocation

vector. This request/donate allocation mechanism stands in contrast to the shared

heap state variables used in other systems [DAKM89, MRSL88]. Although the alloca-

tion block/suballocation technique can be (and is) used in these systems, processors

must occasionally synchronize for access to shared global allocation pointers.

Two obvious factors a�ecting the availability of free space using our technique are

57

5.2 Storage Allocation

Allocated
to X

Allocation
Vector

size

LSTVEC
MEMLO

MEMLO AVLLST

Processor X Processor Y

Figure 12: Cell Allocation Vector

the size of the free blocks exchanged and how responsive the allocation server is to

requests. The larger the block requested, the more data can be remotely allocated

before running out of space and the less often processors will have to exchange re-

quests. However, allocating larger blocks to other nodes will result in a processor

using up its own free space faster then if it doled it out in smaller chunks. Since

garbage collection is a global phenomenon, the interval between collections is set by

the �rst processor to run out of space; this would argue in favor of smaller blocks.

As we shall see, there are other reasons that a processor should limit the amount of

local space it is allocating to other processors. We will return to this topic in section

5.2.1.

If the server can't supply a block it simply ignores the request; in this situation it is

very close to being out of space itself. The allocation vectors are not garbage collected;

this is necessary so that any partially �lled allocation blocks may be compacted

and heap fragmentation eliminated. After a collection there is a urry of allocation

activity as processors request and resupply each other's allocation vectors.

The third level of storage allocation bu�ers cells from the allocation vector for

use by the allocation instructions (new and suspend). The kernel culls free cell and

suspension addresses from the allocation vector into two internal bu�ers. The new

58

5.2 Storage Allocation

and suspend instructions implicitly access these bu�ers to obtain their allocation

references. This culling action is activated by a signal, which is generated by the

allocation instructions when the bu�ers begin to run low. The kernel scans the

allocation vector, culling free references and building up the new and suspend bu�ers.

When a free block for a particular processor is exhausted, the kernel sends a request

to the allocation server on that processor for another free block, as described above.

5.2.1 Data Distribution

Under DSI's allocation scheme the data distribution pattern (across processors) gen-

erated by a series of allocations is determined by two main factors:

1. the culling (distribution) pattern used by the kernel (and thus new and suspend),

and

2. the responsiveness of the allocation servers to requests from other processors

for free allocation blocks.

The default distribution algorithm used in the Buttery implementation culls free

addresses in a round-robin fashion from the free blocks for each processor, skipping

those for which the free blocks are empty. The rationale for this is that in the absence

of any other useful metric we should distribute data as evenly as possible to prevent

network hot spots [PCYL87, LD88, MRSL88]. The other logical bene�t is simply to

balance allocation across processors.

The responsiveness of the allocation servers is deliberately underplayed. The

server is not signal-activated (event-driven) like other system processes. In fact, it

runs at a very low priority compared to all other processes on the node.The e�ect is

that the server on a given node runs with a frequency inversely proportional to the

processing load on that processor. If the load is light, it will run frequently and quickly

refresh the free blocks on other nodes; if the load is heavy, it will run infrequently or

not at all, and supply few or no blocks to other nodes.

The end result of these design choices is that new allocations are distributed more

readily to lightly loaded nodes in the system, because those processors are able to

supply more free space in a timely manner. Recall the discussion of the new-sink

in chapter 3, which e�ectively accomplishes the same result using a hypothetically

59

5.2 Storage Allocation

constructed processor interconnection network (LiMP). Our load-sensitive allocation

strategy models that behavior in software.

The success of this approach depends on maintaining the connection between pro-

cessor load and allocation; i.e. allocation must be rendered load-sensitive. There are

two signi�cant factors at work here: proper scheduling of the allocation server (it

should run less frequently when the load is heavier) and the size of the allocation

blocks used. Using too large of a free block will render the allocation less sensitive

to loading, because processors can su�er longer periods of allocation server latency

before their allocation blocks are used up. Small-to-moderate block sizes seem best

suited for this purpose. Smaller block sizes also increase the interval between garbage

collections, as explained in section 5.2. Further experimentation is necessary to de-

termine the precise e�ect of block sizes on system performance.

5.2.2 Load Balancing

The interaction between allocation servers and kernels described above results in a

dynamic system that distributes allocation evenly under balanced load conditions and

favors lightly used processors under imbalanced load conditions. This is particularly

signi�cant in regard to the allocation of new suspensions, because what this really

implies is the distribution of new processes over processors; i.e. load balancing.

Our load-balancing allocation scheme is predicated on two factors:

1. The �ne-grained nature of suspending construction coupled with an applicative

environment forces data and processes to be recycled frequently.

2. A scheduling invariant in which suspensions can only execute locally ; i.e. on

the processor in which heap segment they are located.

Applicative languages enforce a stateless mode of programming in which new data

and processes are constantly created. Most processes are short-lived; those that

aren't are usually blocked awaiting the results of new processes. This is important

because it lets our allocation strategy shift work to new processors as they become

less busy. If our system consisted of relatively static processes then an unbalanced

system would remain unbalanced, since work is not being reected in the form of

new processes. Without invariant 2, our load-sensitive allocation strategy would also

60

5.2 Storage Allocation

be meaningless, since processors would be disregarding the load-based partitioning

of suspensions. The garbage collector does not migrate storage between processors,

so a given suspension lives out its existence on one processor. Since new suspensions

tend to be created on lightly-loaded nodes, computation overall continually gravitates

towards an equilibrium.

Our system of load-balancing stands in contrast to most other symbolic processing

systems which actively move processes around to try to balance the system, or have

processors steal tasks from other processor's ready queues[RHH85, DAKM89]. Our

approach to load balancing has low overhead compared to these approaches:

� Process state does not have to be relocated (process migration techniques might

not relocate either, but this adds cost for nonlocal context switching due to

NUMA (see section 3.5) or cache locality.

� Processors do not have to spend time examining each other's queues, notifying

each other of task availability, or handle intermediate routing of tasks to other

processors.

Considerations for Load Balancing

DSI's load-balancing strategy doesn't distinguish between \important" suspensions

and \trivial" ones. Under our allocation scheme, trivial suspensions are just as likely

to be allocated remotely as suspensions representing signi�cant computations, which

we are more interested in o�oading to other processors. This is not a consideration if

the surface language is explicitly parallel, since the programmer will be indicating the

parallelism of computations using annotations (or e.g., futures). It is possible under

our allocation scheme to allocate on speci�c processors (provided a block is available)

so the language implementor has the option of o�oading important tasks should the

language be able to distinguish them.

A potential weakness concerning the load-balancing aspect of our allocation scheme,

is that under suspending construction, the time between suspension creation and co-

ercion (scheduling) is potentially unrelated (this is the basis of the model). This would

appear to undermine the load-sensitive strategy for allocating free suspension blocks,

since it is when the suspension is scheduled that impacts the load and not when it

61

5.2 Storage Allocation

is created2. Consider a situation in which a few idle processors are supplying blocks

of free suspension space to other processors, which are creating signi�cant suspended

computations, but not coercing them. Then at some future point this group of signif-

icant suspensions is clustered on a few processors. It's worth pointing out that this

anomalous condition would only arise in an unbalanced state, which our strategy is

designed to prevent. Nevertheless, assuming that the system did get into this state,

how is the situation handled? Here the small grain size of suspending construction

may prove bene�cial, since it tends to break up signi�cant computations into many

smaller processes which will be distributed.

5.2.3 Locality

Heap-based symbolic languages are notoriously non-local. Heap objects tend to be

distributed randomly throughout the heap and are also extensively shared. Lazy

languages compound the problem, because the control ow is not as amenable to

locality optimizations for data allocation (e.g. stack allocation) and heap sharing is

even more pronounced.

DSI's heap allocation strategy acknowledges this and attempts to make the best

of the situation by dispersing data evenly over the machine. However, for data that

is not going to be shared DSI makes an e�ort to maximize locality. The Buttery

implementation, for example, uses locality wherever feasible:

� The push operation allocates stack cells from the local heap segment, so stacks

accesses are local and stack activity does not involve network tra�c.

� Suspensions are scheduled for execution on the nodes on which they reside, so

that context switching is localized to the node; entire process contexts are not

transmitted through the network. This policy also serves the load-balancing

strategy outlined above.

� Garbage collection does not move data across processor boundaries. This pre-

serves existing locality conditions.

2Along these lines, our model bears consideration for eager parallel systems (e.g. using futures),
which schedule processes as they are created.

62

5.3 Storage Reclamation

� Compiled code is replicated across all nodes so that instruction stream access

is localized.

The goal of these optimizations is to maximize locality, going through the processor

network only when a nonlocal heap access is necessary. Tagged references help here

as well, allowing typing of objects without the penalty of a network memory reference

to examine a �eld within the object.

Finally, we should say a word about systems that have little or no sense of locality.

On a uniform access shared memory system (e.g. a bus-based, cache-coherent mul-

tiprocessor) there is no sense of locality as regards the heap3. Cells and suspensions

might as well be allocated anywhere; the access time is (supposedly) uniform. Never-

theless, our distributed allocation system provides bene�ts even in this environment.

First, it provides locality for the allocation instructions. Once a series of addresses

has been collected and bu�ered the individual processors are not competing to update

shared allocation variables. Second, the system provides processor load balancing as

described above if processors respect the (arti�cial) \ownership" of suspensions in

other heap segments. There is an implicit trade-o� here: on such systems it may

make more sense not to enforce such arti�cial boundaries and instead allow proces-

sors to execute any suspension, anywhere. This would cut down on the amount of

interprocessor communication required to transfer execution requests to other pro-

cessors, but would also require a new method of load balancing to be devised. Task

stealing [RHH85] might be appropriate in this case.

5.3 Storage Reclamation

Like many other heap-based symbolic processing systems, DSI uses garbage collection

as its primary method of storage reclamation. DSI does employ ancillary methods,

such as code optimization that recycles cells in non-sharing situations, but at best

these methods simply increase the interval between garbage collections. Under normal

circumstances allocation operations will eventually exhaust all avaliable free space in

the heap and garbage collection must be performed to recover space.

3On the other hand, the snoopy cache architecture used by these systems may be just as sensitive
to locality as a NUMA design [DAKM89].

63

5.3 Storage Reclamation

5.3.1 Garbage Collection

DSI uses a distributed mark-sweep garbage collection algorithm. Garbage collection

is triggered by a SIG GC signal delivered to all processors. The kernel process on each

node responds to this signal by invoking a local dormant garbage collection process.

Garbage collection suspends all other processing activity for its duration; when the

collection process terminates, the kernel resumes the system where it left o�.

Figure 13 illustrates the major phases of garbage collection. All phases operate in

parallel on each node; each phase is prefaced by a synchronization barrier to ensure

that all processors are executing in the same phase.

Initialization

During the initialization phase the collector swaps out all active processes from the

context windows to their respective suspensions so that all valid references in registers

will be collected.

The Mark Phase

During the mark phase the collector process performs a pointer-reversal, depth-�rst

traverse of the live data reachable from each node's root. Three bits in each cell are

reserved for garbage collection (the gc �eld in �gure 5): one for interprocessor syn-

chronization and two for coloring. If, during the mark phase, two or more processors

reach the same cell through di�erent references, the synchronization bit determines

which one will proceed into the cell and which one will back up and terminate that

thread of its traverse.

Init Mark Compact Update Exit

Figure 13: Garbage Collection Execution

64

5.3 Storage Reclamation

The mark phase leaves the gc coloring bits set according to the con�guration of

live collectible pointers found in the cell. At the end of the mark phase all cells are

marked in one of the con�gurations shown in table 2.

The Compaction Phase

The compaction phase uses a \two-�nger" algorithm to sweep through the heap seg-

ment, defragmenting and freeing up space for future allocation. The algorithm works

as follows: Pointer A starts at the low end of allocatable memory (MEMLO in �gure 11)

and scans upward for unmarked cells, stopping when it �nds one. Pointer B starts at

the upper end of the allocation area (AVLLST) and scans downward for marked cells,

stopping when it �nds one. The cell pointed to by B is copied to the slot pointed to

by A, thus freeing up a cell at the upper end of the allocation space. A forwarding

address is placed in the head of the former B location noting the relocation address

of the cell, and a special ag is left in the tail indicating a relocation. This process

iterates until pointers A and B meet.

This compaction scheme relies on the fact that cells are of a uniform size. Although

suspensions are fundamentally made up of cells, suspension cells must remain as an

ordered, contiguous group. This restriction, coupled with our choice of compaction

algorithm, accounts for the segregated allocation scheme discussed earlier in which

suspensions are allocated at the upper end of the heap segment and cells at the

lower end. This upper (suspension) area must be defragmented as well, so a similar

compaction is performed at the high end of the heap segment between AVLSPN and

MEMHI (see �gure 11). After compaction each heap segment has been restored to

the state pictured in �gure 11, where free space is concentrated in the middle of the

Value Configuration

0x0 Unmarked cell (garbage).
0x1 Unary cell.
0x2 Stack cell.
0x3 Binary cell.

Table 2: Possible gc Bit Con�gurations

65

5.3 Storage Reclamation

segment.

Each processor compacts its own heap segment in parallel with the others. Unlike

the mark phase, each processor's locality is perfect since the compaction does not

require the processor to reference anything outside of its own heap segment.

The Update Phase

The update phase involves a second scan through the compressed live data in which the

mark bits are cleared and any pointers to relocated cells or suspensions are updated

from their forwarding addresses. The latter is handled by loading the tail of the cell

pointed to by each valid reference encountered during the scan and checking it against

the relocation pointer-ag. If the cell was relocated it is necessary to load the head

of the cell to obtain the relocation address and then update the pointer in question.

The gc bit con�guration indicates which �elds contain valid references during the

scan. As with compaction, all heap segments are updated in parallel. Some switch

contention is possible, because the relocation tests may require loads into other heap

segments, but otherwise locality is good.

Cleaning Up

During the exit phase processors synchronize again to ensure that collection has �n-

ished system-wide, then reload the context windows with the active process set. Fi-

nally, the collector process relinquishes control back to the process that was inter-

rupted in allocation.

5.3.2 Minor Phases

There are two minor phases devoted to collecting the system hash table and device

list as a special entities.

DSI must provide a way to remove identi�ers that are not referenced outside of

the hash table and recover the space. Most systems facing this problem use weak

pointers or similar mechanisms [Mil87]. DSI takes a slightly di�erent approach. The

hash table is maintained as a global entity that is not reachable from any garbage

collection root. During collection, the normal mark phase marks any identi�ers that

are reachable from live data. A minor phase between the mark and compaction

66

5.4 Summary

phases traverses the hash table and removes all unmarked entries and marks the

table structure itself, so that it can be successfully scanned during the update phase.

A second minor phase devoted to collecting the device list is discussed in chapter

7. These two minor phases correspond to the hash demon and �les demon described

in [Mil87].

5.3.3 Garbage Collection: Observations

Our garbage collection algorithm is neither e�cient or full-featured compared to oth-

ers described in the literature (e.g. [AAL88]), nevertheless we are encouraged by

recent studies on the e�ciency of mark-sweep collection [Zor90, HJBS91]. Our col-

lector has some useful properties that contribute to the overall storage management

strategy in DSI, the most important being that storage is not migrated from one

processor to another, preserving locality conditions that are the basis for a number

of design decisions (see sections 5.2.2 and 5.2.3).

Our garbage collector's cost is proportional to the sum cost of the mark, com-

paction and update phases. Although our collector requires three main passes as

opposed to one pass used in copy-collect, the heap segments are not divided into

semi-spaces, and good locality is ensured for the compaction and update phases,

which may have major caching bene�ts. Since the mark phase is fully parallelized,

but allows individual processors to traverse the global heap, it is di�cult to assess

the total cost of marking. Optimally, it is proportional to

reachable cells=number of processors (1)

although in practice it is unlikely to turn out that way, depending on the amount of

live data reachable from each processor's root and contention in the network. The

compaction phase sweeps the entire allocatable portion of a processor's heap segment

(marked and unmarked), and so is proportional to that size. The update phase sweeps

the static area and compressed portion of a processor's heap segment.

5.4 Summary

We have described a system of storage allocation and reclamation for a cell-oriented,

distributed heap. Where feasible, the system allocates cells locally. When data must

67

5.4 Summary

be allocated globally, the system resorts to a load-sensitive, distributed allocation

scheme. The garbage collector does not migrate data or processes from one node to

another, which helps maintain the locality of processes and data allocated locally. Our

approach di�ers from related systems which attempt to improve locality by copying

structure between nodes during garbage collection. Our system relies on the short

temporal nature of data and processes to allow load-sensitive allocation to gravitate

the system to a balanced state. The interaction between load-based allocation and

process management is explored further in chapter 6.

68

chapter six

Process Management

Like memory management, DSI provides complete process management. We begin

this chapter with a description of the key events in a suspension's life-cycle: process

creation, activation and termination. This provides a basis for a discussion of higher

level process management issues: synchronization, scheduling, controlling parallelism,

and speculative computation.

6.1 The Process Life Cycle

Traditionally, process creation is associated with both the allocation of process state

and the manipulation of scheduling structures within the kernel. In DSI, process cre-

ation and activation are treated as two fundamentally separate events. Process cre-

ation is just another form of allocation that is nearly as �ne-grained as cell-allocation

(suspensions are, in fact, a sequence of four cells).

All suspensions are created with the suspend instruction, which initializes suspen-

sion records in the heap. The created suspension inherits some of its �elds from the

registers of the context window of the currently running process; the new suspension

record can be swapped directly in and out of a context window to instantiate the

process. Most suspensions require a convergence context to be useful: a cell in the

heap containing the suspension reference that is the location for storing the manifest

result of computing the suspended computation. A process executing a typical sus-

pending construction code sequence will execute one or more suspend instructions

interspersed with new instructions in building a data structure.

69

6.1 The Process Life Cycle

A suspension is activated in one of two ways:

� It can be coerced by a probe; in which case the system will schedule it implicitly,

or

� it can be explicitly scheduled by a suspension-aware concurrency primitive in

the language.

The �rst situation occurs when a running process traverses a structure containing

suspensions. By default, structure accesses are ultimately handled at the DSI virtual

machine level by conditional load instructions (e.g. hdc and tlc). These instructions

are sensitive to suspension references (see chapter 3), generating a special signal if the

result of the load would be a suspension reference. This signal causes a trap to the

kernel, which suspends the probing suspension and schedules the target suspension

for execution. The second situation occurs only for a special class of primitives which

explicitly manipulate suspensions. This typically includes concurrency constructs in

the surface language.

A scheduled suspension is considered an active process. The kernel resumes an

active suspension by loading it into an open context window and transferring control

to that window. The suspension resumes execution at the control point in the K

register. A suspension in this state is a running process. Note that there may be any

number of active processes on a given node, some of which are swapped into context

windows. There is only one running process per node, namely, the one in a context

window that has control of the processor.

The end result of a suspension's execution is almost invariably to compute a

value which replaces its own reference in the heap, an operation known as converging

to a value. If the suspension is not referenced from another location this causes

the suspension to un-reference itself; its state will be recovered at the next garbage

collection. Converging is normally accomplished by a sting (store) operation followed

by a converge system call, which signals a process' intention to terminate. The kernel

responds by swapping the suspension out of its context window and selecting another

active suspension to run.

Sometimes, a suspension may store a value that extends the structure of the con-

vergence context, and embeds itself farther down in the structure. For example, the

code for an iterating stream process might append items to the tail of a list and then

70

6.2 Interprocess Synchronization

resuspend itself at the new end of the stream. This resuspend behavior is accom-

plished with the detach operation, a system call which is similar to converge, but

has the e�ect of resetting the control register K such that if and when the suspension

is reactivated it resumes execution at the speci�ed control point. Thus, detach is

essentially a call to relinquish the processor.

6.2 Interprocess Synchronization

We illustrate interprocess synchronization in DSI with an example. Consider the

situation depicted in �gure 14a. Suspension A is activated as a running process;

during the course of its computation it probes suspension B . A dynamic dependence

is established between A and B ; process A needs suspension B 's result. This causes

suspension B to be activated, in accordance with demand-driven scheduling. When

process B converges or detaches with a result, A's demand is satis�ed and it can be

restarted. Clearly, we need some method of synchronizing execution between A and

B , since A cannot make progress until B converges with a result. Our suspending

construction model requires that this synchronization be performed transparently by

the system on behalf of processes.

How we implement this dependence synchronization can have a dramatic e�ect

on performance. Our choices fall into two broad categories: polling and blocking

synchronization. The di�erence between these two methods is primarily in where the

responsibility lies for rescheduling A. In a polling implementation, the system either

periodically wakes up A to reattempt its probe, or checks B 's convergence cell on

behalf of A at some interval, rescheduling A when a manifest value has appeared.

With blocking synchronization, A is blocked inde�nitely (removed from the schedule)

and the act of rescheduling A is associated with B 's convergence.

Both synchronization methods have their strengths and weaknesses:

1. Polling does not require any external information about the dependences be-

tween processes to be maintained, since that information is encoded in the

heap sharing relationships and in the code of the various processes themselves.

Blocking synchronization requires that dependences be dynamically recorded

and associated with each process so that blocked suspensions can be explicitly

rescheduled when their dependences are satis�ed.

71

6.2 Interprocess Synchronization

A

B

C

D

(a) Actual Depen-
dences

A

B

C

D

(b) Dependence
Graph

A

B

C

D

(c) Dependence
Stack

Figure 14: Process Dependences

2. Polling does not require any special action or communication when a process

converges; eventually the polling mechanism will succeed in restarting A. Block-

ing synchronization requires that the suspensions blocked on a process be ex-

plicitly rescheduled when that process converges.

3. For polling, the waiting interval is critical, since the act of polling wastes pro-

cessor time that could be devoted to other useful processes (we do not want

to busy-wait). The interval between polls should be spent executing any other

ready processes on the node. In some cases it may be necessary for the processor

to arti�cially extend its polling interval with idle periods, since agrant busy

waiting could have deleterious e�ects on the processor network [LD88, PCYL87].

This might be the case, for example, early on in the computation before the

program has established many parallel tasks.

4. Synchronization latency refers to the lag between the time that a suspension has

converged and the time that a process depending on it is actually resumed. This

can occur under both synchronization methods, but is only a concern for polling.

72

6.3 Tracking Dependences

If the polling processor is idle during the latency period (see item 3, above)

then that time has been wasted. The concern here is for the aggregate time

wasted over the course of a program's execution due to synchronization latency.

Blocking synchronization does not su�er this problem because blocked tasks are

immediately rescheduled, so an idle processor would take it up immediately.

Given 1 and 2, we would prefer to poll, provided we could select an ideal polling

interval (see item 3, above) for each blocked process, such that negligible time and

resources are spent on the actual polling. Unfortunately, that is a di�cult problem,

since it all depends on the length and termination of individual process' computa-

tions. The wide range of possible values makes even a heuristic choice di�cult (even

using a dynamically changing interval). Our experience has shown that explicit syn-

chronization is very e�ective and worth the extra overhead involved in maintaining

dependences. However, polling's advantage in (1) is important and we shall return

to the synchronization issue later in section 6.7.

6.3 Tracking Dependences

Let us return for a moment to our example. Suppose that in the course of execution,

process B probes suspension C ; C probes D , and so on. The result is that a dynamic

chain of dependences is established between suspensions. This dependence chain can

be visualized as a dependence graph as shown in �gure 14b. The dependence graph

shows the temporal data dependences between a subset of suspensions in the heap at

a given point in time.

Because of the lazy nature of suspending construction, dependence chains can

grow hundreds or thousands of processes deep. Assuming that we are going to do

explicit synchronization, we need to track these dependences with an actual struc-

ture that mirrors, but reverses, the dynamically unfolding chain of dependences. We

depict our reverse dependence graph like a normal dependence graph, only with the

arrows reversed, as in �gure 14c. Using our dynamically constructed reverse depen-

dence graph we can easily determine which processes should be resumed when a given

process converges. The main problem with this approach is maintaining an accurate

mapping between our reverse dependence graph (an actual structure that the system

73

6.3 Tracking Dependences

manipulates) with the dynamically changing state of actual dependences in the sys-

tem. As we shall see, this assumption can be problematic, especially in the presence

of speculative computation (section 6.7).

6.3.1 Distributed Demand-Driven Scheduling

Our �rst logical choice for implementing a reverse dependence graph is a stack, with

elements pointing to suspensions in the dependence chain. The top of the stack points

to the currently executing process. Every probe that results in a suspension forces a

stack push, so that the top of the stack always points at the fringe of the expanding

computation, and backward links record the dependences between suspensions result-

ing from a series of probes. When the current process converges this dependence stack

is popped, and the suspension underneath is rescheduled.

Our dependence stack then, is a layer of scheduling infrastructure laid out over

the computation as it unfolds. Probes result in pushes, and convergence results in

pops; we assume that the process at the top of the stack is the next ready process in

that dependence stack.

Dependence stacks are the basic scheduling handles used by the system. When a

probe results in a suspension the kernel pushes the dependence stack (as described

above) and then examines the suspension reference. If the suspension is local it can

proceed to swap it in and execute it. If it is a remote suspension, the kernel sends a

scheduling message to the remote processor containing a pointer to the dependence

stack, and moves on to examine messages in its own scheduling queues (see section

4.3). When the remote processor gets around to processing this message, it loads the

suspension reference from the top of the stack and proceeds to swap it in and execute

it. If that suspension probes yet another suspension the same scenario recurs. When

a process converges, the kernel pops the dependence stack and checks the suspension

reference at the top. If it is a local reference, the suspension is swapped in and

executed. If it is nonlocal, the dependence stack is sent to the remote processor and

the current processor looks for other stacks in its message queues.

What we have just described is the basic mechanism for distributed demand-

driven scheduling in DSI. The fringe of the computation corresponding to a particular

dependence chain shifts from processor to processor to take advantage of locality of

74

6.4 Creating Parallelism

execution for whichever suspension is currently pushing the fringe. The cost of this

scheduling communication is discussed in chapter 4; it is considerably less than the

cost of context swapping over the network, which would involve the loading and

storing of suspension contexts, perhaps multiple times, plus any additional overhead

due to non-local stack manipulation, etc. For details refer to section 5.2.3.

6.4 Creating Parallelism

As we have seen, demand-driven scheduling leads to extending and collapsing existing

dependence chains; at any given time only the suspension at the top of a dependence

stack is active, the others are blocked on dependences. If there is only one dependence

chain then only one processor would be busy at a time, executing the suspension

at the top of the sole dependence stack. Thus, any parallelism in the system is

due to multiple dependence chains (and correspondingly, dependence stacks). Each

dependence stack represents a point on the fringe of the computation tree that is not

currently dependent on any other process.

It might seem logical to create and assign a dependence stack to each processor;

if each processor is busy handling a stack the entire machine is utilized. Actually, we

want multiple pending stacks for each processor. The reason is due to our requirement

that suspensions execute locally; if a processor passes its current dependence stack to

another node we do not want it to be idle. Rather, it should take up any dependence

stacks that have been passed to it from other processors. Given a balanced distribu-

tion of suspensions and a small backlog of waiting dependence stacks, any processor

should always have work to do. Kranz [DAKM89] briey discusses the merits this

kind of task backlog.

6.5 Static vs. Dynamic Parallelism

We can classify parallelism in our system under two broad categories. Static paral-

lelism is due to pre-existing multiple chains of demand. An example of static par-

allelism would be multiple initial output devices, arising from a system of multiple

output windows or a multi-user/multi-terminal system. One advantage of static par-

allelism is that there is no possibility of overloading the machine with too much

75

6.6 Controlling Parallelism

parallelism; the amount of parallelism never increases, and can be initially matched

to the size and capabilities of the machine.

Dynamic parallelism is created in response to explicit scheduling requests by con-

current primitives. These requests are the source of branching in the dependence

graph. Each branch forms a new dependence chain; the amount and type of branch-

ing is determined by the primitive, and possibly by the number of suspensions in

its argument. For example, consider a hypothetical primitive, pcoerce, that imple-

ments a form of parallel coercion, scheduling each suspension in its argument list and

returning when they have all converged.

pcoerce:[exp1 exp1 ... expN]

Concurrent primitives are the primary source of parallelism in Daisy. This is con-

sistent with the underlying philosophy of the language; namely, that list construction

produces suspended processes, and primitives coerce those processes is various ways

(including in parallel). See section 2.3 for details.

6.6 Controlling Parallelism

Dynamic parallelism introduces the problem of controlling excessive parallelism. Once

the machine is saturated with processes (i.e. is fully utilized, with a su�cient backlog)

additional parallelism is not bene�cial, and may even be harmful. Too many concur-

rent tasks result in greater peak memory usage then if the processes were coerced

sequentially. Furthermore, additional processes result in more context switching, re-

ducing overall throughput. Thus some method of constraining parallelism is required

so as not to overwhelm the machine with active processes. This mechanism must be

dynamic, since the amount and type of parallelism all depend on the program and

data.

One technique to constraining parallelism is to tie process creation (i.e. granular-

ity) to the load of the machine [GM84, Moh90]. For explicitly eager parallel languages

(e.g. futures), this may be possible. For Daisy, the laziness of suspensions is a seman-

tic requirement; there is no way to randomly \inline" a suspension without changing

the semantics of the language1. Note that for lazy tasks, it is not the actual creation

1Although this could be done with strict arguments, revealed by strictness analysis [Hal87,
HW87]; see chapter 8.

76

6.6 Controlling Parallelism

of tasks that leads to excess parallelism but rather the excess scheduling of tasks (i.e.

by primitives). However, that there are other valid reasons to reduce granularity.

This is discussed further in section 6.9.

With this in mind, we might consider tying process scheduling to current load

conditions. For example, if the load is heavy, pcoerce might only schedule some of

its suspensions in parallel, and coerce the others serially. However, since suspensions

can only run locally, this would require pcoerce to access the load conditions of all

the processors on which it might need to schedule suspensions. This would mean

an unacceptable amount of overhead, in addition to placing the burden of these

decisions on the surface language. Instead, DSI follows the philosophy of total process

management. Language primitives can make any number of scheduling requests;

the kernel is responsible for throttling parallelism to avoid the danger of excessive

parallelism.

DSI's approach to controlling parallelism is based on our load-sensitive distributed

allocation policy outlined in section 5.2.2. Since suspensions only execute locally, the

load-sensitive allocation automatically limits the number of new processes created

on a given processor by other processors. This in turn limits the possible number

of scheduling requests made to a processor by other processors for those suspen-

sions. Thus the only unlimited parallelism that a processor needs to worry about

comes from local scheduling requests; i.e. made by local processes. This suggests a

two-tiered approach for di�erentiating between local and remote scheduling requests.

Each processor maintains one queue for incoming remote scheduling requests and a

separate area for local scheduling requests. The two structures have distinct schedul-

ing priorities. If a processor always favors its incoming scheduling queue (requests

from other processors to execute local suspensions) then it automatically favors the

status quo of current parallelism load on the machine, and thus discourages parallel

expansion occurring from its local scheduling area. The allocation block size and

allocation server responsiveness (see sections 5.2.1 and 5.2.2) indirectly determine the

current load for the reasons outlined above. These factors a�ect the number of possi-

ble outstanding remote requests for a processor's local suspensions, thus controlling

the backlog of multiple outstanding dependence stacks.

If there are no outstanding scheduling requests in a processor's incoming queue it

obtains a scheduling request (dependence stack) from the local area. If this process

77

6.7 Conservative vs. Speculative Parallelism

should probe a remote suspension, it will be blocked on the dependence stack and

a scheduling request will be sent to the remote processor. Note that this e�ectively

raises the blocked task into a higher priority level, since it will be rescheduled in

the sending processor's incoming queue after the probed suspension converges on the

remote processor. Thus the absence of work in a processor's incoming queue results in

that processor augmenting the level of parallelism in the overall system by expanding

tasks in its local area.

The type of parallel expansion occurring in this way depends on whether we use

a stack or a queue for the local scheduling area. A queue results in a breadth-

�rst expansion; a stack results in a depth-�rst expansion. Super�cially, a queue

might seem to be the better choice. Breadth-�rst expansion expresses parallelism at

higher levels in the process decomposition, which is generally preferable. Depth-�rst

expansion limits the exponential growth of parallel decomposition. Note, however,

that parallel expansion due to our distributed allocation/load-balancing scheme also

a�ords breadth-�rst parallelism2, and in fact, this is exactly the mechanism that

is used to distribute parallelism evenly. Our remote queue represents the desired

parallelism load; our local scheduling area is excess parallelism. With this in mind,

we choose a LIFO approach for the local scheduling queue, which further throttles

parallel expansion.

The priorities of the incoming queue and stack are easily handled by DSI's signal

mechanism; these structures are implemented by the prioritized interprocessor mes-

sage queues described in section 4.3. This mechanism insures a timely interruption

of the processor should a remote scheduling request become available.

6.7 Conservative vs. Speculative Parallelism

Dynamic parallelism can be further classi�ed into two types. Our hypothetical

pcoerce primitive is a form of conservative parallelism [Jon87], also called mandatory

computation [Osb90]. In conservative parallelism the results of the parallel computa-

tions spawned are known to be needed (in the case of pcoerce because that's what

the primitive requires).

In contrast to conservative parallelism is speculative parallelism [Jon87] (also called

2At least potentially so. See section 5.2.2 and chapter 8.

78

6.7 Conservative vs. Speculative Parallelism

speculative computation [Osb90]). The results of speculative processes are not known

to be needed. Speculative processes are usually scheduled based on some probability

of need. For example, consider a speculative conditional

if:[predicate then-part else-part]

that schedules its then-part and else-part in parallel with the evaluation of the pred-

icate, on the idea that it will make some headway on the result regardless of the

outcome of the test. There are a number of useful applications of speculative com-

putation; section 2.3 contains several examples. Osborne [Osb90] provides a partial

taxonomy for classifying speculative computation types.

6.7.1 Managing Speculative Computation

Speculative computation o�ers additional sources of parallelism over what may be

available from conservative parallelism alone, but at the same time it introduces

signi�cant resource management problems:

1. Speculative processes should ideally only use idle resources; if there is relevant

work to be done (mandatory computation), then those conservative processes

should get priority.

2. Speculative computation can exacerbate the problem of excessive parallelism,

outlined in section 6.5; thus constraining parallelism takes on added importance.

3. Speculative processes can become useless during the course of execution; it then

becomes necessary to �nd a way to remove these tasks and their descendants

from the system so that they don't continue to use up resources that could be

devoted to other processes.

We will describe how these issues are addressed by iterative re�nements to our schedul-

ing model for conservative parallelism.

The �rst problem, that conservative processes take priority over speculative pro-

cesses, is easily satis�ed by having each processor maintain a separate, lower priority

queue for speculative processes. If a speculative process probes or schedules any other

suspensions they are also scheduled to the appropriate processor's speculative queue.

79

6.7 Conservative vs. Speculative Parallelism

Thus, once a task has been scheduled speculatively, neither it nor any of its descen-

dants should be scheduled to a conservative queue. At �rst, this approach does not

seem to provide for contagion [Osb90]; namely, if sharing relationships are such that

a conservative process comes to depend on a speculative task (e.g. by probing it after

it has been scheduled speculatively elsewhere, like our speculative conditional) the

speculative process should be upgraded to conservative, and any tasks it depends on

should be upgraded as well. We will address this issue in our discussion on sharing

in section 6.8.

Our second concern, that speculative parallelism be controlled, is satis�ed by the

same techniques we used in controlling conservative parallelism: using a stack to

schedule local suspensions. Since we are segregating speculative and conservative

processes, we add a local, speculative stack in addition to our speculative queue

described above. The stack works in exactly the same way as the conservative stack

described in section 6.6; local speculative suspensions are pushed on the stack, and

remote speculative suspensions are appended to the speculative queue on the remote

processor. The speculative stack has lower priority than the speculative queue, which

favors existing parallelism over new parallelism. Thus, we have two queues and two

stacks per processor, which are serviced in the following priority (highest to lowest):

1. Conservative queue.

2. Conservative stack.

3. Speculative queue.

4. Speculative stack.

The implementation of these structures are handled by DSI's multi-queue cascading-

priority communication mechanism presented in chapter 4.

Our third concern, removing useless tasks, is more complicated. To illustrate

the issue, consider a speculative conditional which produces a process decomposition

as shown in �gure 15. The then-part and else-part are speculative computations

that have been scheduled in parallel with the evaluation of the predicate. Both

speculative processes have started demand chains that are pushing the fringe of the

computation forward; both have also initiated additional parallelism that schedules

additional processes into the system. Once predicate has been evaluated, one of

80

6.7 Conservative vs. Speculative Parallelism

J
K

D

C

M N
O

I

L

P

pred

if

then
else

F

E

G
H

Fringe

Figure 15: A Speculative Conditional

the dependence graphs emanating from the two speculative processes has suddenly

become relevant (conservative) and the other irrelevant (useless). For example, if our

predicate evaluates to false, we would like to remove processes G , J , L,M and N from

the system as soon as possible. Presumably only L, M and N are actually scheduled,

so their removal will su�ce to remove any useless processes (G , J) blocked on them,

under our dependence stack model.

Ideally, the system should spend as little e�ort as possible on useless task removal;

any e�ort spent in doing so is chalked up to pure overhead that o�sets any gains made

in pro�table speculation. The approaches used by current parallel symbolic systems

generally fall into two categories: explicit killing of tasks [GP81, Hem85] and garbage

collection of tasks [BH77, Mil87].

81

6.7 Conservative vs. Speculative Parallelism

The �rst approach, explicit killing of tasks, relies on the kernel being able to

determine when a task has become useless. At that point the kernel can spawn a

termination task, which begins at the root of the speculation process subtree and

recursively kills tasks. Alternatively, the kernel can cut the useless processes out of

the schedule directly. This can be di�cult to do if a distributed scheduling structure is

used, as in DSI. Both methods require the kernel to be able to identify all descendants

of the useless task and determine whether they are useless or not; because of sharing,

some of them may not be useless and should be spared.

The garbage collection approach involves modifying the garbage collector to re-

move useless tasks from schedules, blocking queues, and other scheduling infrastruc-

ture. This approach assumes that useless tasks have become unreferenced from the

computation graph. In order to keep them from being retained by scheduling ref-

erences, weak pointers or weak cons cells [Mil87] must be used to build scheduling

infrastructure containing pointers to tasks so that they aren't retained unnecessarily.

A potential problem with this approach is that useless tasks continue to remain in the

system until garbage collection [Osb90]. One way to prevent this is through the use

of priorities, especially if priorities are already being used to give conservative tasks

preference. When a task is discovered to be useless, priorities can be propagated down

through the speculative process subgraph to downgrade the status of all descendant

tasks. As with the killing approach, the kernel must be able to distinguish the useful

from the useless as it descends the subtree; this may require a sophisticated priority

combining scheme [Osb90].

6.7.2 Demand Coe�cients

The methods described above are both rather active; that is, the kernel must pro-

actively detect useless tasks and attempt to restructure the schedule to mirror the

changing state of actual dependences occurring in the program. As we have discussed,

this is di�cult thing to do, and the sophistication of the approaches presented above

attest to that fact. DSI uses a third, more passive, approach to speculative task

removal; it controls the extent of speculative computation through the use of bounded

computation. The idea is fairly simple; instead of scheduling speculative tasks like

conservative tasks and then trying to remove them from a distributed schedule, only

82

6.7 Conservative vs. Speculative Parallelism

schedule them for a bounded amount of computation. This bound is given by a

demand coe�cient embedded in the suspension itself, which directly controls the

amount of processing resources (time, memory allocation, etc.) it receives. If a process

exhausts its demand coe�cient before converging the owning processor removes it

from the schedule. In order to keep it going, the scheduling process must coax it

again; a process may need to be coaxed a number of times before it �nally converges.

This approach supports a number of speculative models [Osb90]. Simple precom-

puting speculation is accomplished by a single coax. This type of speculation simply

channels some e�ort into executing a suspension on the chance that it's result will be

needed later. Multiple-approach speculation is more common, and refers to scheduling

a number of tasks where not all of them are necessary. Constructs falling into this

category are our speculative if (see above), AND-parallelism, OR-parallelism, and

many others (see section 2.3). These primitives operate on the principle of strobing :

coaxing a number of suspensions repeatedly until one converges. This may be enough

for the scheduling task to produce a result; if not, the task may resume strobing until

another converges, and so on. The kernel provides routines to handle this strobing

on behalf of primitives3 this simpli�es the construction of speculative primitives, and

allows the kernel to optimize the strobing behavior.

There are a number of advantages in this approach to managing speculative tasks:

� No e�ort is required on behalf of the kernel to identify and remove useless

tasks. Speculative tasks are scheduled as such from the outset; from then on the

process and any that it probes are scheduled in speculative scheduling queues.

Speculative tasks will eventually drop out of the distributed schedule once the

strobing process stops coaxing them.

� Demand coe�cients provide a natural way to prioritize speculative tasks. A

process's demand coe�cient directly correlates to the amount of processing

resources it receives; a higher coe�cient will result in more attention.

In order for bounded computation to be e�ective, our system must be able to

extend a process's bound to other processes that it probes or schedules indirectly.

To do this we modify our demand-driven scheduling scheme to propagate demand

3The algorithms are loosely based on those used for multisets [FW79, FW80b]; an indeterminate
construct appearing in earlier versions of Daisy.

83

6.8 Sharing and Cycles

coe�cients and observe the limits of a process' computation bound. This essentially

quanti�es the demand propagating through the computation graph.

In implementation terms, this entails the transfer of coe�cients along the fringe

of the computation; i.e. at the top of the process dependence chains. When a depen-

dence stack is extended, the kernel transfers some or all of the scheduling process'

coe�cient to the target suspension. If the target process converges, the kernel trans-

fers the remaining portion of the coe�cient back to the process being resumed. If a

process exhausts its coe�cient before converging, the kernel unwinds the dependence

stack until it discovers a suspension with a positive demand coe�cient, and schedules

it on the owning processor.

The size and transfer characteristics of demand coe�cients must be carefully de-

termined, in much the same way as allocation blocksize is for distributed memory

allocation. If set too small, then coaxed computation does not get very far, per coax,

and coaxing overhead begins to overtake speculative processing; If set too large, use-

less tasks will remain in the system for longer periods, although they only compete

with other speculative tasks. A strict requirement for the transfer function is that co-

e�cients should monotonically decrease over the course of several transfers; otherwise

a chain of speculative demand might live on inde�nitely.

6.8 Sharing and Cycles

What happens if a suspension is probed by more than one process (e.g. due to

list sharing)? Since we only execute suspensions locally, there is no contention due to

multiple processors trying to execute the same suspension. Each processor wanting to

schedule the suspension will send a scheduling request to the processor which \owns"

the suspension. This can result in several references to the same suspension in a

processor's scheduling area. Note that the references may be spread across all four of

the scheduling structures (conservative queue, conservative stack, speculative queue,

speculative stack), according to all the places where the suspension was scheduled

and how it was scheduled. This handles the case where a suspension is scheduled

speculatively by one process and later is probed by a conservative process. In this

case the speculative process should be upgraded to conservative status, a situation

Osborne calls contagion [Osb90]. The �rst time the process will be scheduled to a

84

6.8 Sharing and Cycles

qsort:hiqsort:lo

partition

Figure 16: Heap Sharing

speculative queue (or stack), but the second probe will result in the process also being

queued on a conservative queue (or stack). Since the conservative queue (stack) has

priority over the speculative queue (stack) the process is automatically upgraded.

Note that a suspension's demand coe�cient reects sharing relationships; if several

processes coax the same suspension its demand coe�cient will be larger than if a

single process coaxed it. This also e�ectively upgrades its priority relative to other

tasks.

6.8.1 Embedding Dependences

It might seem awkward to maintain dependence information outside of the process

context. In other words, to handling sharing, why not simply add a link to each sus-

pension on which you could enqueue other suspensions that are blocked on it. Then,

when a process converges, the system could simply reschedule all suspensions in the

wait queue. This is the approach used by Multilisp [RHH85] and most other imple-

mentations. There are several reasons why DSI does not do this. First, speculative

computation renders all dependences to be potentially speculative. A given demand

chain may be the result of a speculative computation. If we record all dependences

in the process state we may retain pointers from needed processes to speculative

85

6.9 Increasing Granularity

processes that have since become useless. The problems with this approach and the

solutions taken by other systems are outlined above.

The problem with speculative processes points out how dependences are a tem-

poral phenomenon, which is the reason it is problematic for the system to accurately

dynamically track the dependence relationships between processes. There are other

reasons besides speculation that might result in a dependence changing without the

system's awareness. For example, a suspension might be moved to a new location

by another process, or a location containing a suspension might be overwritten by

another process4. Therefore it is somewhat of a philosophical decision not to em-

bed temporal dependence information in suspensions themselves, since it may later

prove inaccurate. The actual state of dependences is recorded in the suspension state

already, in the form of their actual pointer values and code that they are execut-

ing. Thus the truest form of demand-driven scheduling would be to poll repeatedly

from the root of the entire computation tree, allowing the dependences to \shake

out" naturally. Unfortunately, this approach is not feasible on stock hardware, and

would result in many suspensions being swapped in repeatedly only to block on their

dependences and be swapped out again. DSI's current approach using dependence

stacks is a compromise; it prevents the most common form of polling ine�ciency,

while still providing a method (demand coe�cients) for utilizing the programs actual

dependences to handle speculation.

6.8.2 Cycles

Cycles can arise in our schedule due to circular dependences. A process that ulti-

mately depends only on itself represents a logical programming error. DSI makes

no attempt to recover these, but a solution might be possible using monotonically

decreasing demand coe�cients.

6.9 Increasing Granularity

The lazy nature of suspending construction coupled with a �ne process granularity

often combine to create potentially large dependence chains. These chains eat up

4This cannot happen under Daisy, but might under a language with side-e�ects.

86

6.9 Increasing Granularity

valuable space and introduce stack overhead that cuts into useful processing time.

One of the interesting open questions of this research is how to reduce the size of

these chains.

One way to increase process granularity is by replacing invocations of suspend

(especially for trivial suspensions) to inlined code or recursive function calls where

appropriate. This helps, but not overly so because of the high level of optimization

already performed for suspension processing. Informal tests indicate that a function

call is only slightly faster than locally coercing a suspension. How much faster de-

pends on how many registers need to be saved on the stack to perform a strict function

call; because suspensions are so small, a context switch can be faster than a function

call that has to perform several allocations to save and restore registers. Also, many

suspensions cannot be eliminated or inlined and still retain proper laziness. Compi-

lation, including strictness and dependence analysis can help to improve granularity.

Demand coe�cients may also provide a way to implement bounded eagerness; this

idea is explored further in chapter 8.

87

chapter seven

Device Management

This chapter discusses the treatment of devices and I/O under DSI. We describe the

stream I/O interface and its integration with DSI's process model. We then describe

an implementation of input and output device drivers and their interaction with other

system processes. We conclude with a discussion of the strengths and limitations of

I/O in DSI.

7.1 The DSI I/O Model

DSI uses a character stream I/O interface; all data is presented to, or issued from, the

device drivers using character streams. An input device driver appears as a producer,

reading bytes from the device and injecting a corresponding stream of characters into

the heap. An output device driver consumes a stream of characters and writes raw

bytes to the device. An input-output, or bidirectional device driver both produces

and consumes streams of characters. The drivers convert between raw bytes and DSI

characters because the character representation is better suited for manipulation by

programs dealing with lists and atoms.

A DSI character is represented by a singleton literal (an atom consisting of a single

character), as shown in �gure 17. The DSI hash module contains a table of statically

preallocated characters. The input driver converts a byte to a character by indexing

into this table with the byte. Thus, an input driver is really just generating a stream

spine with the appropriate subreferences to existing identi�ers.

88

7.2 Device Drivers

I

DSI Character

Binding
(if any)

c

M

Figure 17: DSI Character Representation

Most DSI programs construct networks of streams that are considerably more so-

phisticated than this. These stream networks usually operate on higher level forms

like expressions. The usual procedure is to parse the input stream into atoms and

forms, process it through the network (evaluation) and convert the result back into

a character stream for the output driver. Daisy provides four standard stream trans-

ducers for this purpose: a scanner, a parser, a deparser and a descanner. These �lters

were designed to support Daisy expressions, but can be used for general scanning of

atoms, etc.

7.2 Device Drivers

Streams are naturally implemented in DSI using suspensions, so a system with drivers

reading characters from a keyboard and echoing it to a terminal would look some-

thing like that depicted in �gure 18. In the �gure, DSI characters are shown as c's;

character substructure has been omitted for the sake of simplicity. The input and

output drivers are implemented in standard fashion for DSI stream producers and

consumers (respectively). Suspending construction provides the synchronization and

blocking mechanisms required for transparently interfacing other processes with the

drivers. Processes operating on an input stream are not aware of the embedded driver

suspension nor any accompanying I/O activity. Similarly, output drivers blindly con-

sume their argument streams without regard to the source of that data; all that is

required is that the argument stream conform to a list of characters.

89

7.2 Device Drivers

C C

host

terminal
driver

Head of TTY
output stream

keyboard
driver

Tail of KBD
input stream

host

C

Various
stream
processes

Figure 18: Character Stream I/O

DSI supports the keyboard, terminal, TCP/IP stream sockets and Unix pipes as

I/O devices. In addition, any �le or device that can be accessed through the host's

�lesystem and can be read or written as a serial byte stream can be used. Actual I/O

to the various devices is handled by the host interface layer of the implementation,

which provides a set of primitives for the DSI drivers. These primitives open and

close devices, issue host I/O calls and bu�er data, much like the C stdio library.

The calls are listed in table 3.

DSI interfaces with these host I/O functions via device descriptors. A descriptor

is represented by a unary cell with a host I/O handle stored in the non-collectible

data �eld. The tail is used to store a prompt string (a MSG-list) if the device (e.g.

a terminal) supports one. The host I/O handle points to a structure containing

information about the device, such as its type, bu�ers, optimal blocksize, and current

state. The host I/O routines in table 3 create and use this information to handle

di�erences between devices and to perform e�cient transfer and bu�ering for each

device type.

The dvcin (input) and dvcout (output) modules de�ne system primitives for in-

stantiating a stream process (producer or consumer) of the appropriate device type.

90

7.3 Input Devices

Call Description

H stdinp Open stdin.
H stdout Open stdout.
H stderr Open stderr.
H ttyin Open /dev/tty for input.
H ttyout Open /dev/tty for output.
H input Open a �le for input.
H output Open a �le for output.
H sockin Create a socket for incoming connections.
H sockout Create a socket for outgoing connections.
H accept Make an incoming socket connection.
H pipe Open a Unix pipe.
H ptypipe Open a Unix pipe/pseudo-terminal.
H close Close a �le or device.
H poll Non-blocking check for input data.
H readreq Issue disk read request.
H get Get a character.
H put Put a character.
H iostat Check device or �le status.
H prompt Issue a short prompt to console.

Table 3: Host Interface Layer I/O Calls

The corresponding Daisy functions are listed in table 4. The following sections de-

scribe the operation of the driver processes for input and output.

7.3 Input Devices

All input devices are handled by a single generic driver, the input device manager.

When a DSI input primitive is invoked, it calls the appropriate host I/O routine to

obtain a native I/O handle (e.g. dski calls H input). It uses this handle to build a

corresponding DSI descriptor. The primitive then calls a device manager subroutine

to make the descriptor known to the device manager. The device manager subroutine

instantiates the input stream and returns a reference to it. The input primitive may

return this stream, or �lter it, depending on the device (see 7.3.4 below).

91

7.3 Input Devices

M y e s ?

Host I/O
handle

DSI KBD
Descriptor

DSI String
(prompt)

Host I/O
handle

DSI File
Descriptor

M

Figure 19: DSI Device Descriptors

7.3.1 The Device Manager

The device manager con�guration is shown in �gure 20. The device manager main-

tains a list of descriptor/stream associations on the device list (DVCLST). The stream

part of the descriptor/stream pair is a reference to the tail of the input stream of

characters associated with the device. When DVISCAN wakes up it scans the device

list and polls each descriptor in turn:

� If there is data pending, DVISCAN will enter an input loop, reading raw bytes

from the descriptor, converting them into DSI characters and appending them

onto the associated input stream. When there is no more pending data to

be read from a descriptor, DVISCAN updates the tail reference in the descrip-

tor/stream pair and moves on to test the next descriptor in the device list.

� If the descriptor indicates an end-of-�le or error condition DVISCAN closes the

descriptor, terminates the input stream and deletes the device/stream pair from

the device list.

After it has processed the entire device list DVISCAN suspends itself and awaits its

next activation.

DVISCAN is an example of a multi-way shared suspension; the kernel retains a

reference to it, and all low-level input streams are formed by using the same reference.

DVISCAN can be activated in one of two ways: by the kernel in response to receiving a

92

7.3 Input Devices

Input Description

console Returns a bu�ered tty input stream.
rawtty Returns a raw tty input stream.
dski Returns a �le input stream.
exec Returns a pipe output stream.

Output Description

screen Writes a tty output stream.
dsko Writes a �le output stream.
Bidirectional Description

socki Reads/writes a socket stream.
socko Reads/writes a socket stream.
pipe Reads/writes a pipe stream.
tpipe Reads/writes a pipe stream.

Table 4: Daisy I/O Primitives

SIG IO signal, or by a consumer process probing it as an argument stream. In either

case DVISCAN acts as described above, servicing all descriptors with pending input.

This arrangement provides asynchronous I/O support, since any input activity results

in all descriptors being serviced.

7.3.2 I/O Signals

There are three signals reserved for device handling. SIG IO should be implemented by

a hardware interrupt or host operating system exception that is asserted when there

is data ready to be read from an input device. If the device is attached to a single

processor, then only that processor should receive the SIG IO. Otherwise, the signal

may be multicast, and the processor which \owns" the device manager suspension

will activate it. If there are multiple I/O channels that can be serviced concurrently

(perhaps on a processor network), it might be desirable to have more than one instance

of DVISCAN running. This is not conceptually di�cult, and would simply require that

each instance of DVISCAN manage a separate device list, or that they coordinate to

avoid corrupting a single shared device list. The current implementation assumes a

single instantiation of DVISCAN.

93

7.3 Input Devices

Tail of tty
stream

DVISCAN
(shared)

Tail of file
stream

DSI Device
Descriptor

Device List
(DVCLST)

filestdin

Figure 20: Input Device Handling

Both the DVISCAN and DVCOUT will assert SIG IOBLOCK if there is no data to be

read or the output device is not ready for writing, respectively. In either case the

intent is to indicate that no headway is currently possible in the current process chain.

Thus SIG IOBLOCK is intended to signal a lateral scheduling change (preemption), and

is, in fact, handled like a timer signal.

7.3.3 Garbage Collecting Devices

Occasionally an input stream may become unreferenced while the device or �le is still

open. The device manager operates in conjunction with the garbage collector to close

these dangling �le descriptors.

DVISCAN starts by loading the header cell of DVCLST from a �xed heap location,

and it �nishes by clearing any references to the device list before detaching itself.

The result is that unless DVISCAN is running, there are no device list references in any

suspensions in the system (although there are references to the descriptors and input

94

7.3 Input Devices

streams). Thus, while descriptors, input streams, and the DVISCAN suspension are

marked by the garbage collector, the spine and ribs of the device list are not marked1.

After the normal mark phase, the garbage collector makes a special pass over the

device list, checking to see if any spine/rib elements have corresponding unmarked

descriptors. If so, it means that the corresponding input stream has been dereferenced.

The collector closes the unmarked descriptors and splices the corresponding elements

out of the device list. The device list and the hash table are the only two structures

that are collected specially by the garbage collector. The implementation is di�erent,

but the e�ect is identical to that of the �les demon in MultiScheme [Mil87].

7.3.4 Flavors of Input Devices

This section describes the di�erences between the various kinds of of input devices

supported by DSI.

Disk Input

DSI relies on the host �lesystem to manage �les. Disk input is handled on a per-�le

basis. dski takes a host �lesystem path as argument and creates a new descriptor

and DVISCAN stream for each open �le. It returns a stream of characters read from

the �le.

Keyboard Input

Keyboard input is di�erentiated from other kinds of input in that it is implemented

at a lower level. Instead of relying on the host bu�ering to handle multiple instances

of keyboard input, DSI requests a single stream of input and multiplexes the stream

itself.

At the lowest level, a DVISCAN input process presents a single raw stream of

characters issuing from the keyboard. This stream is consumed by a single splitter

process (SPLIT), as shown in �gure 21. SPLIT, like DVISCAN, is a multi-way shared

suspension. The splitter splits its input stream, serving up characters on demand

to whichever consumer happens to be coercing it at the moment. To add another

1Unless a collection occurs while DVISCAN is running, in which case part of the list is marked,
and no dangling devices are collected on that occurrence.

95

7.3 Input Devices

KBDFLTR

KBDFLTR

SPLIT
(shared)

DVISCAN
(shared)

Tail of first
raw stream

Tail of first
cooked stream

Tail of second
raw stream

Tail of keyboard
input stream

Tail of second
cooked stream

host

Figure 21: Input TTY Handling

process into the keyboard input mix it su�ces to create a new trolly-car stream using

the single SPLIT reference. The splitter guarantees that no two clients will receive

the same character.

The streams produced by SPLIT are also all raw character streams. This is what

you get using Daisy's rawtty primitive. Raw character streams are not particularly

useful as keyboard input, however. Most operating systems will reserve certain char-

acters for special interpretation, such as interrupting processes, job control or editing

and bu�ering input. DSI �lters the raw stream using a standard keyboard �lter

(KBDFLTR in �gure 21). KBDFLTR provides a �ltered (\cooked") character stream,

which is what you get using Daisy's console primitive. The functionality provided

by KBDFLTR is fairly limited. It issues a prompt and then attempts to read up to and

including a newline before detaching; when it reawakens it will prompt again and

iterate. This simple interleaving of prompts and inputs is su�cient to give programs

the proper interactive feel, something can be tricky in a lazy environment. KBDFLTR

also performs a few other character interpretations, summarized in table 5. You will

note that their isn't very much in the way of editing keys; DSI relies on the host

96

7.4 Output Devices

Reference Character Action

ChrNL newline Detach; prompt when awakened.
ChrEOT end of �le Terminate stream.
ChrDLE ?? Forced detach.
ChrESC escape Escape the next character.

Table 5: Standard Keyboard Filter Actions

operating system to handle that. It would not be di�cult to do, however. Using

the rawtty primitive it is possible to write more complex or special purpose �lters in

Daisy.

There also aren't any process termination interpretations such as the ubiquitous

Control-C. Which process would this a�ect? DSI's process model is vastly di�erent

from conventional systems; there are many, many processes associated with any \job".

The Daisy Programmer's Manual [Joh89c] has examples of how to do job control in

Daisy using multisets.

7.4 Output Devices

DVCOUT

Head of a
char stream

DSI Output
Descriptor

C C

dvc

Figure 22: An Output Process

97

7.4 Output Devices

Output devices are symmetrically constructed to input devices. An output driver

is a stream consumer of characters. Each character is converted to a raw byte and

written to the output channel using the host I/O primitives which handle the proper

bu�ering for the device type (e.g. disks are written in blocks, terminals are unbu�ered.

etc.).

As with input devices, output devices share a common generic output driver

(DVCOUT), with di�erences between devices contained in the host I/O handle and

handled at the host interface layer. Unlike the input manager, the output driver is

multiply instantiated for each output occurrence; that is, a new process is created for

each consumer. Output device primitives construct the appropriate descriptor, create

a suspension for the DVCOUT process, and give it a converge context. That context is

then probed to bootstrap the output process.

DVCOUT is a fairly simple loop. It probes its input stream for a character and

converts it to a raw byte (see �gure 17). It then checks the status of its output

descriptor:

� If the descriptor is ready for writing the byte is emitted using H put and the

process iterates.

� If the device is not ready for writing, DVCOUT signals the kernel with a SIG IOBLOCK,

indicating that the process is blocked and a lateral context switch is in order.

� If the device indicates an error, DVCOUT converges to an erron.

If DVCOUT reaches the end of its input stream it converges to NIL. Note that DVCOUT

may block, but never detaches; that is, it is in�nitely strict in its argument.

7.4.1 Flavors of Output Devices

This section describes the di�erences between the various kinds of of output devices

supported by DSI.

Disk Output

dsko takes a �lename and a stream of characters as arguments. It creates or truncates

the named �le and writes the characters to it. It returns NIL after the last character

is written.

98

7.5 Bidirectional Devices

Terminal Output

Terminal output is the complement to keyboard input; screen takes an input stream

and writes it to the terminal, returning NIL after the last character has been written.

Terminal output is not implemented at the same level of detail as keyboard input,

however. If it were, multiple output streams would be merged by a MERGE process

into a single output stream before being delivered to a single (tty) instantiation of

DVCOUT. As it is, DSI lets the host handle the multiplexing of outputs. An upgrade

to DSI's terminal output system is planned to make it complementary to keyboard

input.

7.4.2 Output Driven Computation

The e�ect of output devices is more than just to output characters. Because the

output device driver is in�nitely strict, it presents a point source of continuous demand

that propagates down through its input stream and through the data space to the

fringes of the computation (and ultimately, to any input drivers). It is the output

devices which ultimately provide the impetus for DSI's demand-driven behavior. In

between the the output drivers and the inputs, the user program controls the direction

of this demand ow.

Note that with the valid implementation of SIG IO, DSI's input drivers are event-

driven rather then demand-driven. This makes sense, given the transient nature

of data on the I/O bus; most devices implement some form of bu�ering, but will

experience overruns if their interrupts are not serviced in a timely manner.

7.5 Bidirectional Devices

In addition to input-only and output-only devices, DSI also supports bidirectional

devices. A bidirectional device is one that can be modeled as having both input and

output channels. For example, although the display and keyboard are actually two

separate physical devices, under Unix they are integrated into a single logical device

(e.g. /dev/tty) from which you can read and to which you can write.

There are two kinds of interfaces that can be used for bidirectional devices in

DSI. One is to split the device into two logical devices corresponding to its input

99

7.5 Bidirectional Devices

and output components; this is the basic approach used for terminals. The read

and write terminal I/O streams are accessed by separate input (rawtty) and output

(screen) primitives, which create distinct input and output driver suspensions, as

described above. Another approach to bidirectional devices is to model the device

like a stream transducer ; i.e. a driver process that is both a producer and consumer

of streams. Figure 23 shows how this is implemented using a single suspension. The

driver multiplexes input and output functions; the input stream is written to the

device and the data read from the device is appended to the output stream.

DSI provides two kinds of bidirectional \devices" in the transducer-type interface:

sockets and pipes.

Sockets

DSI provides an interface to BSD-type stream sockets, a high-level TCP/IP network-

ing standard on many operating systems, including most avors of Unix. Sockets pro-

vide full-duplex (bidirectional) data streams between two points (sockets) over a net-

work. Two Daisy primitives provide access to the Unix socket interface. Both socki

and socko are higher-order primitives. They both return functions (closures) that

map character streams to character streams; i.e. they create a producer-consumer

process as described above. The input stream is the characters to write to the socket

and the output stream is the characters read from the socket.

The di�erence between socki and socko is in how the socket connections are es-

tablished; socki accepts incoming connections (server-style) and socko makes outgo-

ing connections (client-style). The socki primitive takes a port number as argument,

creates a socket, binds it to the port address on the host, and returns a function.

When that function is applied to an input stream, DSI watches the port, establishing

the bidirectional data ow when an incoming connection is made. This action cor-

responds to the Unix accept call, except that it does not block. socko takes a list

argument containing two items: a host name and a port number on the network; it

returns a function. When that function is applied to a stream it tries to connect to

the named socket, and also establishes a a bidirectional data stream.

100

7.6 Limitations of DSI's I/O Model

Unix Pipes

Another useful bidirectional device interface provided in DSI is a Unix pipe. Like

the socket primitives, the pipe primitive is higher-order. It takes a at list of literal

arguments which are intended to be the elements of the argv argument vector passed

to a forked Unix process, and returns a function. When that function is applied to a

stream it creates a pipe, and forks and execs a Unix process. The forked process's

I/O is redirected to the pipe, so that the input stream to the pipe interface suspension

(see �gure 23) is fed to the process's stdin, and the process's stdout (and stderr)

are returned through the interface suspension as the output stream. The connections

are illustrated by �gure 23.

Two variations on pipe are provided. tpipe operates just like pipe, but opens a

pseudo-terminal between the process and the I/O streams. This fools the forked pro-

cess into thinking it is connected to an actual tty device, which some Unix programs

require to work correctly. exec is a �rst-order function for creating processes that

only write to stdout; its argument is in the same format as the function returned by

pipe.

7.6 Limitations of DSI's I/O Model

DSI's I/O model reects its roots in functional programming research. The stream

representation provides a non-temporal, applicative interface to asynchronous device

I/O that integrates well with DSI's process model. The stream interface is useful

for a wide variety of devices, but some devices work better with stream model than

others. In this section we will explore some of the limitations of stream I/O under

DSI.

7.6.1 Interleaved Terminal I/O

This is an instance of more general problem involving non-strictness, but it becomes

particularly evident with interactive stream I/O. Proper interleaving of input and

output from a terminal is di�cult when there is no intuitive sense of the demand

patterns ordering execution of stream processes. The most typical manifestations

of this problems are that input is requested before a prompt appears, prompts for

101

7.6 Limitations of DSI's I/O Model

Socket
Interface

C C

D E M A N D

Unix
Process

D
A

T
A

Figure 23: A Bidirectional Unix Pipe \Device"

102

7.6 Limitations of DSI's I/O Model

various input channels are interleaved (so that one does not know which input channel

he is typing to), and so on.

One solution to this problem is to insert explicit point-source coercion or laziness

operations into the code to achieve the proper interleaving of prompts, input, and

output [HS88, p.2]. At best this is a trial and error, ad-hoc procedure. Fortunately

this problem is alleviated to a great extent by the ubiquitous use of modern windowing

shells. The ability to direct I/O to individual windows usually does away with the

sorts of machinations just described and the vagaries of multiplexing the console

among many active I/O processes.

The xdsi interface allows DSI/Daisy programs to manipulate multiple character-

mode I/O windows under the X window system. xdsi is implemented as a separate,

non-integrated server that is bundled with the DSI source distribution. It relies on

DSI's support for sockets (see above) to communicate with programs running on

DSI. This arrangement nicely avoids the need to link in a number of large host X

libraries into the DSI host executable; the only requirement is that the host operating

system have TCP/IP networking support. It also makes possible a number of exible

connection arrangements. DSI programs can connect to multiple xdsi servers (usually

on di�erent workstations); conversely, an xdsi server can be connected to multiple

DSI sessions (usually on di�erent workstations or multiprocessors). This exibility

provides di�erent ways to experiment with applicative operating systems, distributed

computing, and other applications of networked user I/O.

DSI programs establish a control stream with the xdsi server by connecting to

a speci�ed socket address. Over this stream it can send commands to create and

manipulate input and output windows on the display that xdsi is controlling; the

model is very similar to that used by the X window system itself. Each window is

associated with a DSI character stream. Input windows are stream producers in DSI;

output windows are stream consumers. The streams interface in the normal way with

user programs running on DSI.

One of the problems alluded to above in the description of terminal I/O is the

di�culty of determining which process is requesting input. This is handled in xdsi by a

special command on the control stream which inverts the background and foreground

of an input window. The command is issued automatically by the xdsi interface in

DSI on behalf of the input window when demand is applied to the input stream.

103

7.6 Limitations of DSI's I/O Model

The e�ect allows the user to know which windows are requesting input. A screen

snapshot of the xdsi system in action is shown in �gure 24. The screen shows several

input and output windows connected to a Daisy program which models a hardware

blackjack machine. The black windows are quiescent; the white windows are currently

expecting input.

As of this writing, xdsi only supports unidirectional text windows. An obvious

extension to this approach is to allow other specialized types of windows, such as GUI

widgets. The xvi system [Sin91] is a windowing interface for a lazy functional language

that is also implemented using a server approach (although in a more tightly coupled

way than xdsi). It allows widgets and even lower level drawing to be controlled

from the language by interpreting text strings issued by the program to the standard

output, and parsing them calls to the X graphics libraries. This approach requires a

working knowledge of the widget and drawing interfaces in C. The eXene environment

for CML [Rep91] is an example of a more general lower level use of streams to control

a GUI interface. eXene models each window as a collection of streams: mouse,

keyboard and control streams. Widget libraries can be created in CML using these

stream interfaces.

7.6.2 Non-Character Mode Devices

Integrating non-character-oriented I/O devices is not super�cially di�cult|it just

involves streaming data other than characters and converting it as appropriate in the

driver. This would require a less generalized driver to interface these kinds of devices

to the system. For example, a plotter might consume a stream of commands and

integer coordinates.

7.6.3 Stateful Devices

For serial \stateless" devices, such as keyboards, mice, terminals, or network sockets,

the stream interface is a reasonably accurate model of the underlying events. For

\stateful" devices, such as disks, the stream interface provides only a limited subset

of the device's capabilities. Some devices, such as bitmapped displays, seem very

unlikely to be handled by a stream I/O interface under current technology, other than

at a high level, such as the xdsi interface. Part of the problem is the large, stateful

104

7.6 Limitations of DSI's I/O Model

Figure 24: An xdsi Session

nature of a bitmapped display memory and part can be attributed to processor speed

and bandwidth limitations of serializing a bitstream to the display.

105

chapter eight

An Analysis of Daisy

This chapter provides an analysis of Daisy programs in terms of parallelism and

e�ciency under suspending construction. A brief introduction to the language was

given in section 2.3; for a full description of the language, see the Daisy Programming

Manual [Joh89b].

8.1 Demand Driven Computation

It is instructive to understand the operation of the output-driven pipeline that is the

conduit of demand in Daisy programs. Most Daisy programs are pipelined compo-

sitions of streams, terminated at either end by input and output devices. A good

example of this is the main interpretation pipeline built by the bootstrap process,

which is roughly analogous to the init process in Unix. The interpretation pipeline

corresponds to the following Daisy program:

screen: scnos: prsos: evlst: prsis: scnis: console: "&"

Application is denoted by in�x colon (:), and associates to the right. This program

builds a stream pipeline as shown in �gure 25. console returns a stream of characters

from the keyboard, interleaving lines of input with ampersand prompts. This stream

is fed to a scanner (scnis) which converts it to a stream of tokens. The tokens

are passed through a parser (prsis) which creates a stream of expressions. The

expressions are read by a mapped evaluator (evlst), which interprets the expressions

and returns a stream of results. The results are piped through a deparser (prsos)

106

8.1 Demand Driven Computation

host

terminal
driver

de-
parser

parser

keyboard
driver

de-
scanner

evaluator

scanner

host

D
E

M
A

N
D D

A
T

A

Figure 25: The Daisy Interpretation Pipeline

107

8.2 Limitations of Suspending Construction

and a de-scanner (scnos), respectively, before �nally being consumed by the terminal

output driver (screen).

Demand emanating from the printer (screen) ripples down through the pipeline

to the input device, and data ows in the opposite direction. In the middle (evlst),

programs are evaluated. Programs will typically create their own network of streams,

which plug in transparently to this top-level stream pipeline. The demand rippling

down through the output pipeline is what drives program computation.

8.2 Limitations of Suspending Construction

Suspending construction o�ers many possibilities for implicit parallelism, as described

in section 2.3. However, the model also has de�ciencies that undermine its e�ective

parallelism. We explore some of these here, and suggest solutions.

8.3 Excessive Laziness

While we have have touted the virtues of laziness, it can also have the unintended

e�ect of squelching parallelism. This is well illustrated using a naive version of the

quicksort program given in chapter 2, the code for which is shown in �gure 26 (this

example is adapted from [OK92]). quick operates in the usual way, partitioning

its argument and then calling two recursive quicksorts on the result. This kind of

divide-and-conquor parallelism is ideal for parallel applicative processing.

Consider the application of quick to a list of numbers. The result of quick:[...]

eventually reduces to a sequence of nested, suspended appends. This can be visualized

as:

append:[append:[append:[...

(this represents what a string reduction model might actually do). Under normal

output-driven evaluation, the printer, attempting to coerce the head of this structure,

causes the inner suspended appends to unfold until the innermost append performs

a suspending cons (line 21 of �gure 26). This satis�es the demand of the next outer

append for X, so it also performs a lazy cons and converges. In this manner, com-

putation ripples back up to the topmost append as the dependence chain is satis�ed.

108

8.3 Excessive Laziness

1 quick = \L.

2 let:[[X ! Xs] L

3 if:[nil?:L L

4 nil?:Xs L

5 let:[[lo hi] partition:[X Xs]

6 append:[quick:lo [X ! quick:hi]]

7]

8]]

9

10 partition = \[p L]. part:[p L [] []]

11 part = \[p L lo hi].

12 let:[[X ! Xs] L

13 if:[nil?:L [lo hi]

14 le?:[X p] part:[p Xs [X ! lo] hi]

15 part:[p Xs lo [X ! hi]]

16]]

17

18 append = \[L1 L2].

19 let:[[X ! Xs] L

20 if:[nil?:L1 L2

21 [X ! append:[Xs L2]]]

22]

Figure 26: The Quicksort Algorithm in Daisy

109

8.3 Excessive Laziness

The printer then issues the �rst number of the result and iterates, probing the second

element, which repeats the entire scenario just described.

There are two problems with this behavior. First, append is lazy in its second ar-

gument, which means the suspended recursive call quick:hi will not be coerced until

the printer has output the entire result of quick:lo. Thus, no parallelism has been

achieved. Secondly, the lazy cons occurring on line 21 results in N complete traver-

sals of the suspended computation graph for outputting N total elements. Ideally, if

we know that the entire structure is needed, we would like to propagate exhaustive

demand [OK92], so that when demand ripples down through the inner appends, their

result is completely coerced before converging. This would result in a single traversal

of the computation graph, resulting in much less context switching. Neither of these

problems are due to the kernel's default process management. Given a scheduling

request, the kernel will execute that suspension and any suspensions that it coerces

until such time as it converges. Rather, there are two problems are at the language

level which are responsible:

1. the serialized demand of the printer, and

2. the laziness of suspending construction, which \cuts o�" eagerness at each sus-

pension creation.

Suppose we were to address the �rst problem by using a concurrent primitive at top

level instead of the serial printer. For example, suppose we have a primitive pcoerce

(see chapter 6) that schedules its argument suspensions in parallel and returns after

they have all converged. We could apply it to our top-level quicksort like so:

pcoerce: quick: [...]

This would cause the suspension for quick:hi to be coerced as well as quick:lo.

This example works because our result is not bushy; if it were, pcoerce would likely

only coerce the top-level elements down to their �rst suspended cons, at which point

they would have satis�ed the top-level convergance requirements of pcoerce. This is

the problem referred to by item no. 2 above; the suspending cons \cuts o�" even our

explicit attempt to be parallel.

110

8.3 Excessive Laziness

8.3.1 Bounded Eagerness

We might consider addressing the excessive laziness problem in the kernel through the

demand coe�cient mechanism; having the system speculate on suspensions as they

are created. Demand coe�cients would apply not only to probes, but to allocation

as well; i.e. when you create a cell containing a suspension the system automatically

siphons o� some of the running process' demand coe�cient into the suspension and

schedules it immediately. This could be implemented by modifying the new instruction

to trap after the allocation if one of its source registers contained a suspension. This

would implement a form of bounded eagerness.

The problem with this approach is that it is naive system-level speculative paral-

lelism (see section 2.3). There is not enough useful context information for intelligent

scheduling choices. Does the entire coe�cient of the running process get transferred

to the �rst suspension created? If only part of it, how much, and to which created

suspensions? The former policy would essentially default the system to an ine�cient

form of strictness; every suspension would be immediately scheduled after creation

and the creating process would be suspended. The latter case results in massively

speculative parallelism; all suspensions are scheduled with a little bit of energy. This

is far too general, and undermines the purpose of laziness. Suppose the demand is

for a particular element (say the 10th) of the result of our quicksort. Under this

\shotgun" approach we expend e�ort across the entire structure even through the

exhaustive demand in this case is \lateral" and then \down".

The limitation of the demand coe�cient approach is that while it can indicate the

relative overall demand for a suspension's result, it does not provide speci�c infor-

mation about how to distribute that demand through probes or suspension creations.

If the demand coe�cient was not just a number, but instead a bushy list structure

containing numbers, it might be a start towards conveying the demand information

we need, but such a structure would be expensive to update externally, and would

require more e�ort to interpret by the kernel. For these reasons it seems preferable

to avoid general system-level speculation on new suspensions and relegate scheduling

decisions to the language level (except for demand-driven scheduling).

111

8.4 Program Annotations

8.3.2 Granularity Revisited

The �ne granularity of process decomposition under suspending construction is also a

potential problem. Suspending construction suspends every computation embedded

in a list, no matter how trivial. Under our allocation scheme, trivial suspensions are

just as likely to be allocated remotely as suspensions representing signi�cant compu-

tations, whuch we are more interested in o�oading to other processors. We would

like trivial suspensions to be eliminated or at least allocated locally and suspensions

representing important parallelism to be allocated remotely, so that parallelism is

migrated properly.

8.3.3 Strictness Analysis

One way to address these problems at the language level is through the use of strict-

ness analysis [Hal87, HW87]. The information from strictness analysis can be used to

eliminate many \trivial" suspensions that do not need to be created. Unfortunately,

strictness analysis does not discriminate between trivial suspensions and \important"

suspensions that we want to preserve for parallelism's sake.

Strictness analysis can also indicate instances where the system can be safely eager,

but this bypasses some parallel opportunities where the system is being properly lazy.

For example, strictness analysis does not increase parallelism in our quicksort program

above, since append is not strict in its second argument. The language, being properly

lazy, will suspend the recursive quicksort calls; the system, being properly demand-

driven, will not schedule them until they are probed.

8.4 Program Annotations

We have discovered some limitations of naive suspending construction. We can either

settle for what the system provides or annotate our program to provide clues for the

system about how to handle these situations.

Consider our example; suppose we annotate the recursive calls to quicksort like

so:

...
let:[[lo hi] @partition:[X Xs]

112

8.4 Program Annotations

append:[quick:lo [X ! @quick:hi]]
]

...

Here, the @ annotation could suggest suspensions that should be allocated remotely,

thus insuring that important computations are o�oaded. This kind of annotation

might be most e�ective if coupled with a policy of allocating all non-annotated sus-

pensions locally.

We might address the second problem, ine�cient demand-driven, computation,

by annotation as well. Suppose we used the following de�nition of append:

1 append = \[L1 L2].

2 let:[[X ! Xs] L

3 if:[nil?:L1 L2

4 [$X ! $append:[Xs L2]]]

5]

Here, the $ annotations would force the recursive call to append to be performed

before returning, but still leaves append non-strict in its second argument.

Thus, it seems that we would like both an \important parallelism" annotation

and a demand or strictness annotation. With this in mind, I suggest three kinds of

annotations:

� Strictness annotations allow the programmer, parser or compiler control over

process granularity.

� Eagerness annotations allow the programmer to specify \eager beaver" demand;

this would help address the ine�ciencies of demand propagation described ear-

lier.

� Parallel annotations would convey the distinction between trivial suspensions

and important suspensions, for making allocation decisions.

The use of annotations represents a step back from the goal of completely transparent

resource management. However, the eager and parallel annotations we describe here

can be considered guidelines, and the system is free to disregard them. Strictness

annotations are not so, but can be considered a programmer or compiler optomization.

113

8.4 Program Annotations

The annotations we are suggesting are not overly intrusive, and deserve consideration

as a viable approach to the problems presented in this chapter.

114

chapter nine

Conclusion

Section 9.1 outlines the main results and contributions of the work described in this

dissertation. Section 9.2 describes possibilities for future research and development

e�orts stemming from this work, and section 9.3 examines other symbolic language

implementations most relevant to my work.

9.1 Summary of Results

This dissertation discusses the design of a list processing engine for implementing par-

allel symbolic languages on stock multiprocessors. The design results from experience

implementing an applicative language on the BBN Buttery multiprocessor. The lan-

guage and engine are based on suspending construction, a �ne-grained, concurrent,

non-strict computation model for Lisp-type languages.

The contributions of the dissertation are:

1. A virtual machine architecture for �ne-grained parallel list multiprocessing.

This virtual machine design identi�es key areas where hardware support would

accelerate the execution of programs using computational models similar to

suspending construction, such as Lisp with futures.

2. A microkernel providing memory management, process management and device

management for high level parallel symbolic programs. The resource manage-

ment techniques described represent new approaches to these problems for many

parallel symbolic languages.

115

9.1 Summary of Results

3. An analysis of suspending construction in Daisy, a language implemented on

this architecture and microkernel.

9.1.1 Implementation Notes

The virtual machine, kernel and language described in this thesis (DSI V4.1) has been

implemented in slightly simpler forms (DSI V2.x and V3.x) on the BBN Buttery

multiprocessor.

The notable di�erences between that implementation and the design described

herein can be summarized as follows:

� The Buttery virtual machine has two identical parallel sets of registers: one

for the kernel and one for regular processes; this was later generalized into the

context window model.

� Signals are used, but in a more limited way.

� The memory management is essentially the same as described here, but uses a

slightly di�erent representation for allocation vectors.

� Process management is limited to conservative parallelism based on annotations

in the user program; demand coe�cients and speculative computation are not

supported.

� Each processor maintains a separate, single circular queue for incoming schedul-

ing and allocation requests. Scheduling requests consist of distributed depen-

dence stacks, as described here.

This implementation served as a prototype for the current design.

The current system as described in this thesis (DSI V4.1) has been implemented

sequentially. It includes a virtual machine assembler [Jes] implemented in Yacc/C, a

host interface library (in C) and a set of DSI assembly modules comprising the DSI

kernel and Daisy interpreter. A Daisy compiler, written in Daisy, translates Daisy

code to DSI code.

I plan to fold the improvements described in this report back into the Buttery

implementation. Another possible target for a near-term port is a Silicon Graphics

Challenge multiprocessor.

116

9.2 Future Work

9.2 Future Work

Speci�c experiments aimed at analyzing the characteristics and performance of DSI's

resource management algorithms are a top priority. These experiments would target:

� Load-balancing e�ectiveness and performance compared to other systems. I

am particularly interested in comparing my allocation-based system with the

task-stealing mechanism used in Multilisp [RHH85] and its o�shoots.

� An analysis of the e�ects of allocation block size on parallelism and load bal-

ancing.

� Our local task execution model should be analytically compared to systems

which use task migration strategies or non-local process execution. The basic

question to be answered is whether locality considerations, such as the ones

used in DSI, are bene�cial enough to justify their use with such a small process

granularity.

� The e�ectiveness of our priority scheduling structure on constraining parallelism

and excessive speculation.

These are just a few of the immediate possibilities for analytical comparison and

experimentation.

Some crude instrumentation is provided in the Buttery implementation for event

logging using the BBN gist utility. This has provided some limited preliminary quan-

titative data. Better instrumentation is needed for more accurate performance and

analytic measurements for the experiments described above. Support for host-speci�c

tools (e.g. gist) is useful, but a portable, cross-platform mechanism would be better.

9.2.1 Incremental Enhancements

In addition to the experimentation outlined above, there are a number of incremental

enhancements that would improve DSI's utility and capability for supporting surface

languages.

Daisy has a similar design philosophy as Scheme: a simple, but expressive core

language, without a lot of bells and whistles. The suggestions for improvements in this

117

9.2 Future Work

section reect that spirit and are meant to address limitations based on experience

using Daisy and not to match feature for feature in other languages. Solving these

problems would also address some of the issues faced in implementing other languages

on DSI (see section 9.2.2).

Storage Management

There are two main limitations of DSI's storage management system that should

be addressed. First, the current garbage collector only compacts two di�erent sized

objects: cells and suspensions. This rules out dynamically allocated arrays (static ar-

rays are allowed) which are standard in modern applicative languages; their exclusion

is a noticeable omission in Daisy. This could be recti�ed by implementing a more

sophisticated compaction scheme.

A second limitation I would like to address is the system-wide pauses caused

by garbage collection. System-wide garbage collection pauses become unacceptable

as heap sizes increase, making interactive response time su�er and may cause data

overruns in a device handler if it occurs during pending I/O and the host cannot

provide su�cient bu�ering. Our system has the advantage of parallel collection in

all phases, so that collection pauses increase according to the heap size divided by

the total number of processors. Nevertheless, this still allows for signi�cant pauses.

I would like to incorporate an incremental garbage collector [AAL88, Moo84, Kie86]

to avoid the latency penalties incurred by the current collector. The incremental

collector should preserve locality of data as in the current scheme and not migrate

data or processes to other processor nodes.

Generational collectors are becoming commonplace in many strict applicative sys-

tems, but are likely to be ine�ective for a lazy language. Generational collectors are

designed around the principle that there are few references from older generations to

newer generations; stores into old generations have to be monitored so that the refer-

ences can be updated when newer generations are collected. This is generally true of

strict languages, but lazy languages have many updates of old structures pointing to

new structures. Indeed, suspending construction is predicated on this fact. Therefore,

generational collection may not be a viable method for incremental collection on DSI.

118

9.2 Future Work

Global Namespaces

Lexical scoping solves most identi�er conict issues, but does not solve the prob-

lem of conicting global identi�ers. While the current implementation is satisfactory

for smaller single user sessions, a larger layered software architecture or multiuser

environment will require the shared global namespace issue (see chapter 4) to be re-

solved. Some Lisp-based systems address this issue through per-task storage based on

uid-binding [Mil87], �rst class environments, or extending deep binding to top-level

environments [DAKM89]. A exible module or package system for Daisy would ad-

dress this problem in a more general way that might have bene�ts for other languages

implemented on DSI.

User-De�ned Exceptions

Daisy's treatment of errors is woefully inadequate for serious programming. Errors

are handled by propagating errons (error values) back up the computation tree to

top level, which essentially provides the equivalent of a stack dump. Explicitly test-

ing for errors is not a viable solution. In addition to introducing overhead, it is a

disincentive to programmers to consistently check for errors in every conceivable spot

in the code where they could occur. For this reason, many languages provide con�g-

urable exception handling. This often takes the form of user-speci�ed procedures or

continuations for exception conditions, like errors. These kind of control mechanisms

are not a viable solution for Daisy, given its applicative model.

DSI does provide a low-level exception mechanism (signals) that is compatible

with an applicative solution. Signals establish an asynchronous event dependence be-

tween two processes without imposing state or control changes within those processes.

A signal occurring in one process simply causes another process to be activated, pre-

sumably to handle that exception. An exception mechanism based on specifying

exception dependences between expressions might �t naturally into this model.

The major obstacle to implementing this in DSI is that signals are a component

of the architecture, not processes; i.e. signals map between context windows (running

processes), not suspensions. An example of how this is adapted to arbitrary processes

is given by the use of signals in supporting demand-driven scheduling (see chapter 4

and 6). It might be possible to further generalize the mechanisms used for this purpose

119

9.2 Future Work

to support user-de�ned signals. Ideally, exception support could be introduced into

the language without requiring additional state �elds to be added to suspensions.

However, some kernel support is probably necessary, so this can also be considered

as an enhancement to the DSI system.

9.2.2 Implementing Other Languages

In addition to enhancing Daisy, I would like to implement additional languages on top

of DSI. This would validate the usefulness of DSI as a symbolic language implemen-

tation platform and indicate what further enhancements are necessary in the virtual

machine and kernel to support compatible models of computation, such as futures.

I don't expect DSI to become a completely general-purpose language implementa-

tion platform; by nature that leads to ine�ciencies for certain classes of languages.

Rather, DSI will remain optimized for �ne-grained symbolic languages. Support for

richer data types will be determined by progress in enhancing storage management

(see remarks in section 9.2.1 above).

Scheme

I am particularly interested in implementing a strict, parallel Scheme-dialect on DSI,

primarily for comparison of DSI's resource management algorithms with those of

Multilisp-type languages. DSI's resource management algorithms (especially load-

sensitive allocation) seem well-suited for an eagerly parallel language. Scheme is

similar internally to Daisy, but semantically quite di�erent (applicative order, ea-

ger, explicit parallelism) and would thus also be a good starting point for language

comparisons. The dialect would support future and delay constructs that would be

implemented with suspensions, the di�erence being that futures are scheduled imme-

diately after creation.

Some potential issues to be resolved in this proposed language are whether the lan-

guage should provide side-e�ects and what sort of I/O interfaces should be provided.

If side-e�ects are included, some general-purpose visible synchronization constructs

will need to be provided in the language. Also, the interaction of continuations across

process boundaries is troublesome [KW90]. If side-e�ects are not provided, the lan-

guage is free to be parallel wherever possible in its primitives (including speculatively)

120

9.3 Related work

just like Daisy. As for I/O, the language could easily provide stream I/O based on the

kernel's device interface, but standard Scheme also provides imperative I/O; providing

a proper superset of the Scheme standard [CJR91] might be bene�cial.

Communicating Sequential Processes

Another language that would be particularly well suited to DSI's task and commu-

nication model would be a CSP-like language. A CSP language would be naturally

implemented in DSI using streams for communication and signals for synchronization

between processes. This kind of language would allow the safe integration of im-

perative programming with applicative programming, by encapsulating side-e�ects

within the scope of a suspension, which communicates with other processes through

a port-type interface to obtain its values. The integration of the two styles would be

very similar to that described for Rediow [RMKT84].

The major hurdle for implementing this type of language on DSI is the same

one described above for providing exception handling in Daisy; namely, generalizing

the signal mechanism from the architecture to arbitrary suspensions and user-de�ned

signals.

9.3 Related work

In this section I compare several parallel symbolic language implementations to the

Daisy/DSI work described in this thesis. The number of such projects is fairly large

and a thorough comparison of all of them is outside the scope of this report. My

comparisons are limited to those parallel Lisp dialects and \general-purpose" parallel

symbolic kernels that are most similar to the Daisy/DSI project in terms of the

characteristics listed in section 1.2 (p. 4). DSI is a list-processing engine, and the

architecture and kernel are oriented toward Lisp-like languages; parallel Lisp systems

therefore invite the most direct comparison. Nevertheless, the resource management

solutions described herein may be applicable, in various forms, in wider circles. I

reserve some general remarks for the class of functional languages, with whom Daisy

also shares a fair number of traits.

121

9.3 Related work

9.3.1 Parallel Functional Languages

Although DSI and Daisy have a strong heritage in Lisp, super�cially Daisy appears

to have much in common with functional languages. Like functional languages, Daisy

lacks side-e�ects; however, Daisy is not referentially transparent due to its indeter-

ministic set operator.

Daisy's similarity to functional languages extends beyond laziness and lack of

side-e�ects to include stream I/O and the use of error values. Lazy, side-e�ect-

free programming also leads to similar styles of expressing data recursion, functional

mappings and other functional programming hallmarks. At the same time, Daisy

does not have many of the trappings of \modern" functional languages [Hud89] such

as pattern matching, type inference, and algebraic or abstract data type constructors.

In these areas Daisy remains very Lisp like, using lambda forms, dynamic typing, and

standard Lisp data types.

Internally, Daisy's evaluation model is also Lisp like, using an environment-based

closure model rather then the ubiquitous graph reduction, combinator or dataow

approaches common in functional languages. This point is signi�cant, because the

reduction model strongly inuences the underlying view of hardware; DSI's virtual

machine is fairly di�erent from published descriptions of abstract machines for graph

reduction.

This dissimilarity extends to the task model. Under graph reduction, a task is

simply an available redex; this is just a pointer to a subgraph that can be reduced in

parallel. The reduction machine will \spark" a parallel task [Jon87] by communicating

this pointer to some other processor. In contrast, DSI's process decomposition occurs

in list construction, not in reducing application redexes. Suspensions are implemented

as a �ne-grained process control records rather than as graph redexes.

In summary, Daisy shares many semantic traits with functional languages due

to its lazy semantics and lack of side-e�ects, but di�ers substantially in most other

respects. To avoid confusion, I refer to Daisy as a quasi-functional or applicative

language.

122

9.3 Related work

9.3.2 General-Purpose Symbolic Processing Kernels

This category refers to kernels that are presented in the literature as general (sym-

bolic) language implementation vehicles. Virtual machines for speci�c languages are

not included here. Kernel issues relating to speci�c languages or implementations are

described in the section 9.2.2.

STING

The STING project [JP92b, JP92a] lays claim to being a general purpose high-level

parallel \substrate" for implementing parallel symbolic languages. The STING sys-

tem o�ers a high-level programming environment (the system is based on a Scheme

compiler) with a \concurrency toolkit" approach for implementing other languages.

Under STING, users can dynamically create virtual machines, each containing an

arbitrary number of virtual processors. Each virtual machine provides a separate ad-

dress space for the threads executing within it and the user can de�ne a scheduling

policy for threads on each virtual processor. Their system provides explicit creation,

synchronization, blocking and task killing operations. So, for example, users can im-

plement speculative computation, but must manage the detection, killing and removal

of useless tasks themselves.

In contrast to STING, DSI is at the same time both lower-level and higher-level.

It is lower-level in the sense that programming the DSI virtual machine amounts

roughly to assembly programming, with registers and instructions that are very close

to the actual machine; STING's virtual machines, virtual processors, and so forth

are all �rst-class objects that can be manipulated from within Scheme (in fact the

system was written mostly in Scheme). DSI is higher-level in the sense that its

kernel provides a more packaged solution to process control, with the kernel handling

synchronization, demand-driven scheduling, useless task removal, and so forth.

Another very notable di�erence between STING and DSI is that DSI's processes

are much �ner-grained than STING's threads. Each STING thread contains a stack

and a heap1, and is associated (through virtual machines) with a protected address

space. Thus STING's threads, while conceptually smaller than traditional operating

system processes, are still fairly large-grained tasks. It is highly unlikely that one

1Although heap and stack segments are not allocated until a process runs for the �rst time.

123

9.3 Related work

could implement suspending construction on STING, using threads for suspensions,

in any e�cient way, other than by re-implementing a �ner-grained process package

on top of it, which would obviate the purpose of using it.

DSI's low-level implementation is due to one of the original motivations of the

project: to explore �ne-grained list-multiprocessing at target levels. DSI's virtual

machine is \the machine" and its kernel is the operating system on that machine. In

contrast, STING is a relatively high-level environment that is implemented on stock

multiprocessing operating systems in Scheme. DSI's kernel reects the motivation

to provide as much system control of parallelism as possible, so that the language

implementor is simply responsible for identifying parallelism. STING's approach

is to allow the programmer full control (and thus full responsibility) over process

decomposition, mapping, etc.

The Chare Kernel

The Chare kernel [KS88] is closer in spirit to DSI than the STING system described

above. The Chare kernel was developed to support the distributed execution of

Prolog on message-passing multiprocessors, although it is touted as a general-purpose

parallel programming environment. Like DSI, the Chare kernel handles all aspects of

resource allocation for processes (chares in their terminology). Programming on the

Chare kernel is fairly low-level (an improper superset of C ; i.e. not all C features are

supported), and chare granularity seems to be similar to that of suspensions, perhaps

�ner.

That is about where the similarities end. The chare computation model is inher-

ently distributed (although there is an implementation for shared memory machines).

Chare programming consists of creating chares and sending messages between them.

Shared data is handled on distributed processors by having the user program provide

a callback routine to package any data that the kernel is about to pass to another

processor, where it is unpacked. Pointers must be eliminated by the packaging proce-

dure. On shared memory machines this is not required. The kernel can be con�gured

to use one of several load-balancing procedures that migrate chares to neighboring

processors and also to use one of several queueing strategies for messages.

It is not clear how speculative processing could be handled in the Chare kernel.

Chares can be created with speci�c priorities, but termination is explicit (a chare kills

124

9.3 Related work

itself). It is unclear from [KS88] whether or how chares are garbage collected (or for

that matter, how storage management in general is handled).

In summary, the Chare system bears a resemblance to DSI in that the process

granularity is similar and the goals of the two systems are total process resource

management. Otherwise, the systems are fairly di�erent not only in computation

model and style, but in the algorithms used for resource management.

9.3.3 Parallel Lisp

In the family of symbolic processing languages, the work done on parallel Lisp is

perhaps the most relevant to the work presented here and vice versa. That in itself is

not surprising, since Lisp is the grandfather of symbolic processing, and the seminal

research leading to the work presented here was conducted in Lisp. This is particu-

larly true regarding the body of work centered around the future construct used in

Multilisp [RHH85, RHH86, Osb90], and its o�spring, MultiScheme [Mil87] and Mul-

T [DAKM89]. There seems to have been a cross-fertilization of ideas in the genesis of

suspensions and futures [BH77, RHH85], although the work on suspensions seems to

predate that of futures [FW76a, FW76b]. A number of other Scheme constructs like

delay/force, continuations and engines share some characteristics with suspensions

in various ways, but only futures share the inherent notion of concurrent process en-

tities. A high-level, denotational analysis of these constructs vs. suspensions can be

found in [Joh89c].

Conceptually, both suspensions and futures represent �ne-grained tasks. However,

most implementation descriptions of a future's state indicate a larger granularity

than that of suspensions. This is probably due to the historical fact that futures

were designed primarily as an explicit eager construct, and thus can represent an

arbitrarily large granularity, even though they are generally used in a �ne-grained

way. Suspensions, on the other hand, were intended from the outset to be a lazy

object and to be created implicitly during list construction. Thus the suspension's

design attempts to minimize the state pro�le. It is instructive to consider whether an

e�cient suspending construction type language could be built using delays, Multilisp's

counterpart to suspensions.

Aside from granularity and scheduling semantics, futures and suspensions also

125

9.3 Related work

di�er operationally. Although they are mostly transparent in Scheme (most strict

primitives will implicitly touch them into existence), futures can be directly shared in

a way that suspensions cannot. Non-strict operations are free to pass future pointers

around as arguments, insert them into new structures, etc. This is because when the

future is determined (their terminology) the value is stored in the future itself, until

the garbage collector comes along and \shorts out" the value. Suspensions, on the

other hand, overwrite their references upon converging. This means that suspension

checking occurs earlier than future detection, which is generally tied in to run-time

type checking. Some implementations, such as MultiScheme, further di�erentiate

between a placeholder (future) and task, actually separating the two entities into

di�erent objects, both of which may be manipulated within Scheme.

This more explicit manipulation of futures in Scheme is indicative of the language

di�erences between Scheme and Daisy. Multilisp is a strict applicative order language

(Scheme) with side-e�ects and explicit parallelism using futures. It also includes

explicit synchronization constructs such as as atomic replace, locks and semaphores.

These features allow explicit process granularity, low-level heap mutation and process

synchronization to be performed in Scheme, which aids the parallel Lisp implementor,

since more of the system code can be written in Scheme itself. It also provides a great

deal of exibility for implementing other parallel languages on top of it, as in [JP92b],

although one implicitly inherits Scheme's control structures, memory management

and other artifacts with this approach.

Since these low-level hooks into the implementation exist, it is tempting to make

them visible to the programmer, on the principle that it a�ords the programmer

greater exibility and capabilities. In fact, this is the hallmark of Lisp systems.

However, this also can work to the language's detriment. It drags the language down

toward the level of the implementation, exposing the gritty details of implementation

and requiring the programmer to take more active control in resource management.

In contrast, Daisy remains a fairly high-level language, without low-level hooks, and

in doing so has much exibility in parallel scheduling at the language implementation

level. DSI remains at a very-low level, for �ne control of the machine. In this light,

parallel Scheme appears to be more of a middle-level language between DSI and Daisy.

This concludes my general comparison of parallel Scheme and Daisy/DSI. In the

next few sections I highlight the di�erences in resource management between the

126

9.3 Related work

various avors of parallel Scheme and DSI. The information presented here is gleaned

from various papers in the bibliography, cited here where appropriate.

Multilisp

Multilisp is a version of Scheme with futures implemented on the experimental Con-

cert multiprocessor at MIT [RHH85, RHH86]. Multilisp was instrumental in starting

the parallel Lisp revolution, providing one of the �rst working implementations of

futures, and bringing many �ne-grained parallel resource management issues to light.

Multilisp's memory management is based on a copying, incremental collector.

Each processor has an oldspace and newspace; objects are allocated out of the pro-

cessor's own newspace, which means there is no allocation synchronization and very

high data locality for local processes. During garbage collection, the �rst processor

to reach an object copies it to it's newspace, regardless of whose oldspace it was

originally in. The author claims this may improve locality of reference because if the

containing processor has dereferenced the object it will be entirely migrated to the

copying node, which presumably still needs it. However, if there is more than one

reference to an object there is no guarantee that the processor copying it is the one

that will access it the most, so this may not be a valid assumption. Unlike Multilisp,

DSI's allocation is distributed

Multilisp employs an \unfair" scheduler to constrain parallelism. Processes are

placed on a local stack, oldest �rst; executing a future results in the parent task

being stacked while the child continues to execute. When a processor runs out of

tasks it looks around at other processor's stacks for a task to \steal" o� the top.

This arrangement limits task queue growth to the same order of magnitude as if the

futures executed on the stack. Note, however, that this also encourages depth-�rst

expansion of the process decomposition, since the processes higher in the process tree

are buried on the stacks; these processes may be more likely to represent signi�cant

computations that should be migrated rather than leaf tasks. A good example of this

is the quicksort program and other divide-and-conquer strategies. It is interesting

to note that the Mul-T implementation (Multilisp's heir apparent) uses a queue for

this structure. Halstead notes that under the LIFO scheduling strategy, once the

system is saturated, futures complete before their parent task ever gets resumed; in

essence, the future expression could have been evaluated on the stack. This may have

127

9.3 Related work

motivated the work on lazy future creation [Moh90] used in Mul-T (see below).

MultiScheme

MultiScheme [Mil87, FM90] is a parallel dialect of MIT-Scheme, extended to support

futures.

Miller's dissertation [Mil87] concentrates on the details of extending MIT Scheme

to support futures and the other features of MultiScheme. The MultiScheme sched-

uler, written in Scheme, and presented in the thesis, uses a set of primitive functions

to pass tasks to the underlying multiprocessing engine for distribution. There are no

details about the underlying resource management algorithms used in the implemen-

tation, making it di�cult to draw comparisons to DSI in this report, which essentially

describes a di�erent level of implementation and/or set of problems, although some

issues such as task blocking and resumption are described.

Miller does describe the basis for speculative task recovery in MultiScheme. The

system provides a special data type, weak cons cells, which have the property that

the garbage collector will remove the car reference if no other references point to the

same object. Thus, weak cons cells can be used to build hash tables, device lists,

and other structures that must be specially collected in systems like DSI (see sections

5.3.2 and 7.3.3).

Weak cons cells are used to build the waiting (blocking) queues used for tasks

waiting on the value of a future (placeholder in MultiScheme), so that any speculative

task that has been dereferenced elsewhere will not be retained following a garbage

collection. Osborne [Osb90] notes that the success of this approach depends on the

frequency of garbage collection, although priority propagation was later added to

downgrade speculative tasks between collections.

MultiScheme is similar to DSI in its use of global interrupts (visible in scheme) and

barrier synchronization to organize garbage collection, although the garbage collection

itself is encapsulated by a primitive function at the lower implementation level, and

is not described. This example typi�es the di�erence between Multilisp and Daisy,

regarding low level hooks into the implementation, described earlier.

128

9.3 Related work

Mul-T

Mul-T is a extended version of Scheme augmented with futures and implemented on

the Encore Multimax multiprocessor using a modi�ed form of the ORBIT Scheme

compiler [DAKM89]. For language and computation model comparisons with DSI,

see the general remarks on parallel Lisp, above.

Mul-T's run-time system, like most other implementations (except ours, it seems)

queues blocked tasks into the task state of processes directly. No mention is made of

whether weak pointers are used or speculative tasks are garbage collected, as in Mul-

tiScheme. The language does provide a grouping mechanism for debugging, and users

can suspend entire groups of tasks and kill the group. Mul-T provides support for

process-speci�c variables (i.e. global name spaces) by converting T's normal shallow

binding to deep binding.

Mul-T uses a memory management scheme very similar to that described for

Buttery Portable Standard Lisp (see below). Chunks of memory are allocated from

a global heap and then objects are suballocated out of the chunks. This reduces

contention for the shared global pointer managing allocation in the heap as a whole,

although large objects are allocated out of the heap directly. Since the Encore is a

non-NUMA architecture (see sections 2.1 and 2.2.1, chapters 3 and 5), no locality

considerations are made for heap allocation. Mul-T uses a parallel stop-and-copy

garbage collector.

The most signi�cant di�erence between DSI and Mul-T regarding allocation is that

Mul-T always allocates futures locally, whereas DSI distributes suspension allocation,

subject to the availability of remote suspensions. This primarily reects the di�erence

in load-balancing strategies (see below). For further comparison remarks to DSI's

memory allocation scheme, see section 9.3.3 below.

Mul-T scheduling uses two queues per processor, one for new tasks and one for

resumed blocked tasks. Blocked tasks are restarted on the processor on which they

last executed, in an attempt to improve snoopy cache locality, but tasks may migrate

around the system due to stealing [RHH85]. The scheduling priority is as follows:

1. Run a task from the processor's own suspended task queue.

2. Run a task from the processor's own new task queue.

129

9.3 Related work

3. Steal a task from the new task queue of another processor.

4. Steal a task from the suspended task queue of another processor.

No priorities are provided within a queue.

DSI, like Mul-T, employs a multi-tier task scheduling algorithm, but the queuing

strategies used in the two systems are quite di�erent. DSI uses a load-sensitive

allocation strategy for load-balancing rather than migrating tasks via stealing. An

experiment is needed to determine whether this allocation strategy results in less

overhead than task stealing, because processors do not have to spend time examining

each other's task queues, or whether the overhead of our allocation strategy and inter-

processor scheduling requests outweighs the cost of non-local context switching. DSI

tasks always run locally and do not migrate, so cache locality should be good for DSI

suspensions on a bus-based multiprocessor like the Encore.

Mut-T's per-processor task queues correspond closely with DSI's conservative task

queue and conservative task stack (see chapter 6). DSI's use of a stack for local

suspensions rather than a queue plus the lack of stealing may provide even more

parallelism throttling than is available under Mul-T's queuing scheme. Note, however,

that Mul-T uses a technique called lazy task creation [Moh90] to increase granularity

of programs dynamically by inlining, and this probably reduces the need for kernel-

based throttling. This technique is unlikely to be applicable to a lazy language like

Daisy, which relies on suspension creation for laziness in addition to parallelism.

DSI's suspensions are also likely smaller than futures.

In addition, DSI provides an additional speculative task queue and stack with cor-

responding lower priorities to keep speculative processes from disturbing conservative

ones. DSI removes speculative tasks from the system implicitly. Kranz [DAKM89]

provides no indication of how speculative computation is handled, if at all, in Mul-T.

The techniques used in [Osb90] may be a possible direction for Mul-T in this regard.

Mul-T's I/O also shares similarities with DSI's device management. Mul-T uses

a \distinguished task" dedicated to terminal I/O to avoid the problems of shared,

parallel I/O; this corresponds roughly with DSI's input device manager (see chapter

7). Mul-T likely uses the imperative I/O model of Scheme, however, compared to

DSI's stream I/O model; Mul-T's I/O e�orts are motivated by integration with it's

task group debugging environment (see above). Mul-T also uses a distinguished

130

9.3 Related work

\exception handler task" for each processor in the system devoted to coordinating

task groups. In DSI, all exception handling is accomplished via separate processes

using signals (see chapter 3); our \distinguished exception handler task" is the kernel.

DSI signals are also used to coordinate I/O, tracing and debugging, garbage collection,

suspension detection, etc.

Finally, Kranz [DAKM89] makes very good arguments for hardware support for

tag-checking to accelerate future detection on stock hardware, validating similar re-

marks I made in section 2.1 and chapter 3.

QLisp

QLisp [GM84, GG88] is a eagerly parallel version of Lisp based on a shared-queuing

discipline. The language is based on a version of Lucid Common Lisp and compiles

Lisp code to machine instructions. The language provides several explicitly parallel

constructs:

� A qlet construct for evaluating arguments to a let form in parallel.

� A qlambda form, for creating a separate process which is accessed by passing ar-

guments to the closure. The process executes the closure body on the arguments

and returns the result to the caller.

� Futures, a la Multilisp.

An interesting feature of QLisp is that the process granularity of qlet and qlambda

processes is directly controlled by a predicate expression in the form. If the predicate

evaluates to false the form reverts to its normal (non-parallel) counterpart.

The philosophy of the QLisp implementation seems to be oriented toward pro-

viding full programmer control over parallelism. QLisp provides functions to cre-

ate, acquire, release and test locks. It uses catch and throw to explicitly kill other

tasks; that is, when a processor executes a throw, all other tasks created within the

corresponding catch are killed. This feature can be used to manage OR-parallel

speculation.

Published details [GM84, GG88] are sketchy on the memory and process manage-

ment used in QLisp. The language is implemented on an Alliant FX/8 multiprocessor

131

9.3 Related work

(a non-NUMA design), which means QLisp probably does not micro-manage for lo-

cality purposes. The report states that processors contend for a shared lock on the

\free memory pool" and that whichever processor exhausts the memory pool �rst

performs a garbage collection while the other processors wait. The comparison re-

marks for DSI's memory management scheme verses QLisp are basically the same as

for PSL, below.

A comparison of process management is di�cult, given the lack of details on

QLisp's design. However, the authors [GM84] describe the use of a single shared

queue for distributing work among processors, hence the name, QLisp.

Buttery Portable Standard Lisp

A group at the University of Utah has also implemented Lisp on the BBN Buttery

[MRSL88]. PSL is a standard Lisp augmented with futures and uid binding to

support concurrent name spaces.

The memory management described in [MRSL88] has some resemblance to DSI's.

It divides the heap into segments across all processors. Distributed allocation is

accomplished by allocating chunks out of the global heap; suballocation occurs out

of the chunk until it is exhausted, at which point another global chunk is allocated.

Their scheme allocates a chunk at a time from shared global heap state variables.

DSI also allocates in blocks, but each processor's allocation vector contains blocks for

each processor so that suballocation is more distributed. Also, in our scheme blocks

are requested directly from the remote processor and can only be donated by that

processor; they are not allocated on demand from global shared heap variables. This

supports our load-balancing scheme in which suspensions only execute locally (see

section 5.2.2); under PSL, blocked tasks can be rescheduled on any processor. An

interesting result in [MRSL88] supports our choice of distributed allocation of cells for

the BBN Buttery. They �rst tried a local allocation scheme, which fared poorly due

to contention; a subsequent re�nement to distributed round-robin allocation improved

performance (see chapter 5).

The garbage collector described in [MRSL88] is a monolithic and sequential (i.e. it

runs on one processor) stop-and-copy design; DSI's mark-sweep collector is distributed

and fully parallel in all phases. PSL uses a single global scheduling queue, this also

handles load balancing; DSI uses distributed queues, executes suspensions locally,

132

9.3 Related work

and relies on distributed allocation for load balancing. Buttery PSL is very similar

to Multilisp and similar comparison remarks apply (see section 9.3.3).

9.3.4 Parallel Lisp: Summary

DSI's virtual machine architecture and parallel kernel di�er from the other Lisp im-

plementations described above in several ways. The most signi�cant and notable

di�erences are summarized below.

Machine Design

DSI's virtual machine di�ers in two signi�cant ways from most other parallel Lisp

VMs. First, it uses a context window design in which several processes may be register

resident on the same processor at the same time, as opposed to context swapping into

a single set of registers. Secondly, in the other systems exceptions are handled in the

traditional way using a stack, and exception handlers are de�ned using procedures or

continuations; in DSI, exceptions (signals) are handled by separate processes.

Kernel Design

Many parallel Lisps use a tightly-coupled kernel design in which interrupts and kernel

services are handled on the user or system stack. The DSI kernel is implemented as

a special group of processes, distributed across all processor nodes; kernel communi-

cation is asynchronous, implemented by message streams.

Distributed Allocation

The parallel Lisp systems we have reviewed use one of two allocation methods:

1. Processors contend for access to global shared heap allocation pointers. Syn-

chronization (usually in the form of locks) must be used to arbitrate access.

Some systems optimize this by allocating large chunks at a time and then sub-

allocating out of them to reduce contention.

2. Processors allocate only out of their own local space and either rely on a copying

collector to migrate data, or they don't worry about locality of data at all.

133

9.3 Related work

In DSI processors asynchronously request and receive allocation blocks directly from

remote processors. They can only suballocate from blocks that have been provided

by these processors; allocation is distributed evenly across processors, subject to

availability of allocation blocks.

Load Balancing

The parallel Lisp systems we have reviewed use task stealing or other task migration

methods to balance the workload across the set of processors. In DSI, tasks can only

execute locally; since the garbage collection does not move data between processors,

suspensions execute on the processor on which they were allocated. The distributed

allocation mechanism is indirectly tied to the processor load in an attempt to self-

balance the system.

Process Management

Most parallel Lisps require the programmer to specify parallel decomposition and

explicitly manage synchronization, at least in the case of side e�ects. Daisy/DSI at-

tempts to provide automated process management in addition to automated memory

management. The user should no more care about process decomposition, synchro-

nization, scheduling or process reclamation than he does about memory management.

However, annotations may be necessary to achieve maximal parallelism where exces-

sive laziness interferes.

Speculative Computation

The Lisp systems we have reviewed either require the programmer to explicitly kill

useless tasks, or rely on garbage collection of processes coupled with priority propa-

gation to prevent them from running. DSI uses bounded computation to control the

growth of new speculation and to remove useless tasks.

Parallel I/O

Imperative I/O to a single device (e.g. a terminal) presents problems for any parallel

system; like side-e�ects, it requires explicit synchronization to control access and

achieve the proper sequencing of events. At least one parallel Lisp system (Mul-T)

134

9.4 Conclusion

uses a specialized process and grouping mechanism to control access to the terminal

or controlling window. DSI uses a stream model of I/O designed to work with the

nonintuitive scheduling orders imposed by lazy evaluation; for the same reasons this

model works extremely well for parallel I/O. Non-temporal character streams can be

merged, directed to separate windows, or combined in any fashion by the user.

9.4 Conclusion

Parallel processing technology has been maturing for a number of years, to the point

where shared-memory multiprocessors are poised to become commodity items on

the desktop. High performance and numeric computing is likely to continue to be

dominated by traditional imperative languages, but high level symbolic languages

have the opportunity to carve a niche in a more general class of computing problems

on these machines. These languages have much to o�er programmers, and indirectly,

end-users. The ease of programming in these languages is in a large part due to

their automated resource management as much as any other attractive qualities they

might possess. The success of these languages will depend on the performance and

e�ectiveness of this resource management as well as the co-evolvement of hardware

to better support the execution of symbolic language data types and �ne-grained

processes. I hope that the work presented herein will in some way aid in this e�ort.

135

references

[AAL88] John Ellis Andrew Appel and Kai Lai. Real-time concurrent collection on

stock multiprocessors. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 11{20, June 1988.

[AG94] George S. Almasi and Allan Gottlieb. Highly Parallel Computing. Ben-

jamin/Cummings, 1994.

[AL91] Andrew Appel and Kai Lai. Virtual memory primitives for user programs.

In ACM Architectural Support for Programming Languages and Operating

Systems, pages 96{107, April 1991.

[BH77] Henry C. Baker and Carl Hewitt. The incremental garbage collection of

processes. ACM SIGPLAN Notices, 12(8):55{59, August 1977.

[Bur84] F. Warren Burton. Annotations to control parallelism and reduction order

in the distributed evaluation of functional programs. ACM Transactions

on Programming Languages and Systems, 6(2):159{174, April 1984.

[Bur85a] F. Warren Burton. Controlling speculative computation in a parallel

functional programming language. In IEEE International Conference on

Distributed Computing Systems, pages 453{457, May 1985.

[Bur85b] F. Warren Burton. Speculative computation, parallelism and functional

programming. ACM Transactions on Programming Languages and Sys-

tems, c-34(12):1190{1193, December 1985.

[CJR91] William Clinger and Eds. Jonathan Rees. Revised4̂ report on the algo-

rithmic language scheme. Technical report, Indiana University, November

1991. Technical Report No. 341.

136

REFERENCES

[DAKM89] Jr. David A. Kranz, Robert H. Halstead and Eric Mohr. Mul-t: A high-

performance parallel lisp. In ACM Symposium on Programming Language

Design and Implementation, pages 81{90, 1989.

[DW94] et. al. D.S. Wise. Uniprocessor performance of reference-counting hard-

ware heap. Technical Report 401, Indiana University Computer Science

Department, Bloomington, Indiana, June 1994.

[FM90] Marc Feeley and James S. Miller. A parallel virtual scheme machine for

e�cient scheme compilation. In ACM Conference on Lisp and Functional

Programming, pages 119{130, 1990.

[FW76a] Daniel P. Friedman and David S. Wise. CONS should not evaluate its

arguments. In S. Michaelson and R. Milner, editors, Automata, Lan-

guages and Programming, pages 257{284. Edinburgh University Press,

Edinburgh, 1976.

[FW76b] Daniel P. Friedman and David S. Wise. The impact of applicative pro-

gramming on multiprocessing. In International Conference on Parallel

Processing, pages 263{272. IEEE, 1976. IEEE Cat. No. 76CH1127-OC.

[FW76c] Daniel P. Friedman and David S. Wise. Output driven interpretation

of recursive programs, or writing creates and destroys data structures.

Information Processing Letters 5, pages 155{160, December 1976.

[FW77] Daniel P. Friedman and David S. Wise. An environment for multiple-

valued recursive procedures. In B. Robinet, editor, Programmation, pages

182{200. Dunod Informatique, Paris, 1977.

[FW78a] Daniel P. Friedman and David S. Wise. Applicative multiprogramming.

Technical Report 72, Indiana University Computer Science Department,

Bloomington, Indiana, 1978. Revised: December, 1978.

[FW78b] Daniel P. Friedman and David S. Wise. Aspects of applicative program-

ming for parallel processing. IEEE Trans. Comput. C-27, 4, pages 289{

296, April 1978.

137

REFERENCES

[FW78c] Daniel P. Friedman and David S. Wise. Functional combination. Com-

puter Languages 3, 1, pages 31{35, 1978.

[FW78d] Daniel P. Friedman and David S. Wise. Sting-unless: a conditional,

interlock-free store instruction. In M. B. Pursley and Jr. J. B. Cruz,

editors, 16th Annual Allerton Conf. on Communication, Control, and

Computing, University of Illinois (Urbana-Champaign), pages 578{584,

1978.

[FW78e] Daniel P. Friedman and David S. Wise. Unbounded computational struc-

tures. Software-Practice and Experience 8, 4, pages 407{416, July-August

1978.

[FW79] Daniel P. Friedman and David S. Wise. An approach to fair applicative

multiprogramming. In G. Kahn and R. Milner, editors, Semantics of

Concurrent Computation, pages 203{225. Berlin, Springer, 1979.

[FW80a] Daniel P. Friedman and David S. Wise. A conditional, interlock-free store

instruction. Technical Report 74, Indiana University Computer Science

Department, Bloomington, Indiana, 1980. (revised 1980).

[FW80b] Daniel P. Friedman and David S. Wise. An indeterminate constructor for

applicative multiprogramming. In Record 7th ACM Symp. on Principles

of Programming Languages (January, 1980), pages 245{250, 1980.

[FW81] Daniel P. Friedman and David S. Wise. Fancy ferns require little care.

In S. Holmstrom, B. Nordstrom, and A. Wikstrom, editors, Symp. on

Functional Languages and Computer Architecture, Lab for Programming

Methodology, Goteborg, Sweden, 1981.

[GG88] Ron Goldman and Richard P. Gabriel. Preliminary results with the initial

implementation of qlisp. In ACM Symposium on Lisp and Functional

Programming, pages 143{152, July 1988.

[GM84] Richard P. Gabriel and John McCarthy. Queue-based multi-processing

lisp. In ACM Symposium on Lisp and Functional Programming, pages

25{43, August 1984.

138

REFERENCES

[GP81] Dale H. Grit and Rex L. Page. Deleting irrelevant tasks in an expression-

oriented multiprocessor system. ACM Transactions on Programming

Languages and Systems, 3(1):49{59, January 1981.

[Hal87] Cordelia Hall. Strictness analysis applied to programs with lazy list con-

structors. PhD thesis, Indiana University Computer Science Department,

1987.

[Hem85] David Hemmendinger. Lazy evaluation and cancellation of computations.

In IEEE International Conference on Parallel Processing, pages 840{842,

August 1985.

[HJBS91] Alan J. Demers Hans-J. Boehm and Scott Shenker. Mostly parallel

garbage collection. In ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 157{175, June 1991.

[HS86] Paul Hudak and L. Smith. Para-functional programming: a paradigm for

programming multiprocessor systems. In ACM Symposium on Principles

of Programming Languages, pages 243{254, January 1986.

[HS88] Paul Hudak and Raman S. Sundaresh. On the expressiveness of purely

functional i/o systems. Technical report, Yale, December 1988. Yale

Technical Report YALEU/DCS/RR-665.

[Hud86] Paul Hudak. Para-functional programming. Computer, 19(8):60{71, Au-

gust 1986.

[Hud89] Paul Hudak. Conception, evolution, and application of functional pro-

gramming languages. ACM Computing Surveys, 21(3):359{411, Septem-

ber 1989.

[HW87] Cordelia Hall and David S. Wise. Compiling strictness into streams. In

Fourteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, Munich, West Germany, January 21{23,

pages 132{143, 1987.

139

REFERENCES

[HW92] Brian C. Heck and David S. Wise. An implementation of an applicative

�le system. In Y. Bekkers and J. Cohen, editors, Memory Management,

pages 248{263. Lecture Notes in Computer Science 637, Springer-Verlag,

1992.

[JB88] Steven D. Johnson and C. David Boyer. Modeling transistors applica-

tively. In Jr. George J. Milne, editor, Fusion of Hardware Design and

Veri�cation. North-Holland, 1988. (Proceedings of the IFIP WG10.2

working conference on formal aspects of VLSI, Strathclyde University,

Glasgow, July, 1988).

[JBB87] Steven D. Johnson, Bhaskar Bose, and C. David Boyer. A tactical frame-

work for digital design. In Graham Birtwistle and P. A. Subramanyam,

editors, VLSI Speci�cation, Veri�cation and Synthesis, pages 349{384.

Kluwer Academic Publishers, 1987. Proceedings of the 1987 Calgary

Hardware Veri�cation Workshop.

[Jes] Eric R. Jeschke. Dsi assembler reference manual. (draft, unpublished).

[JK81] Steven D. Johnson and Anne T. Kohlstaedt. Dsi program description.

Technical Report 120, Indiana University Computer Science Department,

Bloomington, Indiana, 1981.

[Joh77] Steven D. Johnson. An interpretive model for a language based on sus-

pended construction. Master's thesis, Indiana University Computer Sci-

ence Department, 1977.

[Joh81] Steven D. Johnson. Connection networks for output-driven list multi-

processing. Technical Report 114, Indiana University Computer Science

Department, Bloomington, Indiana, 1981.

[Joh83] Steven D. Johnson. Circuits and systems: Implementing communication

with streams. IMACS Transactions on Scienti�c Computation, Vol. II,

pages 311{319, 1983.

140

REFERENCES

[Joh84a] Steven D. Johnson. Applicative programming and digital design. In

Eleventh Annual ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 218{227, January 1984.

[Joh84b] Steven D. Johnson. Synthesis of Digital Designs from Recursion Equa-

tions. The ACM Distinguished Dissertation Series, The MIT Press, Cam-

bridge, MA, 1984.

[Joh85] Steven D. Johnson. Storage allocation for list multiprocessing. Technical

Report 168, Indiana University Computer Science Department, Bloom-

ington, Indiana, March 1985.

[Joh86] Steven D. Johnson. Digital design in a functional calculus. In G. J. Milne

and P. A. Subrahmanyam, editors, Workshop on Formal Aspects of VLSI

Design (Proceedings of the Workshop on VLSI, Edinburgh), 1985. North-

Holland, Amsterdam, 1986.

[Joh89a] Steven D. Johnson. Daisy, dsi, and limp: architectural implications of

suspending construction. Technical report, Indiana University Computer

Science Department, Bloomington, Indiana, 1989.

[Joh89b] Steven D. Johnson. Daisy Programming Manual. Indiana University

Computer Science Department, Bloomington, Indiana, second edition,

1989. (draft in progress, available by request).

[Joh89c] Steven D. Johnson. How daisy is lazy. Technical report, Indiana Univer-

sity Computer Science Department, Bloomington, Indiana, 1989.

[Joh90] Douglas Johnson. Trap architectures for lisp systems. In ACM Conference

on Lisp and Functional Programming, pages 79{86, 1990.

[Jon87] Simon L. Peyton Jones. The Implementation of Functional Programming

Languages. Prentice-Hall, 1987.

[JP92a] Suresh Jagannathan and Jim Philbin. A customizable substrate for con-

current languages. In ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 55{67, 1992.

141

REFERENCES

[JP92b] Suresh Jagannathan and Jim Philbin. A foundation for an e�cient multi-

threaded scheme system. In ACM Conference on Lisp and Functional

Programming, pages 345{355, 1992.

[Kie86] Richard B. Kieburtz. Incremental collection of dynamic, list-structure

memories. Technical report, Oregon Graduate Center, January 1986.

Technical Report CS/E-85-008.

[Koh81] Anne T. Kohlstaedt. Daisy 1.0 reference manual. Technical Report 119,

Indiana University Computer Science Department, Bloomington, Indi-

ana, 1981. ([Joh89a] should be delivered implicitly).

[KS88] L.V. Kale and Wennie Shu. The chare-kernel language for parallel pro-

gramming: A perspective. Technical report, University of Illinois, August

1988.

[KW90] Morry Katz and Daniel Weisse. Continuing into the future: On the

interaction of futures and �rst-class continuations. In ACM Conference

on Lisp and Functional Programming, pages 176{184, 1990.

[Lar91] James R. Larus. Compiling lisp programs for parallel execution. Lisp

and Symbolic Computation, 4:29{99, 1991.

[LD88] Yue-Sheng Liu and Susan Dickey. Simulation and analysis of di�erent

switch architectures for interconnection networks in mimd shared memory

machines. Technical report, Courant Institute of Mathematical Sciences,

June 1988. Ultracomputer Note #141.

[Liv88] Brian K. Livesey. The aspen distributed stream processing environment.

Technical report, UCLA, December 1988. UCLA Technical Report CSD-

880102.

[Mil87] James S. Miller. Multischeme: A Parallel Processing System based on

MIT Scheme. PhD thesis, September 1987. Also available as MIT Tech-

nical Report MIT/LCS/TR-402.

142

REFERENCES

[Moh90] Eric et. al. Mohr. Lazy task creation: A technique for increasing the gran-

ularity of parallel programs. In ACM Conference on Lisp and Functional

Programming, pages 185{197, 1990.

[Moo84] David Moon. Garbage collection in a large lisp system. In ACM Confer-

ence on Lisp and Functional Programming, pages 235{346, August 1984.

[MRSL88] Robert R. Kessler Mark R. Swanson and Gary Lindstrom. An implemen-

tation of portable standard lisp on the bbn buttery. In ACM Symposium

on Lisp and Functional Programming, pages 132{141, August 1988.

[O'D] John T. O'Donnell. An applicative programming environment. (draft,

unpublished).

[O'D85] John T. O'Donnell. Dialogues: a basis for constructing programming

environments. In 1985 ACM SIGPLAN Symposium on Programming

Languages and Programming Environments, in ACM SIGPLAN Notices,

Vol. 20, No. 7, July 1985.

[O'D87] John T. O'Donnell. Hardware description with recursion equations. In

Proc IFIP 8th International Symposium on Computer Hardware Descrip-

tion Languages and their Applications [CHDL], 1987.

[OH87] John T. O'Donnell and Cordelia Hall. Debugging in applicative lan-

guages. Technical Report 223, Indiana University Computer Science De-

partment, Bloomington, Indiana, June 1987. To appear in the Interna-

tional Journal on Lisp and Symbolic Computation.

[OK92] et. al. O. Kaser. Fast parallel implementations of lazy languages: The

equals experience. In ACM Conference on Lisp and Functional Program-

ming, pages 335{344, 1992.

[Osb90] Randy B. Osborne. Speculative computation in multilisp{an overview. In

ACM Conference on Lisp and Functional Programming, pages 198{208,

1990.

143

REFERENCES

[PCYL87] Nian-Feng Tzeng Pen-Chung Yew and Duncan H. Lawrie. Distributed

hot-spot addressing in large-scale multiprocessors. IEEE Transactions on

Computers, c-36(4):388{395, April 1987.

[PRWM92] Michael S. Lam Paul R. Wilson and Thomas G. Moher. Caching consid-

erations for generational garbage collection. In ACM Conference on Lisp

and Functional Programming, pages 32{42, June 1992.

[Rep91] John H. Reppy. Cml: A higher-order concurrent language. In ACM Sym-

posium on Programming Language Design and Implementation, pages

293{305, 1991.

[RHH85] Jr. Robert H. Halstead. Multilisp: A language for concurrent symbolic

computation. ACM Transactions on Programming Languages and Sys-

tems, 7(4):501{538, October 1985.

[RHH86] Jr. Robert H. Halstead. An assessment of multilisp: Lessons from ex-

perience. International Journal of Parallel Programming, 15(6):459{500,

1986.

[RMKT84] Frank C.H. Lin Robert M. Keller and Jiro Tanaka. Rediow multipro-

cessing. In IEEE COMPCON, pages 410{417, 1984.

[SH91] Peter Steenkiste and John Hennessy. Tags and type checking in lisp:

Hardware and software approaches. In ACM Conference on Architectural

Support for Programming Languages and Systems, pages 50{59, April

1991.

[Sin91] Satnam Singh. Using xview/x11 from miranda. In Workshops in Com-

puting, Functional Programming, pages 353{363, 1991.

[TK88] Pete Tinker and Morry Katz. Parallel execution of sequential scheme with

paratran. In ACM Symposium on Lisp and Functional Programming,

pages 28{39, January 1988.

[Tra84] Kenneth R. Traub. An abstract architecture for parallel graph reduction.

Technical report, MIT, September 1984. Also available as MIT Technical

Report MIT/LCS/TR-317.

144

REFERENCES

[Tra91] Kenneth R. Traub. Implementation of Non-Strict Functional Program-

ming Languages. MIT Press, 1991.

[Veg84] Steven R. Vegdahl. A survey of proposed architectures for the execution of

functional languages. IEEE Transactions on Computers, c-33(12):1050{

1071, December 1984.

[WF87] David S. Wise and John Franco. Costs of quadtree representation of

non-dense matrices. Technical Report 229, Indiana University Computer

Science Department, Bloomington, Indiana, October 1987.

[Wis81] David S. Wise. Compact layout of banyan/�t networks. In H. Kung,

B. Sproull, and G. Steele, editors, VLSI Systems and Computations,

pages 186{195. Computer Science Press, Rockville, MD, 1981.

[Wis84a] David S. Wise. Parallel decomposition of matrix inversion using

quadtrees. In Proc. 1984 International Conference on Parallel Processing,

pages 92{99, 1984. (available as IEEE Cat. No. 86CH2355-6).

[Wis84b] David S. Wise. Representing matrices as quadtrees for parallel processors.

ACM SIGSAM Bulletin 18, 3, pages 24{25, August 1984. (extended

abstract).

[Wis85a] David S. Wise. Design for a multiprocessing heap with on-board reference

counting. In J. P. Jouannaud, editor, Functional Programming Languages

and Computer Architecture, pages 289{304. Springer-Berlin, 1985.

[Wis85b] David S. Wise. Representing matrices as quadtrees for parallel processors.

Information Processing Letters 20, pages 195{199, May 1985.

[Wis86a] David S. Wise. An applicative programmer's approach to matrix algebra,

lessons for hardware, and software. In Workshop on Future Directions in

Computer Architecture and Software, Army Research O�ce, 1986.

[Wis86b] David S. Wise. Parallel decomposition of matrix inversion using

quadtrees. In Proc. 1986 IEEE Intl. Conf. on Parallel Processing. IEEE,

1986.

145

[Wis87] David S. Wise. Matrix algebra and applicative programming. In

Functional Programming Languages and Computer Architecture, Lecture

Notes in Computer Science 274, pages 134{153. Springer-Berlin, 1987.

[Zor90] Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage

collection. In ACM Conference on Lisp and Functional Programming,

pages 87{98, 1990.

index

abstract machine, 18

activation, 6

address spaces, 46

aliasing, 10

all? primitive, 30

allocation, see storage allocation

ALU instructions, 37

annotations, 13

any? primitive, 29

AVLLST register, 55

AVLSPN register, 55

Banyan network design, 41

binary cells, 32

blocking, see process synchronization

BBN Buttery, 42

cells, 32

character streams, 88

characters

representation, 88

citations, 33

closure, 15

coercion, 6

computation

demand-driven, 16, 106

numeric, 4

output-driven, 16

speculative, 24

symbolic, 4

tree, 16

conditional loads, 36

conditional stores, 36

console primitive, 96

context switching, 34

context windows, 34

converge call, 70

convergence, 6

convergence context, 69

CWP, 37, 38

CWP context window pointer, 34

Daisy

analysis of, 106

history, 15

interpretation pipeline, 106

language de�nition, 26

quicksort in, 28

semantics, 28

source of parallelism in, 29

syntax, 27

Daisy, 2, 17

dangling descriptors, 26

data distribution

Data Distribution, 59

data types, 33

dataow, 9

147

INDEX

dependence analysis, 10

dependences, see process dependences

descriptors, 94

detach call, 70

device

descriptors, 90

device drivers, 89

implementation, 89

input, 88, 91

interface, 88

output, 88, 97

device list

pruning, 67

device management

design issues, 25

Device Management, 88

device manager, 49

devices

and garbage collection, 94

supported, 89

disk

input, 95

distributed kernel design, 48

DSI, 2, 17

Machine Architecture, 31

history, 15

kernel

design of, 45

IPC, 49

message handling, 50

message priorities, 51

organization, 49

structure, 47

traps, 51

LiMP, 41

machine

instruction set, 36

processor network, 40

virtual machine, 31

dski primitive, 95

dsko primitive, 98

dvcin module, 90

DVCLST, 94

DVCLST, 92

dvcout module, 90

DVISCAN, 92

evaluation

lenient, 9

demand driven, 8

eager, 8

lazy, 8

exception handling, see signal handling

exec primitive, 101

�nalization, 26

forwarding address, 65

functional combination, 16

garbage collection

cost of, 67

Garbage Collection, 64

minor phases, 66

observations on, 67

phases, 64

compaction, 65

exit, 66

marking, 64

148

INDEX

update, 66

signal, 64

garbage collector process, 49

generational GC, 46

hash module, 88

hash table

pruning, 66

heap

segment organization, 57

segment pointers, 57

segments, 54

heap segments, 54

higher-order primitives, 30

hot spots, 22

I/O

Daisy primitives, 91

disk, 95, 98

DSI model, 88

event-driven, 25

host interface layer, 90

imperative, 25

keyboard, 95

pipes, 101

socket, 100

stream, 25

limitations of, 26

tty, 99

if conditional, 30

interrupt handling, see signal handling

KBDFLTR, 96

kernel, see DSI, kernel

design issues, 20

keyboard

input, 95

LiMP architecture, 41

load balancing, 24

considerations, 61

Load Balancing, 60

loads, 36

locality

and cache multiprocessors, 63

Locality, 62

locality, 22

mandatory computation, 78

map primitive, 30

master-slave, 48

MEMHI constant, 55

MEMLO constant, 55

memory

architecture, 20

logical layout, 56

machine interface, 32

physical layout, 55

requirements, 54

memory management

design issues, 21

locality, 22

NUMA considerations, 22

Memory Management, 54

message requests, 49, 50

microkernel, 21

microkernel design, 47

monolithic kernel design, 47

Multilisp, 46

149

INDEX

multisets, 16

namespace

conicting, 46

NEW-sink, 41

nondeterminism, 11

NUMA, 40

NUMA, 20

numeric processing, 4

para-functional programming, 13

parallel

annotations, 13

symbolic languages, 4

parallelism

and side e�ects, 10

annotation, 30

conservative, 24, 29, 78

controlling, 23, 76

creating, 75

dynamic, 4

identifying, 12

implicit, 11

latent, 30

speculative, 24, 29, 78

managing, 79

static vs. dynamic, 75

pipe primitive, 101

pointers, 46

structure of, 33

polling, see process synchronization

probe, 6

process, see suspension

activation, 69

communication, 7, 24

creation, 69

decomposition, 7

dependences, 71

granularity, 21, 23, 34, 45

migration, 60

synchronization, 7, 24, 71

and dependences, 24

strategies, 71

termination, 70

tracking dependences of, 73

process management

design issues, 23

Process Management, 69

processor

interconnection network, 20

interconnection topology, 40

state, 34

program annotations, 112

rawtty primitive, 96

references, 33

referential transparency, 11

register windows, 34

registers

structure of, 34

transient, 35

resource management, 4, 20, 45

roll back, 10

scheduling

demand driven, 74

screen primitive, 99

semantics

150

INDEX

call-by-need, 16

seq primitive, 29

set primitive, 11

set primitive, 29

shared memory, 54

side e�ects, 10

and Daisy, 11

rationale for, 12

SIG GC, 64

SIGLATCH register, 38

SIGMASK register, 38

signal handling, 37

instructions, 37

signals, 37

list of, 53

socki primitive, 100

socko primitive, 100

speculative computation, 78

SPLIT, 95

stack cells, 32

storage allocation, 20

bidirectional, 55

blocks, 56

requesting, 56

size, 57, 60

bu�ers, 58

distributed, 55

distribution pattern, 59

instructions, 36, 58

levels, 55

locality considerations, 62

on remote processors, 56

server, 56

servers

priority of, 59

synchronization, 57

vectors, 55, 58

Storage Allocation, 55

Storage Reclamation, 63

storage types, 32

stores, 36

stream I/O, see I/O, stream

streams, 16, 50

strictness analysis, 112

supervisor process, 49

suspend instruction, 69

suspending construction

a concurrent model, 7

and evaluation semantics, 8

avoiding, 14

de�ned, 5

limitations of, 108

optimizing, 15

overhead of, 13

suspension

behavior, 6

manipulation instructions, 34

suspension, 6

suspensions

and context windows, 34

and dependences, 11

symbolic processing, 4

symmetric multiprocessing

emphsymmetric multiprocessing, 40

synchronization latency, 72

tagged pointers, 33

151

INDEX

tags, 33

and storage types, 34

checking, 19

task stealing, 61

threads, 46

thunks, 15

tpipe primitive, 101

tracer, 49

transient registers, 35

traps, 49, 51

types, see data types

unary cells, 32

unconditional loads, 36

unconditional stores, 36

useless tasks, 24

virtual machine

advantages of, 31

issues, 18

virtual machine, 18

virtual memory, 46

xdsi, 103

152

Curriculum Vitae

Eric Jeschke was born on December 8, 1962 and grew up in Goshen, Indiana. He at-

tended Indiana University in Bloomington, Indiana, receiving three degrees in Com-

puter Science; a B.S. in 1984, a M.S. in 1986 and a Ph.D. in 1995.

