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Abstract. This paper presents a su�cient condition on sparsity patterns for the existence of
the incomplete Cholesky factorization. Given the sparsity pattern P (A) of a matrix A, and a target
sparsity pattern P satisfying the condition, incomplete Cholesky factorization successfully completes
for all symmetric positive de�nite matrices with the same pattern P (A). It is also shown that this
condition is necessary in the sense that for a given P (A) and target pattern P , if P does not satisfy
the condition then there is at least one symmetric positive de�nite matrix B whose Cholesky factor
has the same sparsity pattern as the Cholesky factor of A, for which incomplete Cholesky factorization
fails because of a nonpositive pivot.

1. Introduction. Incomplete Cholesky factorization (IC) is a widely known and e�ec-
tive method of accelerating the convergence of conjugate gradient (CG) iterative methods for
solving symmetric positive de�nite linear systems. A major weakness of IC is that it may
break down due to nonpositive pivots. Methods of overcoming this problem can be divided
into two classes: numerical and structural strategies. A numerical strategy uses numerical val-
ues generated during the factorization process to modify the factorization, as in the work by
[Jennings and Malik, 1977, Manteu�el, 1979, Munksgaard, 1980, Wittum and Liebau, 1989].
A structural strategy, as in the work by [Coleman, 1988], selects the sparsity pattern to insure
the completion of the IC process. In this paper, we do not give any speci�c algorithm for
modifying the sparsity pattern to assure the existence of IC. Instead, we prove a su�cient and
necessary condition on the sparsity pattern of the incomplete Cholesky factor for the existence
of IC on the symmetric positive de�nite matrices with a given sparsity. The condition is more
general than that in [Coleman, 1988], and includes Coleman's sparsity pattern condition as a
special case.

Structural strategies are especially important for applications where a sequence of linear
systems must be solved, each coe�cient matrix with the same non-zero pattern. This occurs
when solving linear programming problems using interior point methods, or when solving
discretized nonlinear partial di�erential equations with a �xed mesh. Although the values
can change from one step to another, the sparsity pattern is �xed. Using a target IC sparsity
pattern that satis�es our su�cient condition, the preconditioner can be set up on each step
using a static data structure and with assurance that the preconditioner will exist. Some
speci�c algorithms that modify a sparsity pattern to satisfy the su�cient condition have been
proposed and tested in [Wang et al., 1994b, Wang, 1993].

2. De�nitions and Notation. Before the main results are presented, some de�nitions
and notation that are used are given. Unless otherwise speci�ed, we assume that matrices are
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real and symmetric positive de�nite. The examples will only display the upper triangular part
of matrices, with the understanding that the lower triangular parts are speci�ed by symmetry.

Capital letters denote matrices, and the elements of a matrix will be denoted as the
corresponding lower case letter with two subscripts indicating the row and column indices.
For example, aij denotes the element of matrix A in the ith row and jth column.

Let Pn = f(i; j)j1 � i � j � ng be the set of all possible non-zero positions in an n� n
upper triangular matrix. The sparsity pattern P (A) of a symmetric matrix A is de�ned as
P (A) = f(i; j)jaij = aji 6= 0; 1 � i � j � ng. Note that P (A) only considers the positions
of the non-zero elements of A in upper triangular part and P (A) � Pn. Let U be the upper
triangular Cholesky factor of A formed assuming no cancellation1, so that A = UTU . Since it
is clear from context when we are discussing a triangular or symmetric matrix, we exploit a
convenient abuse of notation and let P (U) denote the sparsity pattern of U and P (U) � Pn.

The incomplete Cholesky factorization of a matrix A using sparsity pattern P refers to a
Cholesky factorization where all entries occurring outside of the speci�ed sparsity pattern are
immediately discarded, and no other numerical modi�cation is made to the matrix. Given a
matrix A and a sparsity pattern P � Pn of the target factor U , it is assumed that P � P (U)
without loss of generality because a position (i; j) 62 P (U) will not a�ect the �nal factor.
In order for the IC factorization to complete all diagonal positions (i; i) must be in P , a
requirement we now impose on all the sparsity patterns P dealt with in this paper. The IC
algorithm can be described as follows:

Algorithm [R]=IC[A,P]
begin
for k = 1; 2; : : : ; n;

if akk > 0 then
(1) rkk =

p
akk

for j = k + 1; k + 2; : : : ; n

(2) rkj =

(
0 (k; j) 62 P
akj=rkk (k; j) 2 P

endfor
for i = k + 1; k + 2; : : : ; n

for j = i; i+ 1; : : : ; n
(3) aij = aij � akiakj (i; j) 2 P; (k; j) 2 P and (k; i) 2 P

endfor
endfor

else
(6) Stop (incomplete factorization fails)

endif
endfor
end

Although the algorithm is most commonly stated (and implemented) by initially copying
A to R and then referring to R alone, the form shown above is valid for target sparsity
patterns P 6� P (A), and simpli�es the proof of Theorem 1. In practice, the updates to A
would not be performed since generally A needs to be retained for the iterative method that
is preconditioned by R.

Next, we de�ne a new property on sparsity patterns. This property uses an auxiliary

1 This assumption is made throughout the paper when referring to the Cholesky factorization of a
matrix
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sparsity pattern Q, and when Q is the sparsity pattern, P (U), of the complete Cholesky
factorization the property gives our su�cient condition for existence of the IC factorization.

Definition 2.1. Let Q � Pn and P � Pn be given sparsity patterns. P is said to have

property C+ on Q, if the following condition is satis�ed: for any position (j; k) 2 P \Q, if

(i; j) and (i; k), 1 � i < j, are both in Q, then they both are in P or neither is in P . If the

condition is not satis�ed then P is said to violate property C+ on Q.

Definition 2.2. Let Q � Pn and P � Pn be given sparsity patterns and let C+(Q)
denote the set of all patterns in Pn that have property C+ on Q. P 2 C+(Q) and P 62 C+(Q)
will denote P having property C+ on Q and violating it, respectively.

From the matrix sparsity point of view, P 2 C+(Q) means that for any (j; k) 2 P \ Q,
columns j and k of any matrix with sparsity pattern P have the same structure in rows
i < j < k where (i; j) and (i; k) are in Q. Because property C+ requires either both elements
to be present or both elements to be absent, it can also be viewed as an \not exclusive or"
condition, modulo the sparsity pattern Q. The structure of rows 1 � i < j where at least one
of (i; j) and (i; k) is not in Q, is unrestricted.

Example 1. Let A be a 3 � 3 full matrix. All sparsity patterns P � P3 are in

C+(P3) except the following two patterns: P = f(1; 1); (2; 2); (3; 3); (1; 2); (2; 3)g and P =
f(1; 1); (2; 2); (3; 3); (1; 3); (2; 3)g.
The example follows by considering the following cases. If (2; 3) 2 P then among the 4 possible
combinations of (1; 2), (1; 3) in or not in P , only the listed patterns violate property C+(P3).
If (2; 3) 62 P , then any combination of (1; 2) and (1; 3) in or not in P will satisfy property
C+(P3).

Example 2. If A is the matrix arising from a �ve-point di�erence operator on a regular

two-dimensional mesh using the red-black ordering, then P (A) 2 C+(P (U)).
A simple way of generating a pattern for IC is to start with U and consider subsets of P (U).
The next example shows that a simple selection strategy is consistent with property C+.

Example 3. Let A be a matrix with Cholesky factor U . If V is a submatrix of U that

consists of all the diagonal elements and any subset of the set of rows of U , then P (V ) 2
C+(P (U)).
To see this fact, note �rst that (j; k) 2 P (V ) implies (j; k) 2 P (U). Now consider any pair of
positions (i; j) and (i; k) in P (U). If row i of U is a row included in V , then both (i; j) and
(i; k) are in P (V ) by construction of V . Otherwise, by construction, the complete row i of
U is not in V and both (i; j) and (i; k) are not in P (V ). No other possibilities exists so by
the de�nition, we have P (V ) 2 C+(P (U)). For a given matrix A, there is a combinatorially
large number of submatrices V satisfying the construction conditions in Example 3, but for
each P (V ) 2 C+(P (U)). In addition, the density of target sparsity patterns can vary from as
sparse as a diagonal matrix to the pattern of the complete Cholesky factor U .

Example 4. Suppose the graph of A is chordal and the factorization of A is performed

using the perfect elimination ordering that guarantees no �ll-in, then P (A) = P (U) and

P (A) 2 C+(P (U)), i.e., this is a special case of Example 3.

Example 4 indicates the relationship of Coleman's preconditioner and property C+. Coleman
identi�es submatrices of A which are chordal and permutes A so that these chordal blocks
form a block diagonal submatrix of A. The block diagonal matrix is used as a preconditioner
by performing Cholesky factorization on each diagonal block using the appropriate perfect
elimination ordering. Example 4 shows that such a preconditioner satis�es proper C+.
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Example 5. Let A =

2
666664

� � � �
� �
�
� �
�

3
777775 ; so that U =

2
666664

� � � �
� � �
� �
� �
�

3
777775 is the

symbolic Cholesky factor of A, and P (U) = P (A)[ f(2; 3); (3; 4)g. Then P (A) 2 C+(P (U)).
Theorem 1 below shows that P (A) 2 C+(P (U)) implies that IC(0), incomplete Cholesky

factorization with zero levels of �ll-in, exists regardless of the numerical values in the pos-
itive de�nite matrix of Example 5. When IC(0) fails to accelerate convergence su�ciently,
a standard technique for generating a pattern with better convergence accleration is to aug-
ment P (A) and move towards P (U). Suppose P 0 = P (A) [ f(2; 3)g in Example 5. Then
P 0 2 C+(P (U)) and IC will also exist for this pattern. However, if we let Q = P (A)[f(3; 4)g
then Q 62 C+(P (U)) because (3; 4) is in Q, both (2; 3) and (2; 4) are in P (U), but only one of
(2; 4) and (2; 3) is in Q. In this case the IC factorization may or may not exist, but in Section
4 we will show there exists some matrix B whose full Cholesky factor has the same sparsity
pattern as that of A, and for which IC with the augmented pattern Q will fail to exist.

These examples indicate how property C+ can be satis�ed and violated in some common
circumstances. The next Section shows that property C+ is su�cient for completion of IC
factorization.

3. Su�ciency of Property C+. The �rst theorem shows that property C+ guarantees
the existence of the IC factorization.

Theorem 1. Let matrix A 2 <n�n be symmetric positive de�nite and have Cholesky

factor U . Suppose that position set P 2 C+(P (U)). The incomplete Cholesky factorization of

A using position set P completes successfully.

Proof: Since any (i; j) 62 P (U) will not a�ect the computation of the incomplete Cholesky
factorization, we assume that P � P (U) in the proof without loss of generality.

Let Ci = fjj(j; i) 2 Pg be the set of row indices of elements of P in column i for each
1 � i � n. Construct a set Si in the following way: Initialize Si = Ci, and then repeat the
augmentation of Si  Si

S
j2Si

Cj until Si does not grow (which occurs in n � 1 or fewer
steps). This construction assures that for any j 2 Si, Cj � Si. The principal submatrix of A
de�ned by Si consists of the components of A with row and column indices both in Si.

We prove the theorem by showing that if P 2 C+(P (U)), then the computation of the
incomplete Cholesky factorization of A on each principal submatrix de�ned by Si, 1 � i � n is
equivalent to the computation of complete Cholesky factorization on the submatrix. Therefore
the diagonal elements of the matrix at each step of the incomplete Cholesky factor will always
be positive. This implies that the IC factorization will not break down due to nonpositive
pivots.

We �rst show that for any i and any fj; kg � Si, if (j; k) 2 P (U) then (j; k) 2 P . Assume
that (j; k) 62 P . Then there is (j; l) 2 P with l 2 Si, or otherwise j would not be in Si.
Now consider the position (minfl; kg;maxfl; kg). Since both (j; l) and (j; k) are in P (U), it
follows that (minfl; kg;maxfl; kg), the position that will be a�ected (updated or �lled) by
the element (j; k) and (j; l), must be in P (U) . If (minfl; kg;maxfl; kg) in P , this contradicts
P 2 C+(P (U)) because (j; l) is in P but (j; k) is not in P . If (minfl; kg;maxfl; kg) 62 P then
we have a position (minfl; kg;maxfl; kg) which has the same status as (j; k): fl; kg � Si,
(minfl; kg;maxfl; kg) 2 P (U), but (minfl; kg;maxfl; kg) 62 P . Note that minfl; kg > j and
maxfl; kg � k. By replacing (j; k) with (minfl; kg;maxfl; kg) and applying this argument
recursively, eventually we reach a row number m 2 Si that has only one o�-diagonal index

4



in Si. This last element must be in P , or m would not be in Si, proving the assertion by
contradiction and (j; k) 2 P follows.

On the other hand, any position (j; k) with fj; kg 6� Si will not a�ect the values of
the elements on the submatrix de�ned by Si in the incomplete factorization. To see this,
let's examine how a element in such a principal submatrix changes its value during the IC
factorization. Let fs; tg � Si. Now ast will be updated by

ast = ast � aksakt=akk

only when there exists a k such that both (k; s) and (k; t) are in P. If k 62 Si then it can be
shown that either (k; s) 62 P (U) or (k; s) 62 P : consider (k; s) 2 P (U), otherwise it does not
a�ect the computation. If (k; s) 2 P then k will be in Si by construction of Si, contradicting
the assumption that k 62 Si. Hence (k; s) 62 P . Therefore, (k; s) is either not in P or not in
P (U). The same argument can also be applied to (k; t). Therefore, the value of elements in
the principal submatrix de�ned by Si are not a�ected by elements outside this submatrix.

Therefore, for any 1 � i � n, the computation of the diagonal element aii of the incom-
plete Cholesky factorization of A is equivalent to computing the last diagonal element of a
complete Cholesky factorization of the principal submatrix de�ned by Si. Because any princi-
pal submatrix of a symmetric positive de�nite matrix is symmetric positive de�nite, Cholesky
factorization of the principal submatrix of A de�ned by Si can be completed, and hence all
the diagonal elements will remain positive in the incomplete Cholesky factorization of A with
pattern P . 2

This establishes a su�cient condition on the target factor for the existence of an incom-
plete Cholesky factorization. In order to illustrate Theorem 1 and its proof, consider a partic-
ular matrix that has the sparsity patterns given in Example 5, for which P (A) 2 C+(P (U)).
The steps of the incomplete Cholesky factorization algorithm with sparsity pattern P = P (A)
shown earlier, with Ai de�ned as the updated matrix A after step i of IC factorization, are:

A0 = A =

2
666664

1 1 �2 2
5 4

8
9 1

10

3
777775 ; A1 =

2
666664

1 1 �2 2
4 2

4
5 1

10

3
777775 ;

A2 =

2
666664

1 1 �2 2
4 2

4
4 1

10

3
777775 ; A3 = A2; A4 =

2
666664

1 1 �2 2
4 2

4
4 1

39=4

3
777775

The IC factor R can then be obtained by setting rii =
p
aii, and rij = aij=rii if (i; j) 2 P ,

giving

R =

2
666664

1 1 �2 2
2 1

2
2 1=2p

39=2

3
777775 :

From the de�nition of Si given in the proof of the theorem, S1 = f1g, S2 = f1; 2g, S3 = f1; 3g,
S4 = f1; 2; 4g, S5 = f1; 2; 4; 5g,
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Let Bi be the principal submatrix of A de�ned by Si. If we consider the computation
of IC of A above and extract the principal submatrix de�ned by Si after each step, we see
exactly the computation of complete Cholesky factorization on the submatrix. For example,
complete Cholesky factorization for i = 3 gives,

B0
3 = B3 =

 
1 �2

8

!
; B1

3 =

 
1 �2

4

!
;

and for i = 5,

B0
5 = B5 =

0
BBB@

1 1 2
5 4

9 1
10

1
CCCA B1

5 =

0
BBB@

1 1 2
4 2

5 1
10

1
CCCA

B2
5 =

0
BBB@

1 1 2
4 2

4 1
10

1
CCCA B3

5 =

0
BBB@

1 1 2
4 2

4 1
39=4

1
CCCA

The proof of Theorem 1 relied on noting that these computations are exactly the same as
those of IC of A on the principal submatrix de�ned by S3 and S5, respectively.

On the other hand, from Example 5, P = P (A)[f(3; 4)g 62 C+(P (U)). Using this target
sparsity pattern causes IC to break down because of a zero pivot in step 3:

A0 = A =

2
666664

1 1 �2 2
5 4

8
9 1

10

3
777775 ; A1 =

2
666664

1 1 �2 2
4 2

4 4
5 1

10

3
777775 ;

A2 =

2
666664

1 1 �2 2
4 2

4 4
4 1

10

3
777775 ; A3 =

2
666664

1 1 �2 2
4 2

4 4
0 1

10

3
777775 :

4. Necessity of Property C+. P 2 C+(P (U)) is not a necessary condition for IC com-
pletion on a particular symmetric positive de�nite matrix; examples are readily constructed
to show this. However, property C+ is a necessary condition in the sense that incomplete
Cholesky factorization with a given target sparsity P will exist for all symmetric positive
de�nite matrices A with the same pattern P (U) only if P 2 C+(P (U)).

Lemma 4.1. A symmetric positive de�nite matrix A 2 Rn�n can be created with any

given sparsity pattern P and any given symmetric positive de�nite principal submatrix S such

that the sparsity pattern of S is consistent with P.

For example, given the sparsity pattern

P =

0
BBBBB@

� � �
� �
�
� �
�

1
CCCCCA
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and given the positive de�nite principal submatrix A(2 : 4; 2 : 4) =

0
B@ 1 1

1
2

1
CA ; Lemma 4.1

says that the unspeci�ed entries � in

A =

0
BBBBB@

� � �
1 1

1
2 �
�

1
CCCCCA(1)

can be de�ned so that A is positive de�nite.
Proof: The proof is by construction. Assume that S 2 Rk�k . Let P 0 be the symmetrically

permuted pattern of P so that the principal submatrix S of A becomes the leading submatrix.
Generate A0 as the symmetric positive de�nite matrix with sparsity pattern P 0 in the following
way: Let the leading principle k � k submatrix of A0 be S. The expansion starts from row
and column k + 1. At each step i, k + 1 � i � n, compute the Cholesky factorization of the
leading submatrix of size i � 1 of A0, and denote the lower triangular factor as Li�1. Let v
be a vector of length i� 1 with sparsity pattern consistent with that of the o�{diagonal part
of column i of A0. Set the ith diagonal element to be aii = vTA�1

i�1v + � = vTL�T
i�1L

�1
i�1v + �,

where � > 0 is arbitrary, and de�ne the o�{diagonal part of column i to equal v (of course, the
o�{diagonal part of row i must also be set to vT to retain symmetry.) Continue this process
until an n � n symmetric positive de�nite matrix is generated. Then apply the symmetric
inverse permutation to A0, completing the creation of matrix A. 2

To illustrate the process in Lemma 1, we construct the unspeci�ed entries in Equation
(1). First, permute the �rst row and column of sparsity pattern P to the be the last so that the
principal submatrix de�ned by indices f2; 3; 4g in the matrix A will be the leading principal
submatrix. The permuted pattern P 0 becomes

P 0 =

0
BBBBB@

� � �
� �
� �
�
�

1
CCCCCA

Denote A0

i as the leading submatrix of A0 of size i. The expansion starts with i = 3. A0

3 =

S =

0
B@ 1 1

1
2

1
CA. Let v = (0 0 1)T , and � = 1. Then a044 = vTL�T

i�1L
�1
i�1v + � = 2, giving

A0

4 =

0
BBB@

1 1
1

2 1
2

1
CCCA. Next, let v = (1 1 0 0)T and � = 1, giving a055 = 5 and so A0

5 =

0
BBBBB@

1 1 1
1 1

2 1
2

5

1
CCCCCA. Finally, apply the inverse permutation to get A =

0
BBBBB@

5 1 1
1 1

1
2 1

2

1
CCCCCA.

Lemma 4.2. Let A 2 R3�3 be symmetric positive de�nite. Let U be the upper triangular

Cholesky factor of A. If P � P (U) does not have property C+ on P (U), then there is a
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symmetric positive de�nite matrix B 2 R3�3 such that the Cholesky factor of B has the

same structure as U and incomplete Cholesky factorization of B using P fails because of a
nonpositive pivot.

Proof: The only possible pattern P (U) with subsets P � P (U) not in C+(P (U)) is
P (U) = P3. Furthermore, if (2; 3) 62 P then P 2 C+(P (U)). So assume that (2; 3) 2 P . Then
P 62 C+(P (U)) implies

P = f(1; 1); (2; 2); (3; 3); (1; 2); (2; 3)g or

P = f(1; 1); (2; 2); (3; 3); (1; 3); (2; 3)g;

as in Example 1. Note that in both cases the incompleteness a�ects the pattern in the �rst
row. The trailing principal submatrix of order 2 is dense in both. Therefore, the strategy
of the proof is to make the trailing principal submatrix of order 2 positive de�nite after one
step of complete Cholesky is performed and not positive de�nite after one step of incomplete
Cholesky.

Case 1: P = f(1; 1); (2; 2); (3; 3); (1; 2); (2; 3)g and P (U) = P3. De�ne B as follows: Let
the leading 2 � 2 full matrix of B be any symmetric positive de�nite matrix and b23 be any
non-zero number. Two elements in the third column are yet to be determined. If we apply
two steps of IC with the pattern P the value of the third pivot can be determined and set to
0. This yields the value of b33 = b11b

2
23=(b11b22 � b212) > 0. Satisfying this condition means

that the trailing principal submatrix of order 2 is not positive de�nite after one step of IC.
Note that b13 does not appear in the value for b33 due to P . Therefore, we must set b13 to
guarantee that if complete Cholesky is performed it will succeed. This can be done by taking
it to be a solution of the inequality b13(2b12b23 � b22b13) > 0. It follows that

(
0 < b13 < 2b12b23=b22 if b12b23 > 0
2b12b23=b22 < b13 < 0 if b12b23 < 0

Applying complete Cholesky and incomplete Cholesky factorization on B shows that B is
positive de�nite and IC breaks down with the third pivot nonpositive.

Case 2: P = f(1; 1); (2; 2); (3; 3); (1; 3); (2; 3)g and P (U) = P3. Let the 2 � 2 trailing
submatrix of B be any symmetric positive de�nite matrix. We can set the values in the �rst
row of the matrix to achieve the same two conditions as in Case 1. Let b13 be any non-zero
number. Determining the �nal pivot of IC and setting it to 0 yields b11 = b22b

2
13=(b22b33�b223) >

0. The completion of the Cholesky factorization can be guaranteed by setting the remaining
element b12. Let b12 be a solution of the inequalities:

(
b212 < b11b22

b33 � b213=b11 � (b23 � b12b13
b11

)2=(b22 � b2
12

b11
) > 0:

Solving the inequalities gives(
0 < b12 < minf2b13b23=b33;

p
b11b22g if b13b23 > 0

maxf2b13b23=b33; �
p
b11b22g < b12 < 0 if b13b23 < 0:

Applying Cholesky and incomplete Cholesky factorization on B again shows that B is positive
de�nite but IC breaks down when using pattern P . 2
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Examples of the two cases of Lemma 4.2 are easily generated. Let

 
1 1

2

!
be the leading

principal submatrix of a symmetric positive de�nite matrix A. De�ne B to have the same
leading principle submatrix, b23 = 1, and b33 = b11b

2
23=(b11b22� b212) = 1� 12=(1� 2� 12) = 1.

Since b12b23 > 0, b13 is required to satisfy the condition 0 < b13 < 2b12b23=b22 = 1. De�ne

b13 = 1=2, giving B =

0
B@ 1 1 1=2

2 1
1

1
CA. B is symmetric positive but IC with the pattern of

Case 1 breaks down.

Similarly, let

 
1 1

2

!
be the trailing submatrix of a symmetric positive de�nite A.

De�ne B to have the same trailing submatrix, b13 = 1, and b11 = b22b
2
13=(b22b33 � b223) =

1 � 12=(1 � 2 � 12) = 1. Since b13b23 > 0, b12 needs to be a solution to the inequalities

0 < b12 < minf2b13b23=b33;
p
b11b22g = 1. Let b12 = 1=2. We then have B =

0
B@ 1 1=2 1

1 1
2

1
CA.

B is symmetric positive but IC with the pattern in Case 2 breaks down.
Theorem 2. Let A 2 Rn�n be symmetric positive de�nite, U be the upper triangular

Cholesky factor of A, and P (U) be the sparsity pattern of U . If P � Pn does not have the

property C+ on P (U), then there is a symmetric positive de�nite matrix B 2 Rn�n such

that the complete Cholesky factor of B has the same non-zero structure as U , and incomplete

Cholesky factorization of B using P will fail due to a nonpositive pivot.

Proof: The theorem is proven by induction on the size of the problem, n. Note that all
sparsity patterns for 2� 2 matrices necessarily have property C+ on P (U). Lemma 4.2 shows
that the theorem is true for problems of size less or equal to 3, establishing the induction
basis. We assume that for all the problems of size less or equal to n� 1 the theorem is true
and show below that it is true for matrices of order n.

Let P l be the \leading" subset of P de�ned by P l = f(i; j)j(i; j) 2 P; 1 � i < j < ng and
let P t be the \trailing" subset of P de�ned by P t = f(i; j)j(i; j) 2 P; 1 < i < j � ng. Similarly,
denote P (U)l = f(i; j)j(i; j) 2 P (U); i < j < ng, P (U)t = f(i; j)j(i; j) 2 P (U); 1 < i < jg. P
is in at least one of the following three cases:

Case 1: P l does not have property C+ on P (U)l.
Case 2: P t does not have property C+ on P (U)t.
Case 3: P l has property C+ on P (U)l and P t has property C+ on P (U)t but P does not

have property C+ on P (U).
In Case 1 the induction hypothesis implies that there is a symmetric positive de�nite

matrix S of size n� 1 whose complete Cholesky factor has the same sparsity as P (U)l, and
for which incomplete Cholesky factorization breaks down when applied to S using P l. Let the
matrix B be constructed so that its leading principal submatrix of order n� 1 is equal to S
and then use the result of Lemma 4.1 to construct its last row and column. Then incomplete
Cholesky factorization on the constructed symmetric positive de�nite matrix B breaks down
during the �rst n� 1 steps of computation.

In Case 2, create a matrix B in the following way: Since P t does not have property
C+ on P (U)t, by the induction hypothesis there is a symmetric positive de�nite matrix S of
order n� 1 such that its complete Cholesky factor has the same structure of P (U)t and the
incomplete Cholesky factorization of S using P t break down. From Lemma 4.1 we can create
a symmetric positive de�nite matrix C 2 Rn�n such that it has the same non-zero structure
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as A on the �rst row and column and its trailing principal submatrix is equal to S. De�ne
the vector v of length n as:

vi =

8><
>:

0; i = 1
0; (1; i) 2 P;

c1i=
p
c11; (1; j) 62 P;

and let B = C + vvT . B is symmetric and positive de�nite because C is symmetric positive
de�nite and vvT is nonnegative de�nite. Furthermore, the non-zero structure of the complete
Cholesky factor of B is the same as P (U). After applying one step of incomplete Cholesky
factorization to B, the reduced matrix of order n � 1 is equal to S. By the de�nition of C,
incomplete Cholesky factorization will break down.

In Case 3, P l and P t have property C+ on P (U)l and P (U)t, respectively but, P violates
property C+ on P (U). Therefore, there must be a (i; n) 2 P such that both (1; i) and (1; n)
are in P (U) but only one of them is in P . After applying one step of incomplete Cholesky
factorization on B, consider incomplete Cholesky factorization of the reduced matrix of order
n � 1 with sparsity pattern P t. Since P t has property C+ on P (U)t, we cannot use Case
2 above to show that IC can fail for some set of values assigned to the non-zero positions.
However, we now show that the non-zero values can be set so that the reduced matrix of order
n� 1 has a principal submatrix which is not positive de�nite. De�ne the symmetric positive
de�nite matrix B as follows: let B's 3 � 3 principal submatrix given by indices f1; i; ng be
equal to the matrix shown in Lemma 4.2 corresponding to the one of the two possible sparsity
patterns that applies. Use Lemma 4.1 to expand the matrix to have the same sparsity pattern
as A. As shown in the proof of Theorem 1 the computation of the IC factorization of the
reduced matrix on the elements corresponding to index set St

n�1 of P t is equivalent to the
computation of the complete Cholesky factorization on the principal submatrix de�ned by the
index set St

n�1. Because B was constructed using the techniques in the proof of Lemma 4.2,
the principal submatrix de�ned by fi; ng � St

n�1 is not positive de�nite after one step of IC.
Therefore, the complete Cholesky factorization of the principal submatrix de�ned by St

n�1

breaks down and the incomplete Cholesky factorization on the reduced matrix must also fail.
Together, this shows that for a problem of order n, if P does not have property C+ on

(P (U)), then there is a symmetric positive de�nite matrix B such that its Cholesky factor has
the same sparsity pattern as the Cholesky factor of A, but incomplete Cholesky factorization
of B will fail. By induction the theorem is true. 2

To illustrate the proof of Case 3 above, let

P (A) =

0
BBBBB@

� � � � �
� � �
�
� �
�

1
CCCCCA ;

so that P (U) = P5. Let P = P (A) � f(1; 5)g. Then P l 2 C+(P (U)
l) and P t 2 C+(P (U)

t),
but P 62 C+(P (U)). Now for i = 4, as indicated in the proof (i; n) 2 P , both (1; i) and
(1; n) are in P (U), but only one of them is in P . Construct the matrix B as follows: let B's

3� 3 principal submatrix given by indices f1; 4; 5g be

0
B@ 1 1 1=2

2 1
1

1
CA ; which is equal to the
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matrix shown in the example corresponding to Case 1 in Lemma 4.2. Using Lemma 4.1 we
can expand the matrix B to have the same sparsity pattern as A, for example,

B =

0
BBBBB@

1 1 1 1 1=2
5 2 2

7
2 1

1

1
CCCCCA :

Applying one step of incomplete Cholesky factorization using P on B gives

B1 =

0
BBBBB@

1 1 1 1 1=2
4 1 2

6
1 1

1

1
CCCCCA :

Since (1; 5) 62 P , no updates are performed on column 5 in computing B1. Now consider
incomplete Cholesky factorization of the reduced matrix of order n� 1 with sparsity pattern
P t, and recall that P t has property C+ on P (U)t. As shown in the proof of Theorem 1
performing incomplete Cholesky factorization on the reduced matrix with pattern P t has the
same e�ect on the elements corresponding to index set St

n�1 = f2; 4; 5g as the computation

of complete Cholesky factorization on the principal submatrix

0
B@ 4 1 2

1 1
1

1
CA : However, the

principal submatrix de�ned by f4; 5g � St
n�1 is not positive de�nite. Therefore, the com-

plete Cholesky factorization of the principal submatrix de�ned by St
n�1 breaks down and the

incomplete Cholesky factorization on the reduced matrix also fails on the next step:

B2 =

0
BBBBB@

1 1 1 1 1=2
4 1 2

6
3=4 1=2

0

1
CCCCCA

5. Summary and Future Work. In this paper we de�ne property C+ for a target
sparsity pattern for incomplete Cholesky factorization. Property C+ is a su�cient condition
on the sparsity pattern that ensures the existence of incomplete Cholesky factorization of a
symmetric positive de�nite matrix. If property C+ is not satis�ed, then a symmetric positive
de�nite matrix with the same non-zero structure of its Cholesky factor can be found so that
when applying incomplete Cholesky factorization with the speci�ed pattern, the factorization
will break down due to a nonpositive pivot.

These results show that property C+ is fundamental for incomplete Cholesky factoriza-
tion. Every other su�cient condition on the sparsity pattern that we know of is a special case
of property C+, including the reordered chordal graph strategy in [Coleman, 1988] and the
trivial cases of P containing only diagonal entries and P = P (U). Theorem 2 implies that
property C+ is necessary and su�cient, if only the sparsity pattern of the matrix is considered.

The proof of these results show that property C+ relates portions of the incomplete
factorization of a matrix A to complete factorizations of particular principal submatrices.
This work was originally motivated by research on the incomplete Gram-Schmidt factorization
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(IGS) of a least squares problem, for which A is the coe�cient matrix of the normal equations.
The existence of that IGS factorization can be guaranteed [Wang et al., 1994a], and property
C+ is the condition under which IC applied to A is essentially equivalent to IGS and therefore
also guaranteed to exist.

Algorithms for modifying a given sparsity pattern to assure that property C+ holds have
been proposed in [Wang, 1993]. However, the algorithms proceed simply by either always
dropping positions that cause violations, or by always adding positions into P to prevent
violations. A more e�ective strategy is likely to be based on a combination of those two
approaches, allowing the amount of storage used by the preconditioner to be speci�ed in
advance.

This work is of great importance in applications where a sequence of problems are solved,
each with the same sparsity pattern. This occurs in the solution of nonlinear partial di�erential
equations, and in the iterative solution of the linear systems occurring in interior point methods
for linear programming. This suggests one direction of future work: what conditions on
a discretization will a priori assure that IC(s), incomplete Cholesky factorization with s
levels of �ll, will exist? Extensive research has also been carried out by other researchers to
assure the existence of incomplete Cholesky factorization based on modifying the numerical
values encountered, most often by augmenting pivot elements. Combining the two approaches,
structural and numerical, is another promising research direction.
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