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Abstract

Many human behaviors reflect the attunement of our perceptual systems to rhythmic
patterns of stimulation. Examples include dancing to music, speech communication,
and the performance of a symphony orchestra. However, developing a computational
model of rhythm perception has proven to be difficult for two main reasons. First,
rhythm is holistic, yet rhythmic patterns evolve over time. Second, periodicities
in rhythmic patterns typically exhibit variability in their timing. Many previous
approaches to rhythm perception have ignored these two problems by abstracting
time to the level of musical notation, and thus failed to address the fundamental issue
of the perception of time. The approach taken in this thesis is that the development of
a model of rhythm perception must first address the perception of the time intervals
which comprise rhythmic patterns.

[ propose a class of adaptive-oscillator processing units which track periodicities in
rhythmic patterns (beats). Modest random variations in the timing of rhythmic pat-
terns do not reduce the adaptive oscillator’s ability to attain synchrony, and can even
improve it. An Entrainment Model of human time perception is then developed. The
model is evaluated by comparing its performance on a series of tempo-discrimination
simulations to data from analogous human listening experiments, investigating sev-
eral rhythmic factors that influence listeners’ ability to detect differences in the tempo
of isochronous auditory sequences. Data obtained from the simulations agreed with
the human data, providing support for the model. As an additional evaluation, two
tempo-discrimination experiments were conducted to test model predictions regard-
ing the perception of time as phase. The results of these two experiments also agreed
with the model. Compared with other psychological models of time perception, the
adaptive-oscillator-based Entrainment Model is the only model to provide a unified
explanation for these tempo data. This thesis supports the adaptive-oscillator mech-
anism as a viable approach to modeling rhythm perception, addressing the holistic
nature of rhythm, the problem of timing variability, and the perception of time. Fur-
thermore, this thesis demonstrates how direct coupling of a computational system
with the temporal structure of its environment is a potentially useful method for
learning to interact with that environment.
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Chapter 1

Introduction

1.1 Rhythm in Music and Language

Rhythm permeates human experience, such as in listening and dancing to music, in
speech communication, and in the intricate musical communication between members
of a symphony orchestra. Although it is easy to agree that many human activities
elicit a sense of rhythm, both in the perceiver and in the performer, it is much harder
to agree on precisely what rhythm is. Confusion regarding a definition for rhythm
stems mostly from distinguishing rhythm as a stimulus (e.g., the pattern of sounds
played by a musician) and rhythm as a perception (e.g., the sense of periodic “beats”
evoked by that pattern). In order to avoid some of this confusion, I will define rhythm
in a way that combines both the “pattern” and “perception” uses of the term. For
this thesis, it is also necessary to define the closely related terms of beat, meter, and
tempo, as they are used in research on rhythm in music and language.

A rhythm is a temporal pattern which evokes a sense of periodicity, either in the
form of periodic beats (pulses) or in the form of pattern repetition. Rhythmic patterns
are inherently relative-time patterns in that the duration of events in that pattern
are ideally determined in relation to a fundamental time unit, often called the beat
duration (Jones, 1987). For example, the rhythmic pattern depicted in Figure 1.1
is based on a beat duration of ¢ ms. This pattern repeats every 16t beats. Meter
defines beats on a number of hierarchically related time scales, or levels. At each
such metrical level, beats occur in a regular series such as the ticks of a metronome.
The beat period at each metrical level (the time interval between the ticks of the
metronome) is a multiple of the beat period of the metrical level below it. In the
example shown in Figure 1.1, beats occur at the ¢, 2¢, 4¢, 8¢, and 16¢ levels.

Musical meter is used to constrain the set of possible “legal” rhythmic patterns,
in a way similar (but not identical) to how formal grammars constrain the set of
possible grammatical sentences (Lerdahl and Jackendoff, 1983). Each level of a metric
hierarchy serves to constrain the set of rhythmic patterns that can be best described
by that meter. For example, 2/4 time specifies a two-level metrical hierarchy in which
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16t

8t

4t

Figure 1.1: Illustration of the hierarchical structure of a simple rhythmic pattern
based on multiples of two. The pattern repeats every 16¢ time units.

there are two quarter-note beats per measure. In terms of the metronome analogy, the
quarter-note-level constraint on a rhythmic pattern is equivalent to having to adjust
a metronome so that its ticks coincide with events in that pattern. The measure-
level constraint (for 2/4 time) is equivalent to having to align the ticks of a second
metronome (with a period twice the first) with events in the pattern, as well as with
the ticks of the first metronome. How well both metronomes can be aligned with the
rhythmic pattern determines how well it is described by that meter. For isochronous
sequences, for which there is a pulse every ¢ ms, the ticks of the second metronome can
be aligned with every 2, 3, or 4 pulses, etc., and thus, the best meter is ambiguous.
In contrast, the rhythmic pattern illustrated in Figure 1.1 is best described by a 2/4
or 4/4 meter (i.e., one based on multiples of 2).

Polyrhythms, common in African music, as well as some Western popular music,
are not based on a metric hierarchy (Yetson, 1976). Instead, polyrhythms elicit a
sense of rhythm by weaving together separate rhythmic lines, sharing only a common
beat period (or micro-pulse). Polyrhythms can be described as the simultaneous
presentation of two isochronous patterns that do not share a common denominator
other than the micro-pulse itself (Deutsch, 1983; Handel, 1989). For example, the 3x4
polyrhythm shown in Figure 1.2 weaves together two isochronous sequences separated
by 3 and 4 micro-pulses, respectively, forming a 12 micro-pulse repeating figure.
Polyrhythms are problematic for theories of rhythm perception which attempt to
parse rthythmic patterns strictly in terms of hierarchical relationships between time
periods (Lerdahl and Jackendoff (1983); see Large (1994) for a discussion of some of
the problems associated with representing polyrhythmic structure).
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Figure 1.2: A 3x4 polyrhythm weaving together two isochronous sequences separated
by 3 and 4 micro-pulses, respectively, resulting in a 12 micro-pulse repeating rhythmic
figure.

Tempo refers to the rate (or speed) of a rhythmic pattern and is defined relative
to the fundamental beat duration. For the example illustrated in Figure 1.1, the
tempo of the pattern is determined by specifying what ¢ is. Changing the tempo of
a rhythmic pattern refers to changing ¢, and thus does not influence the temporal
structure of that pattern. However, changing the tempo of a rhythmic pattern may in
fact influence its “perceived” temporal structure (Gabrielsson, 1973; Handel, 1993).
Thus, the same rhythmic pattern presented at various tempos may evoke different
senses of rhythm.

With regard to the perception of rhythm, beats refer to a periodic series of sub-
jectively equal time intervals (Fraisse, 1982; Handel, 1989). That is, even if successive
beats ¢ vary somewhat in duration (i.e., the pattern is not perfectly periodic) a lis-
tener’s perception of beats may still be isochronous (i.e., following at equal time
intervals). The distinction between acoustic isochrony and perceived isochrony is es-
pecially evident in studies of speech rhythm. For example, for English it has been
claimed that stressed syllables are separated by approximately equal time intervals
(Pike, 1945). However, when the durations between stressed syllables in an utterance
are measured, they are found to deviate substantially from isochrony. In spite of these
deviations, listeners may still perceive that these stressed syllables are isochronous
(Lehiste, 1977). Similarly, Japanese is a mora-timed language in that pedagogical
explanations claim that all moras (a fundamental timing unit similar to the syllable)
have equal duration (Bloch, 1942). However, when individual mora durations are
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measured in spoken Japanese, they are not found to be equal, but can vary substan-
tially. It is only when viewed at the word level that the mora can be salvaged as an
acoustic isochronous timing unit, since words having the same number of moras tend
to be the same duration (Port et al., 1987). At the mora level, isochronous beats are
subjective.

With respect to such subjective beats in music and language, meter refers to a
periodic pattern of subjectively stronger and weaker beats, such as the repeating
strong-weak-weak pattern of a waltz rhythm. When we tap a foot in time with a
favorite tune on the radio, we are tapping out the perceived beats of the meter at one
or more metrical levels (i.e., we are tapping out some of the metrical accents (Lerdahl
and Jackendoff, 1983)). A listener’s placement of beats may coincide with the onset
of events in a musical rhythm (such as with the onset of a tone), but may also occur
at points in time which lack any physical marker. In addition, beats may still be
“felt” after the pattern stops. If asked to “beat along” with the example shown in
Figure 1.1, most listeners’ would tap out beats at the 2t or 4t level, depending on the
tempo.

The perception of rhythm also involves a sense of what events in a rhythmic
pattern “go together.” A number of stimulus factors have been shown to result in
phenomenal accents which influence the formation of natural groupings of pattern
events. In music, increasing the intensity of every other tone in an isochronous se-
quence of otherwise identical events tends to induce listeners to group tones in that
pattern by twos, with the more intense (accented) tone beginning each group (Fraisse,
1956); following a large pitch change, tones tend to be perceived as accented and as
beginning a group (Jones, 1981); and, lengthening every second or third tone of an
initially isochronous sequence tends to induce listeners to group tones in the pattern
by twos or threes, with the lengthened (accented) tone ending the group (Woodrow,
1951). Of course, many other stimulus factors influence the formation of groups, and
no one such factor constitutes an immutable rule of rhythm perception (cf., Handel,
1989).

The pattern of these phenomenal accents influencing grouping may reinforce or
conflict with the metrical accents, resulting in a more or less stable perception of
rhythm. In the musical communication of rhythm, a musician’s performance of a
piece of music may result in phenomenal accents which coincide or conflict with the
metrical accents implied by only the relative timing of the notes. Such expressive
cues in performance, selectively enhance or mask the communication of rhythm to
the audience. Each listener’s perception of rhythm emerges through the interaction of
these expressive cues provided by the performer with those structural cues provided
by the sound pattern (Jones, 1987).



Introduction 5

1.2 Rhythmic Pattern Processing

The development of a computational model of rhythm perception which can track the
beat of a rhythmic pattern as well as humans can has proven to be difficult for two
main reasons. First, rhythm is holistic perception, yet rhythmic patterns evolve over
time. Second, periodicities in rhythmic patterns exhibit variability in their timing.
In this section, I first outline these two problems, and then describe two models for
extracting musical meter, one symbolic and the other connectionist, which highlight
these two problems and thus serve to motivate this thesis.

1.2.1 The Holism Problem

Rhythmic pattern processing can be characterized as holistic because it involves an
interaction between phenomenal accents and metrical accents that are distributed
in time. Determining perceived rhythm requires examining the pattern as a whole,
and not by simply combining the contributions of the individual accents, separate
from the rest of the pattern. However, rhythmic patterns are not available all at
once, since the pattern develops over time. Thus, a sense of a pattern’s rhythm must
emerge during the course of processing. Handel (1989) describes the phenomenon in
the following way.

The rhythm of a game [of basketball] emerges from the rhythm of
individuals, the rhythm among team members, and the rhythmic contrasts
between opposing teams. In the same way, musical rhythm emerges from
the lines of each instrument or instrumental section. Each line may be
simple or complex, and yet, in a very real sense, the rhythm cannot be
found at any one of those levels (Handel, 1989, p. 383).

The perceived pattern of phenomenal accents may reinforce or conflict with the ex-
pected pattern of metrical accents inferred by the evolving temporal structure of the
rhythmic pattern. In addition, various factors influencing the perceived placement of
phenomenal accents (discussed briefly in Section 1.1), may reinforce or compete with
another.

1.2.2 The Variability Problem

The variability problem can be subdivided into two parts: intrinsic variability and
intended (expressive) variability. I use intrinsic variability to refer to timing vari-
ability introduced because of human limitations in the perception and production
of temporal intervals which comprise rhythmic patterns, and intended variability to
refer to expressive changes in the timing of a rhythmic pattern that are introduced
to enhance the communication of its rhythm.

With regard to the time intervals which comprise a rhythmic pattern, Fraisse
(1963) identified the psychological present as the range of time intervals (between
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approximately 25 and 2000 ms) within which we are able to maintain a “sense of
pattern.” Adjacent events in a pattern that are separated by longer than about two
seconds lose their cohesiveness and are perceived as isolated events. For example,
consider the successive rings of a telephone which are separated by a second or so.
When listening to the telephone ring, it requires effort to perceive successive rings as
part of a pattern, to anticipate the next ring, or even to know whether the ringing
has stopped. Events in a pattern that are separated by less than 25 ms or so, start to
blend (or fuse) together into a single complex event. Thus, the perception of rhythmic
patterns is necessarily constrained by these limitations on the time intervals which
can form a pattern.

Within the psychological present, the perception of rhythmic patterns is influenced
by human perception of the time intervals comprising those patterns. In general, the
perception of time intervals within the psychological present is most accurate for in-
tervals between approximately 500 and 600 ms (as measured by listeners’ ability to
detect whether two intervals are the same or different), and progressively less accurate
for time intervals outside this range (Fraisse, 1963; Woodrow, 1951). However, there
is substantial variability among individuals in the location of this preferred range.
Outside the preferred range, there is a systematic tendency for short intervals to be
overestimated (i.e., perceived as having a longer duration than the actual duration)
and for long intervals to be underestimated (i.e., perceived as having a shorter dura-
tion than the actual duration) (Fraisse, 1963; Woodrow, 1951). Consequently, these
limitations on the perception of time intervals which comprise rhythmic patterns are
sources of intrinsic variability.

With regard to intended variability, musicians create expressive patterns of phe-
nomenal accentuation by slightly lengthening or shortening the specified duration of
particular notes or rests (silences) in a pattern, by speeding up or slowing down spe-
cific portions of a pattern, etc., thus influencing listeners’ perception of that pattern’s
rhythm (Clarke, 1989; Drake and Palmer, 1993). Such expressive deviations in tim-
ing may take advantage of human ability to perceive the time intervals comprising a
pattern, so as to enhance the communication of its rhythm (Sternberg et al., 1982).

1.2.3 Two Models of Rhythmic Pattern Processing

Below, two complementary models of rhythmic pattern processing are described. It
is not the purpose of this introductory discussion to provide a comprehensive review.
Instead, these two models provide the reader with concrete examples of typical ap-
proaches to rhythm perception and serve to illustrate how such approaches address
(or fail to address) the issues of holism and timing variability.

The Clock Model Povel and Essens (1985) propose a rule-based model of rhyth-
mic pattern processing which they term the “Clock Model”. In the Clock Model,
rhythmic patterns are represented as a sequence of time intervals measured relative
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to a defined micro-pulse. For example, if we define a 200-ms micro-pulse, then the
pattern of intervals 200 400 200 200 800 can be represented as 12114. Events in these
patterns occur at the beginning of each time interval and are assumed to be identical.
In the Clock Model, processing takes place in three steps. In the first step, phenom-
enal accents are determined according three preference rules suggested by Povel and
Okkerman (1981) as follows: (1) isolated tones tend to be accented; (2) the second
in a cluster of two tones tends to be accented; and (3) the initial and final tones in a
cluster of three or more tones tend to be accented. In the second step of processing,
all possible “clocks” (or metronomes) are generated up to a clock period equal to half
the cycle duration of the rhythmic pattern. For example, for a rhythmic figure that
repeats every 2 seconds, the slowest clock would have a 1-sec period. The concept of
a clock is identical to the concept of the metronome introduced in Section 1.1. Each
“clock” corresponds to a periodic sequence of ticks that can be aligned in different
ways with the events in a rhythmic pattern. Thus, the generation of all possible
clocks also includes the generation of all possible alignments of each clock. In the
final step of processing, a rule is applied to each clock which scores the amount of
dissonance between that clock and the natural patterning of accents determined in
the first step. The best clock (i.e., the one with the least dissonance) indicates the
model’s “perceived” meter.

One strength of the Clock Model is that it is a potentially useful tool for analyzing
the structure of rhythmic patterns. In the Povel and Essens (1985) study, they used
the range of possible clock dissonances to define a measure of rhythmic complezity.
The dissonance of the best clock for a temporal pattern thus provided a measure of the
rhythmic complexity of that pattern. Povel and Essens (1985) found that listeners’
ability to reproduce temporal patterns was correlated with this measure of rhythmic
complexity; that is, the more rhythmically complex a pattern was determined to be,
the less accurate listeners generally were at tapping this pattern, and the longer it took
listeners to memorize the pattern prior to tapping. This result supports the hypothesis
that listeners’ coding of temporal patterns is rhythm-based, and suggests that the
Povel and Essens (1985) measure of rhythmic complexity is, to a first approximation,
reasonable.

A main weakness of the Clock Model is that it determines the best clock by
inspecting a static “snapshot” of the entire pattern. Thus, the holism problem is
only addressed by ignoring the fact that rhythmic patterns evolve over time. Those
rule-based approaches which do, to a degree, attempt to incorporate the intrinsic
temporal constraint on rhythmic pattern processing (Longuet-Higgens and Lee, 1982;
Miller et al., 1988) use hindsight to backtrack and reanalyze earlier portions of the
pattern, in order to successfully extract the meter. That is, although these models
process rthythmic patterns sequentially, the “left-to-rightness” of time is disregarded.
A second weakness of the Clock Model is that by using a beat-based input repre-
sentation, in essence a musical notation, the model only applies to perfectly periodic
rhythmic patterns, and thus does not address the fundamental problem of timing
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variability, inherent in music and speech.

The BeatNet Model In contrast to the rule-based Clock Model, Scarborough,
Miller, and Jones (1990) propose a connectionist model of rhythmic pattern process-
ing called BeatNet. The BeatNet Model consists of a one-dimensional array of oscilla-
tors, with periods defined by multiples of the shortest duration in the to-be-processed
rhythmic pattern, and initial phases defined by the different possible alignments of
the oscillators to that pattern. Thus, there are oscillators corresponding to periodic
patterns of eighth-notes, quarter-notes, etc., for the different possible downbeats.
This is the same as the generation of all possible “clocks” in the Clock Model except
that now each clock is realized as an oscillatory processing unit. The BeatNet Model
performs essentially the same task as the Clock Model, except that instead of using
preference rules to determine meter, it uses a form of parallel constraint satisfaction.
As the BeatNet Model makes a left-to-right pass through the score (without back-
tracking), it excites the various oscillators which have the same phase and period as
the time intervals in the score. The oscillators are allowed to interact via excitatory
and inhibitory connections in ways which implement constraints that are likely to
lead to a pattern of activation corresponding to a coherent metrical structure.

To a limited degree, the BeatNet Model is successful at extracting coherent met-
rical structure without the use of explicit rules, without requiring that the whole pat-
tern be available for inspection, and without the need for backtracking. In addition,
since the oscillators only communicate with each other through local interactions,
there is no executor which directs the processing of the system. However, in order
for the system to successfully extract metrical structure, it needs to pre-inspect the
to-be-processed rhythmic pattern in order to to determine what the correct initial
periods and phases of the oscillators should be. Furthermore, if the rhythmic pattern
increased or decreased in tempo, the coherent metrical structure established by the
activation pattern of these oscillators would be lost. Thus, one of the main weakness
of the BeatNet Model is its inability to deal with timing variability. Like the Clock
Model, the BeatNet Model essentially assumes musical notation as input, and thus
breaks down when applied to rhythmic patterns which exhibit timing variability, as
found with music and speech.

1.2.4 Discussion

Typical approaches to Artificial Intelligence (AI) problems, such as music and lan-
guage processing, often factor out all aspects of perceptual and motor skills, reducing
the problem to one of “identifying the right representation” (Brooks, 1991). Brooks
(1991) observes that AT researchers tend to partition problems into two components:
an Al component, which they attempt to solve, and an non-AI component (includ-
ing the perceptual and motor components of the problem), which they don’t solve,
but factor out using a process of abstraction. AI approaches to rhythmic pattern



Introduction 9

processing are no exception to this practice.

In the symbolic Clock Model and the connectionist BeatNet Model, as well as
a number of other related models (e.g., those of Longuet-Higgens and Lee (1982);
Miller et al., 1988; and Stevens and Wiles, 1994), it is the perception of the time
intervals which comprise rhythmic patterns that is abstracted to the level of musical
notation, and thus implicitly designated the non-AI component of the problem. In
some cases, the whole pattern-presentation process is also ignored. Consequently, in
handling rhythm perception, these models do not address the fundamental issue of
the perception of time, instead assuming that the time intervals between events in a
pattern are obtained by an unspecified pre-processor (Port et al., 1995). Of course, for
these cases in which identifying the right representation implies using musical notation
as input, it must also be assumed that rhythmic patterns are perfectly periodic; as
we’ve seen, this is not the case for music and speech, which can exhibit significant
intrinsic and intended variability in the timing of their production. In addition, this
type of approach assumes that the problem of determining the relative timing between
events is already solved—a nontrivial part of the task itself (Port et al., 1995).

1.3 The Entrainment Hypothesis

An alternative approach to rhythmic pattern processing is based on the concept of a
direct coupling between perceiver and environment, through which stimulus rhythms
serve to entrain (or synchronize) a perceiver’s internal rhythms. In a seminal paper,
Jones (1976) proposed that the temporal organization of perception, attention, and
memory is inherently rhythmic. As part of this theory, it is assumed that rhythmic
patterns such as music and speech potentially entrain (synchronize) a hierarchically
nested set of attentional periodicities (oscillations), forming an attentional rhythm.
In Jones’s view, the entrainment of attentional periodicities is the basis for the de-
velopment of expectancies for when in time, events in a pattern are likely to occur.
Moreover, according to this view, the entrainment of attentional rhythms guides the
placement of attentional pulses (corresponding to points in time receiving attentional
focus), thus influencing the overall perception of a stimulus and the form of its storage
in memory, depending on the temporal structure of the stimulus context.

There is an accumulating body of psychological evidence that supports this en-
trainment hypothesis, demonstrating that listeners’ abilities to detect pitch changes,
estimate time intervals, remember a pattern, and discriminate tempo is heightened
when the to-be-detected change in the pattern, or the set of pattern defining fea-
tures, coincide with perceived metrical accents in that pattern (Jones et al., 1981;
Jones et al., 1982; Jones and Boltz, 1989; Kidd et al., 1984; Kidd, 1989; Kidd, 1993;
Kidd, 1994). Jones et al. (1982) found that listeners were better able to detect pitch
changes in a target tone (based on a melodic rule change) when the target tone
occurred at a metrically accented location than when it occurred at a unaccented lo-
cation. Similarly, in a task which required listeners to judge the melodic equivalence
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of pairs of auditory patterns, Kidd et al. (1984) found that temporal uncertainty due
to differences in rhythmic context (i.e., number and types of rhythmic patterns used
in the experiment) reduced listeners’ ability to discriminate melodic differences. In
addition, Kidd (1993; 1994) found that listeners’ ability to resolve the frequency of a
target tone embedded within an auditory pattern depended on the magnitude of the
temporal displacement of that tone from its “expected” location. In a study of time
perception, Drake and Botte (1993) showed that listeners’ ability to detect tempo-
ral deviations in a target interval or a set of target intervals comprising an auditory
pattern is better when that pattern is metrically regular than when it is irregular.
Finally, in a study of speech perception, Kidd (1989) found that listeners’ judgments
concerning the identity of a target syllable were systematically influenced by the tem-
poral expectancies established by the tempo of a precursor phrase. The results from
these diverse studies of auditory pattern perception provide broad support for the
entrainment hypothesis.

1.4 The Role of Entrainment in Cognition

The ability of our perceptual systems to be entrained by rhythmic patterns, as sug-
gested by Jones (1976), can be important for cognitive processing. First, entrainment
is a form of pattern organization in time. Perceiving metrical structure through en-
trainment establishes the relative salience of the events comprising a rhythmic pattern.
This is evident in speech processing, in which metrical accents (stress) often point
to important content words in the spoken utterance. Thus, events (e.g, words) that
coincide with subjectively stronger accents may be more important for the processing
of a temporal pattern (e.g., understanding the intended meaning of a sentence) than
those which coincide with weaker accents (Martin, 1972; Handel, 1989). Moreover,
entrainment as a form of pattern organization offers a reduced memory representa-
tion for temporal patterns that preserves those features which coincide with metrical
accents (Jones, 1976; Large et al., 1995; Martin, 1972; Povel, 1981).

Entrainment is also a basis for prediction in time. Entrainment by a rhythmic
pattern enables the timing of events in that pattern to be predicted based on ex-
tension of the entrained periodicities. Thus, the timing of early events generates
expectancies regarding the periodic occurrence of later events (Jones, 1976; Martin,
1972). Those events that coincide with their predicted locations in time serve to
reinforce the entrainment-based predictions. Accurate prediction of the timing of an
event is important because it facilitates the coordination of actions that must coincide
with that event. Also, accurate timing prediction may also reduce the quantity of
information that must be processed in order to identify or classify a pattern. For ex-
ample, if the melody of a musical pattern can be identified from only those portions of
the acoustic signal which coincide with beats of the meter, then the remainder of the
acoustic signal can be discarded at an early stage in processing. Thus, entrainment as
a form of prediction in time may help establish what information in a pattern should
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be processed as well as when that processing should occur. Furthermore, entrainment-
based timing prediction is independent of tempo—a necessary property for perceptual
constancy. For example, for successful speech communication, it is critical that the
perceived content of a speech utterance does not change with speaking rate.

1.5 Rhythmic Pattern Processing via Entrainment

There has been a recent surge of interest in the role of synchronized cortical oscilla-
tions in cognition. However, most of this interest has focused on how synchronized
oscillations might be used for feature binding in visual processing (Gray et al., 1989),
or for modeling processes related to auditory stream segregation (von der Malsberg
and Schneider, 1986; Wang, 1995). Much less research has investigated the possible
role of entrained cortical oscillations in the processing of rhythmic patterns, although
there is significant physiological data to support such a possibility (John, 1967; John,
1972; Thatcher and John, 1977; Torras, 1985; Torras, 1986).

John (1967) describes a series of animal classical conditioning experiments re-
sulting in cortical entrainment by rhythmic stimuli. In the avoidance paradigm, a
flashing light followed by an brief electric shock is used to condition an animal to
expect electric shock when the flashing light occurs. When the conditioned response
is obtained (i.e., the animal moves to avoid the shock once it sees the flashing light),
it is reported that cortical activity is observed at the frequency of the flashing light.
Similarly, if an animal receives a reward for pressing a lever in response to a flashing
light at a particular rate (e.g., a cat pressing a lever to receive milk in response to
a 10 Hertz flashing light) and punishment for pressing the same lever in response
to a flashing light at a different rate (e.g., no milk and a substantial wait until the
next milk opportunity for a 6 Hertz frequency), then sustained cortical activity is ob-
served at both frequencies and has been used to predict whether the animal will make
a correct discrimination. Moreover, in these rhythmic conditioning studies, when the
presentation of the conditioned rhythmic stimulus stops, sustained cortical activity
continues to be observed at the conditioned frequency. Also, if pulses of the rhythmic
stimulus are left out, such as in deleting light flashes, then the entrained neurons “fill
in the missing beats” by firing when the deleted pulses would have occurred. With
regard to these data, John (1967) observes that “it seems highly probable that such
rhythms are not idiosyncratic to a particular conditioning situation nor to a partic-
ular species but represent a general capacity of the central nervous system to reflect
the temporal pattern of prior stimulation for a period of time following the cessation
of that external event (p., 296).”

Based on these and other data, Torras (1985) proposed that the entrainment of
cortical activity is due to changes in intrinsic neuronal “firing” rate induced by the
phase-resetting of rhythmic input. She then developed a detailed integrate-and-fire
model of how oscillatory “pacemaker” neurons in certain invertebrates are entrained
by rhythmic stimulation.
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It was Torras’s idea of an oscillatory neuron with a plastic firing rate that inspired
this thesis, as it seemed very applicable to the problem of modeling human rhythm
perception (McAuley, 1993). Additional support for such an adaptive oscillator ap-
proach to rhythmic pattern processing comes from Baird, Troyer and Eeckman (1994a;
1994b) who have suggested links between the synchronization of cortical oscillations
and entrainment theories of attention (Jones, 1976; Jones and Boltz, 1989; Jones and
Yee, 1993). The concept of an adaptive oscillator (McAuley, 1993; McAuley, 1994a)
lies between that of a single-neuron model and that of a psychological theory, pro-
viding a functional instantiation of Jones’s notion of an attentional periodicity and
in that sense implements the entrainment hypothesis. However, I do not intend to
suggest that an implementation of the entrainment hypothesis occurs at the single-
neuron level or even that adaptive oscillators might correspond to single neurons.
Instead, adaptive oscillators are intended to model the global dynamics of perceptual
mechanisms involved in the processing of rhythmic patterns. The adaptive oscillator
can be thought of as internalizing an expectancy for the occurrence of future inputs.
In the case of “missing” inputs, as well as the case when the rhythmic pattern stops,
the adaptive oscillator continues to predict future inputs. In essence, the adaptive
oscillator internalizes a beat, retaining a memory of that beat after the pattern stops.
In terms of the oscillator retaining a memory of “what the beat was”, the gradual
return of the oscillator’s period to its resting value corresponds to memory decay. Sev-
eral recent papers have proposed such adaptive-oscillator models for the perception
of musical meter (Large, 1994; Large and Kolen, 1994; McAuley, 1994a).

1.6 Thesis Overview

The approach taken in this thesis is that the development of a successful computa-
tional model of human rhythm perception must first consider the perception of the
time intervals which comprise rhythmic patterns. Therefore, modeling human per-
ception of time is a necessary step towards the development of a comprehensive model
of rhythmic pattern processing. With regard to Brooks’s discussion of the standard
methodology in Artificial Intelligence research, my view is that the “non-Al” part of
the rhythm perception problem (i.e., the time perception problem) is the problem.
Thus, towards solving the rhythm perception problem, I propose a class of adaptive
oscillator processing units which track periodicities in rhythmic patterns (beats), in
spite of variability in the timing of those patterns. An Entrainment model of human
time perception is then developed based on the proposed adaptive oscillator.
Chapter 2 reviews psychological data regarding listeners’ perception of time inter-
vals which comprise rhythmic patterns, focusing on two central issues. First, what is
the relationship between “clock” time and perceived time? Second, how do various
stimulus factors influence listeners’ ability to detect timing changes. With regard to
this second issue, the review focuses on listeners’ sensitivity to differences in the dura-
tion of isolated time intervals (bounded by two tones) and on listeners’ sensitivity to
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differences in the tempo (rate) of isochronous tone sequences. The chapter concludes
with a review of selected models of human time perception, focusing on those models
which address tempo discrimination.

Chapter 3 begins with a brief introduction to the theory of coupled oscillators,
including definitions for mathematical terminology used throughout this thesis. This
introduction is followed by a detailed specification of a class of adaptive oscillator
processing units which share five properties. The proposed oscillators extend prior
research which formed the basis for this thesis (McAuley, 1993; McAuley, 1994a).
The entrainment dynamics of the proposed class of oscillators are then examined
by constructing Arnold maps (Arnold, 1983) for different parameter settings of the
model. The dynamics of the proposed model are then compared with those of a
similar oscillator model proposed by Large (1994) for the perception of musical meter.
The chapter concludes with an evaluation of the proposed model to be entrained
by temporal patterns which vary in rhythmic complexity on a scale correlated with
listeners’ ability to memorize and reproduce those patterns.

In Chapter 4, an Entrainment Model of human time perception is developed based
on the adaptive oscillator proposed in Chapter 3. The model is then evaluated by
comparing its performance in a series of three tempo-discrimination simulations to
data from analogous human listening experiments. The first simulation investigates
stimulus factors which influence the model’s ability to detect differences in the tempo
of isochronous tone sequences. The tempo data obtained in this simulation are then
compared directly with tempo data from the listening experiments discussed in Chap-
ter 2. The second simulation investigates the model’s predictions regarding differen-
tial sensitivity to increases and decreases in tempo. Finally, the third simulation
investigates the model’s predictions concerning the influence of temporally-directed
attending on the detection of tempo differences. The chapter concludes with a sum-
mary of the model’s predictions derived from the three simulations.

Chapter 5 reports the results from two original human listening experiments de-
signed to test predictions of the Entrainment Model derived from simulations 2 and 3,
for which no human data was available for comparison. The first experiment investi-
gates listeners’ sensitivity to tempo differences for one- and three-interval isochronous
sequences for four different base tempos. In order to be able to compare the data
obtained in this experiment with the predictions of the model from Simulation 2, in-
creases and decreases in tempo are not conflated. The second experiment, motivated
by Simulation 3, investigates the effect of deviations from listeners’ timing expecta-
tions for the onset of a comparison sequence on their ability to detect differences in
the tempo of that comparison sequence. The chapter concludes by discussing the
implications of these tempo data for the Entrainment Model, as well as for the com-
peting models described in Chapter 2. Several additional listening experiments are
then suggested which would tease apart several unresolved issues.

For those readers that are more interested in the adaptive-oscillator mechanism
than the Entrainment Model of human time perception, it is safe to skip Chapter 2
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and begin with Chapter 3, without loss of coherence. However, there is one caveat.
It will be necessary to return to Chapter 2, before proceeding with Chapters 4 and
5, as Chapter 2 provides important background for comprehension of the modeling
issues discussed in these chapters. For those readers without a background in time
psychophysics, Chapter 2 will be particularly useful as an introduction to the issues
addressed in this thesis.

Chapter 6 summarizes the main contributions of this thesis, and suggests direc-
tions for future research. Overall, this thesis will support the proposed adaptive
oscillator as a viable approach to the problem of modeling human rhythm perception,
addressing the holistic nature of rhythm perception, the problem of timing variability,
and the perception of the time intervals which comprise rhythmic patterns. Further-
more, this thesis will demonstrate how direct coupling of a computational system with
the temporal structure of its environment is a potentially useful method for learning
to interact with that environment.



Chapter 2

Time Psychophysics: Theory and
Data

2.1 Chapter Overview

The purpose of this chapter is to review time perception data and theories relevant to
this thesis, providing the background and motivation for the modeling and experimen-
tal work discussed in Chapter’s 4 and 5. Stevens (1975) makes a important distinction
between quantitative and qualitative sensory continuum, which will be discussed in
Section 2.2. With regard to this distinction, an obvious question for someone inter-
ested in time perception is what type of sensory continuum is time. This question is
addressed in Section 2.3. Section 2.4 describes the different psychophysical methods
used in time perception studies which are necessary for understanding the experi-
mental data presented in the remainder of the chapter. Section 2.5 investigates two
central issues in time psychophysics pertinent to this thesis: (1) the nature of the
psychophysical law for time and (2) the constancy of the Weber fraction for time
discrimination. Finally, Section 2.6 reviews relevant psychological models of time
perception, including several different proposed time mechanisms.

2.2 Psychological Dimensions

Everyday, we are bombarded with a enormous variety of different sensations. In ef-
fect, sensations come in a variety of shapes, sizes, and colors. We experience many
different continua: color, heat, pitch, loudness, heaviness, brightness, etc. Stevens
(1975) distinguishes between two types of perceptual continua: prothetic and meta-
thetic. The prothetic continuum applies to sensations that can be described on a
quantitative scale according to their degree or magnitude. Loudness is a good exam-
ple of a prothetic variable. We describe the loudness of a sound by its magnitude
(or quantity). Prothetic variables are also additive. Thus, two soft sounds added
together produce a louder sound. Pitch, on the other hand, is a metathetic variable.

15
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Metathetic variables are described on a qualitative scale and are better characterized
in terms of position rather than magnitude. Thus, we describe pitch as being low or
high. Sound frequencies above approximately 20,000 Hertz or below approximately
20 Hertz, fall off the low and high ends of the human pitch scale and are not per-
ceived by most listeners (Handel, 1989; Moore, 1989). To specific pitch positions in
between an intermediate range of these frequencies, we can even assign labels (e.g.,
the notes of a diatonic scale). Pitch is not additive, like loudness. Adding two pitches
together produces a chord, not a higher pitch. Questions we ask about quantitative
prothetic continua are concerned with how much (e.g., how much brightness, how
much loudness, how much electric shock, etc). In contrast, questions we ask about
the qualitative metathetic continua are concerned with what (e.g., what pitch or what
color).

Psychophysics (Fechner, 1966) is a branch of experimental psychology that stud-
ies the relationship between the physical properties of a stimulus and the mental
properties of the evoked sensation. Three primary problems in psychophysics are:
(1) determining the absolute-limen, or detection threshold for a stimulus (e.g., the
smallest detectable sound intensity); (2) determining the functional form of the psy-
chophysical law relating stimulus magnitude to subjective magnitude (e.g., relating
the sound intensity of a tone to the perceived loudness of the tone); and (3) determin-
ing the just-noticeable difference (JND), the sensitivity of an observer to an increment
in the stimulus (e.g., the smallest change in sound intensity that a listener is able to
reliably detect) (Watson, 1973; Stevens, 1975).

2.2.1 The Power Law

For prothetic continua, the psychophysical law governing the relationship between
stimulus magnitude and psychological magnitude is generally accepted to be a power
law (although there is still considerable debate) (Stevens, 1975); that is, psychological
magnitude ¥ grows as a power function of the stimulus magnitude ®:

U = kd”. (1)

In the formula, the value of the constant k depends on the units of measurement
and that of the exponent zx differs from one sensory continuum to another. The
value of the exponent can be thought of as characterizing a particular sensory contin-
uum. Figure 2.1 shows the power-law relationship for loudness (z = 0.67), brightness
(x = 0.33), and electric shock (z = 3.5) (Stevens, 1975). For loudness and bright-
ness, psychological magnitude grows less and less rapidly with increasing stimulus
intensity. In contrast, the sensation of electric shock grows more and more rapidly as
the electric current is increased. An important property of power functions is that a
constant ratio of stimulus magnitudes corresponds to a constant ratio of perceptual
magnitudes. The constant ratio property is advantageous for perceptual stability.
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Figure 2.1: Psychophysical power law (U = k®”) describing relationship between
stimulus magnitude and psychological magnitude for loudness (x = 0.67), brightness
(x = 0.33), and electric shock (x = 3.5).

The relative proportions of a prey being tracked by a predator should not be dis-
torted as the predator moves in for the kill. The perceived relation among speech
sounds should remain the same whether the speech is loud or soft. Power functions
applied to metathetic continua have been somewhat less successful (e.g., for pitch, a
power function only adequately describes an intermediate range of the audible sound
frequencies (Moore, 1989)).

2.2.2 Weber’s Law

An important issue in psychophysics is the relationship between the just-noticeable
difference (JND) in sensation (A®) and the absolute magnitude of the stimulus (®),
where JND is the stimulus difference, along the tested dimension, yielding 70%-correct
performance of subjects detecting that difference. For many sensory dimensions, the
relationship between A® and ® has been found to be a constant ratio (Weber’s Law)

AD
W= 2)
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Thus, data are often reported in terms of the Weber fraction (1¥) or in terms of the
relative JND (where W is represented as a percentage). If Weber’s Law holds, then
relative JND is constant. Data supporting Weber’s law are often reported as being
described by the linear relationship

AD =W + . (3)

where the y-intercept ®, is zero. In this case, the Weber fraction W is the slope of
the line.

2.3 Time as a Psychological Dimension

Is time a prothetic or metathetic variable? The answer to this question is not straight-
forward, partly because it is not obvious what it means for time to be a stimulus.
Time can only be an indirect stimulus in that time does not stand by itself as a phys-
ical variable. That is, time can not be “detected” using a sensor, such as occurs with
the brightness of light or the intensity of sound. To be perceived, time must be some-
how tied to an event or series of events: tones have duration, as does the silent gap
between two tones and the beat duration specifying the tempo of a series of events.
When listening to a familiar tune on the radio, it is possible to make a number of
different temporal judgments: (1) we can specify the order of the notes in the melody,
measuring time in discrete steps; (2) we can estimate the time-interval between any
two note onsets; (3) we can judge the duration of any note; and, (4) we can judge the
tempo of the melody (i.e., how fast or slow it is) according to an estimate of the beat
duration abstracted from the temporal pattern of all the notes. Notice that for all of
these examples, the physical stimulus of the melody is the same. What distinguishes
each type of time percept are the choice of the attended time markers (beginning
and ending) and the attended time scale (ordinal or interval (Stevens, 1951)). For
(1), time is measured on an ordinal scale (i.e, only the before-after ordering of events
is important). In contrast, I propose that for (2), (3), and (4) time is measured on
an interval scale. In (2), the onsets of the before-tone and the after-tone delineate
the time interval. In (3), the onset and offset of a single tone specifies duration. In
(4), multiple tone-to-tone onsets delineate a pattern of intervals which can be used
to provide an abstract interval-based estimate of tempo: “the beat”. Precisely how
this beat is abstracted is pertinent to this thesis.

In this thesis, the measurement of perceived time is restricted to that of empty
intervals (i.e., the time between the onsets of two adjacent tones) and isochronous
patterns of empty intervals which convey tempo (fast or slow). For purposes of
comparison, the perception of filled intervals (tone durations) will also be discussed,
although only briefly. The range of time-intervals investigated will be between 25 ms
and 3000 ms. Many temporal properties of importance to speech and music perception
are conveyed by filled and empty time-intervals within this range (e.g., voice onset
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time, syllable duration, speaking rate, and musical beat, meter, and tempo). This
time scale encompasses what Fraisse (1963) refers to as the psychological present.
The psychological present (or cognitive time scale according to Port et al., 1995) is
the time frame within which successive events can be perceived as components of
a single pattern. Events that are separated by longer than a couple seconds lose
their cohesiveness and sound like isolated events (e.g., rings of the telephone). Events
separated by less than about 25 ms, tend to blend (or fuse) together into a single
complex sound.

It seems relatively straightforward to assume that the time perception of filled-
intervals is a prothetic continuum. The duration of a tone can be thought of as having
a physical magnitude since there is a correlation between the physical energy of a tone
and its perceived duration (Moore, 1989). Moreover, the perception of tone duration
is additive since concatenating two short tones of the same frequency produces a single
longer tone. I would also propose that the time perception of empty intervals is a
prothetic continuum, although this claim is a somewhat more difficult to support since
it is impossible to attribute a physical magnitude to silence. Nonetheless, it seems
reasonable to think about the duration of an empty interval (since it can be measured
with a clock) and conclude that the perception of duration with empty intervals is
additive. Combining two short empty intervals produces a longer empty interval, the
magnitude of which can be “heard” when bounded by two tones and measured with
a clock. By extension, these two arguments of filled and empty intervals perception
as prothetic would seem to imply that tempo is also a prothetic variable, since tempo
perception is at least partially based on the abstraction of a beat duration from a
pattern of temporal intervals. However, it requires some imagination to think of
tempo as a magnitude since “combining” two fast or slow sequences does not produce
a faster or slower sequence. Thus, the prothetic distinction for tempo does not seem
to hold true.

2.4 A Typology of Psychophysical Methods

There have been a number of past attempts to organize the various methodologies
used in time perception research (Allan, 1979; Bindra and Waksburg, 1956; Woodrow,
1951). There are two basic research methodologies used: time scaling and time dis-
crimination. The main property that distinguishes time scaling from time discrim-
ination is the confusability of the stimulus set. In time-scaling experiments, time
intervals in the stimulus set are obviously different; thus, time-scaling experiments do
not address questions concerned with the just-noticeable difference for time. Instead,
time-scaling experiments are used to obtain absolute measurements of subjective du-
ration (perceived time). In time-discrimination experiments, the time intervals in the
stimulus set are highly confusable; i.e., the stimuli are very similar and the listener
may not be able to detect a difference between two stimuli. Time-discrimination
experiments have been used to measure both JNDs and subjective duration.



Time Psychophysics: Theory and Data 20

There are at least five time-scaling tasks which have been used successfully: mag-
nitude estimation, category rating, production, ratio setting, and synchronization. In
a magnitude-estimation task, the listener provides duration estimates by assigning a
magnitude (number) to each time interval. The scale of magnitudes is either arbi-
trary, in which case the experimenter may or may not provide an initial reference
value (e.g., “base all of your judgments of duration relative to this interval z, which
is assigned magnitude y”), or is based on clock time. In a category-rating task, the
listener assigns each time-interval stimulus to one of a set of n predefined categories,
which are ordered by magnitude. In a production experiment, the listener receives
verbal or written instructions specifying what time interval to produce, which might
involve tapping a finger or foot, or adjusting the interval between two tones, via a
knob. In a ratio-setting experiment, the listener “hears” specific time intervals and is
asked to generate a specific proportion of that interval. Reproduction of the interval
is specified by a proportion of 1.0. Specifying proportions less than or greater than
one is called fractionization or multiplication, respectively. As with production, a
ratio-setting task may involve any of a number of different methods for generating
the specific proportion of the time-interval. In a synchronization task, either the
listener hears a single time interval and attempts to respond in synchrony with its
termination (i.e., predict the end of the interval) or a series of intervals and attempts
to respond in synchrony with the onset of each time-interval (i.e., predict the next
tone).

Types of duration-discrimination tasks include the method of comparison and
the single-stimulus method. There are many different variants of the method of
comparison. In general, two temporal patterns are sequentially presented on each
trial. The first pattern, usually constant throughout a block of trials, is referred to
as the standard, while the second pattern, which normally varies from trial to trial,
is called the comparison. In a same-different task, the listener judges whether the
standard and comparison are the same or different according to a criterion, such as
differing only in duration, tempo, etc. In the roving-standard version of the same-
different task, the standard varies from trial to trial. In a two-alternative forced-choice
task (2AFC), the listener selects either the standard or comparison pattern according
to a particular criterion (e.g., “which is faster”). In a standard, two-alternative forced-
choice task (S/2AFC), there are two comparison patterns, one of which is different
from the standard, and one of which is identical to the standard. The listener’s task,
in this case, is to decide which comparison pattern is different from the standard.

In the simplest form of the single-stimulus method, one of two highly confusable
patterns (i.e., patterns which have close to the same duration or tempo) is presented
on each trial and the listener makes a binary judgment about which one it was (e.g,
the short one or the long one, etc). In a many-to-few task, the binary response is
maintained, but the number of confusable patterns is increased (i.e., given a single
stimulus on each trial, the listener must separate the set of stimuli into two subsets).
In an identification task, the number of response categories is also increased. The
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listener’s task is to assign each presented stimulus to one of the response categories.
The primary difference between identification and category rating is that the stimuli
are highly confusable.

2.5 Central Issues in Time Perception

Allan (1979) maps out four central issues in time perception that are investigated
using the time-scaling and time-discrimination paradigms: the nature of the psy-
chophysical law for time, the adequacy of Weber’s law for describing time sensitivity,
the source of the time-order error in time judgments, and the role of non-temporal
information in time perception. This review focuses on the first two of these issues
(the nature of the psychophysical law and the adequacy of Weber’s law) which are
pertinent for this thesis. The time-order error, which refers to the effects of sequen-
tial presentation order on time perception, is not addressed directly in this review.
Although, this issue is intrinsically linked to the over- and underestimation of time
intervals, and thus briefly touched on in the discussion of the nature of the psy-
chophysical law for time. The role of non-temporal information in time perception,
which refers to how changing physical properties of the stimulus, such as spectrum and
intensity, can affect estimates of time-intervals, is also not addressed in this review.

2.5.1 The Nature of the Psychophysical Law

Many of the earliest studies in psychophysics investigating the psychophysical law
for time, reported data in terms of the over- and underestimation of short and long
time intervals relative to an intermediate indifference interval (cf. Fraisse 1978). As
discussed by Fraisse, Horing (1864) reported that for time intervals between 0.3 and
1.4 seconds, intervals less than about 0.6 seconds are overestimated and intervals
greater than about 0.6 seconds are underestimated. The terms underestimation,
overestimation and indifference-interval have been used very loosely in the current
literature and therefore need clarification. They refer to values calculated using either
a comparison or ratio-setting (reproduction) task (Woodrow, 1951).

In the context of a reproduction task, in which the listener may be asked to tap
their finger at a rate specified by the stimulus, overestimation indicates that the mean
time-interval of the listener’s reproductions is longer than the stimulus time interval
and underestimation indicates that the mean time interval of the reproductions is
shorter than the stimulus time interval. The indifference intervals are those for which
the mean of the reproductions is approximately equal to the stimulus time interval,
neither over- or underestimated.

In the context of a comparison task, the term indifference interval has been used
in a way which is somewhat misleading. For example, in a 2AFC “which is longer”
task, an indifference interval corresponds to the standard time interval for which the
frequency of longer judgments is the same regardless of the order of the standard
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and comparison time intervals. In this case, the indifference interval corresponds to
a zero time order error. Positive and negative time order errors (in which case listen-
ers exhibit a bias in the frequency of longer judgments on the comparison pattern)
have been attributed to over- and underestimation of the standard time interval.
Woodrow (1951) argues that associating over- and underestimation of the standard
with the time-order error is misleading because the errors are due to the ordering of
the standard and comparison patterns and are not necessarily due to biased subjective
estimates of the standard.

For the purposes of consistency, the terms overestimation, underestimation, and
indifference interval will be used in exactly the same way in this thesis for describing
both reproduction data and comparison data. Overestimation will refer to mean
subjective durations that are longer than the stimulus duration, underestimation will
refer to mean subjective durations that are shorter than the stimulus duration, and
indifference intervals will refer to mean subjective durations that are approximately
equal to the stimulus duration. In the context of a comparison task, the terms
overestimation, underestimation, and indifference interval will only be used when it
is reasonable to suppose that discrimination errors are due to over- or underestimation
of the standard time interval.

Many studies that have attempted to establish indifference intervals, have re-
ported substantially varying results, with the reported indifference interval ranging
from about 0.3 to 5.0 seconds (Fraisse, 1963)!. One explanation for the substantial
variability observed in indifference interval estimates is due to Hollingworth (1910).
Hollingworth proposed a central tendency hypothesis which states that estimates of a
stimulus attribute, such as the size of a ball, have a tendency to reflect, or center on,
the average of the stimulus values observed in the given setting. Thus, a ball is deter-
mined to be “large” or “small” based on ball sizes that we are familiar with. For time
perception, the central tendency hypothesis implies that time estimates are over- or
underestimated according to the mean of the range of time intervals that an individ-
ual has become familiar with. The often-reported indifference interval of 0.6 seconds
may reflect the mean of the time-intervals that we experience in our day-to-day lives.
However, prolonged exposure to a specific range of time-intervals with a mean that
differs from 0.6 seconds, such as would occur during an experiment, may result in a
shift in the indifference interval towards this mean. In support of a central-tendency
effect, Fraisse (1948) found that for two ranges of time-intervals used with the same
set of subjects, a significant difference was observed in the estimated indifference in-
terval, which was correlated with the difference in the mean time intervals of the two
stimulus sets.

Related to the central tendency hypothesis, (Fraisse, 1948) hypothesized that in
time perception, small differences in duration are minimized (assimilated) and large
differences in duration are maximized (exaggerated). Such perceptual anchor effects
have been reported by a number of researchers (Fraisse, 1948; Goldstone et al., 1957;
Goldstone et al., 1959; Turchioe, 1948; Woodrow, 1951). For example, Goldstone and
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Boardman reported an experiment in which three groups of listeners estimated the
duration of a 1.0 second tone. A preceding context tone with a 0.1 second duration was
found to shrink the listeners’ estimates of the 1.0 second duration, whereas a context
tone with a 2.0 second duration was found to exaggerate the listeners’ estimates of
the 1.0 second duration. A context tone with a 1.0 second duration, included as a
control condition, was found to have no significant biasing effect on time estimates.
Very recently, Nakajima et al. (1992) and ten Hoopen et al. (1993), in claiming to
have found a “new” time-illusion, reported similar anchor effects for very brief time-
intervals (< 200 ms) using the method of comparison (see (Allan and Gibbon, 1994)
for a discussion challenging the “newness” of this reported time illusion).

In an attempt to formalize the notions of short and long, (Fraisse, 1963) suggested
a qualitative distinction among three time perception zones: short, long, and indif-
ferent. According to his classification short intervals are less than 0.5 seconds, having
the qualitative defining property that the beginning and ending sounds are what is
perceived, rather than the time interval between them. Indifferent intervals between
0.5 and 1.0 seconds are neither short nor long and the events marking the interval
form a perceptual unit. Long intervals are classified as lasting more than about 1.0
second and an effort is required to keep the events marking the time-interval within
the same “psychological present”.

In much contemporary research, the primary debate about the nature of the psy-
chophysical law for time focuses on whether the relationship between clock time and
subjective time is a power function (see Equation 1), as for most prothetic continua,
or is instead a linear function of the form

U =m® +b. (4)

Earlier research which presented data in terms of over- and underestimation of time
intervals is, in principle, consistent with both the linear and power characterization
of the psychophysical law for time. Thus, it is possible to determine parameter values
for both linear and power functions which satisfy the following properties: (1) there
is a single indifference interval ® for which ¥ = ®; (2) intervals (®) shorter than
the interval ® are overestimated (¥ > ®); and (3) intervals (®) longer than @ are
underestimated (¥ < ).

Figure 2.2 illustrates these three properties for a linear function and a power func-
tion. For both equations, 0.6 seconds is the indifference interval. For a linear function
(Equation 4) to predict the overestimation of short intervals and the underestimation
of long intervals, the slope m must be between 0.0 and 1.0 and the y-intercept b must
be greater than zero. A y-intercept greater than zero implies that there is a minimum
subjective duration, a concept initially proposed and supported by (Efron, 1973), and
later contested by (Allan, 1979). For a power law

U = ko" (5)

to predict the over and underestimation of short and long time intervals, the constant
k must be greater than 0.0 and the exponent r must be between 0.0 and 1.0 (i.e., the
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subjective duration
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Figure 2.2: Linear and power functions consistent with the over- and underestimation
of short and long intervals. In both equations, the indifference interval is 0.6 seconds.

power function is concave-down). As the exponent decreases, the magnitude of the
over- and underestimation increases.

Conflicting data supporting both a linear and power law have been reported. The
main support for a power law comes from ratio-setting data (Eisler, 1975) and from
magnitude and verbal estimation data (Bobko et al., 1977; Eisler, 1975). However,
there are three primary problems with interpreting these data as support for a power
law: (1) there is enormous variability in the reported exponents; (2) there is low cor-
relation between exponents reported in ratio-setting experiments and those reported
in the estimation experiments; and (3) often the reported exponent is close to 1.0
and thus the data would be equally well fit with a linear function (Allan, 1979). The
main direct support for a linear law comes from discrimination data (Creelman, 1962;
Kinchla, 1972). Following a detailed comparison of linear and power function theories
Allan (1979) concludes that, although the nature of the psychophysical law for time
is still somewhat murky, empirical data seems to support a linear relationship. This
issue is re-examined in Chapter 4 by evaluating the Entrainment Model’s ability to
discriminate tempo changes, under the assumption of a linear psychophysical law for
single time intervals.
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2.5.2 The Adequacy of Weber’s Law for Time

Another debate centers around the determination of the just-noticeable time differ-
ence and whether or not it obeys Weber’s law. If Weber’s law holds across some range
of intervals, the just-noticeable difference in duration (AT) is a constant proportion
of the base interval T (i.e., % is a constant). For example, if the just-noticeable
difference is determined to be 10% of the base interval, then for a 1-second base inter-
val, the just-noticeable duration change (i.e., that detected with 70% accuracy) is 100
ms. See Section 2.2.2 for a more detailed description of Weber’s Law. The adequacy
of Weber’s law for describing human accuracy in the discrimination of time changes
has been investigated for isolated intervals (empty and filled), for intervals embedded
within a larger temporal context (i.e., a rhythmic pattern), and for tempo. These
data will be reviewed in the next three sections in some detail, as time discrimination
is the focus of the modeling efforts reported in Chapter 4.

Before reviewing these data, the clarification of a few specific terms is neces-
sary. The term isolated-interval discrimination refers to the discrimination of dura-
tion changes to isolated intervals (empty and filled). The review of these data does
not address how isolated-interval discrimination is influenced by non-temporal infor-
mation such as the spectra of the sounds marking or filling the interval. The term
embedded-interval discrimination will be used to refer to the discrimination of a dura-
tion change to a single interval that is embedded within a larger sequence of intervals
(e.g, the discrimination of a duration change to the third interval of a ten interval
sequence). The term tempo discrimination will be restricted to mean the detection of
a tempo change to an isochronous sequence. The discrimination procedures used to
establish just-noticeable time differences include the method of comparison and the
method of reproduction. With the method of reproduction, the standard deviation
of the reproduced intervals is often used as the measure of JND. Thus, if asked to
reproduce a 1 sec time interval by repeatedly tapping a finger, the standard deviation
of the between-tap time measurements can be used as a measure of JND.

Isolated-Interval Discrimination

By far, the largest number of time-discrimination studies have addressed the discrimi-
nation of duration changes to to isolated intervals. Studies of isolated intervals can be
divided into three groups: (1) those reporting data which support a simple or general-
ized version of Weber’s law (Divenyi and Danner, 1977; Getty, 1975; Treisman, 1963),
(2) those reporting data which support a non-linear increasing relationship between
the AT and T (Abel, 1972; Chistovitch, 1959; Creelman, 1962; Drake and Botte,
1993; Small and Cambell, 1962) (Weber’s law predicts a linear relationship between
AT and T'), and (3) those reporting data which support an invariant or decreasing
AT (Allan and Kristofferson, 1974; Allan, 1979; Kristofferson, 1977; Kristofferson,
1980).

The most frequently cited articles supporting Weber’s law for isolated interval
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discrimination are Getty (1975) and Treisman (1963). However, both Getty’s and
Treisman’s data do not in fact support the simple version of Weber’s law: % = k.
Using both the method of reproduction and the method of comparison, Treisman
found that between 25 and 3000 ms, JNDs are not strictly proportional to T', but are

consistent with a generalized version of Weber’s law (Treisman, 1963):

AT

T+h )

where b is the constant “noise” present in the system. Like the simple version of
Weber’s law (Equation 2), Treisman’s generalized rule proposes a linear relationship
between AT and T. However, for this generalized version of Weber’s law, the ratio

% is not constant, but instead varies as a function of 7'
AT (1+0)
=k . 7
T T (7)

Using the method of reproduction, Getty found that data from two well-trained
listeners for intervals between 50 and 2000 ms were in agreement with a different
generalized version of Weber’s law (Getty, 1975):

AT = (KT + b)2. (8)

With this rule, Getty hypothesized that time sensitivity was determined by two fac-
tors: the base interval (T') and the intrinsic timing variability (b%) of a reproduction
task. Like Treisman’s generalized version of Weber’s law, Getty’s version does not
predict a constant ratio %.

Using the method of comparison, Divenyi and Danner (1977) report data averaged
over three subjects for which they calculate a power-law (see Equation 1) exponent of
0.93 for describing the relationship between AT and T for empty interval discrimina-
tion. Since this exponent is close to 1.0 (consistent with both a linear and power-law
relationship) they argue that time discrimination obeys Weber’s law. This conclu-
sion is somewhat weak because the data used to calculate the power-law exponent
included only three base values of T 25, 80, and 320 ms.

A much larger body of work supports a non-linear relationship between AT and
T. Divenyi and Danner (1977) calculate power-law exponents of 0.78, 0.74, and 0.77
for duration discrimination data from Abel (1972), Chistovitch (1959), and Creelman
(1962) respectively. Getty’s generalized version of Weber’s law could also be included
in this group since it actually specifies a non-linear relationship between AT and T

Kristofferson and colleagues (Allan and Kristofferson, 1974; Allan, 1979; Kristof-
ferson, 1977; Kristofferson, 1980) have conducted a series of experiments which sug-
gest that at least across a range of time intervals, JND is constant. Since constant
JND implies that AT is independent of the base interval T, this is a very significant
departure from Weber’s law. Allan and Kristofferson (1974) initially propose that
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JND is related to a fundamental time quantum. For time intervals between 100 ms
and 2000 ms, they compute that this time quantum is about 50 ms. However, JND
data from subsequent discrimination studies (Kristofferson, 1977; Kristofferson, 1980)
was more step-like, suggesting that the time quantum (initially reported as 50 ms) is
halved and doubled as a function of the base interval I'. In these subsequent studies,
the time quantum is reported as 13 ms for a base interval of 100 ms, as 25 ms for a
base interval of 200 ms, as 50 ms for a base interval of 400 ms, and as 100 ms for a
base interval of 800 ms.

In summary, the isolated interval data shows at least that the simple form of
Weber’s law does not hold across the range of time intervals between 50 ms and 2000
ms. Instead, the relationship between AT and 7T in this range of time intervals is
better described by a non-linear (increasing) function for a majority of the studies.
Kristofferson and associates are the only researchers, as far as I’'m aware, to report
single interval data for which JND is constant or varies as a step function of a base
interval. Furthermore, the variability in their estimates of the time quantum leads one
to question the validity of their step-function description of the relationship between
AT and T.

Embedded-Interval Discrimination

The issue of the adequacy of Weber’s law for describing time sensitivity is significantly
complicated when the time change to be detected is embedded within an auditory
pattern. In such cases, a number of contextual factors have been shown to influence
JNDs in the interval targeted for a time change. When the tones surrounding the
target interval vary in frequency, listeners’ abilities to detect time changes in the
target interval are worse than without variations in frequency, especially when there
is uncertainty on each trial as to the pattern of tone frequencies comprising the
target context (Espinoza-Varas and Watson, 1986; Monahan and Hirsh, 1990; Sorkin
et al., 1982). Similarly, listeners’ abilities to detect time changes are worse when the
pattern of intervals surrounding the target interval are irregular (or non-metrical)
than when the context intervals are regular (or metrical), as well as worse when there
is uncertainty in the temporal context of the target interval (Bharucha and Pryor,
1986; Drake and Botte, 1993).

This discussion of embedded-interval discrimination focuses on differences between
listeners’ abilities to detect time changes in isolated intervals and listeners’ abilities to
detect time changes to a target interval within an isochronous context. In such cases,
listeners are typically asked to detect delays or advances in the onset of a single tone
within an otherwise isochronous (fixed inter-onset-interval) pattern. For onset delays,
the interval preceding the onset is lengthened and the interval following the onset is
shortened to preserve the overall sequence duration, while for an onset advance, the
preceding interval is shortened and the following interval is lengthened. Of course,
when the onset delay or advance occurs to the last interval of the sequence it is not
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possible to shorten or lengthen the following interval to preserve the duration of the
sequence.

Ol [0}

Early trial

Late trial

Figure 2.3: Example of “early” and “late” experimental trials from Halpern and
Darwin (1982).

In one such embedded-interval study, Halpern and Darwin (1982) investigated
the discrimination of a single interval embedded within a four-tone (three interval)
isochronous pattern. The listener’s task in this case was to determine whether the
last click (a very brief tone) in a four-click sequence was early or late with respect to
the expected onset time established by the fixed inter-onset-interval (IOI) of the first
two intervals (see Figure 2.3). The investigated range of IOIs was between 450 and
1450 ms. For the third interval of the sequence, the IOI was either 10% shorter or
10% longer than the IOI of the first three clicks (i.e., the last click of the sequence
was either early or late). In this experiment, Halpern and Darwin found that relative
JNDs did not vary significantly from a Weber’s law description of the data, with the
mean constant relative JND reported as 5.4%. However, the overall trend of the data
is in the direction of a U-shaped relative JND curve with a minimum relative JND
of 4.7% at the 1000 ms IOI and maximum values of 6.4% and 5.5% at the 450 ms
IOTI and 1450 ms IOI respectively. In addition, listeners in the Halpern and Darwin
experiment were found to exhibit a bias for responding “early” to sequences with IOIs
less than 550 ms and for responding late to sequences with IOIs greater than 700 ms.
These listener response biases as a function of the IOI are simply explained if it is
assumed that listeners are overestimating “short” IOIs and underestimating “long”
IOIs, as have been reported in a number of the single interval studies investigating the
nature of the psychophysical law for time (see Section 2.5.1). If listeners overestimate
the IOl of the first two intervals, then the expected onset of the fourth click is late
with respect to the actual onset, and therefore the listeners should exhibit a bias for
responding early. On the other hand, if listeners underestimate the IOI of the first
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two intervals, then the expected onset of the fourth click is early with respect to the
actual onset, and therefore the listeners should exhibit a bias for responding late.
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Figure 2.4: A comparison between the embedded-interval discrimination data of
Schulze (1989) and that of Halpern and Darwin (1982).

Schulze (1989) designed an experiment similar to that of Halpern and Darwin
(1982), but instead of making an early/late distinction, listeners determined whether
the last interval of an auditory pattern was the same duration or longer than the
preceding isochronous intervals. In the Halpern and Darwin study, the evaluation
of the data focused on testing Weber’s law. Schulze, on the other hand, was pri-
marily interested in investigating how varying the number of isochronous intervals in
an auditory pattern influences time sensitivity. Schulze hypothesized that listeners’
abilities to detect a deviation in an interval should improve as a function of the num-
ber of preceding observations of the same interval. Thus, increasing the number of
preceding intervals identical to the tested interval should decrease the relative JND
in the tested interval. To test this multiple-look hypothesis, relative JNDs in the last
interval of a sequence were determined for 2- to 6-interval sequences and for [OIs of
100, 200, 300, and 400 ms.

Figure 2.4 shows the data from both experiments. All data in the figure are
plotted in terms of the relative JND as a function of the base IOI. Whereas Halpern
and Darwin’s data are consistent with Weber’s law, Schulze reports data that are
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not consistent with Weber’s law. However, this inconsistency is minor considering
the 4-tone 400 ms IOI is the only condition in the Schulze study overlapping with
the Halpern and Darwin study. In the Schulze (1989) study, not only is relative
JND a decreasing function of the base 101, the absolute JND is found to be constant
(or perhaps a decreasing function of the base IOI). Thus, Schulze’s embedded-interval
data provides some support for the constant JND claim of Kristofferson and colleagues
(Kristofferson, 1980). And Schulze and Kristofferson argue that one reason for the
reported departures from Weber’s law may be due to their extensive training of the
listeners. Differences supposedly due to “training effects” are difficult to evaluate,
especially in retrospect. However, it is clear that the combined data from Schulze
(1989) and Halpern and Darwin (1982) support the hypothesis that relative JNDs
are a decreasing function of IOI for short IOIs (< 300 ms), are fairly constant for an
intermediate range of 10Is, and perhaps increase as function of IOI for the longest
IO1s.

With respect to the influence of the number of intervals, Schulze reports that,
as predicted by the multiple-look hypothesis, increasing the number of intervals pre-
ceding the altered interval heightens time sensitivity. Furthermore, improvement is
greater for the shorter IOIs (50 and 100 ms) than for the longer 10Is (200 and 400
ms), leading Schulze to suggest that at about the 100 ms IOI, a shift occurs in the
type of processing listeners use to discriminate time changes.

In an expansion of the Schulze paradigm, Hirsh et al. (1990) investigated listeners’
abilities to detect deviations in intervals embedded at a number of different positions
within 6- and 10-tone isochronous sequences, for IOIs of 50, 100, and 200 ms. Con-
sistent with most of the isolated interval data, they found that relative JND was not
constant across the investigated range of IOIs, as Weber’s law would predict, but in-
creased as a function of the IOI. For the 50 ms IOI, the mean relative JND combining
all interval positions was 15% — 30%, decreasing to 10% — 15% for the 100 ms IOI,
and to a minimum of 5% — 6% for the 200 ms IOI.

Somewhat surprising with respect to the reported Schulze data that supported a
multiple-look hypothesis, Hirsh et al. (1990), found that relative JNDs were indepen-
dent of the position of the delay, except at the 50 ms IOI. However, for the 50 ms
[OI relative JNDs were found to decrease significantly as a function of the position of
the altered interval, as would be predicted by a multiple-look hypothesis; i.e., interval
deviations early in the sequence were harder to detect than interval deviations later
in the sequence. A similar, but non-significant, trend was observed for the 100 and
200 ms IOIs. This interaction between the observed improvement due to the later
position of the altered interval and the specific IOI condition lead Hirsh et al. (1990)
to conclude, like Schulze (1989), that short IOIs are processed differently than longer
IOIs, placing the boundary for differential processing of time intervals at about 100
ms, the same as reported by Schulze (1989). This differential processing hypothesis
is a common theme in theories of time perception.

In a generalization of the Hirsh et al. (1990) study, ten Hoopen et al. (1994) used
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the method of comparison to investigate listeners’ abilities to detect anisochrony for
base I0Is between 60 and 720 ms. Thus, instead of delaying or advancing a single
onset within the comparison pattern, every other onset of the comparison pattern
was either delayed or advanced, resulting in an anisochronous “duple” pattern. The
listener’s task was to detect the presence or absence of anisochrony in the comparison
pattern. For IOIs shorter than 300 ms, relative JNDs were found to be a decreasing
function of IOI. However, for IOIs greater than 300 ms, relative JNDs were found to
be fairly constant (in agreement with Weber’s law). These data are consistent with
the combined data of Schulze (1989) and Hirsh et al. (1990). Ten Hoopen et al. (1994)
conclude that their data offer additional support for distinct processing of short and
long intervals.

To summarize these embedded-interval data, relative JNDs for target intervals
within an isochronous context are adequately described by Weber’s law only above
300 ms. For IOIs, less than about 300 ms, relative JNDs are a decreasing function of
IOI and for IOIs greater 300 ms, relative JNDs are fairly constant, with some data
suggesting that relative JNDs gradually increase for the longer 1OIs, resulting in a
U-shaped relative JND curve. Although there is still considerable debate, placing the
embedded interval at a later position in the sequence tends to improve discrimination
thresholds, especially for the shortest IOIs. This has led a number of researchers
to suggest that intervals less than about 100-300 ms are processed differently than
intervals greater than about 300 ms.

Tempo Discrimination

Tempo discrimination is yet another type of time judgment task. Similar to embedded-
interval discrimination, Weber’s law seems to apply only under certain conditions.
One important issue concerns the relationship between isolated-interval discrimina-
tion and tempo discrimination. A somewhat surprising fact is that up until a seminal
report by (Michon, 1964), apparently no studies made a direct comparison between
isolated-interval discrimination and tempo discrimination. In fact, in reviewing a re-
cent (at the time) series of publications on tempo sensitivity (Pollack, 1952; Mowbray,
1956), Michon acerbically points out that:

This research [that on tempo] appears to be completely independent of the
orthodox strain of time psychologists [those that studied isolated interval
discrimination] because one can hardly find any cross reference in the
publications from both sides.

Therefore, in order to be able to compare tempo data with that of isolated interval
data, Michon defined the tempo of a pattern in terms of the fixed IOI of that pattern.
This is in contrast to the convention of defining the tempo of a pattern as the number
of events/beats that occur per unit time (see Section 1.1). Thus, using the 101
definition of tempo, short IOIs correspond to fast tempos and long IOIs correspond
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to slow tempos. For the same reason of comparability, [ will continue to define tempo
as a function of IOI throughout this thesis.

Using the method of comparison, Michon measured listeners’ abilities to detect
changes in the tempo of isochronous sequences for IOIs between 67 and 2700 ms. Al-
though it is not completely clear from Michon’s description of the experiment, it ap-
pears as though Michon used fairly long sequences (i.e., each sequence was composed
of a large number of events). Listeners’ performance in the experiment improved
significantly over the course of five experimental sessions. The average sensitivity of
the listeners in each of the first four sessions, relative to their performance in the final
session, was 1.9, 1.6, 1.4, and 1.0 respectively. Data were reported from only the final
session and thus reflected very well-trained listening performance.

Listener Tempo Sensitivity: (Michon, 1964)
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Figure 2.5: Tempo discrimination data reproduced from Michon (1964).

Michon reported a minimum relative JND of 1.0% for the 100 ms IOI and a
secondary minimum region of about 2.0% for IOIs between about 300 and 1000 ms.
Both minimum regions were significantly lower than the minimum relative JND of
about 5% reported for isolated intervals. Michon’s data (approximated from Michon
(1964)) are shown in Figure 2.5. Consistent with data from many of the isolated
interval studies, relative JNDs were fairly constant for [OIs between 300 and 1000 ms,
gradually increasing for IOIs longer than about 1000 ms. However, unlike the isolated
interval data, relative JNDs did not immediately increase for IOIs less than 300 ms.
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Instead, for IOIs between 100 and 300 ms, relative JNDs were fairly constant and
even lower than the relative JNDs for IOIs between 300 and 1000 ms. The existence
of this double minimum was perplexing to Michon and suggesting to him that fast
sequences (IOIs < 300 ms) might be processed differently than slow sequences (I0Is
> 300 ms), perhaps by two relatively independent timing mechanisms, each most
accurate at a different rate. Thus, the existence of the double minimum in the tempo
data and not in the isolated interval data indicated to Michon that engaging the fast
timing mechanism, which improved time sensitivity for the short IOIs, required the
repetition of the time intervals. Although not mentioned by either Schulze (1989) or
Hirsh et al. (1990) this conclusion of Michon’s is consistent with their observation that
increasing the number of intervals (i.e., repeating a time interval) especially improves
time sensitivity for the shortest 1OIs in their studies.

Expanding on the Michon (1964) study, Drake and Botte (1993) conducted a se-
ries of tempo discrimination experiments, the design of which clearly benefitted from
the intervening thirty years of time perception research. Three main issues addressed
in these experiments were related to the adequacy of Weber’s law for time. First,
what is the relationship between isolated-interval sensitivity and tempo sensitivity?
Second, what is the effect of increasing the number of isochronous intervals on tempo
sensitivity? And finally, what influence is there of musical training on tempo sen-
sitivity? We will examine the data from this series of experiments and a followup
study (Drake and Botte, 1994) in detail, as these data, which are the most compre-
hensive tempo-discrimination data for isochronous sequences to date, form a basis for
evaluating the predictions of the Entrainment Model developed in Chapter 4.

101 10l +AlIQI
STANDARD COMPARISON

Figure 2.6: “Which is faster” tempo discrimination task: the subject listens to a
standard isochronous sequence followed by a comparison sequence that is either faster
or slower than the standard, and then indicates which sequence is faster.

The Drake and Botte (1993) study investigated listeners’ abilities to detect changes
in the tempo of isochronous sequences for tempos (IOIs) between 100 to 1500 ms, for
one-, two-, four-, and six-interval sequences. The one-interval patterns permit a
direct comparison with the isolated-interval data. Discrimination thresholds were de-
termined using the method of comparison and an adaptive-tracking procedure (Levitt,
1971). Each experimental trial consisted of a fixed standard sequence followed by a
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comparison sequence, illustrated in Figure 2.6. The listener’s task was to determine
which sequence was faster. Two successive correct responses resulted in a 1% decrease
in the tempo difference between the standard and comparison sequences (measured
as a percentage of the standard sequence’s IOI). An incorrect response increased the
tempo difference by 1%. This “2-down/1-up” adaptive procedure converges to the
relative JND for tempo discrimination (or the tempo difference necessary for 70.7%
correct discrimination judgments).

Listener Tempo Sensitivity: (Drake & Botte, 1993)
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Figure 2.7: Tempo discrimination data reproduced from Experiment 1 of the Drake
and Botte (1993) study. Mean relative JNDs are shown for 1-, 2-, 4-, and 6-interval
sequences for [OIs between 100 and 1500 ms.

The discrimination data from the first of these experiments are shown in Fig-
ure 2.7. Relative JNDs for tempos between 100 and 1500 ms were not constant, as
would be predicted by Weber’s law, but instead were U-shaped as a function of the
IOI. For IOIs less than about 300 ms, relative JNDs were a decreasing function of
IOI. For IOIs in between 300 and 900 ms, IOIs were fairly constant and at a minimum
value. For IOIs longer than about 900 ms, mean relative JNDs gradually increased
again. As predicted by a multiple-look hypothesis, relative JNDs were smaller for
multiple-interval sequences than for single-interval sequences and could be described
as a decreasing function of the number of intervals.
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The mean relative JND was 6% for the single-interval sequences, which is within
the range of relative JNDs reported for isolated-interval discrimination. For multiple-
interval sequences, the mean threshold improved to 3.4%. The best performance was
for a 6-interval sequence in the 400-ms IOI condition, with the reported threshold
below 2%. For this condition, the average listener was able to reliably detect a 8-ms
change in the fixed 400-ms IOI! As shown in Figure 2.7, when increasing the number
of intervals in the sequences, Drake and Botte observed more improvement in the
relative JNDs for the short IOIs (fast tempos) than the long IOIs (slow tempos). For
example, for the 1500-ms IOI condition, relative JNDs stopped decreasing after the
addition of a second interval, but for IOIs less than 300 ms, relative JNDs improved
through the addition of six intervals. This differential pattern of improved sensitivity
is consistent with Michon’s suggestion that multiple intervals are necessary to engage
a “fast” timing mechanism which heightens time sensitivity for short IOIs only.

In a separate experiment, Drake and Botte (1993) examined the influence of musi-
cal training on tempo sensitivity. Tempo sensitivity was compared between musicians
and non-musicians for single and multiple-interval sequences for IOIs of 300, 600, and
900 ms. In general, the musicians were able to detect smaller changes in tempo than
non-musicians, for both single and multiple-interval sequences. For the single-interval
sequences, the minimum relative JND occured at the 600-ms IOI condition for both
musicians and non-musicians. However, for the multiple-interval sequences, the mini-
mum relative JND for the musicians extended to the 300-ms IOI condition. Drake and
Botte interpret this result as providing additional evidence that distinct processing
occurs for fast sequences (those with IOIs less than 300 ms), assuming that musical
training influences one’s ability to take advantage of this processing.

Drake and Botte (1993) suggest three zones of tempo sensitivity: (1) a zone of
optimal sensitivity between 300 and 900 ms, for which relative JND is fairly constant
and thus for which Weber’s law holds, (2) a zone of lesser sensitivity for tempos slower
than the 800-ms IOI condition, for which relative JNDs are higher than predicted by
a multiple-look model (to be described in Section 2.6), and (3) a zone of potentially
heightened sensitivity for tempos faster than the 300-ms IOI condition, for which
increasing the number of intervals in the sequences improves thresholds more than
would be predicted by a simple multiple-look model. This third zone of potentially
heightened tempo sensitivity is evidence that supports distinct processing of IOIs less
than about 300 ms.

Comparing the tempo discrimination data from Drake and Botte (1993) (see Fig-
ure 2.7) with that from Michon (1964) (see Figure 2.5), we find a significant inconsis-
tency between the two: Drake and Botte report a single region of optimal sensitivity,
for IOIs between 300 and 900 ms, whereas Michon reports two optimal regions, one at
about 100 ms and one at about 600 ms. A possible explanation for this inconsistency
is that in Michon’s experiment, sequence duration was apparently fixed, although this
is not completely clear from his description of the experiment. If so, sequences with
different IOIs would be composed of different numbers of intervals; for example, for a
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2-second sequence duration, sequences with an IOI of 100 ms would have consisted of
20 intervals, whereas sequences with an IOI of 500 ms would have consisted of only 4
intervals. Thus, the faster sequences would have had more intervals than the slower
sequences for a given sequence duration. In contrast, Drake and Botte (1993) mea-
sured relative JNDs for different [OIs for a fixed number of intervals. This suggests
that the qualitative difference between their tempo discrimination data and Michon’s
may be due to the differing number of intervals for each IOI condition.

In the hope of clarifying the differences between their tempo data and Michon’s,
Drake and Botte (1994) investigated the extent to which increasing the number of
intervals in a sequence improves discrimination thresholds. They focused on three
primary questions: (1) If relative JND decreases as a function of the number of
intervals in the sequence, then at what point will the addition of an interval stop
improving thresholds? (2) Does the number of intervals (n) in Question 1 vary as
a function of the IOI? (3) Is n determined by a particular sequence duration d (the
temporal window) as well as the 101 (i.e., is n = 72:)7.

To address these questions, Drake and Botte (1994) measured relative JNDs for
IOI conditions between 50 and 1500 ms for which the number of intervals in a sequence
of a given IOI condition was increased, one interval at a time, with relative JND
measured after each addition, until the addition of an interval no longer lowered the
relative JND. Let n equal the number of intervals beyond which no reduction of the
relative JND occurs. Then, define optimal sequence duration d as n multiplied by the
IOI: d = n[IOI]. In which case, the relative JND at the optimal sequence duration
d can be thought of as the optimal relative JND for that IOI condition. If Michon
used fairly long sequences, then we can assume that Michon was measuring optimal
relative JNDs for each TOI condition.

Figure 2.8 compares the optimal relative JNDs obtained by Drake and Botte
(1994) and those obtained by Michon (1964) for each IOI condition. Notice that
when Drake and Botte’s data are plotted as optimal relative JND, there are two zones
of optimal sensitivity, one at about 100 ms and one at about 600 ms, as reported
by Michon, thus suggesting a resolution to the inconsistency. However, these two
regions are not well defined and there are discrepancies between the Michon data
and the Drake and Botte optimal data, with performance in the Michon experiment
significantly better than in the Drake and Botte experiments.

Based on their results, Drake and Botte (1994) propose that optimal sequence
duration represents listeners’ inability to integrate timing evidence beyond a limited
temporal window, which limits the number of useful sequence intervals (as shown
in Figure 2.9). If window duration (i.e., optimal sequence duration) is plotted as a
function of 101, a discontinuity is observed in window duration between [OIs of 300
and 500 ms. For IOIs shorter than 300 ms, the window duration is approximately 1
sec, whereas for IOIs longer than 500 ms, the window duration is approximately 2.5
seconds. Drake and Botte suggest that this discontinuity in window duration pro-
vides strong additional evidence that short intervals (fast tempos) and long intervals
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Figure 2.8: A comparison between the optimal relative JNDs obtained by Drake and
Botte (1993) and those obtained by Michon (1964). The data shown are approximated
from these studies.

(slow tempos) are processed by different timing mechanisms, and that the boundary
between the type of processing occurs between 300 and 500 ms.

2.5.3 Summary

In this section, we defined four central issues in time psychophysics: (1) the nature
of the psychophysical law for time, (2) the adequacy of Weber’s law for describing
time sensitivity, (3) the source of the time-order error in time judgments, and (4) the
role of non-temporal information in time perception. Our discussion focused on the
nature of the psychophysical law and the adequacy of Weber’s law.

With regard to the first issue, early studies investigating the nature of the psy-
chophysical law for time reported data in terms of the overestimation of short intervals
and the underestimation of long intervals relative to an intermediate indifference in-
terval. Although attempts to pinpoint the indifference interval created controversy
because of the conflicting values obtained, it has been generally accepted that inter-
vals shorter than approximately 500 ms are overestimated (exhibit positive constant
error), and intervals longer than approximately 1000 ms are under-estimated (exhibit
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Figure 2.9: Optimal sequence duration as a function of IOI, reproduced from Drake
and Botte (1994)

negative constant error), with the indifference interval (exhibiting zero constant er-
ror) falling somewhere in the range of 500 to 1000 ms (Fraisse, 1982). The main point
to be gained from this research is that over- and underestimation does occur relative
to some intermediate range of durations; it is not the precise location for the cutoff
values for over- and underestimation that matters.

The debate about the nature of the psychophysical law for time eventually shifted
away from over- and underestimation of time to evaluating whether subjective time
estimates are better described by a linear or a power law. With regard to this issue,
there is still considerable debate, given the existing data that supports both a linear
and power psychophysical law. The over- and underestimation data provide little help
in resolving this debate since, given the correct choice of parameters, both the linear
and the power functions will predict over- and underestimation of time, in agreement
with the earlier studies.

Regarding the second issue, just-noticeable time differences have been investigated
for isolated intervals, for embedded intervals, and for tempos, all with the purpose of
evaluating the adequacy of Weber’s law for describing time sensitivity. For isolated
intervals (empty and filled), it is generally accepted that Weber’s law does not provide
an adequate fit to JNDs obtained across the entire range of intervals between 50 and
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2000 ms. For these data, time sensitivity can be divided into three zones. (1) A zone
for IOI conditions between 300 ms and 1000 ms, for which relative JND is generally
fairly constant (in agreement with Weber’s law) at a minimum value. (2) A zone for
IOT conditions less than about 300 ms, for which relative JND abruptly increases with
shorter IOIs. (3) A zone for IOI conditions greater than 1000 ms, for which relative
JND gradually increases with longer [OIs. Thus, the overall shape of the relative
JND curve for isolated intervals is U-shaped, although there is considerable debate
about whether or not relative JND increases for IOIs longer than about 1000 ms (see
Halpern and Darwin, 1982).

U-shaped relative JNDs have also been reported for studies investigating the dis-
crimination of a target interval embedded within an isochronous context. However,
these data suggest that the repetition of an interval lowers relative JND as a func-
tion of the number of repeated intervals preceding the tested interval, thus possibly
influencing the temporal location of the boundaries between the three zones of time
sensitivity outlined above. Both Schulze (1989) and Hirsh et al. (1990) observed that
decreases in the relative JND are greatest for IOI conditions less than about 100 ms,
suggesting that the zone of constant minimum relative JNDs (zone 2) extends to a
shorter IOI condition. This greater improvement in the relative JND for short 1OIs
has led a number of researchers to propose that listener use a different type of pro-
cessing for short IOIs (less than 300 ms) than they do for longer IOIs (greater than
300 ms). (Schulze, 1989; Hirsh et al., 1990; ten Hoopen et al., 1994).

U-shaped relative JNDs have also been attributed to tempo discrimination for
which the tempo of a sequence is defined in terms of the fixed 1Ol of the sequence.
Drake and Botte (1993) proposed three zones of tempo sensitivity that are analogous
to the three zones of time sensitivity for isolated intervals (stated above): (1) a zone
of optimal tempo sensitivity for IOI conditions between 300 and 900 ms, for which
relative JND is fairly constant (in agreement with Weber’s law); (2) a zone of lesser
(but potentially heightened) tempo sensitivity for IOI conditions less than 300 ms,
for which relative JND abruptly increases for shorter IOIs when the sequence has
only a few intervals, but for which relative JND remains fairly constant for shorter
IOIs when the sequences has a sufficiently large number of intervals; (3) a zone of
lesser sensitivity for tempos slower than the 900-ms IOI condition, for which relative
JND is an increasing function of IOI and is not substantially lowered by increasing the
number of isochronous intervals. Michon argued that the heightened tempo sensitivity
observed for IOI conditions in what we are calling zone 2, is due to engaging a “fast”
timing mechanism which requires the repetition of the time intervals. Drake and
Botte (1994) provided additional evidence for distinct processing of fast sequences
by showing that there is an abrupt discontinuity in the optimal sequence duration
(temporal window size for Drake and Botte) that occurs between the 300-ms and
500-ms IOI conditions.
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2.6 Competing Theories of Time Perception

Models which attempt to account for the perception of time intervals which comprise
rhythmic patterns can be divided into four main classes: (1) clock-counter models,
(2) quantal models, (3) multiple-look models, and (4) dynamic-attending/contrast
models. The following review will address the general assumptions and predictions of
each of these approaches to time perception. The emphasis of the discussion will be
on a multiple-look model proposed by Drake and Botte (1993) (one of the few models
which addresses the relationship between the discrimination of isolated intervals and
the discrimination of tempo changes to isochronous sequences) and the dynamic-
attending/contrast model proposed by Jones and Boltz (1989) (a kindred spirit of
the Entrainment Model proposed in this thesis).

2.6.1 Clock-Counter Models

By far, most models of human time perception are based on a modular information-
processing approach, in which there is a central timer (or clock), perceptual store,
a reference memory, and a comparator (Church and Broadbent, 1990). Such clock-
counter models (not to be confused with the clock model proposed for rhythm per-
ception by Povel and Essens (1985)) propose that time is measured using a central
timer (the clock) which accumulates (or counts) duration in a perceptual store. This
measurement of duration is then transferred to a reference memory for possible later
comparison with other durations (measured by the central timer). A flow diagram
outlining this approach is illustrated in Figure 2.10. A large variety of clock-counter
models have been proposed (Abel, 1972; Creelman, 1962; Church and Broadbent,
1990; Divenyi and Danner, 1977; Killeen and Weiss, 1987; Miall, 1989; Treisman,
1963); these differ mainly in the form of the central timer and perceptual store.

For the majority of the clock-counter models, the form of the central timer is a
single pacemaker (oscillator) which generates internal pulses at an average rate (\)
and the form of the perceptual store is a “count” of the number of pulses that occur
during the duration of the to-be-measured time interval (7') (Abel, 1972; Creelman,
1962; Treisman, 1963; Divenyi and Danner, 1977). A comparison is made between
two time intervals (7 and T + AT') by comparing the count for the first interval (A7)
(maintained in the reference memory) with the count of the second interval (A[T +
AT]) (maintained in the perceptual store). This clock-counter approach requires a
switch which starts the counting process at the beginning of the to-be-measured time
interval, stops the counting process at the end of that time interval, and clears the
counter when the measured duration is transferred from the perceptual store to the
reference memory.

JNDs in clock-counter models are related to the variance in the counting process.
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Figure 2.10: Flow diagram illustrating the clock-counter model-a modular
information-processing approach to the perception of time.

Typically, the pacemaker is assumed to be a random Poisson source

n
p(ny = MV o 0
n!

in which case the variance is equal to the average number of counts AT (Creelman,
1962). Thus, for a constant mean rate A, JNDs are proportional to 7', in agreement
with Weber’s law. A number of studies based on this form of the clock-counter model
have proposed that the mean rate (A) is influenced by a number of stimulus factors,
as well as is function of the base-rate T' (Abel, 1972; Divenyi and Danner, 1977).
The assumption that the mean rate A varies as a function of the base interval T
is necessary in order to explain the increase in relative JNDs for intervals less than
about 300 ms, as well as to explain the over- and underestimation of short and long
time intervals commonly reported in the literature.

Several connectionist clock models have also been proposed, differing from the
clock-counter variety in three important ways (Church and Broadbent, 1990; Miall,
1989). (1) The single pacemaker of the clock-counter models is replaced with a set of
oscillators with periods spanning a wide range of time intervals. (2) The accumulator
of the clock-counter models is replaced by a distributed representation of time, based
on the +1/ — 1 phase of each oscillator. Thus, a time interval T is converted into a
binary +1/ — 1 vector. Notice that this oscillator-based encoding of time is identical
to the process of converting 43590 seconds into the distributed representation of 12
hours, 30 minutes, and 5 minutes, except that a binary clock is used instead. (3)
The memory for a time interval is encoded by a set of connection weights as opposed
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to a single value (the pulse count), thus permitting more than a single time interval
to be stored in memory at once, but not such that multiple stored time intervals
can influence each other in ways related to the temporal structure of the pattern. In
such connectionist models, the specific proposed methods for discriminating the dura-
tion of two sequentially presented time intervals vary. However, in general, duration
comparisons are made by measuring the similarity of the representation of the first
interval retrieved from memory and the input representation of the second interval.
If this measure of similarity is less than a specified threshold, then the time change
is detected. This implies that JNDs for single time intervals are determined by the
selected threshold.

The main disadvantage of clock-counter models (both the connectionist version
and accumulator version) is that they only concern the perception of isolated time
intervals, making no predictions concerning how various contextual factors (in par-
ticular temporal context) may influence time sensitivity. By converting time into a
static vector representation or a count in an accumulator, the intrinsically dynamic
aspect of time perception is lost.

2.6.2 Quantal Models

Another approach to time perception has been proposed by Kristofferson (Kristof-
ferson, 1977; Kristofferson, 1980). Kristofferson supposes that the main factor that
influences time discrimination is the magnitude of a time quantum ¢. In the Quantal
Model, the measurement of the interval 1" triggers the timing of an internal interval
(the criterion). The variability of the criterion-estimate of 7" is given by a triangular
probability distribution with a width equal to twice the time quantum. The standard
deviation of this distribution, which Kristofferson equates with the just-noticeable
difference is

JND = \ﬂq—;) (10)

Thus, unlike clock-counter models, the Quantal Model predicts that JND is constant
(with constant ¢) and independent of the the base-interval. Kristofferson (1980)
reports data which suggests the doubling of ¢ for 7" equal to 200, 400, and 800 ms,
resulting in a step-like JND function. In terms of relative JND, each doubling of the
time quantum ¢ for multiples of a base interval 1" would introduce an abrupt increase
in the relative JND at each multiple of 7T'; otherwise, relative JND is a decreasing
function of T'. Like clock-counter models, the Quantal Model is limited to predictions
concerning isolated-interval discrimination and thus does not address the influence of
temporal context on time sensitivity.

2.6.3 Multiple-Look Models

Now we turn to models which attempt to account for contextual aspects of time
perception. Based on the hypothesis that listeners use the same timing mechanism
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for both duration and tempo perception, a number of multiple-look models have been
proposed (Drake and Botte, 1993; Schulze, 1989). In multiple-look models, each
interval in a sequence provides an independent statistical observation (or “look”) of
the tempo, and thus with multiple observations, the listener is able to improve the
estimate of the tempo by a process of averaging the multiple-looks. For these models,
the only difference between single-interval perception and tempo perception is that a
single-interval task affords the listener only one “look”, whereas estimating the tempo
of a sequence usually affords multiple looks. To detect a difference between the tempo
of two sequence, the multiple-look model assumes that listeners use multiple-looks to
abstract a tempo estimate of the standard sequence which is then stored in memory
for comparison with the tempo of the comparison sequence. The multiple-look model
does not, however, specify whether the tempo comparison is made directly with each
interval in the comparison sequence or with a second multiple-look estimate of the
comparison sequence’s tempo.

time window

Figure 2.11: Schematic of the Drake and Botte (1993) multiple-look model.

In the Drake and Botte Multiple-Look Model (Drake and Botte, 1993), the just-
noticeable difference in the tempo of a pattern (JND,) decreases, relative to the
just-noticeable difference in the duration of a single interval (JN D), as a function
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of the square-root of the number of pattern intervals, n (looks):

JND, = JNDy(1/\/(n)). (11)

The above equation carries with it a couple assumptions: First, the values of JN D,
are assumed. Thus, by assuming a U-shaped relative JND curve for isolated intervals,
Drake and Botte’s Multiple-Look Model predicts a U-shaped relative JND curve for
tempo. Second, relative JNDs for increases and decreases in tempo are assumed to
be the same.

In Drake and Botte’s model, the number of useful “looks” 7.y is limited by the
duration of a temporal window d according to

d
Nmax = ﬁ (12)

as illustrated in Figure 2.11. Thus, the number of useful looks for each tempo condi-
tion varies as a function of the [OI, with listeners being able to make use of more inter-
vals with the faster sequences. For example, with a 1.0 second temporal window, 10
independent observations of a 100 ms IOI are possible (n,.x = 10), whereas for a 500
ms [OI, only 2 observations are possible (. = 2). Consequently, Drake and Botte’s
Multiple-Look Model predicts that as the number of intervals in an isochronous se-
quence are increased, the relative JND should eventually decrease more for shorter
IOIs than for longer IOIs, which is consistent with the qualitative distinction made
between the processing of intervals < 300 ms and the processing of intervals > 300
ms, as discussed in Section 2.5.2.

In an experiment designed to evaluate the window hypothesis, Drake and Botte
(1994) found evidence which suggests that window duration depends on tempo. For
IOI conditions less than 300 ms, the window duration that best fit the data was found
to be 1.0 second, whereas for IOI conditions greater than 300 ms, the window duration
that best fit the data was found to be 2.5 seconds. This observed discontinuity in
“window-size” is somewhat surprising, providing either strong additional evidence
that the processing of intervals less than about 300 ms is qualitatively different from
the processing of intervals greater than about 300 ms, or evidence that multiple-look
models are misguided.

2.6.4 Dynamic-Attending/Contrast Models

A second class of model which addresses contextual aspects of time perception is
the Contrast Model proposed by Jones and Boltz (1989). The Contrast Model is
essentially one application of dynamic-attending theory (Jones, 1976) to time per-
ception. Recall that as part of her entrainment hypothesis, Jones (1976) supposed
that rhythmic patterns such as music and speech potentially entrain a hierarchically
nested set of attentional periodicities, forming an attentional rhythm. And that it is
the entrainment of attentional periodicities that forms the basis for the development
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of expectancies for when in time, events in a pattern are likely to occur. Moreover,
she suggested that entrained attentional rhythms guide the placement of attentional
pulses, thus influencing the overall perception of a stimulus pattern, including the
perception of the time intervals comprising that pattern.

In Jones and Boltz’s Contrast Model, it is assumed that attentional periodicities
(oscillators) are entrained by similar periodicities in the environment. The period
of each oscillator, entrained by a series of time intervals (7;), generates dynamic
expectancies for “when” events marking future time intervals (e.g., T;41), will occur.
Thus, the period of each oscillator 2 provides a continuously updated estimate of
similar past and future time intervals (7). Time intervals (7') which violate the
oscillator’s period-based expectancies result in a temporal contrast: (2 — T'). The
magnitude of such temporal contrasts are influenced by the temporal structure of the
entraining pattern.

The predictions of the Contrast Model for time perception are based on the as-
sumption that JNDs are related to temporal contrast. That is, the smaller the tem-
poral contrast, the more sensitive listeners will be to a time change. Thus, similar to
the Multiple-Look Model, the Contrast Model predicts that increasing the number of
isochronous intervals in a pattern should improve listeners’ abilities to detect tempo
changes, since more isochronous intervals in a pattern improves the entrainment of
the tracking oscillator, reducing temporal contrast. Moreover, the Contrast Model
predicts that listeners’ abilities to detect time and tempo changes should be better
for metrical (regularly timed) sequences (of which isochronous sequences are one ex-
ample) than for nonmetrical (irregularly timed) sequences, since temporal contrasts
should be smaller for regular sequences than for irregular sequences.

2.6.5 Discussion

These above two general predictions of the Contrast Model are consistent with much
of the embedded-interval and tempo data reviewed in Section 2.5.2. However, some
specific aspects of these data are problematic for the Contrast Model, as well as for
Drake and Botte’s Multiple-Look model (discussed in Section 2.6.3). To close this
chapter, I will summarize these problematic data, as well as some of the associated
limitations of the contrast and multiple-look models. These data, which are a pri-
mary focus of the modeling efforts reported in this thesis, will be addressed again in
Chapter’s 4 and 5.

First, it was discussed earlier that listeners’ sensitivity to the tempo of isochronous
sequences improves more, with increasing number of intervals, for [OIs less than about
300 ms than for IOIs greater than about 300 ms. This differential improvement is
substantial, resulting in an extension of the optimal zone of sensitivity to a shorter
[IOI (Drake and Botte, 1993; Michon, 1964). The Contrast Model only predicts
that sensitivity should be heightened with reduced temporal contrast, not that it
should be heightened differentially as a function of the base IOI. Many researchers



Time Psychophysics: Theory and Data 46

have suggested that this potentially heightened sensitivity implies that the processing
of intervals less than about 300 ms is qualitatively different from the processing of
intervals greater than 300 ms, possibly involving distinct mechanisms (Drake and
Botte, 1993; Michon, 1964; Hirsh et al., 1990; ten Hoopen et al., 1994).

Second, in studies further investigating the influence of the number of isochronous
intervals on tempo sensitivity (Drake and Botte, 1994), it was reported that optimal
sequence duration, determined by the maximum number of intervals which lower the
relative JND multiplied by the base IOI, is constant at about 1.0 second for IOIs less
than about 300 ms, but shifts abruptly to about 2.5 seconds for I101Is greater than
about 300 ms. This abrupt shift is not explained by the Contrast Model. In order for
the Multiple-Look Model to explain this shift, it must assume two distinct temporal-
window sizes within which listeners integrate timing information. Drake and Botte
(1994) suggest that this result provides strong additional evidence that short IOIs
(< 300 ms) are processed differently than longer IOIs (> 300 ms).

Third, a more fundamental issue is that both the Contrast Model and the Multiple-
Look model implicitly assume a U-shaped relative JND curve for isolated-interval
discrimination, in order to be able to predict a similar pattern of relative JNDs for
embedded-interval and tempo discrimination. Thus, both the Contrast Model and the
Multiple-Look model address the relationship between isolated-interval discrimination
data and the embedded-interval and tempo discrimination data, but not the process
of isolated-interval discrimination. Conversely, both the clock-counter models and
the quantal models addressed the discrimination of isolated intervals, but not the
discrimination of tempo or embedded intervals.

Finally, the oscillators in the Contrast Model are abstract oscillators. Conse-
quently, the predictions of the Contrast Model are not yet linked to the dynamics
of a specific functioning oscillator and are thus necessarily limited in specificity. In
comparison, the predictions of the Entrainment Model of time perception developed
in Chapter 4 are tied to the functioning of a specific oscillator. Before presenting
the Entrainment Model, it is necessary to first investigate the oscillator on which the
Entrainment Model is based: the Adaptive Oscillator.



Chapter 3

Adaptive Oscillators

3.1 Overview

Strogatz and Stewart (1993) relate an interesting anecdote concerning the origin of
the concept of the “coupling” of oscillators. In 1665, the Dutch physicist Christiaan
Huygens, observed from his bedside during an illness that two clocks hanging side
by side were synchronized in the motion of their pendulums. For hours, he watched
the motion of the two pendulums, yet they remained in perfect synchrony. When
either or both of the pendulums were disturbed, synchrony was regained within a
half hour. Huygens hypothesized that the two clocks must be influencing each other,
perhaps through vibrations in their common support. To test this, he moved them to
opposite walls of the room, and sure enough the pendulums fell out of lock-step, one
clock losing several seconds a day relative to the other (Strogatz and Stewert, 1993).
Huygens’ chance observation, launched an entire new branch of mathematics: the
theory of coupled oscillators. The term coupled means that the oscillators are able to
perturb each other in some way, as did the pendulum clocks on Huygens’ bedroom
wall.

In this chapter, I introduce a class of adaptive-oscillator mechanisms, based on the
coupled oscillator paradigm, for establishing and maintaining a single metrical level
of a rhythmic pattern in spite of variability in the timing of that pattern. Section 3.2
provides a rudimentary introduction to the theory of coupled oscillators. Next, in
Section 3.3, a class of adaptive oscillators is specified. There is an important distinc-
tion between the coupled clocks on Huygen’s bedroom wall and adaptive oscillators.
Coupled clocks become entrained only by perturbing each others’ phases. Coupled
adaptive oscillators are entrained by rhythmic input patterns by adjusting both phase
and period. The additional adjustment of the oscillator’s period can be thought of as
the internalization of an expectancy for the occurrence of future inputs with close to
the same periodicity. In the case of “missing” inputs, as well as when the rhythmic
pattern stops, the adaptive oscillator continues to predict future inputs. In essence,
the adaptive oscillator internalizes a beat, retaining a memory of that beat after the
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pattern stops. Section 3.4 examines the dynamics of this class of adaptive oscilla-
tors. The proposed oscillators are then compared with an oscillator model for meter
perception recently proposed by Large and Kolen (1995). This chapter concludes
with an evaluation of the proposed class of adaptive oscillators to be entrained by the
Povel and Essens (1985) set of temporal patterns, varying in rhythmic complexity.
The adaptive oscillator’s ability to be entrained by these patterns is compared with
listeners’ abilities to reproduce these patterns by tapping.

3.2 Mathematical Background

To understand how coupled oscillators interact, it is first important to understand
the mechanics of a single isolated oscillator. An oscillator is a system that generates
periodic behavior. Formally, a function f(¢) is periodic if and only if there exists a real
number € such that f(t+n) = f(t) for all integers n. € is the period of the function
f(t) and 1/Q is the frequency or rate of oscillation. This definition of a periodic
function, obtained from a standard calculus book, states that each value of a periodic
function must precisely repeat every €2 time units. Unlike the textbook definition
of periodic, biological oscillations such as the gait of a running animal, the firing of
a pacemaker neuron in the heart, and the beat established by a musician exhibit
variability on each cycle. In terms of a formal description of biological oscillations,
we can view biological oscillations as being driven by an oscillator with a period €2
(in the strict sense) that changes over time (i.e., biological oscillations are driven by
a non-stationary oscillator).

Instead of representing an oscillator’s periodic motion as a time series, it can be
represented as a phase-portrait which combines position and velocity to show the
entire range of possible states; that is, the phase-space of the system (see Figure 3.1).
Phase ¢ jointly describes oscillator position (within its cycle) and velocity, as a frac-
tion of the oscillator’s cycle: ¢/ mod 1 (Winfree, 1980). All systems that generate
periodic behavior, no matter how complex, will eventually traverse a closed curve in
phase-space.

In phase-space, the motion of an ideal pendulum smoothly follows the circle’s
circumference in a clock-wise fashion. Zero-phase is arbitrarily located at 3 o’clock
(zero velocity and maximum positive displacement). Likewise, there are many differ-
ent conventions for describing an oscillator’s motion in phase-space. Phase is often
measured in degrees ([0,360°]), radians ([0, 27] or [—m,7]), and, informally, as the
hours, minutes, or seconds of a clock.

In this thesis, two different representations will be useful for describing oscillator
motion in phase-space. Both will reflect clock-wise movement on a unit circle with
zero-phase (the beginning of the oscillator’s cycle) positioned at 3 o’clock. For the
first representation, ¢ will vary from 0.0 to 1.0 (see Figure 3.2A). This representation
will be used for most of the mathematical analyses. For the second representation, ¢
will vary from —0.5 to 0.5, making it possible to describe negative (early) and positive
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Figure 3.1: An oscillator’s periodic motion can be represented as a time-series (shown
on the left), or as a phase-portrait which combines both position and velocity to show
the entire range of possible states (shown on the right). Each phase ¢ specifies a
fraction of the oscillator’s cycle.

(late) phase relative to the onset of the oscillator’s cycle (see Figure 3.2B). The second
representation will be useful for describing the learning equations of the model and
for discussion the formulation of proposed the Entrainment Model of human time
perception discussed in Chapter 4.

Although a single oscillator traverses a simple loop in phase-space (as in Fig-
ure 3.2), the motion of two or more coupled oscillators is much more complex, and
in some cases the equations describing the system are intractable. In a system of
coupled oscillators, the oscillators may interact with only their immediate neighbors
or with all others; coupling may be unidirectional or bidirectional; and interactions
may occur only at discrete points in time (pulse-coupling) or be continuous (Glass
and Mackey, 1988).

The simplest case of coupled oscillation is a single driving (input) oscillator uni-
directionally coupled to a driven (output) oscillator. Geometrically, the combined
motion of the two oscillators in phase-space can be described as the trajectory fol-
lowed on the surface of a torus (Abraham and Shaw, 1992) (see Figure 3.3). In the
example shown, the torus represents the Cartesian product of two circles C'; and Cs.
The set of all points on the surface of the torus represents all possible states of the
system. Each point with coordinates (¢, ) specifies the phases of the two oscillators.
Suppose that 0 is the phase of the input oscillator and that ¢ is the phase of the
output oscillator. To investigate the long-term effect of coupling, we take snapshots
of the input phase #, every time the output oscillator reaches zero-phase, beginning
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Figure 3.2: Phase is represented in two different ways in this thesis, either as ¢¢[0, 1],
or as ¢e[—0.5,0.5].

its cycle:

Q

In this iterative equation, called a Poincaré map, ¢ is the ith firing of the output
oscillator with period €2, 0; is the phase of the input oscillator with period T relative
to the ith strobed output cycle, and the function g(b, ;) specifies the influence of the
driving (input) oscillator on the driven (output) oscillator. The parameter b is the
coupling strength.

The attractor dynamics of the output oscillator are described by the limiting
behavior of the iterated Poincaré map. The rotation (or winding) number (p)

p= lim = > AW (14)

specifies the number of times the output oscillator winds a path around the torus
for every cycle of the input (Winfree, 1980; Glass and Mackey, 1988). For rational
p, p/q, the system is mode-locked and rests in a periodic attractor that reflects p : ¢
entrainment: p input cycles for every ¢ output cycles. In this case, the trajectory of
the coupled system in phase-space forms a closed path on the surface of the torus;
that is, the two oscillators are synchronized. The process by which they become
synchronized is called entrainment.

Consider a system in which 7" = 2.0, 2 = 1.0 and the coupling strength b is zero.
We can look at the behavior of the iterated Poincaré map by slicing the torus along
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Figure 3.3: Geometric representation of the phase-space of two oscillators. The mo-
tion of two oscillators is described by a trajectory on the surface of the torus. Each
point with coordinates (¢, #) specifies the phases of the two oscillators.

1.0

041 05

0.0

0.0 0.5 1.0
9i

Figure 3.4: Two-dimensional projection of the surface of the torus (phase-return map)
showing 1 : 2 entrainment between two oscillators.

both its horizontal and vertical dimensions, and then unfolding it into a sheet (as
shown in Figure 3.4). This two-dimensional projection of the system’s trajectory (or
phase-return map (Winfree, 1980; Glass and Mackey, 1988)) shows the relationship
between the phase of the input oscillator at the beginning of the 7th output cycle and
the phase of the input oscillator at the beginning of the (i + 1)th output cycle (i.e.,



Adaptive Oscillators 52

the change in the phase of the input during a complete output cycle). For example,
if the input phase is 0.0 at the beginning of output cycle ¢, then it will be 0.5 at the
beginning of output cycle ¢ + 1. For all initial input phases 6;, the input phase at
the beginning of the next output cycle 6,4, is a (modl) phase change of 0.5. Thus,
the input oscillator cycles once for every two cycles of the output oscillator (a 1:2
entrainment ratio or a winding number of p = 0.5).

For irrational p, the phase-space trajectory of the coupled oscillator system does
not form a closed loop. Instead, the phases of the two oscillators drift slightly on each
cycle, never precisely returning to their initial values. This type of behavior is called
quasi-periodicity. Whether a system of two coupled oscillators exhibits quasiperiodic
behavior or mode-locking depends on the initial ratio of output to input periods %
(also called the bare winding number py), the coupling strength b, as well as the spe-
cific form of the Poincaré map. As the coupling strength is increased, py regions which
initially produced quasiperiodic behavior can be replaced by regions of overlapping
mode-locking. The presence of overlapping mode-locking regions indicates that the
system is sensitive to the initial phase conditions; that is, the specific mode-lock (or
entrainment ratio) that the system attains depends on the initial phase settings of
the oscillators. The mode-locking behavior of coupled oscillators is often highly struc-
tured. One way to examine this structure is to construct what is called an Arnold map
(Arnold, 1983). The Arnold map shows specifically how mode-locking behavior varies
as a function of the coupling strength and the bare winding number py. Consider the
specific Poincaré map (or circle map)

9z’+1 = Gl + £0o + bSlIl(Q’/TGl) (15)

which describes unidirectionally coupling between a single (driving) input oscillator
and a single (driven) output oscillator. This particular circle map is called the sine
circle map because of the sinusoidal coupling term: bsin(276;). The parameter b
specifies the coupling strength of the system.

The Arnold map for the sine circle map is shown in Figure 3.5. In this figure, the
bare-winding number is represented on the z-axis and coupling strength is represented
on the y-axis. Each point indicates that the system obtains a stable entrainment
ratio for the specified combination of bare-winding number and coupling strength.
Whether or not the system enters a stable entrainment ratio is determined for each
point by using a large n to approximate the limit in Equation 14. If the obtained
value is within a predetermined tolerance of any of a selected set of the entrainment
ratios, the point is included in the graph. Each “tongue” shaped region in the Arnold
map corresponds to a different entrainment ratio (or periodic attractor). The width
of each tongue reflects the stability of the attractor (i.e, how sensitive the system
is to perturbations in that region of parameter space). Only mode-locking regions
corresponding to the selected set of entrainment ratios are shown, although mode-
locking regions exist for all rational entrainment ratios.

The structure of the Arnold diagram is not arbitrary, but is determined by an
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Figure 3.5: Arnold map specifying mode-locking for iterated sine circle map for first
four levels of the Farey Tree. Each tongue-shaped region corresponds to a different
entrainment ratio as specified by the level.

elegant construction called the Farey series (Shroeder, 1991), which can be used to
enumerate all entrainment ratios in order of their stability. Given two entrainment
ratios p; : ¢1 and py : ¢y as parents, the next less stable “offspring” ratio that lies
between the two tongues is specified by

PLtDp2q1t Qe (16)

The tree structure of the Farey series is shown in Figure 3.6. On each level, all
entrainment ratios share the same stability. As one branches deeper in the tree, the
ratios become less stable. For example, 1 : 1 entrainment is more stable than 1 : 2
entrainment, and so on. In addition, any two adjacent ratios p; : ¢; and py : g9 satisfy
the relation

IP1¢2 + qupa| = 1. (17)

This property, called unimodularity, reflects the series of bifurcations observed with
coupled oscillators and has been used to model/predict patterns of bifurcations be-
tween stable entrainment ratios in both biology and psychology (Winfree, 1980; Glass
and Mackey, 1988; Treffner and Turvey, 1993).
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Figure 3.6: Levels 0 through 4 of the Farey tree structure that describes the relative
stability of different entrainment regions for coupled oscillators. Entrainment ratios
0:1 and 1:1 comprise Level 0.

Summary This section introduced the mathematics of coupled oscillators. We
examined the behavior of a simple coupled system, the sine circle map, in which
a single driving (input) oscillator is uni-directionally coupled to a driven (output)
oscillator. The dynamics of this system were specified by constructing an Arnold
map showing parameter regions corresponding to stable periodic attractors.

Simple systems of coupled oscillators can be shown to exhibit very complex dy-
namical behavior, including mode-locking, quasi-periodicity and chaos, by varying
both coupling strength and the ratio of the oscillator’s periods. Stable periodic at-
tractors exist for all rational entrainment ratios and their relative stability is described
by an elegant construction called the Farey series.

3.3 The Adaptive Oscillator

The class of adaptive oscillators that I specify in this section have been developed
over several years (McAuley, 1993; McAuley, 1994a; McAuley, 1994b) and share five
primary properties. (1) Each oscillator has a resting value for its period that it grad-
ually returns to in the absence of input. (2) Each oscillator has a periodic activation
function. (3) Each oscillator is phase-coupled with the input by phase-resetting. (4)
Each oscillator retains a memory of the phases at which previous phase-resets oc-
cured, which is used as the output of the oscillator, as well as a measure of how well
entrained it is. (5) Each oscillator’s output is used as feedback to modify its period,
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which in turn serves to align the beginning of each oscillator’s cycle with future inputs.
The output of each oscillator can also be used to modify the shape of the activation
function, so that, as the oscillator becomes entrained by a rhythmic pattern, the time
window for expected future inputs narrows.

This phase-resetting adaptive oscillator is based on a simple sinusoidal activation
function given by

a(t) = (1 + Cos(%))/Q (18)

where Q(t) is the oscillator’s period, initially equal to its resting value:
Q(0) =Q. (19)

As outlined above, each oscillator adapts by adjusting the phase and period of its
activation function in response to perturbations from discrete inputs. Inputs on [0, 1]
represent event onsets with variable intensity values. This assumption is consistent
with the view that rhythmic organization is primarily determined by the temporal
pattern of event-onsets (Handel, 1993). Thus, rhythmic patterns are represented as
patterns (streams) of pulses. Figure 3.7A shows the input representation for a four-
tone isochronous pattern with a 300 ms IOI. Formally, this pattern is represented
as

i(t) =

where T is the 300 ms [OI and [ is the intensity of the nth input pulse.

{I if t =nT (20)

0.0 otherwise

3.3.1 Phase Resetting

The adaptive oscillator uses a discrete form of phase coupling called phase-resetting.
In the phase-resetting model, each weighted input w;i(t) (the coupling strength) is
added to the activation of the oscillator, providing a measure of total activation. The
total activation of the system is then compared with a threshold of 1.0. If the total
activation exceeds this threshold, the oscillator resets its phase to zero, beginning its
cycle again. Formally, phase-resetting is defined by the following piecewise function

o(t) = { 0 if a(t) +wii(t) > 1.0

o(t) otherwise. (21)

Figure 3.7 shows the behavior of a phase-resetting model. In the figure, an oscillator
with a 500 ms period resets its phase in response to an isochronous pattern with a
300 ms IOI. Since the input pattern sequence is isochronous all of the phase resets
occur at the same phase. In this example, the phase resets occur at ¢ = —0.4.
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Figure 3.7: Phase-resetting of an oscillator with a 500 ms period in response to a
rhythmic pattern with a fixed 300 ms inter-onset interval.

3.3.2 Phase Memory

The degree of synchronization with a rhythmic pattern can be measured by main-
taining a memory of the phase at which the input events force the oscillator to reset
(i.e., when the total activation exceeds threshold). The symbol ¢"(n) is used to in-
dicate the phase of the nth input pulse i"(n), that forces the total activation above
threshold. The superscript r indicates that the phase and associated input correspond
to a phase-reset. Thus, the degree of synchronization is measured by maintaining a
smoothed memory of ¢"(n), defined here as the output of the oscillator o(n):

o(n) = (1 = wo)o(n — 1) + wo(1 = 2|¢" (n)]). (22)

The parameter w, establishes a weighting between the current reset phase ¢"(n) and
the memory of the previous reset phases o(n — 1). The output varies between 0 for
poor synchronization and 1 for perfect synchronization.

Figure 3.8 shows the output sequence for ten inputs coinciding with beginning of
the oscillator’s cycle (¢"(n) = 0.0) followed by ten inputs that are 180 degrees out-of-
phase with the oscillator (for five different values of w,). For all w, except w, = 0.0,
the output sequence converges towards 1.0 for the first ten synchronous inputs. For
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Figure 3.8: Oscillator output o(n) measures synchronization using a memory of
phases, for which input pulses force the total activation above threshold. The smooth-
ing parameter w, weights the nth such phase ¢"(n) relative to the memory o(n — 1)
of previous n — 1 reset phases. This figure shows the output for 10 successive syn-
chronized pulses followed by 10 pulses 180 degrees out of phase, for a range of w,
values.

the second ten “out-of-phase” inputs, the output sequence decays towards 0.0. The
effect of decreasing w, is to smooth the output response. For w, = 1, each output
o(n) depends only on the current reset phase ¢"(n) (i.e., the synchronization of the
oscillator is measured by only a single input). In the figure, the w, = 1.0 output
sequence attains a value of 1.0 after the first synchronous input. Unless the following
inputs are isochronous, as they are for the next nine inputs in the example shown in
the figure, a single input is not enough information to provide an adequate measure of
synchronization. For example, suppose that a spurious input in an otherwise periodic
sequence, just by chance, coincides with the beginning of the oscillator’s cycle, in
which case (¢" = 0). Although the output is 1.0, the oscillator is not in synchrony
with the input sequence. Thus, unless the oscillator’s input environment is perfectly
regular, w, = 1 does not produce outputs which accurately reflect entrainment.

The oppose extreme is w, = 0, in which case ¢"(n) is ignored and the model
relies on its phase memory to measure synchronization. Since the output equation
is recursive, w, = 0 implies that the output o(n) is fixed at its initial value o(0)
or at the attained output value when w, was set to 0. Obviously, any measure of
synchronization that ignores the phase of each new input, and relies instead on an
initial value, is not adequate.

What is an appropriate choice for w,? If the input events are isochronous as in the
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example (Figure 3.8) then a single input does provide sufficient information to measure
synchronization, and w, = 1.0 is appropriate. However, if the timing of the inputs is
extremely variable, then the best strategy is to rely on the oscillator’s phase-memory,
as each new input provides very little useful information about synchronization. As
an extreme example, suppose that the stream of inputs changes from a rhythmic
pattern of time-intervals to a random pattern of time-intervals, then even switching
to w, = 0.0 might be appropriate, if the input pattern eventually returned to its prior
rhythmicity. Thus, the appropriate choice of w, depends on the temporal structure
of the input pattern.

3.3.3 Activation Sharpening

The output of the adaptive oscillator can be used as feedback to modulate the shape
of the activation function according to
27t _ .
[(1 + cos(=—)) /2] rminFoln)max (23)
Q(t)
in which output scales the exponent of the activation function between Vi, and Yymay.
Figure 3.9 graphs this modified activation equation for outputs of 0.0, 0.3, 0.7, and
1.0, for vpin = 1.0 and Yyax = 10.0. Modulating the “sharpness” of the activation
function alters the temporal window within which inputs are able to perturb the
phase and period of the oscillator. As the oscillator is entrained by the input pattern
the output increases, this temporal window narrows. Thus, the temporal expectancy
for the next input is more selective.

a(t)

3.3.4 Period Coupling

Two properties characterize period coupling in an adaptive oscillator: (1) the adaptive
oscillator uses its output o(n) (a measure of synchronization) as a “teaching” signal
to determine how much to adjust its period; and (2) the sign of the phase ¢"(n) (the
reset phase of the nth input event) is used to determine the direction of the period
change (increase or decrease). Both properties are expressed by the period coupling
term

P = ¢(n)(1 - o(n)). (24)
This choice of P guarantees that the oscillator does not adjust its period when either
o(n) = 1.0 (i.e., it attains a perfect measure of synchrony) or ¢"(n) = 0.0 (i.e., the
current input coincides with the beginning of the oscillator’s cycle). For negative
reset phases, the input is assumed to be “early” with respect to the beginning of
the oscillator’s cycle and the oscillator’s intrinsic period is shortened, speeding the
oscillator up. Conversely, for positive reset phases, the input is assumed to be “late”
with respect to the beginning of the oscillator’s cycle and the oscillator’s intrinsic
period is lengthened, slowing the oscillator down. The amount of period adjustment
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Figure 3.9: Feedback control of the “sharpness” of the activation function for outputs
of 0.0, 0.3, 0.7, and 1.0 and for v, = 1.0 and Y. = 10.0.

is inversely related to the output. If the output is large, the oscillator only adjusts
its period by a small amount. If the output is small, the oscillator makes a much
larger change in its period, enabling it to search the space of possible entrainment
possibilities.

A complete description of period coupling in the adaptive oscillator is given by

o€ Q . = .

57 = a5 Plo" (), o) M (n)] = B(Q = )1 = M[" (). (25)
In this differential equation, the period coupling term is scaled by % (to ensure that
the period changes by at most one half of the oscillator’s cycle), by an input impulse
response function M (in order to spread the change in the oscillator’s period over the
entire cycle), and by the entrainment rate . The impulse response function is given

by
1

1+ e-TGr(n)e9—05)"

M = (26)

where © and , are the impulse response bias and gain respectively. A decay term

0-0, (27)



Adaptive Oscillators 60

Input Transform
o
2]
[e6)}
<
©
=
5 .
= Entrain Decay
T <
3
N
N
o
o- | T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
time (sec)

Figure 3.10: Input impulse-response function for , = 1000.0 and © = 2.0.

scaled by
(1= Mli"(n)]) (28)

and a decay rate [ is included in Equation 25, so that in the absence of input, a
penalty is incurred for large differences between the adapted and intrinsic periods,
and the oscillator will gradually return to its resting rate.

Figure 3.10 shows the input impulse response for an input of 1.0, for , = 1000
and © = 2.0. The impulse response function extends the change in the oscillator’s
period in time following a phase-reset. The value of the impulse response function
determines the weighting of the entrainment and decay processes: for an impulse
response of 1.0, the oscillator is entrained by the input, for an impulse response of
0.0, the oscillator decays back to its resting period, for intermediate impulse response
values, there is a mixture of entrainment and decay. For the specific parameterization
of the impulse response function shown in the figure, the response function maintains
a value close to 1.0 for approximately 0.4 seconds and then drops off sharply towards
0.0. Thus, following the phase-reset, the oscillator incrementally adapts its period in
response to the input for approximately 0.4 seconds; after which, the period of the
oscillator gradually returns to its resting rate, until this decay process is preempted
by the next input. If the next input occurs, before the impulse response function
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decreases towards 0.0 (before 0.4 seconds in the example), then there is no effectively
no period decay.

If the impulse response gain (, ) is assumed to be a very large number, then the
impulse response function is essentially a descending step function. In which case,

Equation 26 reduces to
1 ife® <05
M= { 0 ife ® > 0.5. (29)

Thus, solving e~ ©* = 0.5 for ¢ specifies the processing boundary between entrainment

and decay, which is given by
In0.5

10Ig = | I (30)

I term this processing boundary the inter-onset-interval threshold (IO1g).
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Figure 3.11: Phase-resetting and period adaptation oscillator with 500 ms intrinsic
period, in response to isochronous input pulses (300 ms inter-onset-interval). (A)
Input signal. (B) Phase-resetting with period adaptation. (C) Output signal. (D)
Period entrainment and decay.

Figure 3.11 shows the response of an adaptive oscillator with both phase resetting
and period coupling to an isochronous input pattern with a 300 ms IOI. The resting
period of the oscillator is 500 ms. Panel A of this figure shows the isochronous input
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pattern. Panel B shows the adaptive oscillator as it is entrained by this pattern.
Period coupling forces successive inputs i"(n) to be closer to being in synchrony with
the beginning of the oscillator’s cycle. The precise change in the oscillator’s period
(AQ) for each time step (AT), in the implementation of the adaptive oscillator, is
determined using a discrete approximation to Equation 25:

AQ = aAT%P[(/)’"(n), o(n)]Mi" (n)] — BAT(Q — D) (1 — M[7(n)]).  (31)

As the oscillator is entrained by the input pattern, it’s period approaches 300 ms
(the IOI of the input pattern), as shown in Panel D. Panel C shows that the output
concurrently approaches 1.0, reflecting an accurate measure of synchronization. After
the last input, the period gradually returns to its resting value of 500 ms.

3.4 The Dynamics of Adaptive Oscillation

In this section, empirical Arnold maps are constructed to investigate the mode-locking
behavior of the proposed class of adaptive oscillators. This investigation is incremen-
tal, focusing on changes to four specific parameters: the phase resetting (or coupling)
strength (w;I), the entrainment rate («), the output weight (w,), and the exponent
(Vmax) specifying the maximum “sharpness” of the activation function. This section
will conclude with a comparison of the proposed class of adaptive oscillators to a
similar oscillator mechanism recently proposed by Large and Kolen (1995).

The construction of Arnold maps for the adaptive oscillator requires that the adap-
tive oscillator be specified as a circle map. This requirement necessitates three sim-
plifying assumptions in the functioning of the adaptive oscillator mechanism. First,
in terms of a circle map, iterative snapshots (¢;) of the adaptive oscillator’s phase are
taken at each successive input pulse, which are assumed to be isochronous. Thus, the
circle map for the proposed adaptive oscillator is given by

. T
b = { 0 if [wil +a(¢; + o)) > 1.0 (32)

(p; + Ql) mod 1 otherwise

where the activation of the oscillator is specified as a function of phase, T is the
fixed period of the input pattern and €2; is the period of the oscillator updated after
the ith input. The second assumption is that period adjustment occurs all-at-once
after each phase-resetting input, and is thus not spread out in time by the input
impulse-response function (M). The circle map version of the equation for adjusting
the period of the adaptive oscillator is given by
0. — Qi+ (b + &)1 —0i) if [wil +a(¢s + )] > 1.0 23
LT, otherwise (33)
This assumption indicates that the oscillator’s period does not “decay” in the absence
of input to its resting value, since the oscillator’s period is only adjusted after each
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input-forced phase reset. The importance of including the decay process and the
input impulse-response function will be addressed in Chapter 4, in the discussion of
the Entrainment Model.

Parameter Symbol | Step 1 | Step 2 | Step 3
Resting Period (seconds) | 1.0 1.0 1.0
Decay Rate o] 0.0 0.0 0.0
Output Weight W, 1.0 1.0 1.0
Coupling Strength w; X X X
Entrainment Rate o 0.0 X X
Maximum Sensitivity Ymax 1.0 1.0 X

Table 1: Incremental investigation of stable entrainment of adaptive oscillators. The
X’s indicate which parameters will be varied, and thus of are interest, in each step
of the analysis.

The investigation of the adaptive oscillator’s dynamics is in three steps. Step 1
examines stable entrainment (mode locking) of the adaptive oscillator, as a function of
the bare winding number (7/€2) and the coupling strength (w;I), for phase-resetting
without period adaptation (i.e., & = 0.0). Step 2 varies the entrainment rate a to
examine how the addition of period coupling influences stable entrainment. Finally,
Step 3 describes the effect of modulating the maximum sharpness of the activation
function (given by vmax) on stable entrainment, in comparison with the results from
Step’s 1 and 2.

Table 1 summarizes the three incremental steps in this investigation of the adap-
tive oscillators dynamics. Each column specifies the parameter settings of the adap-
tive oscillator for each step of the analysis; the X’s indicate which parameters vary
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in each step and thus are of interest.

3.4.1 Step 1: Phase Resetting

Figure 3.12 shows the Arnold map constructed for an adaptive oscillator with phase-
resetting, but without period adaptation (o« = 0.0). Stable entrainment of this os-
cillator was examined for bare winding numbers (7/Q) (representing the uncoupled
system) ranging from 0.0 to 1.0 in steps of 0.001, with the resting period of the os-
cillator (Q2) fixed at 1.0 second; and for coupling strengths (w;I) also ranging from
0.0 to 1.0 in steps of 0.001. For each such initial condition (out of 1,000,000 total
conditions), the circle map for the adaptive oscillator (Equation 32) was iterated for
500 steps, and the resulting phase differences (¢;;1 — ¢;) were accumulated to approx-
imate the limit in Equation 14, which specifies the number of cycles of the adaptive
oscillator per input cycle for the coupled system. Only those obtained values which
corresponded to stable entrainment ratios in the first four levels of the Farey tree,
within a tolerance of 0.001, were included as points in Figure 3.12.

j
Il level0 B lLevell Level2 ] Level3 __ | Level4

0.8 1.0

0.6

coupling strength (wl)
0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
bare winding number (T/Omega)

Figure 3.12: Arnold map for the phase-resetting adaptive oscillator with o = 0.0.
Parameter regions corresponding to stable entrainment ratios are coded according to
their level in the Farey Tree.

This figure is coded by Farey-Tree level to show which initial conditions result in
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stable entrainment to ratios at each of the first four levels of the Farey tree. From
this coding, the tree-like structure of the Arnold map should be apparent; level 0
indicates the regions of 0:1 and 1:1 entrainment; level 1 indicates the single region
of 1:2 entrainment; level 2 indicates the regions of 1:3 and 2:3 entrainment; level 3
indicates regions of 1:4, 2:5, 3:5, and 3:4 entrainment; and level 4 consists of regions of
1:5, 2:7, 3:8, 3:7, 4:7, 5:8, 5:7, and 4:5 entrainment. All parameter regions at the same
level of the Farey tree have the same width, with regions at successive levels becoming
narrower than preceding levels (corresponding to less stable entrainment). Because
of the phase-resetting property of the adaptive oscillator, the sinusoidal shape of the
oscillator’s activation function is visible in the shape of each parameter region. As is
apparent by comparing this figure with Figure 3.5, the entrainment of oscillators based
on this phase-resetting circle map is more stable than the entrainment of oscillators
based on the sine circle map.

3.4.2 Step 2: Period Coupling

Step 2 varied the entrainment rate («) set to zero in Step 1, to examine how the
addition of period coupling influences the entrainment of oscillators based on the
phase-resetting circle map. In Step 2, the same procedure was used to construct
Arnold maps as in Step 1, in which the bare winding number (7'/€2) and the coupling
strength w;I ranged from 0.0 to 1.0 in steps of 0.001, with the resting period of the
oscillator fixed at 1.0 seconds. Arnold maps were constructed for entrainment rates
(a’s) of 0.1, 0.2, 0.3, 0.4, and 0.5. The Arnold maps determined for these five choices
of a were found to be identical, thus it suffices to illustrate only a single case.
Figure 3.13 shows the Arnold map determined for o = 0.5. It should be apparent
to the reader that this Arnold map is identical to the Arnold map determined in
Step 1 for phase-resetting only (« = 0.0). Thus, the addition of a period coupling
term does not alter the specific entrainment ratios achieved by the adaptive oscillator
in response to isochronous input. That is, given the same initial conditions as the
phase-resetting oscillator (coupling strength and bare winding number), the adaptive
oscillator successfully adapts its period to match the “target” pattern of phase-resets
imposed by the isochronous input. This target can only be measured, globally, by

iterating the circle map to obtain its winding number L, yet the adaptive oscilla-

Y
tor attains a period (); that achieves this winding nurr?ber using only local phase
information.

For example, suppose the period of the input is 0.6 seconds and the resting period
of the oscillator is 1.0 seconds, resulting in a bare winding number (7'/Q) of 0.6 sec-
onds. From Step 1 (and Figure 3.12), we know that for a range of coupling strengths,
the resultant pattern of phase resets will reflect 1 : 2 entrainment. From Step 2, we
know that with the addition of period coupling, the adaptive oscillator will adjust its
period (in this case to 1.2 seconds) to achieve 1:2 entrainment, and then to maintain

this ratio in the absence of input forced phase-resetting.
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Figure 3.13: Arnold map for the phase-resetting adaptive oscillator with a = 0.5.

In terms of the entrainment dynamics, there are two important implications of
adding period coupling to the phase-resetting oscillator. First, the specific entrain-
ment ratio attained by an adaptive oscillator (congruous with the pattern of phase
resets) is maintained in the event of an occasional missing input, as well as when the
pattern stops. Second, period coupling improves the stability of entrainment in the
presence of noise in the timing of the input pattern, effectively placing each initial
condition (specified by T/Q) at the center of its corresponding parameter region.

3.4.3 Step 3: Activation Function Modulation

Step 3 varied the maximum exponent of the activation function 7,,x to examine the
influence of modulating the shape of the activation function on stable entrainment.
Using the same procedure as in Step’s 1 and 2, Arnold maps were constructed for
Ymax = D and Ymayx = 10, with the entrainment rate («) fixed at 0.5.

Figure 3.14 shows the Arnold map determined for v,.x = 5.0 and Figure 3.15
shows the Arnold map determined for vy, = 10.0. As in Step’s 1 and 2, parameter
regions with stable entrainment are coded according to their level in the Farey tree.
In comparison with the previous figures, one main effect is observed. As the maxi-
mum exponent (ymay) increases, regions corresponding to complex entrainment (i.e.,
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Figure 3.14: Arnold map for the phase-resetting adaptive oscillator for & = 0.5 and
Ymax = 5

deeper levels in the tree structure) begin to widen, “eating away” regions of simpler
entrainment, although not necessarily symmetrically. Thus, level 4 regions eat away
portions of level 3,2,1, and 0 regions, level 3 regions eat away portions of level 2,1 and
0 regions, and so on. These figures seem to be accumulating “white-space” because
levels 5 and deeper, which were not tested for in the construction of the Arnold map,
are becoming more and more prominent. Thus, sharpening the activation function
of the adaptive oscillator in response to an input pattern tends to push it towards
complex entrainment ratios. This is especially beneficial in the case where 0:1 en-
trainment (which corresponds to the period of the oscillator adapting out of control
towards infinity) is replaced by a “more complex” ratio such as 1:3 or 1:4.

3.4.4 Comparison with the Large & Kolen Oscillator

In two recent reports, Large (1994), and Large and Kolen (1995), have proposed an
independently developed adaptive-oscillator mechanism for the perception of musical
meter, similar to the class of adaptive oscillators I have proposed in this thesis. In
light of the present discussion concerning the dynamics of adaptive oscillation, I will
outline their model’s main properties, as well as highlighting important similarities
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Figure 3.15: Arnold map for the phase-resetting adaptive oscillator for & = 0.5 and
Ymax = 10

and differences between our two approaches. When possible, I will apply the same
notation used in this thesis to the description of the Large and Kolen oscillator.

Like the present thesis model, the Large and Kolen oscillator has a periodic acti-
vation function with an intrinsic resting period. However, the shape of this activation
function is not a simple sinusoid, but instead equal to

o(t) = 1+ tanhv(cos(%) _). (34)

The hyperbolic tangent in this equation serves to sharpen the activation of the os-
cillator (reducing its “temporal receptive field”) with ~ controlling how much the
temporal receptive field of the oscillator is narrowed. In the present model, the out-
put (o(n)) serves the same function as 7y, with vy in the present model controlling
the maximum amount of activation sharpening.

Large and Kolen derive a series of delta rules for incrementally adjusting phase,
period, and the v controlling the temporal receptive field, following each input pulse.
In terms of a circle map description, the rule for adjusting the oscillator’s phase is

hit1 = ¢; + bsech?(y cos 2me; — ) sin 27, (35)
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and the rule for adjusting the oscillator’s period is

Qi1 = Qi + I gsech2(7 cos 2w p; — ) sin 27w ; (36)
Qi 27
where b is the coupling strength and « is the entrainment rate. The corresponding
circle map rules of the proposed model are shown in Equation 32 and Equation 33,
respectively. There are several important differences in our approaches, partially
illustrated by these respective sets of equations.

First, in the model I propose, the oscillator’s phase is reset in response to a measure
of total activation that exceeds a fixed threshold, whereas in the Large and Kolen
model, the oscillator’s phase is adjusted incrementally based on the first derivative of
the activation function. Large and Kolen observe that their model reduces to the sine
circle map for v = 0.0 (see Figure 3.5 for an Arnold map description of the sine circle
map). In Section 3.4.1, we observed that the mode-locking of the phase-resetting
model is more stable than the sine circle map. Thus, unless there is a principled
reason to use the sine circle map instead of the phase-resetting map (and I will argue
there is not) the phase-resetting model is the more appropriate basis from which to
construct an adaptive-oscillator mechanism.

Second, in model proposed here, the oscillator’s period is adjusted on the basis
of the magnitude of the output (a measure of synchronization based on a memory
of past phase resets), whereas in the Large and Kolen model, the oscillator’s period
is adjusted on the basis of the first derivative of the activation function. Large and
Kolen observe that one feature of their model is that period-adjustment enhances the
stability of the model by widening of the parameter regions corresponding to stable
entrainment ratios in the constructed Arnold map. This partially corrects for the
instability introduced by using the sine circle map as the basis for the model in the
first place.

Finally, my model includes (1) a process by which, in the absence of input, the
oscillator’s period gradually returns to its resting value, and (2) an input impulse
response transform which extends the adjustment of the oscillator’s period in time,
as well as specifies the interaction between the entrainment and decay processes. The
Large and Kolen oscillator has neither of these two properties. In Chapter 4, I show
that these two properties of the adaptive oscillator are critical to the parsimonious
explanation of a range of tempo perception data using the adaptive-oscillator-based
Entrainment Model.

3.5 Evaluating the Adaptive Oscillator

This chapter concludes with an evaluation of the proposed adaptive oscillator to-be-
entrained by a stimulus set of 35 temporal patterns of varying rhythmic complexity,
used by Povel and Essens (1985) to test listeners abilities to memorize and reproduce
rhythmic patterns. Each of the patterns in this stimulus set consisted of a repeating
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sequence of intervals 16 time units long, where a time unit was 200 ms—in the range of
musical beats. All patterns were distinct permutations of a single set of intervals based
on this 200 ms beat. Table 2 specifies the patterns, where the intervals comprising the
patterns are described in terms of the number of beats. All patterns consisted of four
1-beat intervals (i.e., four 200-ms intervals), two 2-beat intervals, one 3-beat interval,
and one 4-beat interval for a total cycled duration of 3200 ms (see Figure 3.16 for a
graphical illustration of the patterns). Some of these patterns were easy for listeners
in the Povel and Essens study and others were quite difficult—as indicated by how
long it took listeners to learn a pattern and by how accurately they reproduced it. In
general, patterns in this stimulus set are order according to their rhythmic complexity.
All of these patterns evokes a sense of periodic beats for the perceiver. If asked to
“beat along” with these patterns, most listeners tap out beats approximately every
400 or 800 ms, consistent with a 2/4 musical meter.

111131224 | 11. | 112131214 | 21. | 111121234 | 31. | 111211324
112211314 | 12. | 121112314 | 22. | 111231124 | 32. | 111312124
211211314 | 13. | 121211134 | 23. | 113121124 | 33. | 121113124
221111314 | 14. | 131212114 | 24. | 211321114 | 34. | 123111124
312211114 | 15. | 311211214 | 25. | 231112114 | 35. | 231121114
112112134 | 16. | 121112134 | 26. | 111223114
211121314 | 17. | 121121134 | 27. | 121123114
131111224 | 18. | 121141214 | 28. | 123112114
132112114 | 19. | 131211124 | 29. | 211123114
0. ] 211211134 | 20. | 131211214 | 30. | 311112124

e e S A e

Table 2: Interval-based description of the temporal patterns from Experiment 1 of
Povel and Essens (1985). For this pattern coding, 1 = 200-ms I0I, 2 = 400-ms IOI,
3 = 600-ms IOI, and 4 = 800-ms IOI.

3.5.1 Rationale

One can ask several questions with regard to the entrainment of the adaptive oscilla-
tor in comparison with listeners’ abilities to reproduce these patterns. First, can the
adaptive oscillator achieve and maintain stable entrainment for temporal patterns of
varying rhythmic complexity. Earlier, I showed stable entrainment of the adaptive
oscillator by isochronous inputs. Second, if it can entrain to more complex rhythms,
does the adaptive oscillator lock onto a beat period consistent with listeners’ per-
ception of beats? Third, does the adaptive oscillator align its beats appropriately
(i.e., are the down beats in the right place?). The ability of the adaptive oscillator to
display appropriate behavior, as determined by answering the above three questions,
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Figure 3.16: Input representation of the temporal patterns used in Experiment 1 of
Povel and Essens (1985).

will demonstrate a successful local method for tracking beats of rhythmic patterns
in spite of timing variability; that is, one that does not determine beats by applying
rules to the entire pattern. In addition, this simulation addresses recent criticism
of my proposed oscillator model by Large (1994) and Large and Kolen (1994) who
suggest that it requires “strong assumptions about phenomenal accentuation in order
to display appropriate behavior.” By strong assumptions about phenomenal accen-
tuation, they are referring to accents introduced by modulating the amplitude of the
input signal, such as an accent introduced by increasing the intensity of an input
pulse relative to another. This criticism is addressed directly here, since the tested
patterns are comprised of identical inputs.
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3.5.2 Method

In order to answer these questions, a single adaptive oscillator was exposed to multiple
cycles of each of the 35 rhythmic patterns in the Povel and Essens stimulus set. In all
cases, the adaptive oscillator either achieved stable entrainment after four cycles or
it was clear that it would not. For this simulation, the resting period of the oscillator
was 500 ms, halfway between the maximum and minimum intervals comprising these
input patterns. Before the cyclic presentation of an input pattern, the period of
the oscillator was initialized to its resting value. The other parameter values of the
oscillator were as follows: o = 4.0, f# = 0.0, w; = 0.5, w, = 1.0, Ymax = 1.0,
, = 1000, and © = 0.57. These parameter settings were chosen to test the ability of
a minimal version of the adaptive oscillator to be entrained by patterns in the set.
For this minimal version, the adaptive oscillator did not alter the size of its temporal
receptive field or decay its period towards its resting value. The adaptive oscillator
was tested for four noise conditions: 0%, 5%, 7%, or 10% temporal variability added
to each interval, as determined from a uniform random distribution.

3.5.3 Results

The results from all four noise conditions are summarized in Figure 3.17. For the
no-noise condition, the adaptive oscillator locked onto a 400-ms beat period for 80%
of the tested patterns, and for all but three of those patterns (Patterns 12, 33, and
34) beats coincided with natural accents in the patterns (cf., Handel 1989). For the
remaining 20% of the tested patterns, its period oscillated between approximately
400 and 600 ms. With the addition of 5% “noise” to the timing of the intervals,
the adaptive oscillator was able to be entrained by the remaining 20% of the tested
patterns; thus, performance improved with noise. However, additional variability
beyond 5% reduced the ability of the adaptive oscillator to be entrained by the tested
patterns, with performance in the 10%-noise condition slightly below that in the
no-noise condition.

Two examples (Patterns 5 and 12) illustrate the adaptive oscillator’s performance
in the no-noise and 5%-added-noise conditions, in which entrainment by the Povel
and Essens pattern set improved from 80% to 100%. The responses of the model to
Patterns 5 and 12 in the no-noise condition are shown in Figures 3.18 and 3.19, and
those for the 5%-noise condition are shown in Figures 3.20 and 3.21, respectively.
In these figures, the last cycle of the tested pattern is displayed in Panel (A), the
entrained response of the oscillator for the last cycle is shown in Panel (B), the
output (its measure of synchrony) over the course of all four cycles is shown in Panel
(C) and the corresponding changes in the oscillators’ period are shown in Panel (D).

For Pattern 5 in the no-noise condition, the oscillator failed to be entrained;
instead its period oscillated between approximately 400 and 600 ms every two cycles
as shown. However, in the 5%-noise condition for the same pattern, the period did
converge to 400 ms after about a cycle and a half. For pattern 12 in the no-noise
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Figure 3.17: Performance of adaptive oscillator on Povel and Essens (1985) data set
for the four noise conditions.

condition, the oscillator successfully achieved and maintained a 400-ms beat period,
but its placement of beats did not coincide with natural accents in the pattern. For
this pattern, most listeners would hear the second of the first two inputs as accented,
not the first as indicated by the model. With the addition of 5% noise to Pattern
12, the oscillator still achieved a 400-ms beat period, but its placement of beats was
shifted to correspond with a more natural pattern of accents than in the no-noise
condition.

In summary, stochastic variability in the timing of intervals in a rhythmic pattern
(or stochastic variability in the adaptive oscillator’s period) can improve entrainment
in the following two ways: (1) by forcing the adaptive oscillator out of a cyclic pattern
of period changes and into a stable attractor (as evidence in Figure 3.20), and (2) by
changing the way the oscillator phase locks to the input pattern, which may improve
the placement of beats in some cases (as evidenced in Figure 3.21). Moreover, the
results from this simulation clearly show that the phase-resetting adaptive oscillators
proposed in this thesis, as well as earlier (McAuley 1994a; 1994b) do not require strong
assumptions concerning phenomenal accentuation to display appropriate behavior,
as asserted by Large (1994) and Large and Kolen (1994), who favor incremental
adjustments in phase and dynamic modulation of the “sharpness” of the oscillator’s
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Figure 3.18: Performance of the adaptive oscillator on Pattern 5 in the no-noise
condition.

activation function (its temporal receptive field). Instead, even a minimal version of
the phase-resetting adaptive oscillator is able to appropriately entrain to 100% of the
Povel and Essens’ pattern set in the 5%-noise condition. However, there are some
cases for which modulating the size of the temporal receptive field is advantageous,
in particular to eliminate regions of 0 : 1 entrainment, in which the period of the
oscillator grows unbounded towards infinity, or to enable the oscillator to establish
more complex entrainment ratios (see Section 3.4.3 which examined the effect of
modulating the size of the temporal receptive field on the stable entrainment of the
adaptive oscillator, via sharpening the activation function).

3.5.4 Discussion

An interesting issue concerns comparing the time course of the adaptive oscillator’s
entrainment to rhythmic patterns with listeners’ abilities to reproduce those patterns,
assuming that in order for listeners to reproduce a rhythmic pattern, they must first
be able to-be-entrained by it, in a a sense engaging in a “cognitive oscillation.” One
way to obtain a measure of pattern difficulty for the model is to average the output
(a measure of synchronization) over the course of the pattern’s presentation. Using
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Figure 3.19: Performance of the adaptive oscillator on Pattern 12 in the no-noise
condition.

this metric, smaller average outputs correspond to more difficult patterns.

In contrast, as discussed in Chapter 1, Povel and Essens proposed a rule-based
clock model which was used to determine the rhythmic complexity of a temporal
pattern. Recall that the processing of the Povel and Essens model is in three steps.
First, phenomenal accents are determined using three preference rules suggested by
Povel and Okkerman (1981) for patterns of physically identical events. Second, all
possible clocks, defined as multiples of a fundamental period (in this case 200 ms) are
generated up to a clock-period equal to half the cycle duration of the rhythmic pattern
(in this case 1600 ms). This generation of all possible clocks includes the generation
of all possible alignments of each clock (i.e., all possible downbeats). Third, for each
such clock, a rule is applied which scores the amount of dissonance between the clock
and the natural patterning of accents determined in step 1. The best clock (i.e., the
one with the least dissonance) indicates the preferred beat period and the alignment
of the beats for the rhythmic pattern. In the clock model, the dissonance of the best
clock is used as a measure of rhythmic complexity. The patterns shown earlier in
Figure 3.16 are ordered according to this dissonance measure of rhythmic complexity.

An obvious question is whether the proposed adaptive-oscillator measure of pat-
tern difficulty correlates with listeners’ abilities to reproduce rhythmic patterns. To
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Figure 3.20: Performance of the adaptive oscillator on Pattern 5 in the 5%-noise
condition.

test this, pattern difficulty was measured using the proposed synchrony metric for
all 35 patterns of the Povel and Essens stimulus set for the 5%-noise condition. Al-
though not perfect, there is a positive correlation between the model’s measure of
pattern difficulty and the mean timing variability in listeners’ reproductions of these
patterns, as determined by Povel and Essens (1985). To illustrate one example, Povel
and Essens found that Pattern 5 was more accurately reproduced and easier to mem-
orize than Pattern 12. Similar, the adaptive oscillator was entrained by Pattern 5
more quickly than by Pattern 12. The smaller average output for Pattern 12 than for
Pattern 5 illustrates that Pattern 12 was more difficult for the model than Pattern 5,
in agreement with listeners’ performance.

Although this examination of rhythmic complexity using the adaptive oscillator
is preliminary, the technique I have introduced offers an alternative way to measure
the complexity of rhythmic patterns, one that is potentially better correlated with
listeners’ abilities to memorize and reproduce those patterns than Povel and Essens
rule-based model. In the next chapter, the adaptive-oscillator mechanism proposed
here is used as the basis for an Entrainment Model of time perception. This model
is evaluated in three tempo-discrimination simulations. The predictions of the model
are compared with human listener data for analogous tempo-discrimination tasks,
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Figure 3.21: Performance of the adaptive oscillator on Pattern 12 in the 5%-noise
condition.

providing additional support for the proposed adaptive-oscillator mechanism for the
processing of rhythmic patterns.



Chapter 4

The Entrainment Model

Returning now to the entrainment hypothesis, recall that Jones (1976) proposed that
the entrainment of attentional periodicities is the basis for the development of ex-
pectancies of when in time events in a pattern are likely to occur, guiding the tempo-
ral placement of attentional pulses, and thus influencing the overall perception of a
pattern, including the time intervals that comprise it. The development of adaptive
oscillators in the previous chapter provide an instantiation of this hypothesis, and thus
are a useful basis from which to develop an entrainment model of time perception.

As discussed in Chapter 2, the Contrast Model proposed by Jones and Boltz
(1989) was also based on this entrainment hypothesis. However, predictions derived
from this model were restricted by the data that it attempted to explain, since model
predictions were not linked to the dynamics of a functioning oscillator. In particular,
Chapter 2 described a set of embedded-interval and tempo-discrimination data that
were not intended to be explained by the Contrast Model and which were difficult
to see how this model could explain without substantial revision. In addition, these
data have proved to be difficult to provide an explanation for with the Multiple-Look
Model (Drake and Botte, 1993). It is these problematic data that I will now address
in the development of the adaptive-oscillator-based Entrainment Model.

4.1 Model Specification

Three assumptions form the conceptual framework of the Entrainment Model. First,
estimates of the duration of a single time interval or the tempo of a pattern of intervals
correspond directly to the periods of adaptive oscillators. Second, the detection of a
change in duration or tempo is the consequence of abrupt changes in the phase of an
adaptive oscillator. Third, the degree of one’s ability to detect changes in duration
and tempo is related to the degree of entrainment of adaptive oscillators to similar
external periodicities. Each of these three assumptions will now be elaborated upon,
forming the core of the time-as-phase hypothesis.

78
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4.1.1 The Mapping Between External and Internal Periods

Based on the evidence (described in Chapter 2) supporting a linear psychophysical
law for time, the proposed Entrainment Model of time perception assumes a linear
function of the form

Q=mT + b, (37)

relating stimulus time intervals (7) to their subjective estimation (£2) when presented
in isolation. Thus, Equation 37 specifies the mapping from external time intervals
to internal periodicities, instantiated as adaptive oscillators with resting periods (Q).
The parameters m (slope) and b (minimum subjective duration) specify the precise
mapping between the external time intervals (1) and the resting period () of the
tracking oscillator.

For a linear mapping to capture the overestimation of short intervals and the
underestimation of long intervals, as commonly reported in the time perception lit-
erature (see Chapter 2), the y-intercept b (or minimum subjective duration) must be
non-zero and the slope m must between 0.0 and 1.0. For all of the model simulations
reported in this thesis, I assume a minimum subjective duration (b) of 25 ms and an

indifference interval equal to 600 ms. The slope of Equation 37 is then determined by
m=1-——, (38)

resulting in m = 0.9583 for b = 25 ms and 7" = 600 ms.

By linking the concepts of subjective duration and attentional periodicity, we in-
troduce the concepts of an attentional indifference interval and a minimum attentional
period (or maximum attentional frequency). It is interesting to note that a minimum
subjective duration of 25 ms corresponds, in terms of frequency, to 40 Hertz, a com-
monly observed frequency of synchronized neural activity in different cortical areas
(Baird et al., 1994b; Gray et al., 1989)

4.1.2 Time as Phase

The second assumption of the Entrainment Model concerns the representation of time
as phase. Phase is a measure of relative time, in that a change (AT) in the duration
of a base interval (T') corresponds to a phase change (A¢) that is a fraction of the
period (T'):

AT

Ap = Ea (mod 1). (39)

For the Entrainment Model in which an adaptive oscillator with period €2 is a sub-
jective estimate of the time interval 7', the relationship between a time change AT
and the resultant phase change is given by

_ T+AT

Ad 5

(mod 1). (40)
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Thus, the phase change A¢ registers the effect of AT on the adaptive oscillator track-
ing the isochronous series of time intervals (7'). Appropriately, the phase change A¢
(or phase-difference) is a phase correlate of the time-difference (AT); for example, if
2 = T then a phase-difference (A¢) of zero corresponds to a time-difference (AT)
that is also zero. With respect to the Entrainment Model, the interesting issue con-
cerns how the relationship between phase differences (A¢) and time differences (AT)
vary as function of the ratio between the base interval 7" and the subjective estimate
2, expressed as % (i.e., the amount of over- and underestimation). For % > 1 time is
underestimated, for % < 1 time is overestimated, and for % = 1.0 subjective time is
identical to clock time (i.e., the base interval T is an indifference interval). In order to
investigate how the relationship between time differences and phase differences vary
as a function of this ratio (&), it is useful to rewrite Equation 40 as

T AT
=[5+ (mod 1) (41)
and to represent phase on [—0.5,0.5] instead of on [0,1]. In which case, positive
phase change ideally corresponds to a positive time change +AT and negative phase
change ideally corresponds to a negative time change —AT. Thus, the phase changes
associated with +AT and —AT will be distinguished as A¢, and A¢_, respectively.

For the chosen mapping between time interval (7') and the resting period (€2) of the
adaptive oscillator, there are three cases to consider.

Case 1: % = 1.0. For Case 1, Q = T with T corresponding to an indifference
interval; thus Equation 41 reduces to

Ag = % (mod 1). (42)
Consequently, lengthening or shortening 7' by p% produces the same magnitude of
phase change regardless of whether the time change AT is positive or negative (i.e.,
|A¢_| = |A¢4|). To provide a concrete example of Case 1, suppose T is lengthened
by 10%, as depicted in Figure 4.1, then A¢, = 0.1. On the other hand, if T is
shortening by 10%, then A¢_ = —0.1. For both the 10% increase and 10% decrease
in duration, the magnitudes of the phase changes are equal (JA¢,| = |A¢_| = 0.1).
Moreover, AT = 0.0 corresponds to A¢ = 0.0.

Case 2: % > 1.0. For Case 2, 2 < T and subjective time is an underestimation

of clock time. Consequently, the magnitudes of A¢p, and A¢_ are not equal for
equivalent positive and negative time changes AT'. Instead, within a limited range of
equivalent positive and negative time changes (AT'), the magnitudes of the resultant
phase changes (A¢) are unequal, such that |[A¢,| > |A¢_|. In addition, a zero time
change (AT = 0.0), which in Case 1 corresponded to a zero phase change (A¢ = 0.0),
corresponds here in Case 2 to a positive phase change (A¢ > 0.0). Another effect
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Q Q

Figure 4.1: Tllustration of Case 1: Lengthening of time interval (T) for an oscillator
with a period (€2) equal to T.

of underestimation with respect to the Entrainment Model is that it stretches the
mapping between AT and A¢, since % in Equation 41 represents a larger fraction

of the base interval T' than % does, as illustrated in Figure 4.2.

T

Figure 4.2: Tllustration of Case 2: Lengthening of time interval (T) for an oscillator
with period (€2) that underestimates (is shorter than) T.

Case 3: % < 1.0. For Case 3, which is similar but symmetric to Case 2, Q > T and
subjective time is an overestimation of clock time. Similar to Case 2, the magnitudes
of Ap, and A¢_ are not equal for equivalent positive and negative time changes
(AT). Instead, symmetric with Case 2, |[A¢_| > |A¢p,| within a limited range of
ATs. Also for Case 3, the phase change (A¢) corresponding to a zero time change is
negative, opposite from Case 2. Another effect of overestimation with respect to the
Entrainment Model is that it compresses the mapping between AT and Ag, since %
in Equation 41 represents a smaller fraction of the base interval 17" than % does, as

illustrated in Figure 4.3.

J100

Figure 4.3: Illustration of Case 3: Lengthening of time interval (T) for an oscillator
with period (€2) that overestimates (is longer than) T.
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In Chapter 2, we discussed how the over- or underestimation of an isolated time
interval can result in negative or positive time errors respectively, in a comparison or
reproduction task. For the Entrainment Model, over- and underestimation results in
positive and negative phase errors; that is, the phase difference (A¢) corresponding
to a zero time change (AT = 0.0) is skewed from A¢ = 0 to a negative or positive
value. This phase is the model’s point of subjective (phase) equality (PSE}), which
is analogous to the reported point of subjective time equality for human listeners in
comparison and reproduction tasks.

4.1.3 The Just-Noticeable Phase Difference

The third assumption of the Entrainment Model involves the definition of a phase
correlate to the just-noticeable time difference (JND), which I will term the just-
noticeable phase difference (JND,). The just-noticeable phase-difference specifies
the smallest detectable time change AT in a base interval T, within the context of
the adaptive oscillator tracking that time interval. JND, is define as an absolute
threshold (independent of the sign of A¢). Thus, if the magnitude of the phase-
difference (A¢) corresponding to a time change (AT) is greater than JN D, then the
time change (AT) is detected, otherwise it is not.

In agreement with the entrainment hypothesis, the Entrainment Model assumes
that the just-noticeable phase difference decreases as the tracking adaptive oscillator
becomes entrained by the input sequence. In Chapter 3, it was shown that the output
sequence o(n) provided a dynamic measure of the adaptive oscillator’s synchrony with
the input sequence that was useful as a “teaching” signal in the learning equations.
In the Entrainment Model, the output o(n) is used to modulate the just-noticeable
phase difference according to the following rule:

JNDy = JNDy,_ . [1 —o(n)]+o(n)JND,_ . . (43)

The parameters JNDy_ . and JND,, . establish the minimum and maximum just-
noticeable phase differences. The minimum is set to a phase value near zero (for the
reported simulations JND,_ . = 0.03) and the maximum (for the represented range
of phases) is set equal to 0.5. Each successive time interval that increases the output,
reduces the just-noticeable phase difference. Thus, as the tracking adaptive oscillator
is entrained by an input sequence, the time sensitivity of the Entrainment Model
improves. In the limit, o(n) = 1.0 and JNDy = JNDy_, .

In terms of the precise performance of the Entrainment Model on a time discrim-
ination task, the main issue concerns the relationship between JND and JNDy. If
we suppose that in the limit, the tracking adaptive oscillator is perfectly entrained
by the input sequence, then the period (€2) of the oscillator is approximately equal
to the time interval (7') and JND, = JND,_. . This is an example of Case 1 since
£ ~ 1.0. If Case 1 is true for a range of time intervals ('), then within this range,
JN Dy is constant. Furthermore, since JN Dy is a measure of relative time, constant
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JN D, corresponds to constant relative JN D (in agreement with Weber’s law). Thus,
perfect entrainment of the model across all time intervals (T") predicts time sensitivity
consistent with Weber’s law. A second implication of Case 1 is that thresholds for
detecting time increases and time decreases are identical since |A¢, | and |A¢_| are
the same for positive and negative time changes.

However, for the Entrainment Model, Case 1 only applies (initially) at the in-
difference interval specified by the mapping between external time intervals (7") and
the resting period (Q) of the tracking adaptive oscillator. For the suggested linear
mapping (Equation 37) the indifference interval was specified as 600 ms. Thus, for
intervals (T) greater than 600 ms, Q@ < T (Case 2 applies) and for intervals (T
less than 600, Q > T (Case 3 applies). For these cases, JND, is not constant and
consequently performance does not correspond to constant relative JND, as would
be predicted by Weber’s law. Instead, JN Dy is influenced by the amount of under-
or overestimation, according to Case 2 or Case 3, respectively. In addition, for time
intervals in which Case 2 and Case 3 apply, the thresholds for detecting time increases
and time decreases are not identical since |A¢, | # |A¢_| for equivalent positive and
negative time changes.

Moreover, the amount of under- or overestimation by the tracking adaptive oscil-
lator, as well as the precise value of JN Dy is a dynamic property of the Entrainment
Model. As a result, the relationship between JND and JN Dy is also dynamic, vary-
ing as a function of the ratio £ and the output o(n), which can only be determined

Q
by simulating the experimental task.

4.1.4 Parameters

The dynamic relationship between JN Dy and JND (performance) will be examined
in a series of three tempo-discrimination simulations in Section 4.2. Recall that the
output o(n) modulates the just-noticeable phase difference JN D, according to Equa-
tion 43. Thus, the performance of the Entrainment Model is controlled by the seven
parameters of the adaptive oscillator which influence the dynamics of the output
function: « (the entrainment rate), § (the decay rate), Ymax (maximum activation
sharpening exponent), o, (weighting of current phase-reset relative to previous out-
put), w;I (input coupling strength), , (the gain on the input impulse-response func-
tion, and © (the bias on the input impulse-response function). The input coupling
strength, the impulse response gain, and the maximum exponent on the activation
function are fixed parameters of the model and are specified as w;/ = 1.0, , = 1000.0,
and ymax = 1.0, respectively. The impulse response bias ©, the entrainment rate «,
the decay rate , and the output weight o, are free parameters of the model. The
output weight o, controls how fast the output changes in response to entrainment or
decay of the oscillator, and thus influences how fast the model approaches the mini-
mum just-noticeable phase difference. By specifying the gain , as a “large number”,
the input impulse response function effectively reduces to a descending step function
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(as is shown in Figure 3.10 of Chapter 3) for which the temporal boundary (I101y)
between entrainment and decay is given by

log 0.5
]

Consequently, for ¢ less than the threshold /0lg, the input entrains the oscillator,
but for ¢ greater than the threshold IOlg, the oscillator’s period decays towards
its resting value. In terms of the effect of the output o(n), ¢ < IOIg contributes
to increasing the output and ¢t > IOlg contributes to decreasing the output. The
overall change in output after each discrete input pulse n reflects a combination of the
increases and the decreases. The interaction of the entrainment and decay processes,
mediated by « and 3, as well as by the specific choice of threshold IOIg, is critical
to the performance of the model.

1016 = | . (44)

4.2 Model Predictions

The predictions of the Entrainment Model relating to tempo discrimination are in-
vestigated for a series of three tempo-discrimination simulations, in which the tempo
sensitivity of the Entrainment Model is compared with human tempo sensitivity. All
of the simulations investigate the model’s thresholds for detecting changes in the
tempo of isochronous sequences. Because the structure of the simulations is mapped
so closely to the tempo-discrimination experiments involving human listeners (down
to trial-to-trial performance), the model participates in the simulations in much the
same way as listeners participate in experiments. The model performs each trial of the
experiment and the tempo sensitivity of the model is measured using a psychophysical
procedure. This method is advantageous because, in a addition to providing quanti-
tative measures of performance in terms of mean relative JNDs, it permits the easy
investigation of a number of issues related to the process of tempo discrimination,
that can not be explored with a purely descriptive model. Examples of such issues
are: (1) do listeners exhibit systematic errors in tempo discrimination, (2) are there
threshold differences between detecting tempo increases and tempo decreases, and
(3) how might the temporal structure of each trial affect discrimination thresholds?
These are some of the issues that will be explored with the Entrainment Model in the
simulations described below.

There are three simulations. Simulation 1 investigates the model’s predictions con-
cerning the influence of the number of sequence intervals and the sequence duration on
relative JND. Simulation 2 investigates the model’s predictions concerning differen-
tial sensitivity to tempo increases and decreases. Simulation 3 examines the model’s
predictions concerning the influence of temporally-directed attending on tempo sen-
sitivity. In addition, Chapter 5 reports data from two listening experiments designed
to test the predictions made from simulations 2 and 3, for which no human data was
available for comparison.
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4.2.1 Tempo Discrimination

All of the simulations evaluate the tempo sensitivity of the Entrainment Model using
the 2AFC “which is faster” discrimination paradigm favored by Drake and Botte
(1993) and depicted in Figure 4.4. For this task, the model’s tempo judgments are
derived in a four step process, intended to model the process by which listeners make
similar judgments. In the first step, it is assumed that listeners’ tempo judgments are
based on entrainment to the standard sequence, measured by o(n). The computation
of o(n) determines the just-noticeable phase-difference JND,. In the second step,
the detection of a tempo change is immediate, following the first different interval
(T + AT) of the comparison sequence with the ending marker of the first different
interval establishing the absolute phase-difference |A¢| (or |A¢"(n+1)| in terms of the
notation used in Chapter 3). In step 3, if |A¢| is greater than the threshold JN D,
then a tempo change is detected, otherwise not. In step four, if a tempo change is
detected in step 3, then the sign of A¢ establishes the direction of the tempo change
(increase or decrease). Negative A¢ indicates that the comparison sequence is faster
than the standard sequence; positive A¢ indicates that the comparison sequence is
slower (or the standard sequence is faster in terms of the “which is faster” task).

101 10l +AlQI
STANDARD COMPARISON

Figure 4.4: Illustration of the “which is faster?” tempo-discrimination task for a
2-interval isochronous standard.

Figure 4.5 shows the response of the adaptive oscillator in such a simulated “which
is faster” trial. In this example, the resting period of the oscillator is 600 ms and the
input sequence represents a 4-tone standard sequence with a 500-ms 1OI followed by
a 4-tone comparison sequence that is 20% slower (AT = +100ms). The gap between
the standard and comparison sequences is 1000 ms. The output o(n) and the just-
noticeable phase difference (JND,) are computed after each input pulse. At the
beginning of the comparison sequence the output o(5) is at 0.851, indicating a fairly
high level of synchrony between the oscillator and the input sequence. For JND,, . =
0.03 and JNDy, ., = 0.5, the output value of 0.851 specifies (by Equation 43 a just-
noticeable phase difference JNDy of 0.1. The first interval (second input pulse) of
the comparison sequence generates a phase-difference of 0.14 (in the Figure, this
corresponds to a decrease in the output). Since the phase difference of 0.14 is larger
than the output-modulated threshold of 0.1, the model detects the change in tempo
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Figure 4.5: Response of adaptive oscillator to a simulated tempo-discrimination trial.
The input sequence represents a four-tone standard sequence with a 500-ms IOI fol-
lowed by a four-tone comparison sequence with a 600-ms IOI (a 20% slower tempo).
The gap between the two sequences is 1000 ms, preserving the rhythm established by
the standard.

and indicates that the standard sequence is faster, due to the positive phase difference
detected.

Figure 4.6 illustrates the process of entrainment to a standard sequence in a com-
parison task using a phase-portrait description. Successive phase portraits show how
the adaptive oscillator is entrained by a 500-ms standard sequence (top panel, iden-
tical to the simulated trial in Figure 4.5) and a 700-ms standard sequence (bottom
panel). The adaptive oscillator’s period reflects improved estimates of the standard
sequence’s 1Ol as it entrains, resulting in reduced over- and underestimation in the
top and bottom panels respectively, . The solid black circle marks the beginning of
the oscillator’s cycle. Each successive input pulse resets the oscillator at a phase closer
to zero phase, as shown by the degree of shading. As the reset phases approach 0.0,
the outputs o(n) approach 1.0 and the just-noticeable phase difference approaches its
minimum value. In the top panel, the initial oscillator period of 600 ms is an overes-
timate of the 500-ms IOI. By the fourth input (the end of the standard sequence) the
estimate has improved to 525 ms. In the bottom panel, the initial oscillator period of
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Figure 4.6: Phase portrait description of adaptive-oscillator entrainment by an input
sequence representing a 4-tone standard sequence in a comparison task. The top and
bottom panels demonstrate improved estimates of the standard’s 101, for IOIs of 500
and 700 ms, respectively. In both cases, the solid black circle marks the beginning of
the oscillator’s cycle. Each successive input pulse resets the phase of the oscillator at
a phase closer to its zero-phase, as shown by the degree of shading.

600 ms is an underestimate of the 700-ms IOI. In this case, the subjective estimates
improve to 679 ms by the end of the standard sequence.

Figure 4.7 shows the process of detecting a tempo change during the presentation
of the comparison sequence. The phase-portrait description illustrates the state of
the adaptive oscillator after the first interval (second input pulse) of the comparison
sequence with a 600 ms IOI (20% slower than the standard sequence in this case). In
Figure 4.6, the oscillator’s estimate is a 5% overestimate of the standard sequence’s
IOI of 500 ms. Thus, a “slower” comparison sequence with an inter-onset-interval
between 500 and 525 ms will trigger negative phase-differences, falsely indicating
“faster” instead of “slower” (if such phase error is large enough and the just-noticeable
phase difference is small enough). Analogously, if the model instead underestimated
the standard sequence’s I0I by 5%, a comparison sequence with an IOI between 475
and 500 ms could trigger positive phase differences, falsely indicating “slower” instead
of “faster”. Thus, in the Entrainment Model, over- and underestimation of time can
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Figure 4.7: Phase-portrait description of the detection of a tempo change during the
presentation of the comparison sequence. The comparison interval (7'+AT = 600ms)
marked by the first two input pulses of the comparison sequence results in a phase
difference of A¢p = 0.14 (marked by the open circle). Since this phase difference is
larger than the just-noticeable phase-difference of 0.1 computed from the standard
sequence, the tempo change is detected. Since the phase difference is positive, the
tempo of the comparison sequence is perceived as slower than that of the standard.

result in systematic errors in tempo discrimination; i.e., even if a tempo change is
detected with respect to |¢| > JND,, the perceived direction of the tempo change
may be incorrect. This prediction concerning differential sensitivity to increases and
decreases in tempo is examined in detail in the second simulation

4.2.2 Simulation 1: Duration & Number of Intervals

Simulation 1 addresses the model’s predictions concerning the influence of the number
of sequence intervals and the sequence duration on tempo sensitivity for different
sequence tempos. The simulation data will be compared directly with the tempo
data from Drake and Botte (1993; 1994) and Michon (1964) to address three main
issues. First, it was discussed in Chapter 2, that listeners sensitivity to the tempo of
an isochronous sequence improves with the number of intervals in that sequence.

Second, tempo sensitivity improves more, with increasing number of intervals,
for 10Is shorter than about 300 ms, than for IOIs longer than about 300 ms. This
differential improvement in tempo sensitivity results in an extension of the optimal
zone of tempo sensitivity to a shorter IOI (Drake and Botte, 1993; Drake and Botte,
1994; Michon, 1964). As discussed in Chapter 2, many researchers have suggested
that this potentially heightened sensitivity implies that the processing of intervals
shorter than about 300 ms is qualitatively different from the processing of intervals
longer than 300 ms, possibly involving distinct mechanisms (Drake and Botte, 1993;
Michon, 1964; Hirsh et al., 1990; ten Hoopen et al., 1994).

Third, it was discussed that the maximum number of intervals which lower the rel-
ative JND multiplied by the base IOI (which I termed the optimal sequence duration
in Chapter 2) is constant at about 1.0 seconds for IOIs shorter than about 300 ms, but
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shifts abruptly to about 2.5 seconds for IOIs longer than about 300 ms (Drake and
Botte, 1994), providing some additional evidence which suggests that time intervals
shorter than 300 are processed differently than those longer than 300 ms.

Method

The stimulus set for Simulation 1 consisted of isochronous sequences with 1OIs of
100, 300, 500, 700, 900, 1100, 1300, and 1500 ms. Keeping with the convention
established by Michon (1964), I have defined tempo in terms of inter-onset-interval,
instead of the number of events per minute. Standard sequences consisted of 1 to 20
intervals. Each input pulse had an amplitude of 1.0, representing a tone onset. On
each simulation trial, the model was presented with a standard sequence followed by
a comparison sequence that was slightly faster (IOI — AIOI) or slower (IOI + AIOI)
than the standard. The interval-pattern-interval between the onset on the last input
of the standard sequence and the onset of the first input of the comparison sequence
was twice the IOI of the standard sequence (i.e., twice the “expected” interval based
on an extension of the periodicity of the standard). The model’s task was to judge,
using the decision procedure described in Section 4.2.1, which sequence was faster.
On each trial a comparison sequence was randomly selected that was either faster
or slower than the standard sequence. Since the specified model is deterministic, the
model should always make either a correct or incorrect response for a fixed-percentage
tempo change (regardless of direction), unless there is difference between detecting
tempo increases and tempo decreases, due to |A¢,| # |A¢p_|. With such an effec-
tive threshold difference between detecting tempo increases and tempo decreases, the
model potentially exhibits systematic errors (e.g., always producing a correct response
for a 10% tempo increase, while at the same time always producing an incorrect re-
sponse for a 10% tempo decrease). To test this possibility while maintaining the same
experimental paradigm used by Drake and Botte (1993), discrimination thresholds
were obtained for each interval condition and for each investigated tempo condition
using an adaptive-tracking procedure (Levitt, 1971). Each threshold measurement
was based on 100 simulated trials (one block). At the start of each block, the tempo
difference between the standard and comparison sequences was set to 20%. If the
model made two correct responses, the level was decreased by 1.0%, If the model
made a single incorrect response the level was increased by 1.0%. By iterating this
procedure, the level converges to a value corresponding to 70.7% correct responses;
i.e., the just-noticeable difference in tempo. For each tracking history, relative JND
(which reflected an average of the thresholds for tempo increases and tempo decreases)
was determined by averaging the tempo differences of the the last 50 trials of each
block. Threshold measurements were repeated 20 times for each condition to obtain
an average measure of relative JND. Since the reported version of the model is deter-
ministic, the only reason for repeating the measurement procedure 20 times for each
condition is to average out potential differences in measured relative JNDs due to the
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specific order of tempo-increase and tempo-decrease trials.

Results

The mean relative JNDs obtained in this simulation are shown in Figure 4.8 for all
tempo conditions and for 1-, 2-, 4-, and 6-interval sequences. This specific set of
interval conditions was chosen for direct comparison with the Drake and Botte tempo
data (Drake and Botte, 1993). In order to illustrate the effect on performance of
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Figure 4.8: The influence of the number of sequence intervals on the model’s tempo
sensitivity for 8 different tempo conditions. Data for four different sets of parameter
values is shown. In (A), o = 4.0, 3 = 0.0, w, = 1.0, and © = 0.57. In (B), a = 4.0,
f = 0.005, w, = 1.0, and © = 0.57. In (C), « = 4.0, § = 0.0, w, = 0.75, and
© =0.57. In (D), @ = 4.0, = 0.005, w, = 0.75, and © = 0.57.

varying the free parameters of the model, each of the four graphs depicts the model’s
performance for a different set of adaptive-oscillator parameter values (as described
in the Figure caption). In all of the graphs, a = 4.0, © = 0.57, and JND,_, = 0.03.
Assuming in the limit that {2 = T', the minimum just-noticeable phase difference of
0.03 corresponds to a relative JND (or %) of 3.0%. For © = 0.57, the temporal
placement of the entrain/decay boundary (IOIg) is approximately 1100 ms. The
remaining two free parameters, w, and 3, vary systematically from graph to graph.
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In Graph A, the decay rate is zero (3 = 0.0) and the output weight is at its
maximum value (w, = 1.0). With w, = 1.0, the adaptive oscillator uses only the
current phase reset to determine its output. Thus, the just-noticeable phase difference
(which is modulated by the the output) is specified by each successive phase reset.
As can been seen in Graph A, in this minimal version of the model (without decay
or phase memory), the relative JND is fairly constant for IOIs between 300 and
1500 ms (in agreement with Weber’s law) but increases abruptly for those shorter
than 300 ms. Increasing the number of intervals does improve the relative JND, but
much more dramatically for IOIs shorter than 300 ms than those longer than 300 ms.
These model data are similar to the experimental data discussed in Chapter 2, which
researchers argued support different processing of time intervals shorter than about
300 ms from the processing of those longer than about 300 ms. (Drake and Botte,
1993; Hirsh et al., 1990; Michon, 1964; Schulze, 1989; ten Hoopen et al., 1994)

However, the model data show that this assumption of distinct processing of
short and long IOIs is not necessary to produce such a result. The Entrainment
Model uses a single mechanism that is unchanged for fast and slow sequences. The
observed differences between the model’s performance on short and long [OIs, shown
in Graph A, are due entirely to the dynamics of entrainment. That is, in this case,
the longer 10Is provide a longer period of time to entrain (in between input pulses)
relative to the shorter IOIs. For the longer IOIs maximum sensitivity is attainable
by the Entrainment Model in one or two cycles, but for the shorter IOIs, maximum
sensitivity is only attained by the Entrainment Model after many cycles. This issue
is further explored in Graph B.

In Graph B, all parameters are the same as in Graph A, except decay which is
now non-zero (f = 0.005). The pattern of results in this case is the same as in
Graph A, except that the relative JND curve is now U-shaped, with approximately
three zones of tempo sensitivity, as reported by Drake and Botte (1993): (1) a zone
of maximum sensitivity between about 300 and 900 ms; (2) a zone of reduced, but
potentially heightened sensitivity for IOIs shorter than 300 ms for which increasing
the number of sequence intervals reduces the relative JND; and (3) a zone of lesser
sensitivity for [OIs longer than about 900 ms. This increase in relative JNDs for IOIs
longer than 900 ms is due to the addition of period decay. The 900-ms “boundary”
between zone (1) and zone (3) is due to the temporal placement of the entrain/decay
“boundary” (IOIy) at about 1100 ms. For IOIs longer than 1100 ms, period decay
begins to have a significant effect. For IOIs shorter than 1100 ms, each onset arrives
before the entrain/decay boundary and thus the effect of period decay is much less.

In Graph C, all parameters are the same as in Graph A (including zero decay),
except that the output weight is decreased (w, = 0.75). Decreasing o,, causes the
output o(n) to reach the asymptote at 1.0 more slowly. That is, the model gradually
accumulates evidence of its synchronization with the standard sequence based on a
memory of the previous outputs as well as the current reset phase. The output o(n)
can be viewed as a measure of the model’s confidence. Thus, by decreasing the output
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weight, the model’s confidence is built up more slowly. In addition, changes in the
just-noticeable phase difference accrue more slowly, causing the just-noticeable phase
difference to reach its minimum value JN Dy . later. Since JND, . is reached later,
the improvement due to increasing the number of intervals is much more pronounced
than in Graph B for all of the IOI conditions. For all of the IOIs except the shortest
(IOIs < 300 ms), most of the improvement in the relative JND occurs between one
and two intervals. However, for the shortest IOIs, relative JNDs continue to decrease
even for the 6-interval sequences.

Graph D combines the parameter change in Graph B (non-zero decay, resulting in
an entrain/decay boundary) and the parameter change in Graph C (output weight less
than 1.0, resulting in a more gradual improvement in tempo sensitivity). Including
both period decay and a gradual output function, turns out to be critical for providing
a comprehensive explanation of the Drake and Botte tempo data (Drake and Botte,
1993; Drake and Botte, 1994). Consistent with the Drake and Botte (1993) data
(see Figure 2.7 for comparison), the Entrainment Model shows a U-shaped relative
JND curve with the same three zones of tempo sensitivity specified in the discussion
of Graph C. In addition, identical to the Drake and Botte (1993) tempo data, the
Entrainment Model’s improvement in tempo sensitivity is most dramatic for IOIs
shorter than 300 ms, whereas no improvement in tempo sensitivity is observed for
the 1500-ms 1OI, after increasing the standard sequence to two intervals.

In order to account for their data with the Multiple-Look Model, Drake and
Botte (1993) assumed that listeners only integrate timing information within a lim-
ited temporal window. Thus, with a fixed temporal window (d), the number of useful
intervals (n) for any IOI condition is determined by 1%1' Thus, for short IOIs, the
number of useful “looks” is larger than for long IOIs. To determine listeners tempo-
ral window size (d), Drake and Botte (1994), as discussed in Chapter 2, specifically
investigated the extent to which increasing the number of intervals improves discrim-
ination thresholds. For a range of IOIs, they determined the interval number (n) for
which an additional interval failed to lower the relative JND (i.e., the addition of the
interval exceeded the listener’s temporal window). In Chapter 2, I identified this du-
ration (d = nIOI) as the optimal sequence duration. For 10Is < 300 ms, Drake and
Botte (1994) reported an optimal sequence duration of approximately 1 sec, whereas
for IOIs > 300 ms, they reported an optimal sequence duration of approximately 2.5
sec. Drake and Botte suggested that the discontinuity in these data provide even
stronger evidence that short intervals are processed by a different mechanism than
long intervals.

In order to test this claim, optimal sequence durations were determined for the
Entrainment Model for the parameter settings in Graph D. These data were then
compared with the “temporal window” data reported by Drake and Botte (1994)
(as shown in Figure 4.9). In agreement with the Drake and Botte data, the optimal
sequence duration of the model varied as a function of tempo with an abrupt transition
from about 1.0 second to 2.5-3.0 seconds at the 500-ms IOI. Thus, this modeling
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Figure 4.9: Interpretation of model performance in terms of optimal sequence duration
(or temporal window size according to Drake and Botte (1993; 1994)).

result shows that it is not necessary to posit distinct temporal window sizes in order
to explain listeners’ abilities to discriminate tempo. Instead, these tempo data can
be explained in terms of the adaptive-oscillator-based Entrainment Model, in which
performance is based on the interaction of two dynamic processes: period entrainment
and decay. The corresponding optimal JNDs obtained for the Entrainment Model are
shown in Figure 4.10 in comparison with the optimal relative JNDs from Drake and
Botte (1994) and the earlier tempo data from Michon (1964).

4.2.3 Simulation 2: Direction of Tempo Change

Previous models of time perception, including, Drake and Botte’s Multiple-Look
Model (Drake and Botte, 1993; Drake and Botte, 1994) and Jones and Boltz’s Con-
trast Model, have assumed no difference between the relative JNDs for increases in
tempo (—AJOI) and those for decreases in tempo (+AIOIT). In the specification of
the Entrainment Model in Section 4.1, it was shown that the relationship between the
JND and JND, is influenced by the amount of under- or overestimation of the base
interval (T"). Consequently, even if a tempo change is detectable (|JA¢| > JND,), the
perceived direction of the tempo change (increase or decrease) may be incorrect (i.e.,
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Figure 4.10: Maximum human and model tempo sensitivity for increases in the num-
ber of sequence intervals.

the sign of the phase change A¢ may not correctly specify whether the comparison
sequence is faster or slower than the standard sequence). Thus, distortions in the
relationship between JND and JND, due to & > 1.0 (Case 2) or & < 1.0 (Case 3)
predict systematic asymmetries in tempo discrimination, as suggested by Simulation
1. Simulation 2 specifically addresses the predicted differences in relative JNDs for
increases and decreases in tempo.

Method

The stimulus set used in Simulation 2 was the same as in Simulation 1. Relative JNDs
were established separately for increases and decreases in tempo, for each interval
number and IOI condition, by gradually reducing the tempo difference (+AIOI or
—AIOIT), in 1% steps, until the model made an incorrect response. The relative JND
for a decrease in tempo was the smallest +AJOI that the model was able to detect,
and the relative JND for an increase in tempo was the smallest —AIOI that the
model was able to detect. Thus, the combined measure of relative JND obtained in
Simulation 1 via an adaptive-tracking procedure which assumed no difference between
thresholds for detecting an increase or decrease in tempo, should be an average of of
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the separate measures of relative JND obtained here.
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Figure 4.11: Differences between thresholds for detecting increases and decreases in
tempo for the same four sets of parameter values as in Simulation 1.

Results

Mean relative JNDs for tempo increases and tempo decreases are shown in Figure 4.11,
for the four-interval sequences only, for the same four sets of parameter values used
in Simulation 1. Relative JNDs for the tempo increases and the tempo decreases are
indicated by the open squares and the crosses, respectively.

The main feature of all four graphs is that for shorter IOIs, the relative just-
noticeable tempo increase is lower than the relative just-noticeable tempo decrease.
Similarly, in Graphs B and D for longer 10Is, the relative just-noticeable tempo
decrease is lower than the relative just-noticeable tempo increase. In all cases, there
is no difference in tempo sensitivity for an intermediate range of I0Is. For Graphs B
and D, differential sensitivity to increases and decreases in tempo results in a crossing
pattern of relative JNDs.

For each of the Graphs, the observed differences in relative JNDs for increases and
decreases in tempo are due to the amount of over- or underestimation of the standard
sequence’s 1OI. Since for all cases, short IOIs are initially overestimated and long
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[OIs are initially underestimated, the relative JND curves for increases and decreases
in tempo are initially in a crossing pattern. However, as the Entrainment Model
successfully reduces the amount of over- or underestimation, the difference between
the thresholds for detecting increases and decreases in tempo is also reduced. With
no decay (Graphs A and C), the model becomes perfectly entrained by the standard
sequence for IOIs longer than about 300 ms (2 = IOI), but not for IOIs shorter
than about 300 ms (€2 > IOI). Thus, for these cases, relative JNDs for increases and
decreases in tempo are the same for IOIs longer than about 300 ms, but not for IOIs
shorter than about 300 ms. With decay (Graphs B and D), the model is unable to be
perfectly entrained by the longest IOIs (at least for four-interval standard sequences).
For these cases, relative JNDs for tempo increases and tempo increases are different at
both the shortest and longest IOIs, with tempo increases easier to detect at the short
IOIs and tempo decreases easier to detect at the long IOIs, resulting in a crossing
relative JND pattern.

Thus, the Entrainment Model with decay (which was found to be necessary for
modeling the data in Simulation 1) predicts that, for fast sequences, listeners should
be more sensitive to a tempo change for a comparison sequence that is faster than the
standard sequence; whereas, for slow sequences, listeners should be more sensitive to
a tempo change for a comparison sequence that is slower than the standard sequence.
However, as the listener becomes successfully entrained by the standard sequence (i.e.,
with more intervals in standard sequence), differences between thresholds for detecting
increases and decreases in tempo should be diminished. If supported by experimental
data, this prediction places strong constraints on possible models. In particular, if
experimental data shows threshold differences for increases and decreases in tempo
with the same crossover pattern as predicted by the Entrainment Model, then (1)
the class of multiple-look models (Drake and Botte, 1993; Drake and Botte, 1994;
Schulze, 1989) would no longer seem to be a a viable approach to tempo perception,
and (2) models of time perception based on dynamic-attending theory such as the
Jones and Boltz (1989) Contrast Model would require an adaptive oscillator similar to
the one proposed in this thesis in order to display appropriate behavior. At present,
the Contrast Model assumes no difference between relative JNDs for tempo increases
and tempo decreases.

4.2.4 Simulation 3: Temporally-Directed Attending

In studies of tempo discrimination a fixed gap is typically maintained between the
onset of the last event of the standard sequence and the onset of the first event of the
comparison sequence. The duration of this silent interval is usually a multiple of the
standard sequence’s 101, thus extending the periodicity of the standard sequence. In
terms of the temporal structure of the 2AFC tempo-discrimination task, one impli-
cation of the entrainment hypothesis is that the tempo of the comparison sequence
should be less well resolved when the comparison sequence arrives ‘out-of-phase’ with
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respect to the periodicity established by an isochronous standard. To this end, Sim-
ulation 3 examines the Entrainment Model’s predictions concerning discrimination
thresholds for systematic ‘out-of-phase’ variations in the onset of the comparison
sequence.

Method

In Simulations 1 and 2, the gap between the last input pulse of the standard sequence
and first input pulse of the comparison sequence (i.e, the inter-pattern-interval or IPT)
was twice the TIOI of the standard sequence. To examine the effects of temporally-
directed attending on the tempo-discrimination thresholds of the Entrainment Model,
relative JNDs were determined for a range of inter-pattern-interval conditions for
three-interval isochronous standard sequences for IOIs of 100, 300, 500, 700, 900,
1100, 1300, and 1500 ms. The inter-pattern-interval (IPI) varied between 100% of
the IOI of the standard sequence to 300% of the IOI of the standard sequence in
10% steps. In terms of phase, each 10% step is equivalent to a phase-step of 0.1
(one tenth of standand’s IOI). Thus, for IPIs of 150%, and 250% of the standard
sequence’s 101, the comparison sequence’s arrived 180 degrees out-of-phase (a phase
of 0.5) with respect to its expected temporal location (zero phase) established by
the IOI of the standard sequence. Discrimination thresholds were determined for
each combination of IOI and IPI using the adaptive-tracking procedure described in
Simulation 1. Like Simulation 2, relative JNDs for increases and decreases in tempo
were measured independently. Thus, the reported relative JNDs are an average of
the relative JNDs obtained for increases and decreases in tempo for the respective
condition.

Results

The relative JNDs obtained in this simulation are shown in Figure 4.12 for all IPIs
(phase conditions) and for all IOIs. Only the parameter values from Simulation 1 that
gave the “best fit” to the Drake and Botte data were tested (i.e., those used to obtain
data in Panel (D) in Figure 4.8). These data are displayed slightly differently than
those shown for the previous two simulations. The onset phase of the comparison
sequence is represented on the xr—axis as a percentage of the standard sequence’s 101
(i.e., the units on the zr—axis are independent of the standard sequence’s 10I). As
in the previous simulations, relative JND is represented on the y—axis. Each line
corresponds to a different IO1 for the standard sequence, as labeled in the legend.
There are three primary properties of the Entrainment Model to identify in this
graph. First, for all of the 1OIs, relative JND varies as a sinusoidal function of the
onset phase of the comparison sequence. Relative JNDs are lowest when the onset of
the comparison sequence is expected (i.e., occurs at a multiple of the standard’s IOI:
100%, 200%, or 300%) and highest when the onset of the comparison sequence is most
unexpected (i.e., occurs 180 degrees out-of-phase with the expected periodicity of the
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Figure 4.12: The effect of variations in the inter-pattern-interval on the model’s tempo
sensitivity: Each line indicates a different IOI condition, as specified.

standard: 150% or 250% of the standard sequence’s IOI). Second, for longer IOIs,
the sinusoidal-shaped-relative-JND curve is slightly phase-shifted towards shorter IPI
conditions. That is, the lowest relative JNDs occur for IPIs that are slightly less
than 100%, 200%, or 300% of the standard sequence’s IOI. This phase-shift in the
“expected” onset of the comparison sequence is due to the underestimation that
occurs for the longer 101Is. For example, if the model underestimates the standard’s
IOI by 10%, the “expected” onset of the comparison sequence, based on multiples of
the subjective 101, will be 90%, 180%, or 270% of the actual IOI of the standard.
Third, as the absolute magnitude of the IPI increases, the discrimination performance
of the model worsens for corresponding phase offsets. For example, performance is
worse overall for the 200% condition than for the 100% condition. The degraded
performance observed as a function of the magnitude of the IPI is due to the gradual
“decay” of the oscillator’s period back to its resting value. In addition, performance
degrades more for longer IOIs than for shorter IOIs because of the temporal placement
of the entrain/decay boundary. Thus, in addition to predicting that tempo differences
between the standard and comparison sequences should be better resolved when the
onset of the comparison sequence is at an “expected” temporal location than when it
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is at an “unexpected” temporal location, the Entrainment Model predicts that short-
term memory for the tempo of a sequence should be better for tempos close to the
resting rate of the tracking adaptive oscillator than for tempos that are not.

4.3 Model Summary

In this chapter, I specified an Entrainment Model of time perception based on the
proposed adaptive oscillator. The main purpose of developing this model was to eval-
uate its predictions concerning factors which influence listeners’ abilities to detect
changes in the tempo of isochronous sequences. The modeling efforts (in Simulation
1) focused on a set of human data from several tempo-discrimination experiments
(Drake and Botte, 1993; Drake and Botte, 1994; Michon, 1964) which were difficult
to explain with the Multiple-Look Model and not intended to be explained by the
Contrast Model. The Entrainment Model provided a parsimonious explanation for
these data in terms of the interaction of the entrainment and period-decay processes.
This modeling work was motivated by the belief that in order to explain the processing
mechanisms underlying complex rhythmic behaviors, we must first be able to explain
the mechanism responsible for the perception of simple rhythms, such as isochronous
sequences. It should be apparent to the reader, that isochronous sequences provide a
rich, yet simple, test bed to probe the nature of human tempo perception. This chap-
ter closes with a summary of the Entrainment Model, enumerating its assumptions
and predictions.

Assumptions

1. The Entrainment Model assumed a linear psychophysical law for time for which
short intervals are overestimated and long intervals are underestimated with re-
spect to an intermediate indifference interval. The resting period of the adaptive
oscillator, initially determined by the linear mapping, provided the model with
subjective estimates of isolated time intervals.

2. The Entrainment Model assumed that listeners’ internal representation of a
time interval is as a phase angle. The relationship between the time difference
(AT) and the phase difference (A¢) triggered by AT was determined by the
amount, the adaptive oscillator over- or underestimates the time interval T
Only when ©Q = T did a zero time-difference (AT = 0.0) correspond to a zero
phase-difference (A¢ = 0.0).

3. The Entrainment Model assumed that there is a phase analog of the just-
noticeable time difference (JND), which I termed the just-noticeable phase
difference (JNDy). The just-noticeable phase difference specified the smallest
detectable time difference AT in a base interval 7', within the context of the
adaptive oscillator tracking that time interval.
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4. The Entrainment Model assumed that the just-noticeable phase difference JN D,
decreases as a listener becomes entrained by the stimulus pattern. This assump-
tion was incorporated into the following rule

JNDy = JNDy, [l —o(n)]+o(n)JNDy_.

in which the output o(n) of the adaptive oscillator modulates the just-noticeable
phase difference between a maximum (JNDy, ) and a minimum (JNDy . )
value.

5. The Entrainment Model’s tempo judgments were derived in a four step process
intended to model the process by which listeners make similar judgments. First,
listeners’ tempo judgments were based on entrainment to the standard sequence
(measured by o(n)). Second, the detection of a tempo difference was immedi-
ate following the first different interval (T 4+ AT) of the comparison sequence,
with the first different interval establishing the phase difference A¢. Third, if
the phase difference (A¢) was greater than the just-noticeable phase difference
(JND,), then the tempo difference was detected, otherwise it was not. Fourth,
the sign of A¢ established the direction of the tempo difference (i.e., whether
the comparison sequence was faster or slower than the standard).

Predictions Based on the above assumptions, the Entrainment Model made the
following predictions concerning human tempo sensitivity.

1. The Entrainment Model predicted that relative JND is U-shaped as a function
of the IOI, with a zone of optimal sensitivity (smallest relative JNDs) centered
on the indifference interval for the initial linear mapping. The width of the zone
of optimal sensitivity depended on the values for the entrainment- and decay-
rate parameters, the temporal placement of the entrain/decay boundary, and
the initial degree of over- and underestimation specified by the linear mapping.

2. The Entrainment Model predicted that increasing the number of intervals in the
standard sequence lowers relative JNDs for all IOI conditions, but especially for
the shorter IOIs conditions. As a result, the zone of optimal sensitivity extended
to shorter IOIs when the number of intervals in the standard sequence increased.
For the reported simulation data, improvement in thresholds with increasing
number of intervals was most dramatic for IOIs shorter than 300 ms.

3. The Entrainment Model predicted that the optimal sequence duration (which
was defined for each IOl as the number of intervals which lower the relative JND
multiplied by the IOI) is approximately sigmoidal. For the reported simulation
data, the optimal sequence duration was about 1.0 second for IOIs shorter
than 500 ms and was about 2.5-3.0 seconds for IOIs longer than 900 ms, with
monotonically increasing values in between 500 and 900 ms.
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4. The Entrainment Model predicted that the relative JNDs for tempo increases
should be lower than those for tempo decreases for fast sequences (short IOIs);
and conversely the relative JNDs for tempo decreases should be lower than those
for tempo increases for slow sequences (long IOIs). However, as the listener is
entrained by the standard sequence (through having more isochronous inter-
vals), differences in tempo sensitivity for tempo increases and tempo decreases
should be diminished.

5. The Entrainment Model predicted that tempo differences between the stan-
dard and comparison sequence should be better resolved when the onset of the
comparison sequences occurs at an “expected” temporal location (based on the
periodicity of the standard sequence) than when it occurs at a “unexpected”
temporal location. Relative JNDs should be lowest when the onset of the com-
parison sequence occurs at a multiple of the standard sequence’s IOI (i.e., an
inter-pattern-interval of 100%, 200%, 300%, etc, of the standard sequence 10I)
and should be highest when the onset of the comparison sequence occurs 180
degrees out-of-phase with respect to the expected periodicity of the standard
sequence (i.e., an inter-pattern-interval of 150%, 250%, etc, of the standard se-
quence IOI). Therefore, relative JNDs should vary as a sinusoidal function of
the onset phase of the comparison sequence.

6. With regard to Prediction 5, the Entrainment Model predicted phase delays
and phase advances in the sinusoidal function depending on the degree of over-
or underestimation of the standard sequence’s 101, respectively.

7. Also with regard to Prediction 5, the Entrainment Model predicted that short-
term memory for the tempo of a sequence should be better for tempos close to
the listener’s preferred rate than for tempos substantially faster or slower than
the listener’s preferred rate.

Predictions 1, 2, and 3 of the Entrainment Model accounted for the tempo-
discrimination data reported by (Drake and Botte, 1993; Drake and Botte, 1994;
Michon, 1964). In order to even partially account for these data with the Multiple-
Look Model, Drake and Botte assumed that listeners are only able to use multiple
looks within a limited temporal window and that that this window has two sizes:
1.0 seconds for IOIs shorter than about 300 ms and 2.5 seconds for IOIs longer than
about 300 ms. Even with these assumptions, Drake and Botte were unable to explain
why increasing the number of intervals in the standard sequence improves thresholds
by a much greater amount for the short IOIs than for the long IOIs. Concordantly,
it has been repeatedly suggested that short and long intervals (or fast and slow se-
quences) are processed differently, perhaps by distinct mechanisms (Drake and Botte,
1993; Drake and Botte, 1994; Hirsh et al., 1990; Michon, 1964; Schulze, 1989; ten
Hoopen et al., 1994). The Entrainment Model, however, provided a single-mechanism
explanation for these data.
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Predictions 4, 5, 6, and 7 of the Entrainment Model concerned relatively unex-
plored experimental territory, for which no human data was available for comparison.
The following chapter, reports results from two listening experiments designed to test
aspects of these predictions.



Chapter 5

Two Tempo Discrimination
Experiments

5.1 Overview of the Listening Experiments

The two listening experiments presented in this chapter were designed to test predic-
tions of the Entrainment Model regarding listeners’ abilities to detect differences in
the tempo of isochronous sequences, as discussed in the previous chapter. The first
experiment compared listeners’ abilities to detect increases and decrease in tempo, in
order to test the model prediction that for short IOI conditions listeners’ are better
able to detect faster comparison sequences (tempo increases) than slower comparison
sequences (tempo decreases), and for long IOI conditions, listeners’ are better able to
detect slower comparison sequences than faster comparison sequences. Moreover, as
a listener is entrained by the standard sequence (e.g., by that sequence having more
isochronous intervals), this differential sensitivity should be diminished. Testing this
prediction required a slight modification to the “which is faster” paradigm used by
Drake and Botte (1993), in order to obtain an unbiased measurement of relative JND.
In the present experiment, listeners heard a standard sequence followed by two com-
parison sequences (instead of one) and judged which of the comparison sequences was
different in tempo from the standard, as illustrated in Figure 5.1.

If the “which is faster” task with a single comparison sequence was used with
adaptive tracking instead of the “which is different” task with two comparisons, then
listeners could adopt the fixed strategy of either responding that the comparison
sequence was faster or that the standard sequence was faster. As a result, such a
listener would either always correctly detect tempo increases or always correctly detect
tempo decreases, introducing a response bias, since separate tracks are maintained
for tempo-increase and tempo-decrease trials. Using two comparisons in the “which
is different” task eliminates this possibility.

Experiment 2 tested the model prediction that tempo differences between the
standard and comparison sequences should be better resolved when the onset of the

103
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Figure 5.1: The “which is different” task used in Experiment 1. It is illustrated here
for 1-interval standard and comparison sequences.
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Figure 5.2: The “which is faster” task for conditions in which the onset of the com-
parison sequence is at “early”, “late”, and “expected” temporal locations defined by
2xI0T1 of the standard sequence.

comparison sequence occurs at an “expected” temporal location (based on an ex-
tension of the periodicity of the standard sequence) than when it occurs at a “unex-
pected” temporal location. Thus, Experiment 2 evaluated listeners’ abilities to detect
tempo differences for onset conditions in which the onset of the comparison sequence
was “early”, “late”, or at the “expected” temporal location defined by twice the 101
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of the standard sequence, as illustrated in Figure 5.2. Since this experiment did not
separate “faster” and “slower” trials, differentiating thresholds for unexpected and
expected conditions did not introduce a response bias to the which-is-faster paradigm,
as was the case in Experiment 1. Thus, the simpler which- -is-faster paradigm used
by Drake and Botte (1993) was used in Experiment 2.

5.2 Experiment 1: Direction of Tempo Change

5.2.1 Rationale

As stated above, the primary purpose of Experiment 1 was to compare listeners’ abili-
ties to detect increase and decreases in tempo for the same IOI conditions. Predictions
of the Entrainment Model regarding differential sensitivity to increases and decreases
in tempo can be subdivided into four parts. First, for short IOIs, the relative JND for
an increase in tempo should be lower than the relative JND for a decrease in tempo.
Second, for an intermediate range of IOIs, the relative JNDs for increases and de-
creases in tempo should be approximately the same. Third, for even longer IOIs, the
relative JND for a decrease in tempo should be lower than the relative JND for an
increase in tempo. And finally, as the number of intervals in the standard sequence is
increased, the observed differential sensitivity between detecting an increase in tempo
and a decrease in tempo should diminish, especially for the short IOI conditions. All
four parts of this predictions are either beyond the intended scope or not consistent
with the predictions of previous theories of time perception (Creelman, 1962; Divenyi
and Danner, 1977; Drake and Botte, 1993; Kristofferson, 1980; Michon, 1964; Jones
and Boltz, 1989; Schulze, 1989). Experimental data supporting any parts of this
prediction pose potential explanatory problems for these models.

A secondary purpose of Experiment 1 was to confirm predictions of the Entrain-
ment Model, already supported by data from previous studies of tempo discrimination
(Michon, 1964; Drake and Botte, 1993; Drake and Botte, 1994). In particular, to pro-
vide data which confirms the existence of three “zones” of time sensitivity, confirms
that increasing the number of intervals in a sequences lowers the relative JND, and
suggests that, in the limit, increasing the number of intervals in a sequence, improves
the relative JND more for the short IOI conditions than for the longer IOI conditions,
as discussed in the previous chapter.

A third purpose of Experiment 1 was to investigate the effect of musical training
on tempo sensitivity, testing the controversial claim that musical training improves
time sensitivity.

5.2.2 Method

Subjects. Nine subjects, five male and four female participated in Experiment 1.
All subjects were students at Indiana University, reported normal hearing, and had
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a wide range of musical training.

Stimuli. The stimuli consisted of 1- and 3-interval isochronous sequences, each
presented at four different standard tempos. There was one fast tempo (the 100-ms
IOI condition), two intermediate tempos (the 400- and 700-ms IOI condition) and
one slow tempo (the 1000-ms IOI condition). Again, keeping with the convention
established by Michon (1964), I have defined tempo in terms of the IOI, instead
of the number of sequence events per unit time. Sequences were composed of 440-
Hz 50-ms tones, with the number of tones and IOI specified by the interval and
tempo condition. Four tempo (IOI) conditions combined with two interval conditions
produced eight possible stimulus conditions. Sequences within each standard-2AFC
trial were separated by an inter-pattern-interval (IPI) that was equal to twice the
IOI of the standard, so that the onset of both comparison sequences occured at an
expected temporal location.

Apparatus. All possible experimental trials were generated prior to the experi-
ment using the C-sound software package developed at the MIT media lab (Vercoe,
1986). The pre-generated trials were saved in named files on disk, for later playback
to subjects at a comfortable listening level. By pre-generating the listening trials,
the timing within each trial was not subject to variability inherent in real-time syn-
thesis. Subjects made responses at a Silicon Graphics workstation and listened via
headphones (Koss TD/75) in a quiet listening environment.

Procedure. On each trial, the subject first heard the standard sequence at the
tested tempo followed by two comparison sequences, one of which was presented at a
slightly different tempo from the standard. The subject’s task was to indicate which
of the two comparison sequences was different in tempo from the standard. Responses
to each trial were entered by the subject on the computer keyboard. The next trial
did not begin until a response was entered and the return key was pressed. For each
stimulus condition, the adaptive-tracking procedure developed by Levitt (1971) was
used to measure separate discrimination thresholds for tempo increases and tempo
decreases. If the subject correctly detected two successive tempo increases, then the
next tempo increase was diminished by 1%, whereas, an incorrect response led to an
increase of 1% in the next tempo-increase trial. This algorithm converges to a tempo
difference that the listener is able to detect with 70.7% reliability. The same adaptive
procedure was applied to tempo-decrease trials, resulting in simultaneous interleaved
tracks.

The initial tempo difference was 12%. In a block of 80 random trials, the 10T
condition of the standard sequence remained fixed, and there were exactly 40 tempo
increases and 40 tempos decreases to one of the two comparison sequences within each
trial. Every 10 trials contained exactly 5 increases and 5 decreases. Relative JNDs
were computed by averaging the last six reversals of each 40-trial track. Relative
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JNDs were also obtained by averaging the last 20 trials of each track, in order to test
the reliability of the reversal measure, but no significant difference between the two
measurement procedures was found.

Each listener participated in 4 experimental sessions, with each session consisting
of JND measurements for each of the four IOI conditions for one of the interval con-
ditions (1 or 3). Repeat relative JND measurements were obtained for both interval
conditions on different days. Each JND measurement took between 10 and 20 min-
utes, with a short rest break at the half-way mark of each block and a somewhat longer
rest break between blocks. The sequence of interval conditions across experimental
sessions and the order of IOl conditions within each session were counterbalanced
between listeners.

5.2.3 Results

A five-factor analysis of variance (ANOVA) was run on the JNDs obtained in the
experiment, with factors of musical training (three levels), number of sequence inter-
vals, experimental session (first or second measurement of relative JNDs for either the
1- or 3-interval condition), IOI condition, and direction of tempo change (increase or
decrease). Relative JNDs for all listeners and all sessions were in the analysis. Any
effect due to practice should show up in the ANOVA as a significant effect of ses-
sion (first versus second). The dependent variable was relative JND, which can be
interpreted as a Weber fraction.

These data are first discussed with respect to our secondary purpose. Figure 5.3
shows the mean relative JNDs (averaged across all subjects) obtained for the 4 101
conditions for 1- and 3-interval sequences. In order to compare these tempo data
with the Drake and Botte (1993) tempo data (see Figure 2.7), the relative JND
for a tempo increase and a tempo decrease were averaged for each IOI condition.
Consistent with the distinctions made between three zones of time sensitivity, the
ANOVA demonstrated a main effect of tempo [F(3,18) = 24.76,p < 0.001]. (1)
For all listeners, relative JNDs were lowest for the two intermediate IOI conditions
(400 and 700 ms). The mean relative JNDs for the 400- and 700-ms IOI conditions,
combining data from the 1- and 3-interval sequences, were 4.9% and 5.3% respectively,
in fairly close agreement with Weber’s law. (2) For the short IOI condition (100 ms)
relative JND increased sharply to 10.3%. (3) For the long IOI condition (1000 ms),
relative JND increased to 6.5%, suggesting a much more gradually decrease in the
relative JND for longer IOIs than for shorter IOIs. Thus, the overall shape of the
relative JND curve was U-shaped as a function of IOI, with an optimal zone of
tempo sensitivity for IOI conditions between 400 and 700 ms. This is in agreement
with predictions of the Entrainment Model, and consistent with the 300- to 900-ms
optimal zone of tempo sensitivity reported by Drake and Botte (1993).

The ANOVA demonstrated a main effect of the number of intervals [F(1,6) =
117.8,p < 0.001], in agreement with the predictions of the Entrainment Model



Two Tempo Discrimination Experiments 108

ol o v
g
[a)
el
=
© o
@ o o/
I E— o
S
E [ ]
9 subjects
O_
100 400 700 1000

Inter-onset-interval (ms)

Figure 5.3: Experiment 1: Mean relative JNDs for the 100-, 400-, 700-, and 1000-
ms [OI conditions, for 1- and 3-interval sequences. In this figure, the relative JNDs,
determined separately for increases and decrease in tempo, are combined as an average
to compare with Drake and Botte (1993; 1994) who did not distinguish between
increases and decreases in tempo.

and with previous experimental results (e.g., Drake and Botte, 1993; Hirsh et al.,
1990; Schulze, 1989). For the 1-interval sequences, the mean relative JND was 8.6%,
whereas for the 3-interval sequences, the mean relative JND was 4.8%. For each 101
condition examined separately, the mean relative JND was lower for the 3-interval
sequences than for the 1-interval sequences. In general, these data indicate poorer
tempo sensitivity overall, than found by Drake and Botte (1993). One possible reason
for this difference in overall performance levels is that Drake and Botte used listeners
that were highly experienced with this type of tempo task. In addition, Drake and
Botte (1993) did not include data from the first (practice) session in the analysis,
whereas data from all sessions were included in the present analysis.

As illustrated in Figure 5.3, the ANOVA also demonstrated a significant in-
teraction between the number of intervals in the sequence and the IOI condition
[F'(3,18) = 23.6,p < 0.001], in agreement with the predictions of the Entrainment
Model and with previous experimental results (e.g., Drake and Botte, 1993; Hirsh
et al., 1990; Schulze, 1989). When the number of intervals in the sequences was
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increased from 1 to 3, relative JND decreased most for the 100-ms IOI condition
(9.2%) and least for the 700-ms and 1000-ms IOI conditions (only about 1.7%). The
decrease in the relative JND for the 400-ms IOI condition was 2.7%, intermediate to
the improvement observed for the shorter and longer IOI conditions.

With respect to the third purpose of Experiment 1, a wide range of listener tempo
sensitivity was observed. Figure 5.4 shows the effect of musical training on overall
tempo sensitivity in this experiment. Listeners were grouped into three categories
based on their musical backgrounds. Three of the listeners were classified as non-
musicians because they had little or no musical training. Three of the listeners were
classified as amateur musicians. The amateur musicians all played a musical instru-
ment and had less than 10 years of formal musical training. Three of the listeners were
classified as professional musicians. Two of the three had extensive formal musical
training, both having obtained degrees from Indiana University in music performance.
The third listener classified as professional had played the drums for more than 10
years and performed professionally as part of a rock band.

10

mean relative IND (%)

nm am pm

Figure 5.4: Experiment 1: The ANOVA demonstrated a main effect of musical train-
ing. Relative JNDs were lower for musicians (pm) than for amateur musicians (am)
which were lower than those of non-musicians (nm).
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With this classification, the ANOVA demonstrated a significant main effect of mu-
sical training. The mean relative JNDs for the professional musicians, amateur musi-
cians, and non-musicians, averaged across experimental session, tempo, and number of
intervals, was 4.1%, 7.1%, and 9.0%, respectively. For the zone of optimal sensitivity
(the 400-ms and 700-ms IOI conditions) the standard deviation of the thresholds for
all listeners was approximately 3.3% with the best listener (a professional musician),
reliably detecting a 2.0% change for both intermediate IOTI conditions (i.e., detecting
a 8 ms change for the 400-ms IOI condition and a 14 ms change for the 700-ms IOI
condition). Thus, musical training appears to significantly improve tempo sensitivity.
However, this conclusion is premature, given that only 9 listeners participated in the
experiment. It is difficult to factor out the effects that attention and effort might
have on performance. Musically trained listeners may feel pressure to do well on a
tempo-discrimination task and thus may try harder to do well in the experiment than
do musically untrained listeners. In addition, given several more sessions of practice,
non-musicians may reach threshold levels close to those found for musicians.
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Figure 5.5: Experiment 1: Mean relative JNDs for tempo increases and tempo de-
creases for 1-interval sequences for all IOl conditions.

Returning to the primary purpose of this experiment, the data were evaluated with
respect to predictions of the Entrainment Model concerning differential sensitivity to
increases and decreases in tempo. Figures 5.5 shows the relative JNDs obtained for
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Figure 5.6: Experiment 1: Mean relative JNDs for tempo increases and tempo de-
creases for 3-interval sequences for all IOI conditions.

increases and decreases in tempo for the l-interval sequences. The relative JNDs
obtained for increases and decreases in tempo for the 3-interval sequences are shown
in Figure 5.6. The five-way ANOVA demonstrated a significant interaction between
tempo and the direction of the tempo change (increase versus decrease) [F'(3,18),p <
0.01], as predicted by the Entrainment Model. For the l-interval sequences, mean
relative JNDs were lower for the tempo increases than for the tempo decreases, for
the 100-ms and 400-ms IOI conditions. For the longer IOI conditions (700 ms and
1000 ms), mean relative JNDs were instead lower for the tempo decreases than for
the tempo increases. As a function of the IOI condition, the relative JND curves for
tempo increases and tempo decreases crossed for an 101 condition somewhere between
400 and 700 ms.

The ANOVA also demonstrated a 3-way interaction between the IOI condition,
the direction of the tempo change, and the number of intervals in the sequence. For
the 3-interval sequences, the differences between relative JNDs for tempo increases
and tempo decreases were diminished for the short IOI conditions. For the 100- and
400-ms IOI conditions, the difference between the relative JNDs for increases and
decreases in tempo was less than 1.0%, reduced from approximately 2.5% for the
1-interval sequences. On the other hand, for the 700- and 1000-ms IOI conditions,
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the approximate 2.0% difference between the relative JNDs for tempo increases and
tempo decrease was maintained.

Thus, the data from Experiment 1 support all four parts of model’s predictions
regarding differential sensitivity to increases and decreases in tempo (see Panel (D) of
Figure 4.11 for comparison with the simulation data): (1) for short IOIs, the relative
JND for a tempo increase was lower than the relative JND for a tempo decrease; (2)
for an intermediate range of IOIs, the data suggested that relative JNDs for tempo
increases and tempo decreases are approximately the same; (3) for the longest 10Is,
the relative JND for a tempo decrease was lower than the relative JND for a tempo
increase; and (4) when the number of intervals in the sequences were increased from
one to three, the observed differences in the relative JNDs for tempo increases and
tempo decreases, were diminished, especially for the shorter IOI conditions. These
data provide strong support for the Entrainment Model, and at the same time pose
potential explanatory problems for many other models (Creelman, 1962; Divenyi and
Danner, 1977; Drake and Botte, 1993; Kristofferson, 1980; Michon, 1964; Jones and
Boltz, 1989; Schulze, 1989).

5.3 Experiment 2: Dynamic Attending

5.3.1 Rationale

With regard to dynamic attending, the Entrainment Model predicted that tempo
differences between the standard and comparison sequence should be better resolved
when the onset of the comparison sequence occurs at an “expected” temporal loca-
tion (based on an extension of the periodicity of the standard sequence) than when it
occurs at an “unexpected” temporal location. Thus, the primary purpose of Experi-
ment 2 was to compare measurements of relative JNDs for onset conditions in which
the comparison sequence was at “expected” and “unexpected” temporal locations.

Previous tempo discrimination studies have usually maintained a fixed inter-
pattern-interval (IPI) or have assumed that varying the IPI of the comparison se-
quence has no effect on relative JND. No study, as far as I’ve been able to determine,
has specifically examined the influence of the onset phase of the comparison sequence
on relative JND for tempo discrimination. A secondary purpose of this experiment
was to examine individual differences in sensitivity to the onset-phase of the compar-
ison sequence, including differences due to musical training.

5.3.2 Method

Subjects. Nine new subjects, three male and six female, participated in Experiment
2. As in Experiment 1, all subjects were students at Indiana University, reported
normal hearing, and had a wide range of musical training. For purposes of consistency
with Experiment 1, subject selection was constrained so that the set of listeners
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consisted of three non-musicians, three amateur musicians, and three professional
musicians (determined according the criteria outlined in Experiment 1).

Stimuli. Only the three-interval condition and the 400-ms [OI condition were tested
in this experiment. All tones in the sequence had a frequency of 440 Hertz and lasted
50 ms. This stimulus sequence was selected because the relative JND for the 400-ms
[OI condition in Experiment 1 was found to be lowest for the majority of the listeners.
Also, most listeners were equally sensitive to increases and decreases in the tempo of
standard sequence at this rate. It was assumed that if variations in the onset-phase
of the comparison sequence influence relative JNDs, then this effect was most likely
to occur for the best tempo of the listeners (which was estimated to be near the
400-ms IOT condition for the listeners in Experiment 1) and that at the best rate,
temporally-directed attending should not be influenced by whether the listeners were
detecting an increase or a decrease in tempo.

Four out-of-phase “unexpected” conditions and one in-phase “expected” condition
were selected for comparison. In the in-phase control condition, the IPI was 800 ms,
equal to twice the 400-ms IOI of the standard sequence. For two “early’ conditions,
the IPIs were 680 and 560 ms, 15 and 30 percent shorter than the 800-ms “expected”
IPI. For two “late” conditions, the IPIs were 920 and 1040 ms, 15 and 30 percent
longer than the 800-ms “expected” IPIL.

Apparatus. The apparatus was the same as that used in Experiment 1.

Procedure. The procedure used in Experiment 2 was identical to Drake and Botte
(1993). Each subject heard the standard sequence at the tested tempo followed by
a comparison sequence that was presented at a slightly faster or slower tempo. The
subject’s task was to indicate which of the two sequences was faster. Which-is-faster
responses to each trial were entered by the subject on the computer keyboard. The
next trial did not begin until the response was entered and the return key was pressed.

Relative JNDs were determined for each of the five onset-phase conditions us-
ing the adaptive-tracking procedure of Levitt (1971) to interleave tracks for each
condition. Thus, the subject had to make two correct judgments for a specific onset-
phase condition before the tempo difference (between the standard and comparison
sequences) for that onset-phase condition was decreased by 1%. Similarly, an incor-
rect response for that onset-phase condition resulting in a 1% increase in the tempo
difference between the two sequences. The initial tempo difference between the two
sequences for each onset-phase condition was 12%.

Each track lasted 64 trials for a total of 320 trials in the experimental session.
The session lasted about an hour and the listener received short rest breaks every 40
trials. On each trial the onset-phase condition was randomly selected, but had the
constraint that all 5 IPIs occured twice every 10 trials. Consequently, each onset-
phase (IPI) was equally represented by 1/5 of the trials. Listeners participated in two
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identical experimental sessions.

Relative JNDs were measured by averaging the last six reversals of each 64-trial
track. Relative JNDs were also obtained by averaging the last 32 trials of each track,
to test the reliability of the reversal measure, but no significant difference between
the two measurement procedures was found.

5.3.3 Results

A three-factor ANOVA was run on the JNDs obtained in this experiment, with factors
of musical training (three levels), session (1st versus 2nd), and onset phase of the
comparison sequence. The data from all listeners and both experimental sessions
were included in the analysis. Any practice effects should show up in the ANOVA as
a significant effect of session. As in Experiment 1, relative JND was the dependent
variable.

The ANOVA demonstrated a main effect of the onset-phase of the comparison
sequence [F(4,24) = 3.14,p < 0.05]. For the expected condition, the relative JND
was lower than the mean relative JND for the two early conditions (2.29% for the
expected condition compared with 2.9% for the two early conditions), as predicted
by the Entrainment Model. In contrast, mean relative JNDs for the the two late
conditions were even slightly lower than those for the expected condition (1.98% for
the two late conditions compared with 2.29% for the expected condition).

Possible reasons for this discrepancy between the model’s predictions and the
observed data will be considered in the discussion section (Section 5.4). A relevant
comment made by several of the subjects is worth mentioning here. Listeners were
not told that the onset of the comparison sequence would either occur “early”, “late”,
or “in the rhythm” of the standard sequence, but instead they were essentially told
to concentrate on determining which of the standard and comparison sequences was
faster, independent of the gap separating them. Even so, several of the listeners
commented that when the comparison sequence arrived “early” it was difficult to
compare the tempo of the comparison sequence with that of the standard sequence.
Thus, even though the expected condition occured on only 1/5 of the trials, listeners
internalized this temporal expectancy, deciding to use the term “early” to describe
some of the comparison sequence onsets! The term “late” was also used by the
listeners to describe some of the comparison sequences, but not by as many of the
listeners. It may be the case that for the late onsets, listeners were able to delay their
temporal expectation of the onset of the comparison sequence.

The ANOVA also demonstrated a significant interaction between the onset-phase
of the comparison sequence and the experimental session (1st versus 2nd) [F(4,24) =
3.34,p < 0.05], indicating that there was a significant practice effect specific to par-
ticular onset-phase conditions, as illustrated in Figure 5.7. Figure 5.7 compares the
mean relative JNDs (averaged across all listeners) obtained from the first session
(Panel A) with those obtained from the second session (Panel B). The mean relative
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Figure 5.7: Experiment 2: Comparison of mean relative JNDs obtained for all onset-
phase conditions in the first session (Panel A) with those obtained in the second
session (Panel B).

JNDs for the two early conditions significantly decreased from Session 1 to Session 2.
For the 560-ms IPI condition, the relative JND decreased from 3.43% in first session
to 2.41% in the second session. For the 680-ms IPI condition, the relative JND de-
creased from 3.09% in the first session to 2.57% in the second session. Thus, the data
from just the second session (Panel B) is weaker support for the Entrainment Model
and, more generally weaker support for temporally-directed attending, than the data
from just the first session.

Figure 5.8 shows the relative JNDs for each listener averaged across session. Lis-
teners were grouped according to musical background: non-musicians (top-row), am-
ateur musicians (middle row), professional musicians (bottom row). A wide range of
individual differences were observed, but no significant main effect of musical training
was found [F(2,6) = 1.4, p > 0.3] (i.e., differences in tempo sensitivity in Experiment
2 did not depend on the amount of musical training the listener had). However,
the two listeners with the highest overall relative JNDs (worst performance) were
Subject’s 1 and 2—both non-musicians.

The same sequence of relative JNDs across phase conditions was not observed for
all subjects. However, subjects 1, 2, 6, 7, and 9 were fairly prototypical: relative
JNDs for the early conditions were higher than those for the control condition (in
agreement with the Entrainment Model), but relative JNDs for the late conditions
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Figure 5.8: Experiment 2: Mean relative JNDs for each listener averaged for sessions
1 and 2.

were approximately equal to those for the control condition (not in agreement with
the predictions of the Entrainment Model). Subject 3, 4, and 8 performed similarly
in all phase conditions, suggesting that variations in the inter-pattern-interval had
no effect on the tempo sensitivity of these listeners. The data from Subject 5 was
completely opposite from the predictions of the Entrainment Model (relative JND for
the expected condition was higher than the relative JNDS for all of the unexpected
conditions), although the differences between the relative JNDs for all onset-phase
conditions was still only slight. The implications of the observed individual differences
will be evaluated in the discussion section that follows which includes a discussion
and summary of the main results from both experiments.
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5.4 Discussion

Returning to Experiment 1, recall that the primary purpose of Experiment 1 was to
investigate differential sensitivity to increases and decreases in tempo. In accordance
with this purpose relative JNDs were measured separately for increase and decreases
in tempo, for IOI conditions of 100, 400, 700, and 1000 ms for sequences with one
and three intervals for a set of nine listeners. There were four main results from these
data with respect to the primary purpose of the experiment. First, for the shorter
IOI conditions (100-ms and 400-ms) the relative JND for a tempo increase was lower
than the relative JND for a tempo decrease. Second, for an intermediate range
of TIOI conditions (somewhere between the tested 400-ms and 700-ms conditions),
the data suggested that relative JNDs for tempo increases and tempo decreases are
approximately the same. Third, for longer I0I conditions (700-ms and 1000-ms) the
relative JND for a tempo decrease was lower than the relative JND for a tempo
increase. Finally, increasing the number of intervals in the sequences from one to
four diminished the difference between the relative JND for a tempo increase and the
relative JND for a tempo decrease, but mainly for the shorter IOI conditions (100-ms
and 400-ms). For the four-interval sequences, differential sensitivity to increases and
decreases in tempo was negligible for the 100- and 400-ms IOI conditions. These four
main results provide direct experimental support all four parts of the Entrainment
Model’s predictions regarding differential sensitivity, as discussed in the beginning of
this chapter. Furthermore, these data pose explanatory problems for previous models
of time perception which have assumed no inherent difference between detecting a
time increase and detecting a time decrease (Creelman, 1962; Drake and Botte, 1993;
Divenyi and Danner, 1977; Kristofferson, 1980; Jones and Boltz, 1989; Schulze, 1989).

Additional tempo-discrimination studies which replicate these data are needed to
further substantiate this claim. In particular, additional experiments should include
more [OI conditions and increase the number of interval conditions, as well as include
a larger number of subjects. By increasing the number of interval conditions, it would
be possible to determine optimal sequence durations separately for increases and de-
creases in tempo. Since the Multiple-Look Model of Drake and Botte (1993; 1994)
assumes no difference between detecting increases and decreases in tempo, it would
also predict that window duration (optimal sequence duration) should not depend on
whether the listener is detecting an increase or decrease in tempo. The Entrainment
Model also predicts that there should be no difference between the optimal sequence
duration for detecting a tempo increase and that for detecting a tempo decrease,
since reducing the just-noticeable phase difference depends only on entrainment to
the standard sequence, and not on whether the comparison sequence is faster or slower
than the standard. In contrast, data from Experiment 1 suggests that increasing the
number of intervals in the sequences reduces the relative JND for a tempo decrease
more than the relative JND for a tempo increase. For detecting tempo increases
the relative JND reduced from 8.6% for 1-interval sequences to 5.2% for 3-interval
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sequences, whereas for tempo decreases the relative JND reduced from 8.7% to 4.5%.
Although this difference in the magnitude of the change was only marginally signifi-
cant [F'(1,6) = 5.687,p < 0.1], it implies that the optimal relative JND for a decrease
in tempo will be reached with fewer intervals in the sequence than the number of
intervals in the sequence required to attain the optimal relative JND for an increase
in tempo. If true, this result would necessitate revisions to the Entrainment Model.

In order to compare these data with prior tempo studies (Michon, 1964; Drake and
Botte, 1993; Drake and Botte, 1994), which assumed no differential sensitivity, the
relative JNDs obtained in Experiment 1 for increases and decrease in tempo were av-
eraged. These data were found to be consistent with the three main conclusions from
these prior tempo studies: (1) there exist three zones of tempo sensitivity (shorter
than 300 ms, between 300 ms and 900 ms, and longer than 900 ms); (2) relative JND
decreases as a function of the number of intervals in the sequence; and (3) increasing
the number of intervals, lowers the relative JND more for the short IOI conditions
(IOIs less than 300 ms) than for the longer IOI conditions (IOIs greater than 300
ms). This agreement between the data from Experiment 1 and the earlier tempo
data suggests that the relative JNDs obtained in the earlier studies actually reflects
an average of the relative JNDs for tempo increases and tempo decreases. Thus,
time-discrimination data obtained by testing only positive or negative time changes
necessitates careful scrutiny, especially if conclusions are made from comparisons with
data obtained by testing both positive and negative time changes.

Returning to Experiment 2, relative JNDs were determined for two unexpected-
early conditions and for two unexpected-late conditions relative to the expected 800-
ms IPI, in order to test predictions of the Entrainment Model regarding dynamic
attending. In partial agreement with the model’s predictions, relative JNDs for the
two early conditions were higher than those for the expected condition. In contrast,
the data from the late conditions were inconsistent with the model’s predictions (i.e.,
relative JNDs for the two late conditions were not higher than those for the expected
condition). In addition, the poorer tempo sensitivity observed for the early conditions
was substantially eliminated in the second experimental session (i.e., practice on the
early conditions helped).

In terms of the Entrainment Model, this practice effect suggests that the subjects
were able to develop a listening strategy which enabled them to “not pay attention to”
the temporal location of the onset of the comparison sequence when comparing the
tempos of the two sequences. Recall that one assumption of the Entrainment Model
was that the detection of a tempo change is immediate following the first interval of the
comparison sequence. Thus, having multiple-intervals in the comparison sequences
permitted the listeners to ignore the first interval of the comparison (the onset of
which was sometimes out-of-phase with respect to expected onset), and base their
tempo judgments only on the remaining intervals in that sequence. That is, having
multiple intervals in the comparison sequence enabled the listeners to phase-reset and
entrain to the remainder of the comparison sequence before having to make a tempo
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judgment.

One possible approach to testing this hypothesis would be to repeat Experiments 1
and 2, but include only one interval in the comparison sequences. Consequently, if the
detection of a tempo change is immediate following the first interval of the comparison
sequence then data from this revised version of Experiment 1 (using only one-interval
comparison sequences) should agree with data reported in this thesis (which was
obtained using the same number of intervals in both the standard and comparison
sequences). Using only one-interval comparison sequences in Experiment 2 would
make it impossible for subjects to develop the listening strategy of ignoring the first
interval of the comparison sequence, and thus would clarify the issue of whether the
tempo of “expected” comparison sequences is inherently easier to discriminate than
the tempo of “unexpected” comparisons.

One alternative theory for the present Experiment-2 data is that relative JNDs are
a decreasing function of the absolute duration of the inter-pattern-interval, instead
of a sinusoidal function of the onset phase of the comparison sequence. Perhaps, the
reason that the relative JNDs for the “early”, “expected”, and “late” conditions were
approximately ordered from high to low has nothing to due with early, expected, or
late conditions, but is instead due to the amount of time required to process the tempo
of the standard sequence. Thus, for the early conditions, the listeners didn’t have
enough time to process the standard sequence before the onset of the comparison
sequence. This processing-time explanation of the data seems unlikely since even
in the worst case the inter-pattern-interval was 560 ms which is substantially longer
than the 200 ms duration reported as the time required to identify components of
an auditory sequence (Warren, 1993). Furthermore, listeners verbal reports of the
difficulty of the task lend credence to the entrainment hypothesis and not to the
processing-time hypothesis, since several of the listeners, without knowledge of the
different phase conditions for the onset of the comparison sequence, decided to used
the terms “early” and “late” to describe experimental trials corresponding to “early”
and “late” conditions.

In order to distinguish between these two hypotheses (entrainment versus processing-
time), Experiment 2 needs to be replicated using one interval comparison sequences
(as suggested above) and a larger set of onset-phase conditions which spans more than
one cycle and includes multiple “expected” conditions such as 2xIOI, 3xIOI, etc. Data
from this replication of Experiment 2 should either provide stronger support for the
sinusoidal pattern of relative JNDs predicted by the Entrainment Model or provide
evidence that the processing-time argument is a better explanation of the data.

An additional unresolved issue from Experiment 2 is the substantial difference
in the pattern of relative JNDs observed between listeners across phase conditions.
A replication of Experiment 2 should also increase the number of investigated 101
conditions. Additional predictions of the Entrainment Model suggest that varying
the IOI of the standard sequence should produce phase-advances or phase-delays in
the observed sinusoidal pattern of relative JNDs, depending on the amount of over-
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or and underestimation of the standard sequence’s IOI. Possible then, the substantial
individual differences with respect to the phase conditions reflect different “best”
tempos of the listeners. The model also suggested that the tempo-discrimination
performance of the listeners should degrade gracefully for tempos near their “best”
tempo, while degrade less gracefully for tempos faster or slower than this best rate; i.e.,
memory of the standard’s tempo depends on the tempo. An experiment combining
a larger number of IOI conditions with a set of phase conditions spanning fairly wide
range of IPI durations would provide data to test these additional predictions.



Chapter 6

Conclusions

The approach taken in this thesis has been that the development of a successful
computational model of human rhythm perception must first address the perception of
time intervals which comprise rhythmic patterns. Thus, modeling time perception was
considered a necessary step in the development of a comprehensive model of rhythmic
pattern processing. Towards this goal, an Entrainment Model of time perception was
developed in Chapters 4 and 5 using the adaptive oscillator proposed in Chapter 3 as
the entrainment mechanism. The model was evaluated by comparing its performance
on simulated tempo-discrimination experiments to the performance of human listeners
in analogous experiments, and by conducting two original listening experiments to
test predictions of the model for which no human performance data was available for
comparison.

The contributions of this research are twofold. First, the Entrainment Model
contributes to an improved understanding of human time perception. Second, the
adaptive-oscillator mechanism contributes to the development of a computational
model of rhythm perception that addresses the temporal constraint on rhythmic pat-
tern processing, the problem of timing variability, and the perception of time.

6.1 Contributions of the Entrainment Model

The Entrainment Model makes three main contributions that improve our under-
standing of human time perception. First, the Entrainment Model provides a single-
mechanism explanation for a myriad of time-perception data that researchers had pre-
viously interpreted as strong evidence in favor of the hypothesis that short intervals
(those shorter than 300 ms) are processed differently than long intervals (those longer
than 300 ms) (Hirsh et al., 1990; Michon, 1964; Schulze, 1989; ten Hoopen et al.,
1994). Drake and Botte (1993) further supported this claim by showing that increas-
ing the number of intervals in an isochronous sequence improves tempo-discrimination
thresholds much more for short-IOI sequences than for long-IOI sequences. Using this
line of argumentation, the tempo-discrimination data reported in Chapter 5 could

121



Conclusions 122

also be used to support the differential processing claim. In addition, Drake and
Botte (1994), in evaluating the extent to which increasing the number of intervals
in a sequence improves tempo sensitivity, found evidence suggestive of two temporal
windows, one of about 1.0 seconds for the processing of short intervals and one of
about 2.5 seconds for the processing of long intervals. However, as I demonstrated in
Chapter 4, it is not necessary to posit distinct processing of short and long intervals
to account for these data. Instead, these data can be explained by the Entrain-
ment Model through the dynamic interaction of the entrainment and period-decay
processes.

The second contribution of the Entrainment Model concerns its predictions re-
garding differential sensitivity to increases and decreases in tempo. In Chapter 4, it
was predicted that for short IOIs (fast sequences), listeners should be more sensitive
to tempo increases than to tempo decreases, whereas for long I0Is (slow sequences)
tempo sensitivity should be better for tempo decreases than for tempo increases. In
addition, this differential sensitivity to increases and decreases in tempo should be
reduced as the number of isochronous intervals increases, especially for the faster
sequences. This predicted interaction was due to the asymmetric interaction of en-
trainment with period-decay for fast and slow sequences, resulting in superior entrain-
ment for fast sequences. Thus, the reduction in the amount of overestimation for fast
sequences is more than the reduction in the amount of underestimation for slow se-
quences. The tempo data reported in Chapter 5 from Experiment 1 were consistent
with these predictions regarding differential sensitivity to increases and decreases in
tempo, and thereby pose explanatory problems for those models which do not dis-
tinguish between positive and negative temporal deviations, such as multiple-look
models (e.g. Drake and Botte, 1993).

One consequence of the model’s predictions regarding differential sensitivity to
increases and decreases in tempo is that in a 2AFC “which is faster” task, listeners
should sometimes make systematic reversal-type errors in estimating a difference in
tempo, depending on the degree of over- or underestimation of the pattern tempo
and the magnitude of the tempo difference that they are being asked to detect. Thus,
for a fast standard sequence listeners may indicate that the comparison sequence
is faster than the standard when it is actually slower; and conversely, for a slow
standard sequence listeners may indicate that the comparison sequence is slower than
the standard when it is actually faster. The data obtained in a pilot experiment for
Experiment 1, that used the “which is faster” task, demonstrated such reversal errors
in tempo discrimination. Further data is needed to substantiate this claim.

The third contribution of the Entrainment Model concerns its predictions re-
garding the application of Jones’s (1976) entrainment hypothesis to listeners’ tempo
sensitivity. In Chapter 4, it was predicted that for an isochronous standard sequence,
listeners should be more sensitive to a tempo difference in the comparison sequence
when its onset is at an expected temporal location (based on extending the periodicity
of the standard sequence) than when its onset is at an unexpected location.
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To explore this prediction, Experiment 2 investigated the effect of systematic de-
viations in the temporal onset of a comparison sequence on listeners’ ability to detect
differences in tempo between standard and comparison sequences. Consistent with
the model’s predictions, it was found that the tempo of the comparison sequence was
less well resolved when it occured at an “early” temporal location than when it oc-
cured at the expected location. However, inconsistent with the model’s predictions,
tempos in the “late” unexpected conditions were resolved equally as well as tem-
pos in the expected conditions. For all onset conditions, a wide range of individual
differences was observed, and thus only weak generalizations from these data were
possible.

In summary, the performance of the adaptive-oscillator-based Entrainment model
was evaluated in three simulated tempo-discrimination experiments and compared
with human performance in analogous listening experiments. In these simulations,
the interaction of entrainment and decay processes, as mediated by the input impulse-
response function, was found to be critical to modeling the human tempo data. Ad-
ditional listening experiments, such as those proposed in Section 5.4 of Chapter 5
are intended to clarify the results from Experiment 2 to help to direct further de-
velopment of the Entrainment Model of time perception, and to constrain the form
of the adaptive oscillator in the development of a comprehensive model of rhythm
perception.

6.2 Contributions of the Adaptive Oscillator

In addressing the problem of modeling rhythm perception, the adaptive-oscillator
mechanism makes several important contributions. Foremost, adaptive-oscillator
models of rhythmic pattern processing address the perception of time intervals that
comprise rhythmic patterns, and thus do not assume musical notation as input. Sec-
ond, adaptive oscillators process rhythmic patterns via entrainment and thus the
perception of beats emerges as the pattern evolves over time. Finally, since the adap-
tive oscillator’s period is modified by its input, the adaptive oscillator also addresses
the problem of timing variability, both intrinsic random variability and intended “ex-
pressive” variability (such as gradually speeding up or slowing down).

Toward the development of an adaptive-oscillator model of human rhythm percep-
tion, the ability of a single adaptive oscillator to be entrained by rhythmic patterns
of varying complexity was tested in Chapter 4 on the Povel and Essens (1985) set of
rhythmic patterns, which vary on a complexity scale correlated with listeners’ ability
to memorize and reproduce those patterns. Two questions were posed with regard
to the entrainment of the adaptive oscillator. First, can the adaptive oscillator lock
onto a beat period consistent with listeners’ perception of beats, in spite of timing
variability in the tested patterns. Second, can the adaptive oscillator align its beats
appropriately with those patterns. These questions were addressed for four timing-
variability (or noise) conditions: 0% noise added to each interval, 5% added noise,
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7% added noise, and 10% added noise.

All of the tested patterns do evoke a sense of periodic beats in the perceiver. If
asked to “beat along” with the these patterns, most listeners tap out beats approx-
imately every 400 or 800 ms, consistent with a 2/4 musical meter. For the adaptive
oscillator, it was found that in the no-noise condition, entrainment was successful
for 80% of the patterns, with the adaptive oscillator locking onto an appropriate
beat period of 400 ms. The alignment of oscillator beats corresponded with natu-
ral accents for the majority of these cases. For the 20% of the cases in which the
adaptive oscillator was not entrained by the rhythmic pattern, its period oscillated
between 400 and 600 ms. However, for the 5%-noise condition, the entrainment of
the adaptive oscillator improved from 80% to 100% correct. Thus, for the 20% of
the cases in which the adaptive oscillator’s period vacillated between 400 and 600
ms, temporal variability in the intervals of the rhythmic pattern helped the adaptive
oscillator achieve a stable period. That is, noise improved the ability of the adaptive
oscillator to be entrained by rhythmic patterns. Additional timing variability (> 5%)
gradually reduced the ability of the adaptive oscillator to be entrained by the tested
patterns, with performance on the 10%-noise condition slightly below that on the
no-noise condition.

Thus, contrary to the claims of Large and Kolen (1995) regarding phase-resetting
models, the proposed adaptive oscillator was shown to display appropriate behavior
without requiring strong assumptions concerning phenomenal accentuation. However,
a number of questions remain concerning the relative merits of phase-resetting models
and those which adjust phase incrementally as advocated by Large and Kolen (1995).
In addition to the question of whether to phase-reset or not to phase-reset, different
choices for activation function, output function, and period-coupling can significantly
influence the entrainment dynamics of the resultant model. Obviously, the parameter
space of possible models is quite large.

Continued comparison of model performance with that of human listeners will help
resolve the issue of appropriate parameterization of adaptive oscillators. In Chapter
3, the average output of the adaptive oscillator was proposed as a measure of pattern
difficulty that could be compared with listener-based measures of rhythmic complexity
(e.g, for the temporal patterns in Povel and Essens (1985)). Although comparison
with listeners’ ability to memorize and reproduce the patterns in Experiment 1 of
Povel and Essens (1985) was only preliminary, it suggested that the average output
of the proposed adaptive oscillator may provide a more accurate measure of pattern
difficulty, with regard to human listeners’ judgments, than the rule-based metric
proposed by Povel and Essens (1985). Additional comparisons with listener-based
measurements of rhythmic complexity may suggest important revisions to the form
of the proposed output function.
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6.3 Evolving Adaptive Oscillators

One potential method for searching the parameter space of possible adaptive oscilla-
tors would be to use a genetic algorithm (Goldberg, 1989; Holland, 1975) to evolve
adaptive oscillators that are tailored for specific environments of rhythmic patterns,
much in the same way that genetic algorithms have been used to evolve connectionist
networks to solve specific tasks, such as in learning the weights of a network that
controls the movement of a small robot towards a fixed light source (Meeden, 1994).

The concept of a genetic algorithm is based on the principles of evolution, oper-
ating on a population of individuals, in which each individual represents a suggested
solution to a given problem. To solve that problem based only on the randomly gener-
ated suggested solutions, the genetic algorithm evolves new generations of individuals
(solutions) through a process of natural selection and reproduction. Individuals are
selected for reproduction according to their “fitness,” a measure of solution “good-
ness” for the given problem. In the process of selection, those individuals with greater
fitness are more likely to be chosen to reproduce than those with lesser fitness. Se-
lected parents reproduce by recombining their information. Through this process,
the genetic algorithm attempts to maximize the fitness of the population, and thus
to obtain an improved set of candidate solutions.

In order to apply genetic algorithms to the parameterization problem for adaptive
oscillators, each adaptive oscillator could be coded as a real-valued vector, analogous
to the vector coding of network weights used by Meeden (1994). Fitness would be
measured by running the coded adaptive oscillator on a test set of rhythmic pat-
terns, selected from the particular environment, and then by averaging the output
measure of synchrony for those patterns. As advocated by Meeden (1994), the next
generation of individuals would be obtained through a technique called tournament
selection, which uses a mutation of the fitter parent to generate new individuals (Mee-
den, 1994). By this process, the goal is to evolve adaptive oscillators which entrain
optimally according to specific criteria (e.g., human performance data) to whatever
environment of rhythmic patterns they are situated in. Thus, there are two time
scales of learning: (1) in the short term, each oscillator adapts its period in response
to rhythmic patterns of stimulation; (2) however, at the same time, but at a much
slower rate (over generations of oscillators), the mechanism of the adaptive oscilla-
tor is evolving to meet the requirements of a specific environment. The usefulness
of applying such evolutionary search techniques to the parameterization problem of
adaptive oscillators is an open question, one which I plan to explore.

6.4 The Role of Timing Variability

The demonstrated beneficial effect of noise for the entrainment of the adaptive oscil-
lator supports an intriguing hypothesis: brain structures involved in the perception of
rhythm may be able to take advantage of temporal variability during entrainment. Of
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course, the evolution of any such perceptual mechanism would be constrained by the
temporal sensitivity requirements of the organism. That is, it is only beneficial for an
organism to evolve perceptual mechanisms whose attunement to rhythmic patterns
of stimulation is heightened by temporal variability that is less than the minimum
temporal variability that must be detectable by that organism for its successful inter-
action with the environment. The proposed adaptive oscillator models the dynamics
of one such perceptual mechanism.

The effect of noise on the entrainment of the adaptive oscillator is thus far pre-
liminary, being demonstrated for only the Povel and Essens stimulus set. However,
in terms of the dynamics of adaptive oscillation it is clear why noise can help en-
trainment. Without timing variability, it was shown that there are instances when
a repeated temporal pattern will induce a cyclic pattern of changes to the adaptive
oscillator’s period, forcing the adaptive oscillator to bounce within a parameter re-
gion of the Arnold map bordering two stable periodic attractors. In the reported
examples, the adaptive oscillator’s period bounced between 400 and 600 ms, which,
with respect to the 200-ms micro-pulse of the Povel and Essen’s stimulus set, corre-
sponded to potentially stable 1:2 and 1:3 entrainment ratios, respectively. However,
with temporal variability added to each interval, the cyclic pattern of period changes
was disrupted, enabling the effective winding number of the adaptive oscillator to
change, such that it entered only a single stable region of entrainment. For the tested
patterns, this corresponded to the more stable 1:2 entrainment region.

With regard to timing variability, an outstanding issue concerns quantifying the
effect of noise on adaptive-oscillator entrainment. Future investigations of this effect
will address how the adaptive oscillator’s parameterization and the rhythmic structure
of the input influence the effect of noise on entrainment. For example, in what
conditions it would be pushed to 1:3 entrainment instead of 1:2. This additional
research would complement a previous analysis of the beneficial effect of input noise
on a recurrent neural-network model of short-term active memory (McAuley and
Stampfli, 1994).

6.5 The Perception of Meter

This thesis has focused on the entrainment of a single adaptive-oscillator processing
unit by rhythmic input patterns, and on the perception of time intervals within an
isochronous context. However, as discussed in Chapter 1, the perception of rhythm
in music and language is hierarchical, with beats perceived at different time scales (or
metrical levels), resulting in a sense of strong and weak beats (or meter). Modeling
the perception of musical meter with adaptive oscillators necessarily involves the
interaction of many oscillators with a range of intrinsic periods, reminiscent of the
BeatNet model of Scarborough, Miller, and Jones (1990). However, unlike those in
the BeatNet model, adaptive oscillators have variable beat periods.

Two adaptive-oscillator models for the perception of musical meter have been
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proposed (Large, 1994; Large and Kolen, 1994; McAuley, 1994a). Other than the
differences, discussed in Chapter 3, between the phase-resetting oscillator proposed
here and the Large and Kolen oscillator, the two models for meter perception are
conceptually the same. Both models consist of a bank of adaptive oscillators with a
range of intrinsic periods. Each oscillator receives input from a single input channel,
but not from any of the other oscillators; that is, the oscillators do not interact with
each other. By having a range of intrinsic periods, the oscillators can attain different
entrainment ratios in response to rhythmic input patterns. For example, one oscillator
may be 1:1 entrained with the beat of a rhythmic pattern, while the other may be
1:2 entrained by that pattern, indicative of a 2/4 musical meter. Thus, multiple
oscillators can extract multiple metrical levels. These models have been successfully
applied to both simple rhythms and to polyrhythms that exhibit variability in their
timing (Large, 1994; Large and Kolen, 1994; McAuley, 1994a).

A main problem with these models is that unwanted harmonics are sometimes
elicited by the entraining rhythmic pattern. For example, although 1:1 and 1:2 en-
trainment are observed for a rhythmic pattern with a stable 2/4 meter, 1:3, 2:3, or
some other entrainment ratio, inconsistent with a 2/4 meter, might also be observed
due to the initial spacing of the oscillator’s intrinsic periods. Since the oscillators do
not interact with each other, there is no way to “shut off” these spurious metrical
levels (with respect to human performance). Moreover, it is not yet clear in what
ways the oscillators should interact. Eventual interactions between oscillators should
be guided by human performance data for rhythms of increasing complexity, begin-
ning with the perception of isochronous patterns and moving towards the perception
of polyrhythmic patterns.

6.6 Closing Thoughts

By assuming that an understanding of the perception of time intervals which comprise
rhythmic patterns is a necessary step in the development of a computational model
of rhythm perception, I have taken a modeling approach that is distinct from many
of those in AI. That is, with regard to many AI approaches to rhythm perception (or
more generally to many Al approaches to music perception or speech recognition), I
have addressed what might commonly be considered the “non-AI” part of the problem
(Brooks, 1991), since such approaches assume that durations are obtained by an
unspecified pre-processor (Port et al., 1995). However, from this thesis, the intricate
nature of human time perception and its consequent importance to understanding
human rhythm perception should be clear. Thus, in developing a computational
model of human rhythm perception it is not sufficient to abstract time to the level of
musical notation.

Rather, there is a growing body of psychological data based on the entrainment
hypothesis that suggests that the ramifications of human time-perception abilities
extend to high-level aspects of cognition such as attention, language comprehension,
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and memory. Thus, the time-perception experiments described in this thesis involving
isochronous auditory sequences suggest an important behavioral probe of the entrain-
ment underlying fundamental aspects of cognition. Furthermore, the development
of a computational model of rhythm perception based on adaptive oscillators—one
that is molded by the data from these time-perception experiments—is a valuable
step towards a method of modeling in cognitive science that is firmly grounded in
time. Furthermore, by developing a computational model that is inspired by both
single-neuron models (Torras, 1985) and psychology theory (Jones, 1976), continued
research is informed by both neuroscience and psychology, and thus will improve our
understanding of how the macro-level phenomenon of the perception of rhythm might
emerge through complex micro-level interactions in the nervous system.
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