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Abstract

Identifying some pointers as invisible threads, for the pur-
poses of storage management, is a generalization from sev-
eral widely used programming conventions, like threaded
trees. The necessary invariant is that nodes that are accessi-
ble (without threads) emit threads only to other accessible
nodes. Dynamic tagging or static typing of threads ame-
liorates storage recycling both in functional and imperative
languages.

We have seen the distinction between threads and links
sharpen both hardware- and software-supported storage
management in Scheme, and also in C. Certainly, there-
fore, implementations of languages that already have ab-
stract management and concrete typing, should detect and
use this as a new static type.

Categories and subject descriptors:
D.3.3 [Programming Languages]: Language Constructs and
Features|data types and structures, dynamic storage man-
agement, abstract data types; E.2 [Data Storage Represen-
tations]: Linked representations; B.3.2 [Memory Structures]:
Design Styles|primary memory.
General Term: Languages.
Additional Key Words and Phrases: storage manage-
ment, reference counting, garbage collection, tags.

1 Introduction

All active references or pointers originate from \roots" in
the programming environment; common roots are the regis-
ter �le and recursion stack. Storage management preserves
linked structures that are accessible from roots, where the
garbage-collecting traversal begins.
De�nition 1 A pointer is a link if it is essential to the
integrity of a linked structure.
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Informally, a linked structures must be rooted and spanned
by links.

De�nition 2 A pointer or reference is a thread [12] if it
is optional in a linked structure, in the sense that it can be
inferred from a traversal from the roots that follows links
exclusively.

On �rst reading of any program, one may assume that all
pointers/references are links; threads can be introduced later.
Usually there are several ways to establish a partitioning
between links and threads. Of course, it is best to choose
a simple one; for instance, links originate from roots and
extend homogeneously to the more remote nodes of a struc-
ture. Some �elds in each record can be statically typed to
\link" and others to \thread." Often, however, a dynamic
attribute is used with run-time tags present to distinguish
the kind of pointer.

Whether or not threads are identi�ed, however, the se-
mantics of a program must remain the same. Our purpose
in identifying them is to unburden the storage manager from
dealing with them. Because threads are redundant, it can
ignore them and the performance of the program improves
without changing its result. That is, link/thread can be a
static type like lazy/strict (w.r.t. evaluation of a function's
argument) or sticky/unique (w.r.t. reference counting); we
might conservatively presume that an unknown type is the
�rst of each pair but, whenever we can discover the second,
we can compile for better run-time performance.

Examples of threads are already familiar to the reader.
The rear pointer to the end of a singly-linked queue should
statically be treated as a thread. Threaded trees [12], in
contrast, are an example of a dynamic link/thread distinc-
tion, because a pointer requires a run-time tag to imply its
meaning. Another familiar thread is the \reverse" pointer
paired to every \forward" link as an edge in a doubly-linked
list. Others include weak pointers [15] in many Lisp and
Scheme implementations.

The new principle for implementors of programming sys-
tems and for low-level programmers is (Invariant 1) that
threads point only to nodes accessible exclusively via links.

Programmers should recognize dynamic threading more
e�ectively than they do now; compilers should better rec-
ognize static threading [17]. Their use accelerates produc-
tion code (sometimes called the mutator in systems with
automatic storage management) by short-circuiting redun-
dant reallocation, and also they can accelerate space re-
covery (the collector when one exists). This observation
certainly applies to systems with automatic collection, like
Lisp, Scheme, ML, Haskell, and Smalltalk, but we



found it to be already useful under languages like C and
C++ where space recovery is \manual."

The payo� for sustaining the live/dead distinction on
pointers is that the work for the collector is considerably
reduced, and the locality of the mutator is similarly in-
creased. The exact impact depends on the kind of stor-
age manager used. (This paper takes the perspective that
reference counting is distinguished from garbage collection
[24, 8, 12, p. 412], rather than one of its techniques [6].) For
instance, a garbage collection can ignore all threads, saving
the time to traverse them. Under reference counting, some
counts will be one tick lower, saving both their increments
and decrements, and often avoiding troublesome cycles. By
focusing only on links, we foresee further improvements from
compile-time space analysis that uses techniques like linear
logic and monads. In all these cases the mutator runs more
often, and can run more locally whenever nodes are discov-
ered to be uniquely referenced, enabling in situ side-e�ects
instead of allocating more space. The payo� on cache-based
architecture is fewer cache misses and far greater speed..

Improved performance is not obtained without a task
for the compiler or a burden on the programmer. Uncon-
strained use of threads leads directly to errors from dangling-
references. Removal of the last link to a node renders un-
stable any remaining threads there; the node can be recy-
cled unpredictably, transforming any dangling threads into
a dangling reference (to some new incarnation at that ad-
dress.) Treating this last thread as a link would have pre-
cluded recycling, and avoided a nasty error.

The ultimate resolution of such dangling threads is to
require the compiler, rather than the programmer, to enforce
Invariant 1, below. The compiler must be able either to infer
statically or to provide run-time code verifying that certain
pointers are threads, ensuring that they are manipulated in
a manner that sustains the invariant. That is, the compiler
should be able to learn which pointers are of \thread" type,
and then to validate their consistent use.

This paper has six sections, including this introduction.
Section 2 gives de�nitions and Invariant 1. The next section
reviews historical examples of the concept, and is followed
by Section 4 on a logic for the invariant and anticipates its
formal type. Section 5 describes our motivation and results,
the motivation for the general observation, and the �nal sec-
tion o�ers conclusions and a challenge for compiler-writers.

2 De�nitions and Invariant

De�nition 3 T = flive; deadg is the set of tags.

\Tag," is used as in threading of binary trees [12]. Links are
live, and threads are dead.
De�nition 4 Let the set of active nodes in the heap be N ;
each one is perceived as a record with a small set of �elds,
each identi�ed from a �nite set L of labels. The edges or
pointers in our linked structure comprise the mappings from
a function in N � L! N , a digraph with labeled edges.
Of course, the function de�ning pointers changes with every
step that changes linking.
De�nition 5 The source of pointer hm; li 7! n is m. Its
label is l; its destination is n.

De�nition 6 Node m is said to emit any pointer of which
it is a source. Node n is said to absorb a pointer of which
it is a destination.

De�nition 7 The set of pointers in any structure is parti-
tioned into a set of links and a set of threads.

There are two ways to achieve this partitioning. One is to
use a static function in L ! T to tag every label; this cor-
responds to static typing on pointers that does not change
even if a pointer does; see Section 4. Another is to extend
the pointer function to one in N � L ! N � T so every
pointer carries a tag; this corresponds to dynamic tagging
of an attribute at run time.

De�nition 8 [7] The reference count of a node is the num-
ber of links absorbed by it.

De�nition 9 [27] A link is unique when its destination has
a reference count known to be one. Otherwise, it is sticky.

The term \sticky" is borrowed from the convention of
�tting a static in�nity into the range of reference counts [5],
whence neither increments nor decrements change it. (But a
full garbage collection might [24, 27].) A reference count can
be both one and sticky, after an imperfect counting protocol
loses the precise count on a node and no longer \knows" it.
Convention Roots emit only links.

De�nition 10 A node is accessible if it absorbs a link from
a root or an accessible node.

Invariant 1 Accessible nodes can emit threads only to other
accessible nodes.

There is no requirement that threads be introduced at
all, but if Invariant 1 can be assured, then run-time per-
formance will be enhanced by them. Two more verbs are
useful:
De�nition 11 Changing a tag from \live" to \dead" kills
the associated pointer; changing a tag from \dead" to \live"
resurrects it.

Maintenance of Invariant 1 is the obligation of a pro-
grammer who would use threads, or of a compiler that would
kill links. Although it seems to be burdensome, it can of-
ten be sustained by simple coding practice or by stronger,
veri�able constraints.

3 Historical Examples

3.1 Static Links and Threads

The rear pointer to the end of a singly-linked queue should
be treated as a thread. Then front and all its internal
links likely remain unique. A corollary to this convention,
that directly yields superior code, is that rear of an empty
queue must be unde�ned: ? [11], rather than something
meaningful [12, pp. 256{257] [20, p. 29] [13, pp. 79{80],
because there is no accessible node to absorb a thread.

In doubly-linked lists where forward pointers are links,
we can treat reverse pointers as threads.
De�nition 12 Reverse pointers in a doubly linked list are
called counterpointers.
In the instance that the list is not circular (when both ends
point to nil), the links form a singly linked list, referenced
by a link front and the counterpointing threads form a
singly linked list in the reverse direction. beginning from
the rear thread.

In all cases of a linear list, the links form a simple, singly
linked list whose space might easily be recycled, either by
hand, by elementary reference counting, or by \unique" typ-
ing at compile time.

The use of reference counting in early list-processing sys-
tems [7, 23] reveals other kinds of pointers long treated as
threads. The readers of Slip, which used reference count-
ing well [24], contained references that were never counted
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[23, Fig. 3]. From a modern perspective, the readers im-
plemented a crude recursion stack of threads. Weizenbaum's
convention worked because the extra references were neces-
sarily redundant, satisfying Invariant 1. Alternatively, we
might view their destinations as \nailed down" by other
pointers.

Section 5 describes how the recognition of thread{as{
type was used implicitly in a C program to simplify storage
management tremendously. Using a hardware device that
manages the heap in real time, purely local transactions
provided storage management directly from the mutator,
without its processor accessing more RAM .

3.2 Dynamic Links and Threads

Singly-linked circular lists can be recovered by real-time ref-
erence counting when the enclosing link can be treated as
a thread [9]. However, there must be a run-time tag on
the pointer �eld to distinguish the enclosing thread from an
ordinary link. (The tag can be manifested as a relative ad-
dress if the list were otherwise stored in genetic order|at
monotonically increasing addresses.)

If a doubly-linked list is circular, then the closing forward
link must also be also treated as a thread|like the circular
list's|but it must also be tagged; all counterpointers are
threads and, so, need not be. The presence of header nodes
[23, 12, x2.2.5] alters these conventions only slightly.

\Nailing down" a node is a dynamic trick that uses a
static protocol. The term means that the programmer is
certain that it is referenced at least once (by the \nail.")
Precise reference counting on several intervening reference
transactions becomes redundant, so long as all of them are
abandoned before the distinguished reference is \pulled."
In this context, the nail is perceived as the link, with all
intervening references created as threads. No explicit tags
are necessary because a static partitioning exists only for
the span of code while the nail is \in."

There are several ways to thread a tree [12, x2.3.1{2]:
for example, inorder [19] or level-order [12, p. 350] succes-
sors. Tarjan introduces several threadings to explain his
palm trees [21]; his tree arcs are links, but his fronds, reverse
fronds, and cross-links are all threads. Where these threads
are overloaded in a �eld that could alternatively contain a
link, they must be treated as dynamic.

Several Lisp and Scheme implementations provide weak
pointers. These are pointers installed by the programmer as
a convenience, 
agged so not to be traversed by the garbage
collector. In MacLisp these appeared �rst in un-garbage-
collected arrays [16, pp. 79{80] whose content were threads,
but with a caution instead of Invariant 1. Later incarna-
tions [15, x2:2:2] had the garbage collector replace them
with nil (or equivalent). While this protocol enforces Invari-
ant 1, it renders a pointer only mostly dead [10], because it
causes work for the collector and because a nil weak pointer
now confuses the empty list with lost denotation that dis-
appeared in an intervening collection.

3.3 More Examples are Solicited

The examples cited here are by no means intended to be
complete. The authors seek other (especially classic) exam-
ples of extant use of link/thread typing, even if only im-
plicit in design or validation of an algorithm. We conjec-
ture that many programmers use these ideas subliminally,

enabling them to manage heaps well without algorithmic
storage management.

4 Programming Logic and Types

This section presents a programming logic in the form of
preconditions for imperative programming that preserves In-
variant 1, and anticipates a type theory for strongly typed
languages.

Invariant 2 Invariant 1 can be restated: if node m is ac-
cessible and hm; li 7! n is a pointer, then either it is a link
or n is accessible.

This formulation of the invariant translates into four
cases for imperative programming that are itemized below:
resurrection and killing, and two cases for pointer assign-
ment to a live/dead pointer variable or �eld.

4.1. Dynamic tag changes:

(a) Resurrection is always safe. Enlivening cannot
violate Invariant 2.

(b) Killing is safe only if the pointer is not a unique
reference. If the pointer were unique, killing it
would render its destination inaccessible.

4.2. Pointer assignment P  Q, is analyzed according to
the cases for P before assignment. The delicate case
occurs when P is not unique. The tag of Q is copied
along with its pointer.

(a) P a thread: Like resurrection, the assignment
P  Q cannot violate Invariant 2.

(b) P a link: If P is non-unique, then assignment is
safe. If P is unique then the assignment is safe
only if all nodes in P 's structure that are uniquely
accessible (that is, its pre�x that is about to be-
come inaccessible), absorb threads only from those
same pre�x nodes.

Points 4.1a and 4.2a are simple; losing a thread does not
threaten the invariant. Point 4.1b is also easy to understand.

The interesting case is Point 4.2b, which has an impor-
tant subtlety when Q is also a link and shares part of P 's
structure, as frequently happens while deleting nodes. In
that case and at that point, the structure shared by both P
and Q is not uniquely referenced, and so the critical nodes
are those accessible from P but not Q (or any other link).
This case is very useful, for instance, when deleting a node
from the middle of a singly linked list. (v.i. Figure 5.)

On entering a new block that declares a local pointer
variable, for the purposes of this analysis the uninitialized
pointer should be treated as a thread. Similarly, any variable
that is released on block termination can be treated as if
nil were assigned to it there. That is, it loses its role as
a root. A particularly interesting case arises when unique
pointers are returned as values from a function to the calling
environment.

Formal typing depends on our ability to identify unique
references automatically, which work is in progress. The
live/dead domain, T , has only two points; \live" is?, \dead"
is >. If any pointer declaration in a program can be vali-
dated as > and maintain the invariants, then reference coun-
ters can ignore it and garbage collectors need never traverse
it.
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A type checker needs help getting started, because no
explicit constants, either atoms or functions, locally distin-
guish ? from >. Either the programmer must identify links
as seeds, or an eager compiler might optimistically conjec-
ture the threads. (Fat chance!) In either case, the checker
must validate these invariants.

5 Experience

The perspective above is a result of experience with a de-
sign for hardware that was built [28] (in prototype without
initialization of its live/dead tag) and subsequently used in
serendipitous ways that were not anticipated at its design
[26]. The short story is that tagging of threads proved most
useful at both development time and at run time; code writ-
ten with this perspective was more succinct and reliable, and
would (with the designed hardware tagging) run faster.

5.1 Reference-Counting Hardware

The hardware, brie
y described below, understands and acts
on dynamic live/dead tags at run time. That experience led
to our vision of static link/thread typing at compile time.

The reference-counting memory (RCM) was designed in
1984 [26] and built in 1989 [28] as an experiment in rapid
prototyping, in digital design derivation, and in memory
support for multiprocessing. The uniprocessing hardware
currently supports an elementary Scheme compiler and di-
rect manipulation through languages like C or C++. The
latter programming style is reported here.

At its core, RCM is a heap of 8-byte nodes, each of which
is either a homogeneously atomic datum (like a 
oating-
point number) or two 4-byte pointer �elds. A write to the
former, atomic type does not invoke reference counting, but
writing to the latter, binary node does. (Any pointer cache
must be treated as write-through.) When a node is allo-
cate, by reading its address from either of two distinguished
addresses, a hidden tag on the node is set, distinguishing
between these two types.

Each 4-byte �eld also carries a hidden, hard-wired
live/dead tag from T in hardware, associated with its cur-
rent content. That tag is both used and reset as each �eld
is written. The tag on the old content, being destroyed, de-
termines whether a decrement must be dispatched to that
address (if it were a link). The type of the node (if it is a
binary node) determines whether the �eld is to be tagged as
live and, inseparably, whether an increment is dispatched to
that address.

The three tags, just described, ride with a node through-
out its lifetime and back through available space as the
node is recycled. Although they reside at the address of the
node, they do not consume the address space usually asso-
ciated with main memory; \hidden" memory contains the
tags and the reference counts at the same address. (This
illusion contrasts with Baker's assertion [3] that reference
counting consumed both address space and processor cy-
cles.) Although the type is reset at allocation, the content
and live/dead tags remain meaningful until a write instruc-
tion changes both them and the visible content of the node.

That is, when a binary node is �rst allocated to receive
two links, it may yet contain dead bit patterns from its for-
mer incarnation (e.g. as an atom.) Contrariwise, when an
atom is �rst allocated, it might yet contain live, counted ref-
erences to archaic structure that only becomes collectible as

its content is overwritten, as those live references dispatch
decrements, and as their reference counts reach zero. This
is a hardwired revision of an algorithm due to Weizenbaum
[23, p. 527].

RCM's design also contains an unimplemented provision
that a pointer can be tagged (in its units bit that should be
0 with word addressing) as a thread. It that bit were 1 as a
pointer were written into a binary node, not only would the
usual increment be cancelled but also that �eld would be
tagged as dead|as if it were in an atomic node. Intended
to provide circular references [27], that protocol is simulated
in this work by three write instructions that tell RCM

� to write the pointer as if it were live;

� to decrement the reference count of its content, just
incremented;

� to reset the tag on that �eld to be dead, cancelling the
future decrement.

Therefore, it now requires two more control instructions to
simulate the single write, as designed for multiprocessing.
Speculation that this work triples the timing, however, is in-
appropriate because the implementation (on a Nu-bus with
NeXT's controller chip) muddles such analyses [28, x2].

As mentioned, we discovered that this simulated instruc-
tion proved to be far more useful than merely to build simple
circular lists. Indeed, our experience implementing a sample
data base showed that it handled many kinds of cycles and
reduced reference counts, even in acyclic structures.

5.2 Skippy-list example

As a demonstration of RCM and of the impact of the proper
use of threads there, a very simple example was derived from
the model of skip lists. Its main purpose here is to charac-
terize the impact on storage management of distinguishing
links from threads, and to lay a foundation for understand-
ing the tables in the next subsection.

A skip list [18] is a search structure generalized from a
sorted linear list, with additional pointers woven into it that
allow its search algorithm to take long strides. As de�ned,
it is an acyclic structure. An immediate observation here is
that all the \additional pointers" should be statically typed
as threads, so that all its linear links are unique. The exer-
cise is to allocate a list of length 1000, 2000, 5000, or 10,000,
and then to release it merely by overwriting the unique ref-
erence to its root.

A simple program was written in C using RCM that
represents a node in a level-1 skip list as two RCM nodes.
One RCM node links the spine of the skip list. The other
RCM node contains the search key, and every-other one has
an additional pointer. In order to generate a cyclic structure,
however, that additional pointer is corrupted to point to a
random sibling. We call it a skippy list here to suggest that
it is so very like a skip list. A skippy list is very simple,
highly circular, and fairly useless.

Four tests were run, three times each, and the average
counts are presented in Table 1. Details of the tests are
described below. The columns are headed by the length of
the skippy list, with the last column extrapolating a rough
ratio of the counts in that row to the length of the list.
Since each node in the skippy list is represented by two RCM
nodes, each with two �elds, two reads and four writes are
required just to allocate and initially �ll it.
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Test Count 1k nodes 2k nodes 5k nodes 10k nodes Ratio
Real RCM Reads 9499 18999 47499 94999 4.75

Writes 12001 24001 60001 120001 6
Ideal RCM Reads 9499 18999 47499 94999 4.75

Writes 7500 15000 37500 75000 3.75
No threads Reads 12998 25998 64998 129998 6.5

Writes 10495 20999 52500 104999 5.5
No cleaning Reads 9499 18999 47499 94999 4.75

Writes 7500 15000 37500 75000 3.75
GC nodes 1988 3996 9999 19997 2

Table 1. Counts of memory hits for a skippy-list example.

Four tests compare performance under di�erent manage-
ment modes. The �rst is RCM as built, which requires extra
writes to reset the dead tag and count on any thread; also,
an extra RCM write is required to nail successively newer
roots to the skippy list. The second set of counts is identi-
cal, but adjusts for those resets, which ought to have been
done while writing the pointer. The third test does not
use threading as a node is allocated, but must traverse the
skippy list to reset them later|as the list is released. The
last test neglects this traversal, allowing the highly cyclic
list to confound the reference-count machinery and leaving
almost all nodes to C's garbage collector (:-).

The results show that we really should have built thread-
ing initialization into the RCM hardware. The cost to reset
the dead tags is visible, two writes per node, but not as bad
as the traversal to erase the cycles at release, which costs
70% more probing. And, �nally, a mutator runs faster when
it can completely ignore storage management, provided here
by RCM.

5.3 Relational Object Database

The Relational Object Database (ROD) is a system for cre-
ating, manipulating, and searching objects and relations be-
tween objects. It was originally conceptualized for checking
dependencies between program constructs. For example, a
function f can be related in ROD to another function g: \f
uses g." Once it is known that \uses" has an inverse and
stated to the database that \f uses g," ROD infers the in-
verse relationship of \uses" and also makes it a known fact
that \g is-used-by f ." ROD infers such symmetry and an-
swers questions by searching its database, a dynamic struc-
ture like any typical database.

ROD was originally written in C, using linked lists and
arrays for data structures, at New Mexico State Univer-
sity in Fall 1993 and used there in later semesters [14], In
Spring 1995, ROD was converted to run using the Reference-
Counting Memory at Indiana University, as an experiment
to excise explicit memory management from the ROD sys-
tem, replacing it with RCM's hardware support. In a sense
this was to be a test of the generality of RCM because ROD
had been designed independently of it.

The basic List structures of ROD follow:

5.3.1. A global doubly-linked list of types. Every object is
classi�ed as exactly one type, such as function or pro-
cedure.

5.3.2. A global doubly-linked list of relations containing the
name and a reference to its inverse relation (in this
list) if an inverse is known.

5.3.3. A global doubly-linked list of objects that are being
manipulated, each containing the name of the object,
a pointer to its type (in List 5.3.1), and a doubly-linked
list described as List 5.3.4. Each object occupies two
RCM nodes in the tests, but the space is static.

5.3.4. A doubly-linked list hung o� each object in List 5.3.3
representing relationships to other objects contained
in List 5.3.3. Each contains a pointer to a relation (in
List 5.3.2) and a pointer to the object-being-related-
to (in List 5.3.3). If appropriate, it also contains a
pointer to the corresponding inverse relationship in the
list of relationships that is hung o� the object-being-
related-to (in List 5.3.3). Each relationship occupies
three RCM nodes in the tests, forty relationships per
object, and this space is recycled.

Figures 1{6 show an example that includes the last two of
these structures.

� The �rst discovery in this exercise was that doubly
linked lists are, indeed, easy for RCM to manage if
all counterpointers are threads. This convention is il-
lustrated by the solid pointers paired with inverted,
dashed pointers in Figure 1. The convention is used
in implementing all four kinds of lists. As illustrated
in Figure 1, this casts any list as singly-linked with re-
spect to links, and Lists 5.3.3 and 5.3.4, of objects and
their relationships, become a simple tree (ignoring, for
a moment, the pointers to inverse relationships.)

� A second insight is that a queue (in this case the ex-
tant queue of objects, doubly linked as above) should
also have its rear pointer as a thread. This conven-
tion su�ces to reduce a redundant reference counts,
but is not necessary to recover a cycle. It was a clue
that the live/dead tag could be useful beyond circu-
lar structures. As sketched in Figure 1, it makes the
queue everywhere uniquely referenced.

� The interesting discovery is that both pointers to in-
verse relationships, which must necessarily be symmet-
ric, should also be threads; their manipulation is ex-
plained in some detail below. That is, the pair of rela-
tionships, that is a single relationship and its inverse
hanging from two di�erent objects, contain a trivial
cycle that need not be counted. If these two point-
ers were live then the RCM exercise would have failed
to recover just those nodes. This last step, moreover,
completes the picture of the object list as a tree (with
respect to live nodes.) It makes it simple, for instance,
to destroy all objects and the relationships on them in
one cycle.
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The most interesting operation on the ROD data struc-
tures, deletion of an element from the list of relationships
(List 5.3.4), is now reviewed as an illustrative example of
how the system works, and of how it uses dynamic live/dead
tags. While deleting a relationship node, its inverse relation-
ship|if there is one|must be deleted at the same time.
Using live and threads, the relationship structures can be
arranged so that all the nodes can be deleted as a chain re-
action with the deletion of one node. Figures 1{6 show the
sequence of event in a node deletion.

Figure 1.: Solid arrows are links and the dotted arrows are
threads. The pointer O refers to the structure contain-
ing both the head and tail of the object queue [25].
The nodes S1 and S3 are relationships that are inverses
of each other, relating objects O1 and O3: That is, \O1

uses O3" and \O3 is-used-by O1." P is a reference to
the relationship node to be deleted, S1: The only node
in Figure 1 with a reference count greater than one is
S1; P emits its second reference.

Figure 2.: S1 is removed from the relationship list hanging
from O1. [Points 4.2a, and 4.2b without uniquely ac-
cessible nodes.] Its reference count drops to one. The
reference count on S2 increases because it is now ref-
erence from both S1 and O1.

Figure 3.: The pointer from S1 to S3 is resurrected.
[Point 4.1a.] S3's reference count rises to two.

Figure 4.: S3 is removed from the relationship list hang-
ing from O3, and its reference count drops to one.
[Points 4.2a, and 4.2b without uniquely accessible
nodes.] The reference count on S4 increases because
it is now referenced from S3 and O3. P now points
to a linked structure whose uniquely referenced pre-
�x, up to the sharing at S4, comprises the nodes to be
removed.

Figure 5.: The reference from P is lost. [as if P  nil;
Point 4.2b without any incoming threads.] The refer-
ence count on S1 automatically drops to zero and can
be recycled. When|in due course|S1 is overwritten,
the reference count on S3 will also drop to zero and
it will be recycled. No further traversal is necessary on
RCM.

Figure 6.: The ROD data structures after deletion. All ref-
erence counts have decremented to re
ect accessible
references.

The following test was run to exercise RCM and to reveal
the impact of proper threading. The data structures above
were build up serially for 500, 1000, 2000, and 2500 objects,
each participating in 40 relationships with its peers. Then
the relationships were removed in a random order, ideally
releasing all their space.

The order that the structure is built is immaterial, since
new nodes are inserted at the front of List 5.3.4. Remov-
ing them in random order causes that list to be traversed
repeatedly, searching for the relationship to be removed. So
the exercise becomes read-intensive.

The results appear in Table 2, read like Table 1. Again,
the experiments were run three times and the ratios are
remarkably stable. There are far more reads than writes,
but writes will have cost more because of their dirty-bit and
write-through requirements.

Installing hardware support for writing threads to RCM
would save about six writes per node, arising from the three
threads there; this is about 5.5% of the memory cycles. Al-
ternatively, the relationships can be traversed and returned
by ad hoc unthreading code (\no threads"), but more reads
and one more write to each node are needed; in fact, the
cost without threads is quite nominal because RCM only
returns a very few nodes at a time here. Finally, the test,
run without returning any nodes at all, obtains the timings
for the idealized RCM, but leaves behind all the space for
garbage collection.

6 Conclusions

The point of this paper is to identify the domain T of
links/threads as an attribute or type to be used by the pro-
grammer or the compiler to improve the e�ciency and e�-
cacy of run-time storage management. An important sym-
biosis exists between static typing by T , and identi�cation of
unique references. Killing pointers will decrease the aggre-
gate reference count in a system, making it easier to discover
uniquely referenced nodes. On the other hand, accurate
identi�cation of unique references may help to maintain In-
variant 1, through more e�ective elimination of inaccessible
pointers from the veri�cation problem.

The experiments show that run-time use of threads, both
by hardware and by the programmer, improves storage man-
agement. The number compares favorably with the best col-
lectors without requiring extra memory for recopying. The
resulting savings can be signi�cant even for C programs. In-
tegrating threads as a static type at compile-time remains
as future work.

Uniquely referenced nodes should be identi�ed at com-
pile time by a type system or at run time by tagging. Then
they can be reused through purely local transactions (while
resident in cache) or recycled with less resources, even, than
idealized collection [1]. Baker o�ers a good example of this
behavior [4]. Distinguishing threads from links has the ef-
fect of reducing reference counts, making unique references
more frequent and more frequently useful.

Generation-scavenging, however, will su�er from viola-
tions on the genetic order of addresses that arise from this
sort of in-situ reuse. When measuring the locality of genera-
tion scavenging, its advocates should better address locality
lost in the mutator whenever it avoids reuse in order to sup-
port the collector. In contrast, multiprocessor architectures
demands such reuse: both to preserve locality in the mu-
tators and to avoid synchronizations among the collectors.
We o�er static threading and compile-time space analysis
as tools necessary to realize the dream that Functional Pro-
gramming will yet become a lingua franca for parallel pro-
cessing.

The original purpose of this work was an exercise to test
the generality of the hardwired implementation of reference-
counting memory. In extending this device to handle the
typically circular structures from data-base systems, we dis-
covered that the distinction of link/thread was far more use-
ful, and far more important than was realized when it was
designed|and not built into our prototype. And RCM's
e�ectiveness, as described in Section 5.1, was considerably
improved by enforcing the invariants, above. Since it is likely
that low-level programmers now subliminally use such a type
to manage storage manually, it becomes important for auto-
mated managers (even garbage collectors) that would strive
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Number of objects 500 1000 2000 2500
Number of relationships 20,000 40,000 80,000 100,000 Ratio
Real RCM Reads 2,051,511 4,105,761 8,214,261 10,268,511 102.68

Writes 329,131 658,381 1,316,881 1,646,131 16.46
Ideal RCM Reads 2,051,511 4,105,761 8,214,261 10,268,511 102.68

Writes 209,711 419,461 838,961 1,048,711 10.48
No threads Reads 2,120,982 4,244,982 8,492,982 10,616,982 106.17

Writes 229,382 458,882 917,882 1,147,382 11.47
No cleaning Reads 2,051,511 4,105,761 8,214,261 10,268,511 102.68

Writes 209,711 419,461 838,961 1,048,711 10.48
GC nodes 60,000 120,000 240,000 300,000 3

Table 2. Counts of memory hits for ROD.

for high performance to recognize it and to use it well.
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