A Two-Pass Realistic Image Synthesis Method for
Complex Scenes

Kurt Zimmerman and Peter Shirley

Department of Computer Science Program of Computer Graphics
Indiana University Cornell University
Bloomington, IN 47405 Ithaca, NY 14853

Abstract

This paper presents a survey of two-pass global illumination algorithms that use a local
pass (gather) and shadow ray optimization techniques as well as a new two-pass algo-
rithm which relies on spatial coherence to efficiently handle the problem of numerous
luminaires. The algorithm presented operates on scenes with Lambertian reflectors and
luminaires with arbitrary emission distributions. A radiosity prepass is performed on a
simplified version of the scene. Bright reflecting surfaces are reclassified as light sources.
A spatial data structure is then built that associates bright visible surfaces to regions in
the environment. The visibility of these surfaces is probabilistically estimated. Finally,
a view-dependent “gather” is performed at each pixel. This gather is made significantly
more efficient than previous algorithms because of careful integration based on the con-
tents of the spatial data structure.

CR Categories and Subject Descriptors: 1.3.0 [Computer Graphics]: General;
1.3.6 [Computer Graphics|: Methodology and Techniques.

Additional Key Words and Phrases: Radiosity, realistic image synthesis, global
illumination, Monte Carlo Integration.

1 Introduction

In 1986 Kajiya introduced the rendering equation[8] and with it introduced an algorithm
that, given sufficient computing time, can accurately solve all rendering problems that
assume geometric optics. This has led to some speculation that global illumination is a
solved problem[4]. However, a sufficient amount of computing time for Kajiya’s algorithm
is not practical for most rendering applications. Thus, since the introduction of Kajiya’s
algorithm, the goal of global illumination community has been a simple one: develop
algorithms which can render realistic images to some accuracy goal in a practical amount
of time. While there have been successful algorithms for simple scenes, most of these
algorithms do not scale well when the environment becomes complex. So in spite of the
volume of literature devoted to realistic rendering, a general and practical algorithm for
producing physically accurate images of complex environments does not exist.

2 Kurt Zimmerman and Peter Shirley

In scenes with specular surfaces, “two-pass” methods have been used to add eye S*DS™* light
paths to illumination ray traced scenes[2], and to add eye S*D* light paths when render-
ing precomputed radiosity solutions [23]. If the radiosity method has form-factors that
account for specular transport, then all diffuse-specular transport chains are accounted
for[12, 1, 19, 6]. Some authors note that the direct lighting can cause more detail in
images, and use the precomputed solution only for indirect lighting [26, 16, 3].

A potential problem with many two-pass methods is that a texture map or mesh must
be used to represent the irradiance on diffuse surfaces. This limits the utility of such
methods for complex scenes. Rushmeier' observed that all lighting could be recomputed
by “gathering” from a radiosity solution at each point[15]. This method has been used
to generate images using piecewise-constant radiosity solutions[13, 20]. Lischinski et al.
used a similar non-probabilistic gather to generate better meshes for hardware display[11].
More recently, Rushmeier et al.[14] observed that gathering from a piecewise constant
radiosity solution could be done more efficiently if the radiosity solution were carried
out for a geometrically simplified environment. They also observed that gathering from
nearby objects gives noticeable artifacts. To get around this, they used Monte Carlo path
tracing[8] where large errors where expected from the gather method.

In this paper, we introduce a two-pass algorithm: a radiosity prepass followed by
a view-dependent “gather”. The algorithm differs from previous two-pass methods; it is
designed for environments with tens of thousand of primitives and hundreds of luminaires.
This is the first attempt to combine geometric simplification[14] with Monte Carlo shadow
ray optimization[17, 18]. More than a simple composition, the algorithm employs visibility
and lighting coherence both to determine and to vary in space the regions upon which
explicit gathering (shadow rays) and implicit gathering (reflection rays) are performed.
This allows the algorithm to restrict the number of explicit transfer calculations down
to one explicit gather and one implicit gather per viewing ray. In addition, visibility
estimation and visibility coherence is used to reduce the probability of querying invisible
or partially visible luminaires. As rays are not being sent to every luminaire, our algorithm
will reach an acceptable image for complex scenes tens to thousands of times faster than
previous two-pass solutions. The main limitation of this new method is that it is limited
to predominantly diffuse scenes.

The term “two-pass method” can apply to any algorithm that performs two passes.
For the purposes of this paper we restrict our discussion to those algorithms which use
a view-independent pass followed by a view-dependent pass. A further restriction is that
the values computed in the view-independent pass are not applied directly to the final
image but are used to help calculate the displayed values. Because two-pass methods that
use a “gather” for diffuse surfaces are relatively recent, we will begin with an overview of
two-pass methods and gathering strategies in Section 2. Next, in Section 3, we present our
new algorithm followed by the implementation, sample images, and results in Section 4.
Finally we discuss the merits of our algorithm in Section 5.

! Although two-pass “gather” methods have recently become popular, it is often overlooked
that they were introduced in Rushmeier’s 1988 thesis. The idea of a gather is also closely
related to Cohen et al.’s 1986 paper that used large patches to compute irradiance at each
small element.

A Two-Pass Realistic Image Synthesis Method for Complex Scenes 3

2 Background

In this section we review path tracing and two-pass methods that gather at diffuse sur-
faces. We begin in Section 2.1 by reviewing the rendering equation and the basis for
two-pass methods. In Section 2.2 we review path tracing as it is used in practice. In Sec-
tion 2.3 we review the implicit gather which gathers in directional space. In Section 2.4
we review the explicit gather which gathers in geometry space. In Section 2.5 we review
Rushmeier et al.’s GSII algorithm. In Section 2.6 we review previous methods that can
be directly applied to explicit gathers.

2.1 Rendering Equation

We now examine the rendering equation for diffuse reflectors and general emitters. We
review both the explicit (area-based) form presented by Kajiya [8], and the implicit
(directional) form presented by Immel [7]. The implicit form is:
R(x
Ls(x,0) = Le(x,0) + Q/ Li(x,&")(—=&"n)do (D) (1)
T Jo

where L4(x,o) is the surface radiance of x in direction @, L¢(x,w) is the emitted surface
radiance in direction w at x, U is the unit hemisphere of incoming directions oriented
about 7, R(x) is the reflectivity at x, Ly(x,@') is the field radiance from direction &’
incident at x, and o is the solid angle measure. The explicit form is:

Ly(%,9) = Le(x, &)+ . 2
@/ g(x,x’)Ls(x',Q')(—dz'-ﬁ)M dA(XI)
X |x — x'||2

where X is the set of all points on surfaces and g(x,x’) is the geometry term, which

is zero if there is an obstruction between x and x’ and one otherwise, ||x — x'|| is the
distance between x and x’, and A is the area measure, Figure 1.

Equations 1 and 2 are equivalent, but suggest different solution strategies. Equation 1
suggests sampling directions, and Equation 2 suggests sampling patches. Clearly we can-
not sample every patch at every pixel for complex scenes, but we cannot naively sample
directions because small bright surfaces will cause high errors. We want to explicitly sam-
ple a few very important surfaces, and directionally sample to estimate the contribution
of all other surfaces.

2.2 Monte Carlo Path Tracing (MCPT)

A naive Monte Carlo? solution to an integral I = [f(7) dr, where 7 € S can be
expressed as
)

o f(
= ; p(7)

2 Readers who are unfamiliar with Monte Carlo techniques should refer to a standard text such
as Kalos and Whitlock[9].

4 Kurt Zimmerman and Peter Shirley

dA(X)

\ o do(&)

Fig. 1. Rendering equation

Here 7, 7s,...,7, are random variables distributed by the probability density function
p, written 7, ~p. f n =1, I =~ f(r1)/p(11).
For an integral equation in the form of Equation 1 this suggests the approximation:

Ly(x,&) = L¢(x,0) + R(x)L¢(x, ") (3)

where &' is a random direction chosen with a cosine distribution.® Because L¢(x,d") is
not known, we trace a ray x + &' to find x'. If Ly(x,&') is rewritten as Ls(x',&") this
suggests the following algorithm®:

color raycolor(ray, depth)

color L = 0;

if (ray hits at x)
L += LE(x)
if (depth < maxDepth)

L += R(x)*raycolor(randomRay, depth+1)

return L

else
return background

Because this is very inefficient for scenes with small bright sources, Kajiya[8] made the
following modification (see Figure 2a):

color raycolor(ray, depth)
color L = 0;
if (ray hits at x)

3 Note that because the directions are chosen with a cosine distribution, the probability density
function ¢(&) = (—&"n) /7 which cancels the (—&"-#2) and 1/7 terms in Equation 1.
1 Here and in all subsequent pseudo code, LE(x) is the emitted color and R(x) is the reflected

color at x.

A Two-Pass Realistic Image Synthesis Method for Complex Scenes

if (depth == 0)
L += LE(x)
L += R(x) * directLight(x, N(x))
if (depth < maxDepth)
L += R(x)*raycolor(randomRay, depth+1)
return L

else
return background

where directLight(x, N(x)) sends a shadow ray to a random point on each luminaire
by evaluating Equation 2 defined over the set of emitters.

W

O light source
? view point Implicit Gather (b)
—— implicit ray O A
- - - » explicit ray » N |
- ? \l l’
- _ ‘H
GSll (d)

Fig. 2. Different view-dependent rendering methods.

2.3 Implicit Gather

Rushmeier[15] noted that we could terminate the recursion in the first algorithm above by
running an approximate radiosity solution, resulting in the following integral (as opposed

to an integral equation)
Ls(x,0) ~ Le(x,0) +/ L(z,0")(—&"n) do (") (4)

where L is the radiance from the radiosity solution. Solving the integral above is eas-
ier than solving the full rendering equation, and is the basic idea behind the two-pass

6 Kurt Zimmerman and Peter Shirley

methods discussed in this paper. Because solving Equation 4 can be thought of as calcu-
lating the light that x gets from the patches in the radiosity solution, it is often called
a “gather”. Because it is a calculation for only a single point x it is also called a “local
pass” (as opposed to a “global pass” which calculates radiances for all surfaces).
Rushmeier[15] modified the path tracing algorithm to solve Equation 4:

color raycolor(ray)

color L = 0;

if (ray hits at x)
L += LE(x)
L += R(x) * directLight(x, N(x))
L += R(x)*radiositycolor(randomRay)
return L

else
return background

Where radiositycolor returns the color of the radiosity patch seen in the direction of
the random ray (note that the emitted portion is not there), Figure 2b.

2.4 Explicit Gather

Alternatively, Equation 4 can be solved by sending a shadow ray to every patch in the
radiosity solution[13], Figure 2c:

color raycolor(ray)
color L = 0;
if (ray hits at x)
L+= LE(x)
for (i = 1 to numPatches)
if (x + t(xi-x) hits at xi)
L += LE(xi) + R(x)*L(xi)
return L
else
return background

where xi is a point in the radiosity solution. This method is very expensive for large
environments, but will be relatively noise free.

2.5 Geometric Simplification for Indirect Illumination (GSII)

Rushmeier et al.[14] observed that a two pass method could be more efficient if the
implicit gather was from a geometrically simplified environment.

One drawback with this approach is that gathering from nearby objects will cause
obvious artifacts. Even if only the illumination is simplified this proximity bug will occur

A Two-Pass Realistic Image Synthesis Method for Complex Scenes 7

(simplifying the geometry is just an extreme way of simplifying the field radiance func-
tion). To get around this problem a user defined parameter r_thresh is introduced that
determines when to use the simplified radiosity solution or when to use MCPT. ?

A combination of the code from Section 2.2 and Section 2.3 forms the algorithm:

depth = 0;
color raycolor(ray, depth)
color L = 0;

if (depth == 0)
if (ray hits at x)
L += LE(x);
L += R(x) * directLight(x, N(x));
if (depth < maxDepth)
L += R(x)*raycolor(randomRay, depth+1);
return L;
else
return background;
else
if ((ray hits at x) and
(lx - ray_origin| < r_thresh))
L += R(x) * directLight(x, N(x));
if (depth < maxDepth)
L += R(x)*raycolor(randomRay, depth+1);
return L;
else if (ray hits at xi)
L += R(x)*radsimp_color(ray)
return L
else
return background

where the value |x - ray_origin| represents the distance from the ray origin to the in-
tersected point x, the point xi is in the simplified radiosity environment, and the function
radsimp_color returns the color of the simplified radiosity patch seen in the direction
of ray. Note that the function directLight sends shadow rays to every luminaire and to
every bright reflecting zone (virtual luminaire) in the radiosity solution.

If it can be assumed that most renderings encounter the bulk of the computation in
modeling the diffuse or nearly diffuse inter-reflection, then GSII is very effective. The
simplified radiosity solution can be performed in a fraction of the time it may take for a
full resolution solution and multiple levels of reflection rays required for MCPT are, in
most cases, eliminated.

® This is a greatly simplified discussion. GSII also uses r_thresh to determine how much the
radiosity environment is simplified. This allows GSII to produce a range of solutions from the
Progressive Multi-pass Solution [3] if r_thresh = 0 to MCPT if r_thresh is greater than the
maximum distance between two points in the environment.

8 Kurt Zimmerman and Peter Shirley

2.6 Efficient Explicit Gathers

The explicit gather as noted in Section 2.4 requires that rays be sent to every patch or,
in the case of direct lighting, to every luminaire. Typically this is overkill because in
many cases only a few light sources or patches are important to the illumination of the
gather point. For direct lighting, Ward[24] suggested sorting the luminaires according to
their contribution in descending order, sample the sources in order until the sum of the
contributions is above some threshold, and then estimate the remaining contribution.
This can be thought of as ranking the importance of each luminaire, then sampling
the most important sources. Shirley and Wang[17] took this idea one step further by
observing that one luminaire sample per viewing ray could be used if they could assure
that important luminaires were more likely to be sampled than unimportant luminaires.
This requires careful design of the probability density function p used in the single sample
Monte Carlo estimate for the rendering equation in the form of Equation 2:

(=w"n) (@A)

——Ls(x", ") (5)

!
p(x')[lx — x'||

Here x’ is a random point on a selected surface and x’ ~ p. As an example, assume two
luminaires /; and [are sampled according to the probability density functions p; (x') and
p2(x"). These functions can be combined into one mizture density by applying a weighted
average:
p(x) = api (x') + (1 — a)p2(x)

where a € [0,1). This function can then be applied in Equation 5. The function p is
indeed a probability density because its integral over the two luminaires is one and it
is strictly positive over all points on the luminaires. The coefficients o and (1 — «) are
called mixing weights.

This idea can be extended to N luminaires if one can determine the mixing weights
a1, ae,...,an. If each luminaire’s estimated contribution to the gather point can be
determined then we can use these estimates to determine the mixing weights. If L} is the
estimated contribution for light [; then we can define

L
— [}
L+ Ly+--+ Ly

Q5

The mixture density is then
p(x') = aipi(xX') + asp(x’) + -+ + anpn(x')

where Zfil «; = 1. Determining which light to sample can be done by generating a
uniform random number ¢ € [0, 1) and selecting I; such that

i—1 i
Yy <E<d ay
j=1 j=1

The estimates for Lj, L}, ..., L}, can be obtained quickly by assuming that each luminaire
is visible to the gather point.

A Two-Pass Realistic Image Synthesis Method for Complex Scenes 9

The important point to notice about this process is that the values ay,as,...,an
must be generated for each direct lighting calculation. While generating these estimates
is much faster than generating an equivalent number of shadow rays, even this amount
of computation can be crippling when the number of luminaires becomes hundreds or
thousands. For this reason, recent work[18] suggests the use of spatial subdivision of light
sources. The reasoning for this is that seldom are all lights important to every region
in the environment. Therefore a list of important lights should vary in space. This can
be done by attaching an important light list to the cells of a conventional subdivision
structure such as a regular grid. To determine which light sources are entered into which
cells an influence region is defined for each source. An influence box is then intersected
with the subdivision structure and the light is inserted into the important list for each
cell in the intersection, Figure 3. All sources not in the important list for a particular
cell are considered unimportant to that cell. Probabilistically unimportant lights will
be sampled but this should be infrequent. If it can be assumed that the unimportant
luminaires contribute an equal amount of radiance to a scene, then a new probability
density function can be formed with the mixing weights determined by
_ L;

L+ Ly+--+ ML,

where M is the number of unimportant luminaires and L!, is the estimated average
unimportant contribution.

Q5

@ _ __S];) ______ gl_'?z_;::;-:L,—f..z—-v)-----:,-(-z-)--,
HIRC T
@ i O | @2 i (L) (2)i
! L _:,._ S R
@@ a2 1123 @3)
B I s N - S
e

(3) ['."_-._._.v‘__l(3

Fig. 3. Three lights with influence boxes intersecting a spatial grid. The important light list for
each cell is indicated by numbers in parentheses.

3 The New Gather Algorithm

In this section we discuss the development of our algorithm. In Section 3.1 we explain why
a simple combination of methods described in Section 2 is problematic. In Section 3.2 we
propose a solution to this problem and in Section 3.3 we present the pseudocode for our
algorithm.

10 Kurt Zimmerman and Peter Shirley

=]

Path .

Tracing GSII with Explicitly samples
Explicity samples reclassified || | S0 RS
each light source light sources reflector that is re-

classified as a
light source
estimate -=»
sample (shadow ray) —

Estimates the con-
tribution from visible
sources that are
either important or
spikes. Only
samples one light
source.

Estimates the con-
Monte Carlo tribution from all

direct lighting| | | sources but only
o o Gather from

Efficient

Blocked sources
may still be
= sampled. W

Fig. 4. How different methods send shadow rays.

spike list

3.1 Overestimates: Spikes

Since the explicit gather from Section 2.4 is relatively noise free, and since the spatial
subdivision method of Section 2.6 makes explicit gathering more efficient, a logical pro-
gression would be to combine these with geometric simplification to create an algorithm
which performs only an explicit gather. All surfaces in the simplified environment would
be considered light sources and, as in GSII, the algorithm could resort to MCPT if a se-
lected surface is less than r_thresh from the gather point. However, this strategy would
produce very noisy images. The problem is that we cannot assume that all unimportant
lights contribute equally to the illuminated point. In practice many unimportant lumi-
naires will not contribute at all. Another problem is that it is possible for a luminaire with
high radiance, a star for example, to be unimportant. Such a source would be selected
infrequently, but when it is selected the combination of high power and low probability
will produce a large estimate. Such an over estimate will require many extra samples to
overcome.

In quantitative terms, this problem can be seen in the following way. If a, is the
probability of having to select one of M unimportant lights then

_ ML,
CLi+Ly+---+ ML,

Oy,

If the random value £ is greater than Zf\il «;, where N is the number of important
luminaires, then it is necessary to select from the unimportant set with probability «,.

A Two-Pass Realistic Image Synthesis Method for Complex Scenes 11

Assuming that unimportant lights contribute equally, a uniform selection from the unim-
portant list is made with probability 1/M. If the selected luminaire is then visible a
sample point on the luminaire is then selected with p,(x"). The value for the probability
density p(x’) will then be
' upu(x')
p(x) = =7

If p(x’) is inserted into Equation 5, it is easy to see that a large M or small «, and/or
pu(x') may give a gross overestimate or spike.

3.2 Eliminating Spikes

To eliminate this problem of large overestimates we propose that the offending high
luminance but low contribution sources be sampled explicitly. This amounts to having
a “spike” list (high luminance patch list) rather than an importance list at each grid or
octree cell. A spike list differs from an importance list because it includes any source
l; which exceeds some user defined threshold regardless of whether or not the influence
region for [; intersects the cell. This means that many sources which would be considered
unimportant by the method described at the end of Section 2.6 will be included in a spike
list. In practice all bright sources are automatically included in the spike list whereas
dim sources and reclassified sources (bright reflectors) are tested against their influence
regions to determine membership.

A problem with maintaining any list of spikes is that a scene may contain many spikes
(e.g. an office building). However, in most scenes only a few spikes are visible (non-zero
geometry term) at any given point. These “invisible” spikes should not be in the list.

To accomplish this exclusion of invisible patches from a spike list, we perform a
visibility preprocess in each cell. Thus sources which are not visible to a cell will not
be included in the spike list and can be ignored. Of course, if many bright sources are
visible, as would be true in the middle of a football stadium, then the spike list will
be large. However, for most architectural scenes, including night time city scenes, the
visibility preprocess will provide significant savings. In the event that the spike list is
large, we will still only send one shadow ray for an explicit gather from all spikes, so even
several hundred spikes should be allowable without too much degradation in performance.
Because visibility calculation in complex scenes is very difficult[21], we will use a point
sample approach to visibility estimation, so we will falsely exclude some spikes. This
amounts to truncation, but will never occur for spikes that are completely visible.

3.3 The Algorithm
The algorithm performs the following steps, the first two are taken directly from GSII:

1. Simplify surfaces and create a coarse mesh for the radiosity solution according to
user defined parameters. °

6 Automatically simplifying a scene is a difficult problem worthy of a PhD thesis by itself. For
our algorithm the user must provide this simplified version of the scene. This is not as great
a hardship for the user as one might guess. The generation of a simplified environment, a
process called massing, is commonly employed by designers and architects[5].

12 Kurt Zimmerman and Peter Shirley

2. Perform radiosity solution with the coarse mesh over the geometrically simplified
environment.

3. Create the lighting grid by treating all surfaces in the simplified radiosity solution as
luminaires.

4. Perform the ray tracing final pass according to the following algorithm:

color raycolor(ray, depth, list)
color L = 0;
if (depth == 0)
if (ray hits at x)
list = getSpikeList(x);
L += LE(x);
L += R(x) * spikeColor(x, N(x), list);
if (depth < maxDepth)
L += R(x) =*
raycolor(randomRay, depth+1, list);
return L;
else
return background;
else
if ((ray hits at x) and
(lx - ray_origin| < r_thresh))
list = getSpikeList(x);
L += R(x) * spikeColor(x, N(x), list);
if (depth < maxDepth)
L += R(x) =*
raycolor(randomRay, depth+1, list);
return L;
else if (ray hits at xi)
if (xi is not in list)
L += R(x)*radsimp_color(ray) ;
return L;
else
return background;

where the function getSpikeList (x) returns the spike list corresponding to the cell
in which x resides. The function spikeColor uses the Monte Carlo direct lighting
method shown in Section 2.6. Note that a check must be made to determine if the
point xi resides on a surface in the spike list. If it does reside on such a surface then
the radiance at xi is accounted for in the explicit gather on the spike list.

4 Implementation and Results

For our implementation, we use an axis aligned regular grid to store the spike lists.
This grid is of the same size and dimension as the geometry grid used to store the full

A Two-Pass Realistic Image Synthesis Method for Complex Scenes 13

Fig. 5. New Gather with 64 samples per pixel

Fig. 6. New Gather with 64 samples per pixel

resolution environment. By making the lighting grid the same size as the geometry grid
we can eliminate the storage of spike lists in cells which do not contain geometry. We
introduce user defined values E and FE as spike thresholds. We assume that any light
source [; with emittance E; > E can produce a spike in the image. Therefore we insert I;
into each grid cell’s spike list provided that [; is visible from the cell. If E; < E then it is
assumed that [; cannot produce a spike and is left to be sampled implicitly. If E < E; < E
then the influence region as in[17] is used to determine the cells in which /; may cause a
spike. Again, I; is inserted into a cell only if it is visible from the cell.

14 Kurt Zimmerman and Peter Shirley

The visibility tests are performed by sending rays through the environment from
random points in a grid cell to random points on the light source. A visibility variable
g; is maintained which represents the percentage of rays which are not blocked. This is
similar to the visibility estimate of Smits et al.[20]. This technique is not as accurate as the
techniques presented by Teller and Hanrahan[21] but is applicable in “less well-behaved”
environments. In our implementation we use a self-refining method which initially sends
10 rays, if each ray reaches the light source then g; is set to 1 and [; is inserted into the
spike list. If more than one but less than 10 rays reach the light source, 10 more samples
are generated and newg; is stored. If ||newg; — ¢;|| < 0.1 then g; = (newg; + g;)/2 and
[; is inserted into the spike list. If [; is not inserted or if one or fewer rays reach the
light source, this process continues until a maximum number of rays are sent. In our
implementation the maximum number is 100. If g; = 0 then the light source is fully
occluded and can be left out of the cell’s spike list.

The spike lists are sampled during the ray tracing pass according to the linear method
from Shirley and Wang[17] with the geometry term included in the computation. The
mixing weights are then defined by:

o — giLi
" giLi + g2La + -+ gnEy

If we choose [; from the spike list with corresponding probability density function p; then
the probability density function for the estimate is

p(x') = a;pi(x’)

Note that the visibility term g which in most Monte Carlo methods is either 1 or 0 is
now worked into the density function.

There is one other implementation detail which must be noted: the spike list chosen is
not necessarily the list corresponding to the region or cell which contains the illuminated
point. To prevent large errors from occuring at cell boundaries the choosing of a spike list
is weighted based on the location of the illuminated point in the cell. Thus illuminated
points near to the edge of a cell may cause a neighboring cell’s spike list to be chosen.

The images in Figures 5 and 6 were produced with our algorithm with 64 samples
per pixel. 7 These images represent two different view points in the same test environ-
ment which contains 1666 primitives including 318 light sources. The radiosity prepass
was performed on simplified version of this environment that was tessellated into 32294
triangles. A view of the radiosity solution is shown in Figure 7. For comparison, a MCPT
solution with 64 samples per pixel is shown in Figure 8. For this scene, the extra storage
required for the spatial data structure containing the spike lists was of the same order as
the grid structure which stored the actual scene description. These two structures and
their associated geometry accounted for about 20% of the total storage. The remaining
80% was due to the simplified radiosity solution and its corresponding spatial structure.

" The original images can be viewed in 24bit color on the web at
http://www.cs.indiana.edu/hyplan/kuzimmer/EGRW95.html

8 This is due in part to an inefficient mesh structure for the simplified geometry. The authors
are rectifying this now. We expect that the storage required for the radiosity solution and its
spatial structure to be about 50% of the total requirement after this improvement.

A Two-Pass Realistic Image Synthesis Method for Complex Scenes 15

Fig. 7. Solution for radiosity prepass

Fig. 8. MCPT with 64 samples per pixel

While it is quite possible to construct scenes where the spike lists will require substantial
storage (ie. the stadium example), we expect requirements similar to those of our test
scene on average. Table 1 compares the performance of our algorithm with MCPT and
GSII. ? These results are for 300 by 200 image sampled at one sample per pixel on the
above mentioned environment. The small image size and sampling rate were necessary

® Our implementation of GSII is somewhat deficient because we do not reclassify bright reflec-
tors as light sources. Because of this, we do not provide an example of an image using this
method, but we expect the image quality to be similar for the view depicted in Figure 5 and
slightly less noisy for the view depicted in Figure 6. It should be noted that reclassification
will only increase the number of explicit samples necessary for this method.

16 Kurt Zimmerman and Peter Shirley

| MCPT |
Viewing Rays 60,000
Implicit Rays 422,640
Explicit (shadow) Rays||147,429,560
Preprocessing Time none
Rendering Time 20 hours
| GSII |
Viewing Rays 60,000
Implicit Rays 68,652
Explicit (shadow) Rays|| 21,973,800
Preprocessing Time 10 minutes
Rendering Time 1.6 hours
| Our Algorithm |
Viewing Rays 60,000
Implicit Rays 68,992
Explicit (shadow) Rays 69,476
Preprocessing Time 1.2 hours
Rendering Time 4 minutes

Table 1. Three algorithms run on the test environment, 300x200 images at one sample per
pixel.

because of the computational expense of MCPT. The times are for a single processor
Silicon Graphics workstation with an R4400 processor.

The artificially small image size and sampling rate used to generate the values in
Table 1 does not display the true power of our method. For a larger image of the same
scene with a higher sampling rate per pixel, the preprocessing times for our algorithm
remain unchanged and the implicit and explicit ray numbers will continue to be of the
same order as the number of viewing rays. Using the above table as a guide, approximate
times for a 1000x1000 image of the same scene with 64 samples per pixel would be on
the order of 126 weeks for MCPT, 53 days for GSII, and 3 days for our algorithm.

5 Discussion

The algorithm presented is the first two-pass method for complex diffuse scenes with
many luminaires. However there are many important issues that must be addressed.

5.1 Generality

We have presented results for only one model. This model is somewhat unusual in having
so many lights that are only decorative. However, there are twelve street lights in the
scene as well as twelve floor lamps as well as several reclassified sources like the ceiling
and walls above the floor lamps. Because of the use of visibility estimates and visibility
coherence, the sampling of these sources within rooms is relatively efficient. In the street
where most of the street lamps are visible, the predictive weighting will cause the nearby

A Two-Pass Realistic Image Synthesis Method for Complex Scenes 17

lamps to be preferentially sampled. Our method works well for scenes which contain many
bright reflectors, many luminaires and much occluding geometry (i.e., an office building).
However, other methods may be preferred for scenes which contain few primary sources
or scenes which contain numerous primary sources which are visible everywhere.

5.2 Error

Our algorithm is no longer a pure Monte Carlo method (unlike [8, 22]), so our solution
will have both noise and deterministic error. Note that almost all current methods are
such hybrids; e.g., most visibility checks are Monte Carlo[20]. We have not made any
analytical statements about the magnitude of this error in our results. Bounding our
error will be difficult'?, but must be investigated. However, the lack of an error bound
should not dismiss the significance of the results.

In practice, the global illumination community is working on two ends of a spectrum.
On one end, error bounds are derived and algorithms are developed based on these
bounds. On the other end, algorithms are developed for practical use. Both of these
efforts are worthwhile. Hopefully, the two ends will one day meet. In the mean time,
those working on practical algorithms for complex scenes should be comparing their
results with real environments as suggested by Ward[25]. We intend to do this.

5.3 Truncation

The current algorithm performs point sampling to determine visibility when generating
the spike lists. If all of the samples from a region (or cell) to a light source are blocked
then the source is not included in the spike list and it is not sampled explicitly with a
shadow ray. Furthermore, as shown in the algorithm of Section 3.3, reflection rays only
gather the reflected components. Thus the possibility exists that some contribution may
be truncated. Truncation may also occur when the emission for a source falls between the
user defined values E and E. In this case the influence region for the luminaire determines
its inclusion into the spike list. In our test scene, the Christmas lights strung across the
street fall into this range. These lights have small influence regions which extend to the
street but probably do not extend to the rooms in the buildings. Removing one of these
lights introduces very little error, but removing all of them produces a significant error.

Clusters. We are investigating the possibility of hierarchically clustering sources and
then sampling the cluster as if it were a single source in areas beyond the importance re-
gions of these luminaires. This approach could also be applied to the unimportant lights
which must be included in the spike lists because of an emission value greater than E. For
example, if the test image included thousands of stars in the night sky, the current imple-
mentation would include most of these stars in the spike list for a region in the middle of
the street. Clustering could combine these into one giant luminaire. In fact, spreading the
emissions from all of these sources across a cluster may move the emission below the spike

10 Surprisingly, almost no global illumination algorithms have known error bounds on their solu-
tions; Lischinski et al.[10] have provided us with error bounds on piecewise-constant radiosity
solutions. We are aware of no other such results.

18 Kurt Zimmerman and Peter Shirley

threshold. The night sky could then be left to be sampled by reflection rays. Clustering
would also reduce the probability of incorrectly removing sources which are mostly but
not totally occluded. An approach similar to that presented by Smits et al.[20] should
work well for scenes containing diffuse emitters. However, properly combining directional
sources into clusters will require further work.

5.4 Realism

Diffuse-only solutions are limited in their ability to depict realistic environments. Ward[25]
found that much realism can be added if he used non-diffuse transport only for the
last non-specular bounce before the eye (ie. he replaces eye S*GG* light paths with
eye S*GD* light paths, where G is a general BRDF). This could be implemented in a
two-pass method by gathering from a diffuse solution, but by using a non-diffuse BRDF
for the local pass. An example of this can be seen in Figure 6 where we can see the
reflection of the floor lamp in the book cover. An alternative would be to gather from a
non-diffuse radiosity solution, which would account for the specular-diffuse-eye transport
not handled well by path tracing, etc. Current non-diffuse radiosity solutions will not
fare well on large environments. Determining how to combine a simplified environment
with non-diffuse transport may prove to be fruitful research.

6 Conclusion

We have presented the first two-pass global illumination method that has a gather that
is practical for complex diffuse scenes with many luminaires. This algorithm borrows the
ideas of simplified geometry and light source reclassification from GSII. It also performs
visibility estimates to associate visible light sources to regions in the environment. An
implementation of this method has been run on a scenes with tens of thousands of surfaces
and hundreds of luminaires. On this scene our implementation was about 20 times faster
than the most efficient two-pass methods.

The crux of this paper is on explicitly sampling a few very important surfaces, and
directionally sampling to estimate the contribution of the remaining surfaces. In addition,
the use of visibility coherence was used to lower variance. This amounts to dividing
the integral into two components, and applying different quadrature methods for each
component. The techniques in this paper provide a mechanism that efficiently makes this
division.

References

1. John M. Airey and Ming Ouh-young. Two adaptive techniques let progressive radiosity
outperform the traditional radiosity algorithm. Technical Report TR89-20, University of
North Carolina at Chapel Hill, August 1989.

2. James Arvo. Backward ray tracing. Developments in Ray Tracing, pages 259-263, 1986.
ACM Siggraph ’86 Course Notes.

3. Shenchang Eric Chen, Holly Rushmeier, Gavin Miller, and Douglass Turner. A progressive
multi-pass method for global illumination. Computer Graphics, 25(4):165-174, July 1991.
ACM Siggraph '91 Conference Proceedings.

A Two-Pass Realistic Image Synthesis Method for Complex Scenes 19

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Michael F. Cohen. Is image synthesis a solved problem? In Proceedings of the Third
Eurographics Workshop on Rendering, pages 161-167, 1992.

Donald P. Greenberg. Computers and architecture: advanced modeling and rendering al-
gorithms allow designers and clients to walk through buildings long before construction.
Scientific American, 264:104-109, February 1991.

Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. Computer
Graphics, 24(3):145-154, August 1990. ACM Siggraph ’90 Conference Proceedings.

David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method for non-
diffuse environments. Computer Graphics, 20(4):133-142, August 1986. ACM Siggraph 86
Conference Proceedings.

James T. Kajiya. The rendering equation. Computer Graphics, 20(4):143-150, August
1986. ACM Siggraph ’86 Conference Proceedings.

Malvin H. Kalos and Paula A. Whitlock. Monte Carlo Methods. John Wiley and Sons,
New York, N.Y., 1986.

Dani Lischinski, Brian Smits, and Donald P. Greenberg. Bounds and error estimates for
radiosity. Computer Graphics, 28(3):67-74, July 1994. ACM Siggraph '94 Conference
Proceedings.

Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. Combining hierarchical ra-
diosity and discontinuity meshing. Computer Graphics, pages 199-208, August 1993. ACM
Siggraph 93 Conference Proceedings.

Thomas J. V. Malley. A shading method for computer generated images. Master’s thesis,
University of Utah, June 1988.

Mark C. Reichert. A two-pass radiosity method driven by lights and viewer position. Mas-
ter’s thesis, Cornell Program of Computer Graphics, January 1992.

Holly Rushmeier, Charles Patterson, and Aravindan Veerasamy. Geometric simplification
for indirect illumination calculations. In Graphics Interface 93, pages 227-236, May 1993.
Holly E. Rushmeier. Realistic Image Synthesis for Scenes with Radiatively Participating
Media. PhD thesis, Cornell University, May 1988.

Peter Shirley. A ray tracing algorithm for global illumination. In Graphics Interface 90,
pages 205-212, May 1990.

Peter Shirley and Changyaw Wang. Distribution ray tracing: Theory and practice. In
Proceedings of the Third Eurographics Workshop on Rendering, pages 200-209, 1992.
Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte carlo techniques for direct
lighting calculations. ACM Transactions on Graphics (TOG), 1995. accepted for publica-
tion.

Frangois X. Sillion and Claude Puech. A general two-pass method integrating specular
and diffuse reflection. Computer Graphics, 23(3):335-344, July 1989. ACM Siggraph 89
Conference Proceedings.

Brian E. Smits, James R. Arvo, and David H. Salesin. A clustering algorithm for radiosity
in complex environments. Computer Graphics, 28(3):435—442, July 1994. ACM Siggraph
’94 Conference Proceedings.

Seth Teller and Pat Hanrahan. Global visibility algorithms for illumination computations.
Computer Graphics, 27:239-246, August 1993. ACM Siggraph 94 Conference Proceedings.
Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In Proceed-
ings of the Fifth Eurographics Workshop on Rendering, pages 147-162, June 1994.

John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. A two-pass solution to the
rendering equation: a synthesis of ray tracing and radiosity methods. Computer Graphics,
21(4):311-320, July 1987. ACM Siggraph ’87 Conference Proceedings.

Greg Ward. Adaptive shadow testing for ray tracing. In Proceedings of the Second Euro-
graphics Workshop on Rendering, 1991.

20 Kurt Zimmerman and Peter Shirley

25. Gregory J. Ward. The radiance lighting simulation and rendering system. Computer
Graphics, 28(2), July 1994. ACM Siggraph ’94 Conference Proceedings.

26. Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solution for
diffuse interreflection. Computer Graphics, 22(4):85-92, August 1988. ACM Siggraph 88
Conference Proceedings.

