REDUCED COMBINED INDEXES

FOR EFFICIENT MULTIPLE ATTRIBUTE RETRIEVAL
Ben Shneilderman

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNIcAL ReporT No. 43

Repucep COMBINED INDEXES
For EFFICIENT MuLTIPLE ATTRIBUTE RETRIEVAL

BEN SHNEIDERMAN

Revisep: June, 1976

Reduced Combined Indexes

For Efficient Multiple Attribute Retrieval

Ben Shneiderman

Computer Science Department
Indiana University

Bloomington, Indiana 47401

Abstract

Combined indexes were proposed by Lum [4] as an alternative
to the traditional approach of intersecting multiple single attribute
indexes. The combined index approach is appealing for queries re-
gquiring conjunctions of attribute values since 1t eliminates the
need for time consuming intersections. The large penalty of wasted
auxiliary storage space in the combined index approach can be mini-
mized by adopting the reduced combined index technique proposed
in this paper. A detailed description, with a number of wvariations

and suggestions for implementation economies, 1s presented.

Keywords

combined indexes, reduced combined indexes, inverted files,
indexing, multiple attribute retrievals, file organization, secon-
dary index files, information retrieval, data management, file organ-

ization, query.

CR Categories

3.73s 3«T45 3+79

A common file organization is a collection of records with
unique primary keys, such as a part number or employee number,
and multiple secondary keys which are attributes of the itemn.
Classic indexed sequential organizations enable direct access to
a record with a specified primary key, but access to all records
with a specified secondary key, requires more complex indexing
strategies. The popular method of constructing an index for each
secondary key field [1,2,3] is simple to implement but inefficient
when conjunctive queries on multiple attributes are required.

We 1imit the discussion to conjunctive queries and refer to
the number of components as the degree of the query. The following
examples show one, two and three degree queries:

Select student-records where (age equals 18)

Select student-records hwere (age equals 18) and (home-state

equals Indiana)
Select student-records where (age equals 18) and (home-state
equals Indiana) and (class-standing equals sophomore)

If indexes exist for age, home-state and class-standing, then the
first query can be easily answered by finding all the references
to 18 year old students in the age index. The second query requires
searching both the age and home-state indexes and an intersection of
the references from the two indexes. The intersection may be time
consuming, especially in this example, because a large number of
references may be obtained from each index. The third query requires
three searches and a three way intersection. When the intersection
is complete, the relevant records may be obtained from the student-

records file by direct access retrievals of the referenced records.

B

To remedy the high cost of performing an intersection each
time a query is made, Lum [4] proposed the idea of combined indexes
or compound indexing. If we relabel the age, home-state and class
standing attributes, A,B, and C, respectively, then all the possible

conjunctive query forms could be represented by:

A A and B A and B and C
B B and A A and C and B
C A and C B and A and C
C and A B and C and A
B and C C and A and B
C and B C and B and A

Lum recognized that the ordering of query components was not critical
and that it would be possible to answer all of the 15 above queries

with no intersections if only three specially designed combined

indexes were implemented. These combined indexes would use the key
values combined (or concatenated) in the following three patterns:
ABC, BCA and CAB. With this set of three three-degree (the degree
of an Index 1is the number of combined attributes) combined indexes,
A queries could be answered directly from the first index, B queries
from the second, C queries from the third, AB (equivalent to BA)
queries from the first, BC (or CB) from the second, CA (or AC) from
the third and all third degree queries from any one of the three
indexes. FPigures 1-3 show the three combined indexes for an example
file of twenty records where three attributes are keyed.

Lum showed that with four keyed attributes, six four-degree
combined indexes were necessary to answer all one through four
degree queries: they were the ABCD, BCDA, BDAC, CADB, CDAB and DABC

indexes. 1In general, for n keyed attributes the number of combined

il
indexes necessary to respond to all first through n degree queries
by searching only one index is given by:

n
%]

2

Sample values for this function are:

CI(n) =

n 2 % Iy 5
CI(n) 2 2 6 10 20

Lum's method required each of the CI(n) indexes to have an entry
for each of the N records in the primary file. This led to
extremely large indexes of N entries each of which were costly to
search and required huge amounts of storage. These burdens and
the extra updating costs when insertions or deletions were made,
limited the applicability of Lum's method to situations where
substantial amounts of storage could be sacrificed to reduce
response time for queries and where updates were infrequent.
Fortunately, there is a method by which we can significantly
reduce the size of the combined indexes, although the number of
indexes remains unchanged. This method, reduced combined indexes
(RC indexes), eliminates the redundancies in the indexes and reduces
the number of entries in all but one of the indexes. This improve-
ment shortens the response time for queries and lessens the storage
overhead, but does not affect the update problem. Reduced combined
indexes require less storage space and are less costly to search
than Lum's combined indexes. In the case of three keyed attributes

it is necessary to have only one three-degree index and two two-

degree indexes: these are the ABC, the BC and the CA combined indexes.

~5-

Figures U and 5 show the BC and CA indexes which replace Figures
2 and 3. Although the reduction is modest in this case, the
advantage with additional keyed attributes or longer files is more
substantial. With four keyed attributes we need only one four-
degree index, ABCD, three three-degree indexes, BCD, BDA, CAD and
two two-degree indexes, CD, DA to answer all queries,without any
intersections.
As an example of the savings consider a primary file of
10,000 records with four secondary attributes. If we assume a
uniform distribution of attribute values withlin the records so
that there are 10 values for each attribute, then there are 10,000
possible combinations each appearing once to make up the 10,000
records. Lum's combined index method requires six indexes, each
of length 10,000 with 10,000 record pointer buckets each containing
one record pointer. (Of course, if this optimum situation existed
a convenient computational method could be used to locate the records
without any indexes at all. Realistic situations have a sparse
covering of the product space of attributes.) The reduced combined
index method would require only one index with 10,000 entries (the
ABCD index), three indexes with 1000 entries (where each record
pointer bucket contains 10 pointers; the BCD, BDA and CAD indexes)
and two indexes with 100 entries (where each record pointer bucket
contains 100 pointers; the CD and DA indexes). The reduced method
requires only 13,200 entries compared to 60,000 for Lum's method.
Although the number of entries is reduced, the number of
reference pointers to records in the primary file 1s the same as

in Lum's method. If we assume that a pointer 1s four bytes and a

b

key value is also four bytes (a conservative figure) then the
four, three and two degree combined index keys will be 16, 12

and 8 bytes, respectively. This simple implementation, which
does not assume any compression techniques, follows Lum's
presentation'rigidly. Under these assumptions, Lum's combined
index approach would require (6 indexes) ¥(10,000 entries/index)¥
(20 bytes/entry) for a total of 1,200,000 bytes. The reduced
combined index approach would require:

(1 index) * (10,000 entries/index) ¥ (16 bytes/entry)
+ (3 indexes) * (1000 entries/index) ¥ (12 bytes/entry)

(2 indexes) * (100 entries/index) ¥ (8 bytes/entry)

(6 indexes) ¥ (10,000 pointers/index) ¥* (4 bytes/pointer):}gggnters

the
keys

which yields a total of 437,600 bytes. A realistic implementation
evaluation would have to consider bucketing techniques and disk
accesses, but these figures do suggest that substantial reductions
in storage space are possible.

The reduction in the number of entries, which produce the
storage economies, also shortens the response time since all but
one of the indexes have fewer entries. An order of magnitude
reduction in the number of entries will probably lead to about one
less disk access for the search process. A 100 entry index would
require only one disk access while a 10,000 entry index would regquire
three, assuming root nodes are not kept in the high speed storage.
Figure 6 shows reduced combined indexes for two to six keyed attri-
butes and Figure 7 shows the required number of RC indexes of each
degree.

In general, for n keyed attributes the number of indexes,

2y of precisely length k necessary for answering all gueries

by searching a single index is

ak=l k =n

a. =h =D

K 2 K+1 o< k= L(nFl)/2]

where bk is the number of indexes of length k or greater and is

n
B [J n < k=< L(ntl)/2]

The intriguing algorithm for finding a set of CI(n) combined
indexes of degree n 1is given by Knuth (Exercise 1, page 567,
reference 5). The necessity and sufficiency of CI(n) combined
indexes is given in Lum's original paper [4]. Lum's proof is
directly applicable to the reduced combined index scheme and
Knuth's algorithm can be modified to generate the reduced combined
index sets. For the sake of completeness, Knuth's algorithm and

the modification is given in the Appendix.

B

Modified Combined Indexes

The reduced combined index method deoces produce the minimum number
of indexes of minimum length to perform all queries by looking in a
single index without doing intersections. An alternative idea,
modified combined indexes (MC indexes), does not have the minimum
number of indexes, but often the index to be searched to answer a
query has fewer entires and can be searched faster. For n keyed

attributes 2P~

indexes are required. Figure 8 shows the indexes
required for the modified combined index scheme for n equals 2

to 6 . The indexes required are generated by writing down a list
of all of the 27 -1 subsets of the integers 1,2,...,n such that
the values in each subset are in ascending order. Eliminate all 1list
elements which are a prefix of any other list element, leaving pre-
cisely 2n—l list elements. The letters A,B,C... were used to
replace the integers 1,2,3... in Figure 8. The number of modified

o)
combined indexes of degree k 1is [] where n 1s the number of

k
keyed attributes.

The shorter the string of letters in the index descriptor, the
fewer entries required for the index. A crude estimator for the query
response time 1s the average number of letters in the index descrip-
fors. This is true because the numbered letters suggests the depth
of the tree in the natural implementation. Not surprisingly, the
modified combined index method has shorter average lengths for index
descriptors than the reduced combined index method. This suggests
that where response time is more critical than storage utilization
and update rates are low, the modified combined index method may

be preferable. A careful analysis of query and attribute wvalue

distributions is required to make the optimal choice.

The "natural" implementation of combined indexes

The high level of redundancy in combined indexes, particuiarly.
the leftmost attributes, suggests a tree structured implementation.
In such an implementation, a three-degree index would produce a
Three-level tree and an n degree index would produce an n-level
tree. Figures 9-11 show the natural implementation of Figures 1,
4L and 5. This factoring out of redundant data not only reduces the
volume of information to be stored but simplifies the search process.
For example, in an ABC index (see Figure 9) a three degree query
could be responded to by a scan of the root node to match the A
attribute in the request. Next the appropriate block at the second

level of the tree would be scanned to match the B attribute of the
request and the process would be repeated for the C attribute

at the third level. The result of this search would be the list
of record pointers which have records satisfying the A = B and

C attributes of the request.

Additional efficiency can be obtained for queries specifying
fewer than the complete set of attributes by having pointers from
each level leading directly to the record pointer buckets. For
example, 1f there were pointers from the root node (A attribute
values) in Figure 9 to the 1st, 5th, and 11th record pointer buckets,
then simple A attribute queries could be answered without going
through the B and C 1levels of the tree. In general there could
be polnters from each of the finst «(n - 1) 1levels of the tree. to
the record pointer buckets. We assume that there is some way of
sequentially traversing the record pointer buckets. We have chosen
to call such trees with pointers from each level to the bottom level,

shrubs.

=1 {=

An additional implementation efficiency can be obtained by
reducing the redundancy in the first few levels of several shrubs.
For n =5 (see Figure 6), three of the shrubs would have the same
B attribute roots, three shrubs would have the same C attribute
roots and two shrubs would have the same D attribute root. These
redundant attribute value lists could be eliminated if we created
only one list and simply had multiple pointers leading to the
second level of the proper shrub. For n = 6 (or greater), we
find that the first two (or more) levels of the shrub are identical
and the redundancy can be eliminated by careful grafting of shrubs.
We call the complete collection of these elaborate structures,

shrubbery.

Practical Considerations

A large number of variations geared to special situations can
be envisioned. Lum [4] and Knuth [5] both acknowledge that if an
attribute has only two possible values, then special provisions
can be made to substantially reduce the indexing burden.

If attributes can be isolated into groups, based on the
knowledge that conjunctive queries are not required then substantial
reductions can be made. For example, 1f a student data base has
four health-related attributes and four financial aid-related
attributes which are never components of a single query then only
CI(Y4) + CI(4) dindexes need be created as opposed to CI(8) indexes,
that is, only 12 indexes instead of 72 indexes.

Since the generation of the complete set of combined indexes
may be considered extravagent, implementers may be tempted to build

a limited set of combined indexes for precisely the combinations

=

of attributes that appear frequently in queries [6]. This
reasonable approach is highly recommended in situations where
attributes are paired in a limited number of ways. For example,
if only A, AB, C, D and CD queries are anticipated then only AB,
CD and D indexes need to be built to avoid multiple index searches.
Of course, B queries, any two degree queries involving (A or B) and
(C or D), three degree queries and four degree queries will require
multiple index searches and/or multiple searches within an index.

One implementation difficulty is determining which index
should be searched to respond to a particular query. At least two
solutions seem workable, Keep the CI(n) descriptor strings avail-
able and scan the list attempting to match the attributes in the
query with the prefix of each string. More than one index des-
criptor string will work if there are less than or equal to
[(n+l)/2] attributes in the query. The shortest index descriptor
string should be used since it will reference the shortest index.
The second method is to construct a list of each of the subsets
(where the elements of each subset are arranged in ascending order)
of keyed attributes in length order and lexicographic order. This
list can be gquickly binary searched to produce a reference to the
appropriate index. Figure 10 shows an example list for this method
for n =14

The updating burden is high for combined indexes since every
index must be altered if there is a record insertion or deletion
[7]. Reduced combined indexes improve this situation only in the
case where an attribute in a record is modified. Then only the
indexes which contain the modified attribute need be altered,

thereby reducing the cost of modification. Still, reduced combined

=] P

indexes would be inappropriate for volatile files. Detailed
performance estimates are a function of not only the implementation

technique, but the query and attribute value distribution.

Conclusions

Although reduced and modified combined indexes can be compared
to combined indexes, 1t is extremely difficult to make an accurate
comparison against the traditional method of intersecting record
pointers from multiple one degree indexes (inverted index lists).
Reduced combined indexes seem most appropriate for situations in
which there is a high retrieval to update ratio, a large number of
records with similar attribute values, frequent high degree queries,
and minimizing response time 1s more critical than efficient use
of auxiliary storage. Multiple first degree indexes are preferable
for situations in which there is a low retrieval toc update ratio,

a small number of records with similar attribute values, most queries
are low degree queries and minimizing auxiliary storage space is

more critical than reducing response time. Hardware considerations
and implementation techniques further cloud the comparison. Although
simulation studies might aid a database administrator in choosing
between reduced combined indexes and multiple first degree indexes,
only empirical studies can be conclusive.

There are further optimization problems once reduced or modified
combined indexes are selected for an implementation. The assignment
of attributes to the letters A,B,C,... can effect performance since
the reduced combined index sizes will vary depending on the choice.

A thorough knowledge of the attribute value frequencies and the

query distributions are necessary to properly optimize performance.

=135

Finally, it must always be remembered that implementation details
have a profound effect on performance: a poor implementation of a
good idea can lead to unacceptable performance.

Although there are unresolved optimization issues, reduced
combined indexes can be competitive with multiple one degree

indexes in some applications.

Acknowledgements

I would like to thank Andrew Lenard of the Indiana University
Mathematics Department for taking an interest in this problem. He
provided important insights to an alternate proof of the necessity
and sufficiency of reduced combined indexes by use of the elegant
"Marriage Lemma." The referees' comments substantially improved

the organization and clarity of this paper.

i i

e

B

y.

Ba

=F

i

=] Mo

References

Bleier, R.E., Treating hierarchical data structures in the SDC

Time-Shared Data Management System, Proc. ACM National Conference,

1967, pp. 41-49.

Wagner, R.E., Indexing design considerations, IBM Systems Journal,

Vol. 125 No« 4, 1973.

Vose, M.R. and Richardson, J.S., An approach to inverted index

maintenance, Computer Bulletin, Vol. 16, No. 5, May 1972.

Lum, V.Y., Multi-attribute retrieval with combined indices,

Comm, ACM 13, 11 (November, 1970).

Knuth, D., The Art of Computer Programming, Volume III, Searching

and Sorting, Addison-Wesley Publishing Company, Reading, Massa-

chusetts (1973).

Stonebraker, M., The choice of partial inversion and combined

indices, International Journal of Computer and Information

Sclences, Vol, 3, No: 25 1974.

Mullin, J.K., Retrieval-update speed tradeoffs using combined

indices, Comm. ACM 14, 12 (December, 1971).

i

Appendix: Generation algorithm for reduced combined indexes

First generate the CI(n) combined indexes then reduce the
degree of the indexes, where possible.

To generate the CI(n) indexes of degree n we consider a
path of n steps in a plane from the origin (0,0) . Each step
of the path is from (x,y) to (x+l,y+l) or to (x+l,y-1) with
the constraint that the path never goes below the x-axis. There
are exactly CI(n) such paths. Following each path separately,
begin with threce empty lists R , S and T . For 1 = 1,2,...:0
1f the ith step goes up, put the number i into S ; if the step
goes down, put 1 into R and move the currently largest element
of S into T . If R , S and T are each arranged in ascending
order and then concatenated, the sequence of numbers will be a repre-
sentation of one of the combined indexes of degree n . Repeat the
process for all of the CI(n) paths to produce CI(n) permutations
of the dntegers 1,2 If m 48 4 and 1,2,3,4 are made
to correspond to A,B,C,D then the list of six combined indexes of
degree U4 given earlier is produced. The paths and lists for the
case of n = U4 are shown in Figure 13.

To reduce the degree of the indexes we follow an acceptance
process.

1) The prefix consisting of the first |[(n+l)/2] digits from
the left are accepted in each of the CI(n) combined index strings.

2) Generate a list of the n subsets of the integers

P

1,2,...,n which are of length |(n+l)/2] + 1 .

=1-H=

3) Each element of the list of subsets generated in step (2)
is matched to one of the combined index string prefixes such that
a single digit extension to the right would be a permutation of
the subset. The extensions of the combined index string prefixes
are accepted.

L) Repeat steps(2) and (3) with increasingly larger subsets
of the integers, such that only the strings which were extended
in the previous iteration are eligible for matching in the current
iteration. The final step will be the creation of the set of
integers 1,2,...,n and the extension and acceptance of a single
string.

This process for n = 5 1is shown in Figure 14, but the letters
A-E have been substituted for the digits 1-5. In iteration 1, all
of the subsets of length 1 , 2 and 3 are contained in a left-
most prefix. In iteration 2, five strings have been extended to
accommodate the five subsets of length 4 and in iteration 3, a
single string has been extended to accommodate the single subset
of length five.

Fortunately, this tedious process is necessary only to generate
the reduced combined index descriptor strings which can be stored
in a table for use when required.

Neither the generation process nor the acceptance process
produce unique solutions. Generating all the possible sets of
reduced combined indexes and selecting the optimum set based on
distributions of the attribute values and the query profiles is

beyond the scope of this paper.

record
A B C pointer list
18 IN 1FRSH r,
18 IN 2S0PH Fys Ty Iy
18 MD 1FRSH r.
18 NJ 3JUNR Tes Ty
19 IN 1FRSH Fg» Ty
19 IN 2SOPH i 0
19 IN 3JUNR 24
9 MD 1FRSH L
19 NY 4SENR T3
19 NY 5GRAD Ty
20 MD 1FRSH Tiss Tig
20 MD 2SO0PH r, .
20 MD 3JUNR rig
20 NJ 1FRSH Tyg
20 NJ 3JUNR P
Figure 1.

Combined index ABC

T

] B

record
B £ A pointer list
IN 1FRSH 18 ri
IN 1FRSH 19 o> Ty
IN 250PH 18
r,s r3, r,
IN 2S0PH 19 rio
IN 3JUNR 19 Ty
MD 1FRSH 18 Ty
MD 1FRSH 19 B 5
MD 1FRSH 20
g T g
MD 230PH 20 .
MD 3JUNR 20 r18
NJ 1FRSH 20 rlg
NJ 3JUNR 18 Tes Ty
NJ 3JUNR 20 r20
NY 4SENR 19 i
NY 5GRAD 19 Py
Figure 2. Combined index BCA
record
C A B pointer list
1FRSH 18 N Ly
1FRSH 18 MD P
1FRSH 19 IN PB’ rg
1FRSH 19 MD L
1FRSH 20 MD Ties Typ
1FRSH 20 NJ r19
250PH 18 IN Bos Bas By
2S0PH 19 IN i 5
2S0PH 20 MD r17
3JUNR 18 NJ By B
3JUNR 19 IN Ty
3JUNR 20 MD Tig
3JUNR 20 NJ oo
4SENR 19 NY r13
5GRAD 19 NY By p
Figure 3. Combined index CAB

record

B @ pointer list

IN 1FRSH ri, Tys rg

IN 2S0PH oo Tgs Tys Tog
J

IN 3JUNR T4

MD 1FRSH Pes Tyos Tyso Tie

MD 230PH r g

MD 3JUNR Pia

NJ 1FRSH Tig

NJ 3JUNR Pes Tos Top

NY 4SENR 2y

NY 5GRAD B

Figure 4. Reduced combined index BC,

reduced from Fig. 2

record

C A pointer list
1FRSH 18 r,s Tg
1FRSH 19 Bys Pga Ty
1FRSH 20 T o5 Trgs Tqg
230PH 18 Loy Tgs Ty
2S0PH 19 Tio
2S0PH 20 r g
3JUNR 18 B Py
3JUNR 19 %45
3JUNR 20 2y a5 Pog
LSENR 19 Pas
5GRAD 19 Ly

Figure 5. Reduced combined index CA,
reduced from Fig. 3

-20-

m)<

< /@

AalKtommo
C_AB DA< Al m

M o=
< MO

MmoAsA-=
MM A

Ao OoMAMOO

OMAODEA<|HE M <]
MoOEdA<sEHQ <M
sHMMmMoLLLAA

HEAACH AU AOAAMEHODEHOD
H AN OO|R@MAM AR OMAM
A OME A &= Ey < Ayl < M B <t
OAOMNsALDOEREHEBAS <t/ RM o< &
Aot OFRMMDAA<SEEARAA <K E K
< kA MOMMMMOMOLDoDLDLDLDLAOLAA

Figure 6.

Reduction of combined indexes for 2 to 6 keyed attributes

number of indexes number of keyed ek

of length attributes
2 3 4 5 6

L 1
2 i3 2 2
3 1. 3 5 &
L 1 4 g
5 L. B
6 1
TOTAL 2 3 6 10 20
Figure 7.

For n-attribute records, the table shows the
number of indexes of each length required for

the reduced combined index scheme.

AB = 5 ABCDE n =06 ABCDEF

B ABCE ABCDE
ABDE ABCEF
ABE ABCF
ABC ACDE ABDEF
AC ACE ABDF
BC ADE ABEF
C AE ABF
BCDE ACDEF
BCE ACDF
ABCD BDE ACEFR
ABD BE ACF
ACD CDE ADEF
AD CE ADF
BCD DE AEF
BD E AF
CD BCDEF
D BCEF
BCEF
BCF
BDEF
BDF
BEF
BF
CDEF
CDF
CEF
CF
DEF
DF
EF
B
Figure 8.

Modified Combined Indexes for n equal two to six.

=23

A B c
18 | IN | IFRSH | r,
19 MD 2S0PH |——— ys Tgs Ty
20 NJ | e T
1FRSH
/ re’, r7
3JUNR / Vo B
fi
IN t—————i 1ERSH / 10
i
MD 2SOPH / 11
s
NJ 3JUNR 2
T3
1FRSH T,
4SENR Sime AE
s
5GRAD 2l
T18
L
MD 1FRSH Py o
NJ 2SOPH v
3JUNR
1FRSH
3JUNR

Figure

% <

2l

1FRSH

2S0PH

73

20

N

5GRAD

Figure 10.

c A
1FRSH —— = 18 =r, T
2SOPH s B B
3JUNR B oy s T
4SENR By B B
o e T S Ty
SGRHD / rlO
r
| —" Ty,
/ PB, PT
r
/ i1
/ T18° Tao
P13
////////'lrlLL

Figure 11.

i

guery index query index guery index
A ABCD AB ABCD ABC ABCD
B BCD AC CAD ABD BDA
C CD AD DA ACD CAD
D DA BC BCD BCD BCD
BD BDA ABCD ABCD
CD CD
Figure 12.

List of queries showing which index to search

o™ oraSssliE g

1234 2 3. i 3 14 2
R S T R 3 ik R S T
(ABCD) (BCDA) (CADB)
2L 13 34 12 4 12 3
R 3 T S T R S Ik
(BDAC) (CDAB) (DABC)
Figure 13.

Paths to generate CI(n)

of degree n=4.

combined indexes

D s

_28-

Iteration 1 Iteration 2 Iteration 3
ABC DE ABCD E ABCDE

EAB €D EABC D EABC D
BCD EA BCDE A BCDE A
BEC AD BEC AD BEC AD
BDE AC BDEA C BDEA C
CAD. EB CAD EB CAD EB
CEA BD CEA BD CEA BD
CDE AB CDEA B CDEA B
DAB + EC DAB EC DAB EC
BEA " BC DEA BC DEA BC

Figure 14.

The three iterations of the extension process

for n =5 to generate reduced combined indexes.

