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Abstract

In applications involving the radiosity method such as computer animation, time is a

crucial factor. This report shows that iterative methods which converge in a smaller number

of iterations do not necessarily solve the radiosity system of linear equations in a faster way.

For high average re
ectance environments is introduced a method that converges faster than

any standard method presented in the computer graphics literature so far.

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: General;

I.3.6 [Computer Graphics]: Methodology and Techniques; I.3.7 [Computer Graph-

ics]: Three Dimensional Graphics and Realism.

Key Words and Phrases: iterative methods, linear systems, radiosity.

1 Introduction

In radiosity algorithms, the average radiance of n Lambertian patches is approximated by solv-

ing a linear system with n unknowns. When n is small (i.e. fewer than thousands of patches),

general matrix methods like Gauss-Siedel can be used where the explicit n � n matrix can be

pre-computed and stored [8]. When n is large, radiosity-speci�c methods such as progressive

re�nement and overshooting are used where the matrix rows or elements are recomputed when-

ever they are needed [7]. When n is very large (i.e. hundreds of thousands of patches), then

stochastic techniques can avoid computing the n2 elements of the matrix [20]. In this paper we

will examine the merits of various general matrix methods.

In applications where n is small enough to store the entire matrix in main memory, general

matrix techniques will be faster than radiosity-speci�c methods 1. For \massing studies" [14]

the lighting can be examined on simple geometric approximations of the environment being de-

signed, and n can be very small. When the color scheme and lighting is being designed, the

computationally expensive part (form factors) of the matrix in the linear system can be reused

as the material properties are changed. For these applications the fastest possible general matrix

solution is desirable.

�Supported by the Brazilian National Council of Research - CNPq. Email: gbaranos@cs.indiana.edu
yEmail: bramley@cs.indiana.edu
zEmail: shirley@graphics.cornell.edu
1Radiosity-speci�c methods will initially converge faster because they can begin iterations before computing

the entire matrix. If general matrix techniques are modi�ed to gradually construct the matrix during initial

iterations, then this advantage of progressive method goes away.
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In this paper we attempt to �nd the fastest possible general matrix solution, and provide some

insight into the important characteristics of the linear systems that arise in radiosity applica-

tions. We are careful to search for solution methods that converge in small amounts of time,

as opposed to a small number of iterations. For this discussion we assume a conventional RISC

architecture, where coherent memory access is vital.

Initially we describe the radiosity system of linear equations. In section 2 we introduce some

mathematical concepts related to the application of the techniques described in section 3, namely

the Conjugate Gradient and the Chebyshev methods. In section 4 we provide the standards used

here to compare the iterative methods for solving the radiosity problem. Finally we present our

results and discuss the e�ects of re
ectivity and occlusion on the performance of the iterative

methods.

1.1 Radiosity System of Linear Equations.

Assuming an environment divided into n patches, the total spectral radiant power leaving a patch

depends on the spectral radiant power emitted by the patch plus the spectral radiant power that

is re
ected. The spectral radiant power depends in turn on the total spectral radiant power

leaving the other patches in the environment. The following system of equations represents the

process of spectral radiant power transfer:

�j = �E
j + �j

nX
i=1

Fij�i for each j = 1; 2:::n (1)

where:

�j = total spectral radiant power leaving patch j (watts/nm).

�E
j = spectral radiant power emitted by patch j (watts/nm).

�j = re
ectivity of patch j (dimensionless).

Fij = form factor between patch i and patch j (dimensionless).

�i = total spectral radiant power leaving patch i (watts/nm).

The re
ectivity �j represents the fraction of incident radiant power which is re
ected back to the

environment and depends on the material characteristics. Form factor Fij indicates how patch

i \sees" patch j, in other words it speci�es the fraction of radiant power that leaves patch i and

arrives at patch j. Form factors depend on the shape and relative orientation of the patches as

well the presence of obstacles between the patches.

Equation (1) holds for each patch in the environment. Therefore to �nd the total spectral radiant

power of each patch we need to solve the linear system:

H� = �E (2)

given by:
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Another possibility is to rewrite equation (1) in terms of spectral radiant exitance. From [24],

we have:

�j = �MjAj (3)

where:

Mj = spectral radiant exitance of patch j (watts/(nm �m2))

Aj = area of patch j (m2)

Also from [24], we have:

�E
j = �EjAj (4)

where:

Ej = spectral irradiance emitted from patch j (watts/(nm�m2)).

Substituting (3) and (4) into equation (1) gives:

�MjAj = �EjAj + �j

nX
i=1

�FijMiAi for each j = 1; 2:::n (5)

Before going further in our derivation we review some identities derived from the mathematical

formulation of form factors:

� Reciprocity relationship:

AiFij = AjFji

� Summation relationship:

nX
j=1

Fij � 1 for each i = 1; 2:::n

If we assume a closed environment the above sums are by de�nition equal to 1.0. However,

in practice, even for closed environments the computed value can be greater than 1.0

depending on the accuracy of the method used to compute the form factors.
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� A planar or a convex patch can not see itself which means that the form factor regarding

itself is:

Fii = 0

However there may be situations in which it may be appropriate to consider the form factor

Fii of a plane or convex patch di�erent from zero. For example, suppose patches i and j

are placed in front of each other and patch j is a perfect re
ector (mirror). In this case

patch i can \sees" itself and Fii is di�erent of zero.

In addition a concave patch can see itself, then by de�nition:

Fii 6= 0

Applying the form factor reciprocity relationship in the equation (5) and dividing it by Aj we

get:

�Mj = �Ej + �j

nX
i=1

�FjiMi for each j = 1; 2:::n (6)

Dividing the above expression by � we �nally get the classical expression in terms of spectral

radiant exitance which holds for each patch in the environment:

Mj = Ej + �j

nX
i=1

FjiMi for each j = 1; 2:::n (7)

Radiosity, B, is the term used for radiant exitance in the computer graphics literature. Then if

we want to determine the radiant exitance, henceforth called radiosity, of each patch we need to

solve the linear system:

GB = E (8)

given by:
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In general G is a square matrix (n � n). However it may be rectangular if one applies an hierar-

chical method [9]. The matrix G is also well conditioned, in other words it is not very sensitive

to small perturbations in the input.
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The density of G, de�ned as the number of nonzero entries divided by n2, depends on the

environment complexity. For example an environment divided into a large number of patches

(50000) in such way that several patches can not \see" each other may have a matrix 10%

dense [7]. On the other hand inside of a sphere all the patches can \see" each other and the

corresponding matrix is full even if the sphere is divided into a very large number of curved

patches. Notice that the density depends more on the placement of patches in the environment

than on the number of patches. A matrix entry is equal to zero when:

� Fij = 0 for i 6= j (due to occlusion or patches placed in the same plane);

� � = 0 (black patches, which does not occur in real environments , although sometimes

researchers assign � = 0 to light sources.).

Considering that 0 � � < 1 and assuming that there are only convex or planar patches in the

environment (Fii = 0) we can say that the matrix G is strictly diagonally dominant since the

property:

jGiij >
nX
j=1

j 6=i

jGij j holds for each j = 1; 2; : : : ; n

On the other hand if there are concave patches (Fii 6= 0) in the environment we can not ensure

matrix G dominance of rows. In this case, weak diagonal dominance holds j gii j�
P

i6=j j gij j,
with strict inequality holding for at least one i. That should be the case for any radiosity problem

unless all �i = 1.

1.2 Radiosity Solutions

Direct methods for solving linear systems (GB = E) are not suited for large radiosity systems

of equations because of the relative high density of the coe�cient matrix, and because rapid

solutions are needed. The special properties of the coe�cient matrix allow the use of iterative

methods. These methods are generally of the following form:

1 Initialize B and E

2 while (not converged) do

3 choose �B

4 update x B +�B

5 update r  r +�B

where r corresponds to the residual given by:

r = E �GB

The iterative methods used to solve the radiosity system of linear equations can be divided into

general matrix methods, which update all components of the solution vector on each iteration,
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and radiosity-speci�c methods such as progressive re�nement and overshooting methods, which

update a single component on each iteration.

An example of a general matrix method is the Gauss-Siedel iterative solver:

1 for (all i)

2 Bi = starting guess

3 while (not converged)

4 for i = 1; 2; :::; n

5 Bi = Ei � �i
Pn

j 6=i BjFij
6 display image using Bi as the intensity of the patch i.

Usually the vector of emitted radiosities is used as the starting guess. This algorithm estimates

the radiosity of a patch i by adding its emitted radiosity, and all the radiosity that it re
ects (line

5). It uses the most recent estimates of the radiosities of all patches to estimate the radiosity

of patch i. The physical interpretation consists of gathering the radiosity from other patches

to estimate the incoming radiosity. It converges quickly due to the diagonal dominance of the

coe�cient matrix. After a few passes through the matrix we get the �nal image. Gauss-Siedel

can have O(n2) memory requirement if the matrix G is dense and its elements are stored.

The progressive re�nement approach [7], which was later shown to be equivalent to Southwell's

relaxation method [12], allows us to obtain intermediate images and to reduce the storage re-

quirement to O(n) by computing the form factors on the 
y:

1 for (all i)

2 rBi = 0

3 �Bi = Ei

4 while (not converged)

5 pick i, such that �Bi �Ai is largest

6 rBi = rBi +�Bi

7 for every other patch j

8 �rad = �jFji ��Bi

9 �Bj = �Bj +�rad

10 �Bi = 0

11 display image using �Bi +rBi as the intensity of the patch i.

In the above algorithm �Bi represents the amount of \unshot" radiosity and rBi represents

the amount of \shot" radiosity (rBi = Bi ��Bi). More formally �Bi represents the residual

r and rBi represents the vector of unknowns that we are solving for.

During one iteration, the patch with the largest \energy" to shoot, i.e. largest �Bi�Ai, is chosen

and its radiosity is shot through the environment. So in this case the physical interpretation

consists of shooting instead of gathering. As a result the other patches may receive some new

radiosity �rad. The intermediate images obtained in the early steps tend to be dim, so an

ambient term is added [7]. As the iteration process goes on this ambient term is reduced until
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the �nal image is obtained. The ambient term is a weighted sum of the unshot radiosities of all

patches in the environment:

Ambient =
RPn
i=1 Ai

nX
i=1

�BiAi (9)

where Ai corresponds to the area of patch i and R corresponds to the overall interre
ection

factor R , which is given by:

R =
1

1� �avg
(10)

The average re
ectivity �avg of the environment is a weighted average of the patches re
ectivities:

�avg =

Pn
i=1 �iAiPi=n
i=1 Ai

(11)

In the original progressive re�nement approach a patch may need to shoot radiosity multiple

times. Overshooting methods based on overrelaxation have been introduced to solve this prob-

lem [10] [12] [22] [27]. The main idea consists of shooting the current radiosity of the patch plus

an estimate that accounts for radiosity that will return due to the re
ection by other patches.

This approach can reduce the overall number of iterations required. One such algorithm was

proposed by Feda et al. [10]:

1 for (all i)

2 rBi = 0

3 �Bi = Ei

4 determine initial Ambient

5 while (not converged)

6 for (each patch i)

7 �B
0

i = min(�Bi +Ri �Ambient;
P

�Bj �Aj=Ai)

8 select patch i, such that j �B0

i �Ai j is largest
9 rBi = rBi +�B

0

i

10 for (every other patch j)

11 �rad = �B
0

i � �jFji
12 �Bj = �Bj +�rad

13 �Bi = ��i �Ambient

14 determine new Ambient

15 display image using rBi +�Bi as the intensity of the patch i.

Feda uses the ambient term not only for display purposes but also as the overshooting amount.

As was mentioned earlier several methods have been proposed to implement overshooting. For a

comparison of four overshooting methods (Feda's, Gortler's, Shao's and Xu's) the reader should

refer to [27].
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1.3 Proposed Approach

Radiosity-speci�c methods allow us to have a rough preview of the overall illumination after

few steps of iteration. However since few patches contribute to the overall illumination in the

early stages, detailed illumination e�ects such as color bleeding are lost as mentioned by Michael

Cohen et. al. [7]. Radiosity-speci�c methods have to iterate until the desired convergence is

reached to avoid that loss. This means that even though they do not need to store all the form

factors, they still have to compute all of them, possibly many times.

Suppose we want to generate several similar images to produce a computer animated sequence.

Since there is some signi�cant coherence from frame to frame we do not need to have a preview

of all frames. In fact the �rst images can be used as a preview of the whole sequence. In this case

the preview advantage of the radiosity-speci�c methods does not hold anymore. In this case we

need to generate several similar images as fast as possible, i.e., to solve the linear systems in the

shortest possible time. We are going to show that methods that converge in a smaller number

of iterations, namely the radiosity-speci�c methods, are not necessarily faster than some general

matrix methods.

Usually the form factor are computed on the 
y when one uses a radiosity-speci�c method. The

same approach could be applied if one uses a general matrix method. However in several appli-

cations we can approximate a scene with a reasonable number of patches and using techniques

such as hierarchical radiosity [17] reduce the storage of the form factors to O(m) in which m is

the number of elements of the environment. By storing the form factors we have the additional

advantage of avoiding the cost of recomputing them repeatedly. If the geometry of the scene

changes from one frame to another we may assume that only a small fraction of the form factors

need to be recomputed due to the animation coherence. In this case we can use acceleration

techniques such as those presented in [4] [6] [11] to minimize the overhead of recomputing some

of the form factors. As a matter of fact there are useful animation applications that do not

change the geometry of the environment at all. For example, suppose we want to simulate the

incidence of sun light and the corresponding shadows in a building during several parts of the

day for architectural purposes. In this case only the vector of emitted radiosities will change.

In addition, for high albedo scenes, due to the characteristics of the coe�cient matrix, the iter-

ation process takes a longer time to converge. For example when the overall re
ectivities of the

environment approach to 1.0 the spectral radius of the iteration matrix (for a stationary method

like Gauss-Siedel) also approaches to 1.0 and the linear solvers converge slowly. Here we test the

performance of the Conjugate Gradient Method (previously mentioned in the graphics literature

by Heckbert and Winget [18]) in those situations. Finally we are going to introduce a related

method, namely the Chebyshev method, that can converge in those situations faster than any

standard method already mentioned in the graphics literature so far.

2. Analysis in Matrix Terms

Before going over the methods we need to present some important linear algebra topics: eigen-

values estimates and matrix symmetrization. Both are directly related to the methods that we
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use here.

2.1. Eigenvalues Estimates

The characteristic polynomial of a square (n� n) matrix G is given by:

p(�) = det(G� �I) (12)

where I represents the identity matrix.

The zeros of p(�) are called eigenvalues or characteristic values of the matrix G. If x 6= 0 is

such that (G � �I)x = 0 holds, then x is called an eigenvector or characteristic vector of G

corresponding to the eigenvalue �.

Usually to calculate the eigenvalues of a matrix G requires more computation than that required

to solve the corresponding linear system. However we can obtain relatively inexpensive estimates

of the eigenvalues using the Gerschgorin Circle Theorem [5].

Gerschgorin Circle Theorem says that the eigenvalues of G are contained within the union of n

circles Si, which have center gii and radius
Pn

j 6=i jgij j and are de�ned by:

Si = fz 2 C j jz � giij �
nX
j 6=i

jgijg (13)

where C is the complex plane. The union of any k of these circles that do not intersect the

remaining (n-k) must contain precisely k (counting multiplicities) of the eigenvalues.

In the case of the radiosity matrix, if we assume an environment formed by planar or convex

surfaces (Fii = 0) then all the main diagonal entries will be equal to 1.0. So the centers of the

circles are also equal to 1.0. In addition if we assume a closed environment (
Pn

j=1 Fij = 1), then

the radius is given by �i. In practice if the numerical method used to compute the form factors

does not provide exact results (Appendix A), then the radius is in fact given by �i(1� �), where
� corresponds to the numerical error associated with the summation of form factors of patch i.

2.2 Symmetrization

The transpose of an n� n matrix G = g(ij) is the matrix Gt = g(ji). A square n� n matrix G

is said to be symmetric if G = Gt.

The radiosity matrix G can be made symmetric by scaling its rows:

Gs = diag(~v) �G; (14)
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where diag(~v) is a diagonal matrix in which the diagonal entry vi is the quotient of the area and

the re
ectivity of patch i.

The matrix Gs is also positive de�nite, i.e. all of its eigenvalues are positive [5]. This makes it

suitable for the application of the Conjugate Gradient Method.

3. Statement of Standard Algorithms

3.1 The Successive Overrelaxation Method

The Successive Overrelaxation Method (SOR) consists of applying extrapolation to the Gauss-

Siedel Method [16]. This extrapolation takes the form of a weighted average between the previous

iterate and the computed Gauss-Siedel iterate, for each component. The physical interpretation

is that instead of gathering the correct amount of radiosity, an extrapolation factor w is used to

take into account steps that will occur later on the process.

The structure of the SOR algorithm is similar to that of the Gauss-Siedel algorithm. If w = 1:0

then the SOR Method becomes the Gauss-Siedel Method. Its algorithm can be obtained by

replacing line 5 of the algorithm presented in section 1.2 by:

Bi = (1� w)Bi + w(Ei � �i

nX
j=1;j 6=i

BjFij)

The major di�culty of this method is to choose the best value of w which gives the fastest

convergence. This factor depends on the problem characteristics. However the idea of overre-

laxation is exploited in the context of progressive re�nement methods and it can be thought of

as overshooting.

3.2 Conjugate Gradient Method

SOR is a linear stationary method, which implicitly updates solutions by xk+1 = Txk+ ~t, where

T is an iteration matrix. Nonstationary methods have an implicit iteration matrix Tk which

changes on each iteration. When combined with a preconditioner [3] the nonstationary method

of Conjugate Gradients (CG) [19] is probably the most powerful and e�ective iterative method

for symmetric positive de�nite matrices occurring in engineering computations. The CG algo-

rithm implicitly builds up information about the spectrum of the coe�cient matrix G as its

iterations proceed, providing a computationally superlinear convergence rate. CG is a residual

polynomial based method, which means that rk = Pk(G)r0, where rk is the k-th residual vector

and Pk is a k-th degree polynomial satisfying Pk = 1.. Furthermore, CG is optimal in the sense

that Pk minimizes the error vector ek = xk � x� in the G-norm given by kekk2G = eTkGek. The

minimization is over a space of dimension k, so after n steps at most the solution is found. CG

requires some number of iterations (depending on the eigenvalue distribution of G) before the
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accumulated information allows a rapid decrease in the residual norm. Although this is highly

e�ective for systems requiring relatively accurate solutions, it is not a priori clear that CG is op-

timal for radiosity systems, which require low accuracy solutions with only a few sweeps through

the matrix G.

Before presenting the algorithm, it is useful to understand where some of the formulas of the

algorithm come from. CG can be viewed as a minimization method in which solving Gx = e

is equivalent to minimizing �(x) = 1
2x

TGx � xT e. On each step it generates a search direction

dk, then a step size �k so that the updated solution vector xk+1 = xk + �kdk will have minimal

residual over all �:

rk = rk�1 � �kGdk (15)

or

rk = e�G(xk�1 + �kdk) (16)

This implies:

�k =
dTk rk�1
dTkGdk

(17)

To prevent the \zig{zag" e�ect that causes steepest descent methods to have slow convergence,

search directions are choosen to be G-conjugate, i.e. dTi Gdj = 0; for i 6= j. It can also be

shown that it su�ces to make dk+1 G{conjugate to dk, in which case dk+1 is G{conjugate to all

previous search directions. It can be shown that choosing � to minimize �(xk�1 +�dk) will also

make xk minimize � over all x 2 span[d1; d2; : : : ; dk] [13]. The CG algorithm can be implemented

using three{term recursions and hence using only three vectors of additional storage.

The radiosity coe�cient matrix is not symmetric. So we must perform its symmetrization before

applying the Conjugate Gradient Method, i.e. Gs = ~vG. The algorithm used to implement CG

in a radiosity context is the following:

0 compute Gs = V �G
1 for (all i)

2 B
(0)
i = starting guess

3 compute �B(0) = E �Gs �B(0)

4 for (each i)

5 Di = �Bi

6 ' = '+�Bi ��Bi

7 while (not converged)

8 for (each i)

9 for (each j)

10 Wi =Wi +Gs
ij �Dj

11 for (each i)

12 temp = temp+Wi �Di

13 � = '=temp
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14 for (each i)

15 Bi = Bi + � �Di

16 �Bi = �Bi � � �Wi

17 for (each i)

18 temp = temp+�Bi ��Bi

19 � = temp='

20 ' = temp

21 for (each i)

22 Di = �Bi + � �Di

Although CG requires the coe�cient matrix to be symmetric, because it enters in only through

matrix-vector products we need not explicitly form the matrix Gs but can instead compute its

action on a vector by multiplying by G and then the diagonal matrix V . In the above algorithm

�B represents the residual, V represents the vector of quotients of the re
ectivity and the area

of all patches and D represents the vector of search directions. Usually we use the vector of

emissivities as our starting guess for the vector of unknowns (radiosities B). However in some

cases the use of a starting guess which takes into account the ambient term gives better results.

The ambient is computed replacing �Bi by Ei in equation (9). The computation of the ambi-

ent term does not add a signi�cant cost to the algorithm since we may assume without loss of

generality that are there few patches in a given environment that emit light, i.e., few patches i

with Ei 6= 0. To use this starting guess we replace line 2 of the above algorithm by:

B
(0)
i = Ei + �iAmbient

The speed of convergence of the CG method depends on the overall distribution of eigenvalues

of the matrix G. Upper bounds [1] for the number of iterations are often based on the condition

number of G. Since G is symmetric and positive de�nite, its condition number is � = �max(G)
�min(G)

.

The number k of iterations needed to reduce the residual by a factor of � in the G-norm is then

bounded by k � 0:5 � p� � log(2=�) + 1. Using the Gerschgorin estimates obtained earlier, this

means for a reduction by three orders of magnitude at most k � 0:5�p�� log(2=�)+1 iterations

are needed. However, radiosity matrices also tend to have eigenvalues tightly clustered around

a few values, which greatly reduces the number of iterations needed.

3.3 The Chebyshev Method

The Chebyshev Method is another nonstationary method based on residual polynomials. It is

directly applicable to nonsymmetric matrices like the radiosity coe�cient matrix. However it

requires estimates of the smallest and largest eigenvalues of the corresponding coe�cient matrix

[26] [3].

The iterative process is characterized by:

xj+1 = xj +�xj �xj = (
1

qj
)(rj + pj�xj�1) (18)

where the scalars rj are the residuals and qj and pj are the coe�cients of the residual polynomials.
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To obtain fastest reduction in the residual norm a residual polynomial method needs to select

polynomials that quickly go to zero on the spectrum of the coe�cient matrix G. For radiosity

problems the eigenvalues are all real and positive, so given a knowledge of an interval [�; �]

containing the spectrum of G we want to select polynomials Pk that have their maximum value

on [�; �] minimal over all monic polynomials of degree k. In addition to this "minimax" prop-

erty, Chebyshev polynomials can be computed using a three term recursion. This last property

implies that the Chebyshev iteration can be implemented using only three additional vectors of

storage.

The classical algorithm for the Chebyshev method [26] [21] is:

1 x(0)arbitrary

2 r(0) = e�Gx(0)

3 x(1) = x(0) + 
�1r(0)

4 r(1) = e�Gx(1)

5 !(0) = 2=


6 j = 1

7 while (not converged)

8 �x(j) = !(j)r(j) + (
!(j) � 1)�x(j�1)

9 x(j+1) = x(j) +�x(j)

10 r(j+1) = e�Gx(j+1)

11 j = j + 1

In the above algorithm:


 =
�

�
(19)

� =
2

�max � �min
(20)

� =
�max + �min

�max � �min
(21)

!(j) = (
 � 1

4�2
!(j�1))�1 (22)

Note that the updates in lines 8-10 are vector updates. In practice, �max and �min may be

replaced by � and �, where 0 < � � �min < �max � �. However, the rate of convergence of

Chebyshev is maximal when � = �min and � = �max, and the method can diverge if, for example,

�max is underestimated by �. Therefore to implement the Chebyshev Method successfully we

need estimates of the extremal eigenvalues of the matrix G.

In the case of the radiosity coe�cient matrix the Gerschgorin Disk Theorem (see section 2.1)

provides good estimates of the eigenvalues. In this case the extremal eigenvalues may be ap-

proximated by 1:0� �max in which �max is the highest re
ectivity of any patch in the environ-

ment. However our experiments show that increasing the highest re
ectivity does not sign�cantly

change the convergence. On the other hand if we increase the overall re
ectivity of the envi-

ronment, e.g. high albedo scenes, then slow convergence results. Our experiments show that

using �avg to estimate the eigenvalues gives better results for all the cases tested. Therefore our

Chebyshev parameters are given by:
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� = 1:0 + �avg (23)

� = 1:0� �avg (24)

The Chebyshev algorithm used in the radiosity context is the following:

1 for (each i)

2 B
(0)
i = starting guess

3 compute �B(0) = E �G �B(0)

4 � = 2=(� � �)

4 � = (� + �)=(� � �)

6 
 = �=�

7 for (each i)

8 B
(1)
i = B

(1)
i + 
�Bi

9 compute �B(1) = E �G �B(1)

10 ! = 4=(� + �).

11 j = 1

12 while (not converged)

13 ! = (
 � 1
4�2!)

�1

14 for (each i)

15 Di = ! ��B(j)
i + (
! � 1)Di

16 B
(j+1)
i = B

(j)
i +Di

17 compute �B(j+1) = E �G �B(j)

18 j = j + 1

In the above algorithm �B represents the residual and D represents the term �xi of equation

(18). In all the cases tested the use of the starting guess which takes into account the ambient

component gave better results than the starting guess which uses only the vector of emissivities.

To use this starting guess we replace line 2 of the above algorithm by B
(0)
i = Ei + �iAmbient ,

where the ambient term is also computed replacing �Bi by Ei in equation (9).

Heuristically, we can compare the CG and Chebyshev methods in terms of their underlying

residual polynomials. For CG the polynomials tend to rapidly converge to zero at the extremal

eigenvalues, then progressively move towards the interior of the region containing the spectrum,

zeroing out eigenvalues as iterations proceed. Chebyshev polynomials tend to uniformly drive

all the eigenvalues to zero at the same rate. For solutions requiring high accuracy, the CG al-

gorithm is usually the faster of the two since it implicitly creates the "optimal" polynomial on

each step. For the low accuracy solutions needed in radiosity, however, it is more important to

quickly reduce the residual corresponding to all the eigenvalues. So we expect the Chebyshev

iteration to be faster, which is borne out by the testing results.
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4 Standards Applied to the Problem

We compared the following algorithms, using explicitly stored form factors:

� Gauss-Siedel(GS)

� Standard Progressive Re�nement(PR)

� Overshooting(FEDA)

� Conjugate Gradient(CG)

� Chebyshev(CHEBY)

The starting guesses were chosen in order to obtain the best possible rate of convergence for each

tested algorithm. Consequently the initial error norm is not the same for curves on a single graph.

The starting guess used for Gauss-Siedel and Conjugate Gradient algorithms was the vector of

emissivities and for the radiosity-speci�c methods we used a vector of zeros. For the Cheby-

shev algorithm we used the starting guess which takes into account the Ambient term, i.e.

Bi = Ei + �iAmbient .

4.1 Performance Measurement

The general matrix methods check the convergence after a complete sweep of the coe�cient

matrix, i.e. one iteration. The progressive re�nement methods perform this check after one

relaxation step, i.e. one step of iteration. To make our measurement uniform we count steps of

iteration. Then in this context an iteration of a general matrix method corresponds to n steps

of iteration, where n is the order of the coe�cient matrix.

In order to measure the time we start the clock at the beginning of a cycle of k steps of iteration

and stop it after k steps of iteration. For the general matrix methods tested we use k equal to n.

We check for k at each step in order to make the timing overhead the same for all methods. In

addition all the error norms are computed outside of the timing cycles. The time measurements

are given by elapsed CPU time on a SGI Challenge (20-R4400). All the algorithms were imple-

mented using the same software guidelines to avoid di�erences that could a�ect the timing.

4.2 Convergence Checking

We use as our stopping criteria the largest unshot energy, i.e. the L1 norm of the vector with

components riAi, in which ri represents the residual and Ai the area of patch i, given by:

�1 = max
1�i�n

jriAij (25)

If �1 is smaller than a given tolerance we stop the iterations. The value assigned to the tolerance

depends on how visually close to true solution one wants the �nal image be. In general it is
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not necessary to use very low tolerance as in most numerical applications. We used a tolerance

equal to 10�3, but present the full convergence histories so that the methods can be compared

for larger tolerances.

Besides the L1 norm used as the stopping criteria, we also compute three other error norms: the

L2 norm of the residual, RMSerror and the percentage of \re
ected" radiosity (error), de�ned

by Goertler et. al. [12].

The L2 norm of the residual is given by:

�2 = (

nX
i=1

r2� )
1

2 (26)

The RMS (root mean square) error is also based on an the L2 norm and consists in calculating

the square root of the area weighted mean of the square of individual errors:

RMSerror =

sPn
i=1(B

�
i �Bi)2AiPn
i=1 Ai

(27)

where:

B�i = converged radiosity of patch i

The error de�ned by Goertler et. al. is given by:

error =

pPn
i=1(B

�
i �Bi)2pPn

i=1(B
�
i �Ei)2

(28)

The di�culty with the last two error norms is that the converged true solution is not avail-

able in practice. For testing purposes we approximate the exact solution with a solution vector

obtained by the Gauss-Siedel method, iterated until the residual vector has norm less than 10�10.

4.3 Test Cases

The test model used in our experiments is shown in Figure 1 and consists of a sphere in the

middle of a room. The sphere was divided into 128 patches and the faces of the surrounding

cube were divided into 144 patches forming a total of 992 patches. The light source corresponds

to 16 patches on the center of the \ceiling" of the cube.

Assigning di�erent values for the re
ectivities we can have di�erent �avg and changing the sphere

radius, r=1.0 and r=2.0, we can have have di�erent densities (�) for the coe�cient matrix, 70 %

and 53% respectively. Representative cases shown in Table 1. The values used for l and d were

6.0 and 3.0 respectively.
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Face 2 is frontal.
r = sphere radius.

l = length of the faces of the cube.

d = distance between the center of the sphere and the faces.

Figure 1: Sketch of the test model.

Table 1: Test cases.

case �(%) �avg
A 53 0.24

B 53 0.46

C 53 0.77

D 53 0.88

E 70 0.78

F 70 0.89

5. Testing Results

Testing was performed to compare the performance of the �ve algorithms described. In par-

ticular, we examine the e�ect of matrix density (which depends on the amount of occlusion in

the environment) and matrix spectrum (which depends on the re
ectivities in the scene). In

Figures 4-11 note that the error measure for CG can increase initially. Although CG is optimal

in reducing the error norm eTkGek on every step, in practice the vector ek = xk �x� is not avail-
able. So increases in the residual norm (which we can measure) do not contradict the theoretical

properties of the CG algorithm.

Numerical testing is necessary because most theory about the convergence rates of these methods

deals with asymptotic convergence. For the low accuracy solutions needed in graphics radiosity

problems, oftentimes an adequate solution is available before the asymptotic convergence region

is approached.
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The Gauss-Seidel and CG methods are parameter-free, that is, there are no algorithmic param-

eters which must be set by the user. Chebyshev requires estimates of the smallest and largest

eigenvalues, but for this application those can be set automatically as was done here, by using

1��avg . The Feda method can be �ne-tuned by di�erent choices of the overshooting parameter,

in the same way that Gauss-Seidel is generalizable to the SOR method. However, like the SOR

method the optimal choice of parameters is unknown except for a few special cases. The version

implemented here automatically selects the overshooting parameter.

5.1 Steps of Iterations vs Time

In practice we need linear solvers that converge as rapidly as possible. Usually progressive

re�nement or overshooting converge in fewer steps of iteration than the other three methods.

However, counting steps of iteration does not account for the di�ering amounts and types of

work performed on each step. So a method that converges in fewer steps of iteration may in fact

require more overall time.

The experiments show that this distinction does occur in radiosity applications. Figure 4 shows

that for test case A with �avg = 0:24 progressive re�nement methods converge in fewer steps of

iteration for the given tolerance of tol = 10�3. However, Figure 5, showing the same conver-

gence history as in Figure 4 but plotted against elapsed CPU time, shows that Gauss-Seidel and

Chebyshev methods converge in less CPU time. When the overall re
ectivity of the environment

is increased, the di�erence becomes even more noticable, as shown in Figures 6 and 7 for test

case B with �avg = 0:46.

Why does this counter-intuitive result occur? The main reason is the di�ering amounts of

pipelining and data locality the algorithms allow. Note that in progressive re�nement vmethods,

we must search for the patch with largest amount of unshot radiosity, which involves travers-

ing a potentially large amount of data without performing any operations on it that decrease

the residual. The general matrix methods, by contrast, simply process each row of the matrix

in order. Although this may mean processing rows whose corresponding patch has no unshot

radiosity remaining, in practice performance is enhanced. By avoiding the search phase, the

computations can be better pipelined by compilers, and all data which is brought into the pro-

cessor is actually used in improving the solution rather than searching for the next row to handle.

Furthermore, the innermost loop of the progressive re�nement and overshooting methods consists

of a saxpy or vector update operation, which entails 4n memory references (n each for reading

�j , 4Bj, Fij , and an additional n for writing 4Bj) and 3n 
oating point operations (
ops). By

contrast the Gauss-Seidel, Chebyshev and CG methods have an inner product as the innermost

loop. For the last two methods this entails 2nmemory references and 2n 
oating point operations,

because quantities not indexed by the innermost loop are kept in registers and so do not require

a memory reference. In particular, the carry-around scalar that the inner product is summed

into, and the re
ectivity �i, are kept in registers. Hence the ratio of memory references to 
ops

is 4/3 for the radiosity speci�c solvers, while the ratio is 1 for the general matrix methods. This

means the general matrix methods better utilize data locality, getting more 
ops out of data in

the cache or registers before having to read or write new cache lines. Note that the better data

re-use of the general matrix methods is not a priori evident from examining the algorithms. It
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is possible that in progressive re�nement, only a few patches are selected to shoot out radiosity

over and over again. In that case, the data associated with those patches would likely remain

in cache, potentially giving better data locality properties. Our experiments show that this is

not the case in practice, however. Usually over 90% the paches are selected the same number of

times, �1. Futhermore, the patches selected most often are only selected few more times than

the average.

5.2 E�ects of Re
ectivity

Figures 7-9 show the performance of the various methods as matrix density (occlusion in the

environment) is kept �xed at � = 53% and overall re
ectivity is increased. Figures 9 and 10 do

the same for � = 70%. In general convergence slows as the environment's overall re
ectivity in-

creases, because the eigenvalues of the matrix become more spread out. Figure 2 shows the e�ects

of the environment's overall re
ectivity increase on the eigenvalues distribution. The increase of

re
ectivity is especially deleterious for PR. Because PR selects which patch to process on each

step, it is a nonstationary method which actually changes its innermost loop depending on the

speci�c data of the problem. This means it is not as amenable to analysis as the Chebyshev or

CG methods, which are expected to take more steps of iteration as the eigenvalues get spread out.
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Avg. Reflectivity = 0.24, Min. Eigenvalue = 0.7049, Max. Eigenvalue = 1.156

0 0.5 1 1.5
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0

1
Avg. Reflectivity = 0.46, Min. Eigenvalue = 0.4403, Max. Eigenvalue = 1.312

0 0.5 1 1.5
−1

0

1
Avg. Reflectivity = 0.77, Min. Eigenvalue = 0.1692, Max. Eigenvalue = 1.451

0 0.5 1 1.5
−1
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Avg. Reflectivity = 0.88, Min. Eigenvalue = 0.07221, Max. Eigenvalue = 1.492

Figure 2: Eigenvalue distribution as re
ectivity increases.

As re
ectivity increases the spectral radius of the Gauss-Seidel iteration matrix approaches 1.0,

and its relative performance decreases. The Gauss-Seidel method has a linear convergence rate

that directly depends on the spectral radius of the iteration matrix. The Chebyshev method

also has worsening performance, but relative to Gauss-Seidel it is not as sensitive to the increase

in re
ectivity. The adaptivity of the CG method makes its relative performance better as re
ec-

tivity increases; however, as Figure 11 shows only for the highest re
ectivity and density levels

tested did it become competitive with the Chebyshev method.

Table 2 summarizes the results for the test problems, and for each test problem the algorithms

are listed in decreasing order of performance. Note that the Feda method implemented failed
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on test problems E and F, which have high density and re
ectivity. In general, the Gauss-Seidel

and Chebyshev methods are the fastest overall. These conclusions do not change when using

di�erent stopping tests or the other error norms described earlier.

Table 2: Algorithms performance (total time in seconds).

A B C D E F

GS(1.20) GS(2.01) CHEBY(4.81) CHEBY(6.45) CHEBY(4.05) CHEBY(5.64)

CHEBY(1.61) CHEBY(2.81) GS(6.43) CG(11.02) CG(5.05) CG(5.80)

PR(3.21) FEDA(5.32) CG(8.63) GS(12.83) GS(5.23) FEDA(9.92)�

FEDA(3.92) CG(6.60) FEDA(11.73) FEDA(18.47) FEDA(7.45)�� GS(11.26)

CG(4.68) PR(6.85) PR(23.03) PR(50.56) PR(22.53) PR(50.43)

* failed to converge after 2478 steps of iteration

** failed to converge after 3304 steps of iteration

5.3 E�ects of Density

Comparing Figures 8 and 10, and Figures 9 and 11, shows the e�ect of increasing matrix den-

sity. Although the absolute times decrease for all the methods, CG presents the higher rate of

performance improvement. Figure 3 shows the eigenvalues distribution as the density increases

for � = 0:78. As we can see, the eigenvalues become less spread out, increasing the convergence.

0 0.5 1 1.5
−1

0

1
Density = 53, Min. Eigenvalue = 0.1692, Max. Eigenvalue = 1.451

0 0.5 1 1.5

−1

0

1

Density = 70, Min. Eigenvalue = 0.1846, Max. Eigenvalue = 1.352

Figure 3: Eigenvalue distribution as density increases.

As mentioned earlier, the relative performance of CG improves as both density and average

re
ectivity increase. The system becomes much more di�cult to solve, and more iterations are

required by all the methods. Because CG is adaptive and takes some number of iterations to

implicitly accumulate the eigenvalue information it needs, the higher density and re
ectivity

problems give it more of a chance to accumulate that information.
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Figure 4: Test case A (steps of iteration): �avg = 0:24 � = 53%.
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Figure 5: Test case A (time): �avg = 0:24 � = 53%.
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Figure 6: Test case B (steps of iteration): �avg = 0:46 � = 53%.

GS 

PR 

FEDA 

CG 

CHEBY 

Residual*Area

1e−03

3

1e−02

3

1e−01

3

1e+00

3

1e+01

0.00 2.00 4.00 6.00 Time(seconds)

GS

CHEBY

FEDA

CG

PR

Figure 7: Test case B (time): �avg = 0:46 � = 53%.
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Figure 8: Test case C (time): �avg = 0:77 � = 53%.
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Figure 9: Test case D (time): �avg = 0:88 � = 53%.
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Figure 10: Test case E (time): �avg = 0:78 � = 70%.
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Figure 11: Test case F (time): �avg = 0:89 � = 70%.
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6 Conclusion and Future Research

Our experiments using explicitly stored form factors have shown that although radiosity-speci�c

methods make rapid initial improvement, faster than any other method for limited tolerances

(10�1), they are slower than the general matrix methods for higher tolerances. Radiosity-speci�c

methods require searching for a patch to shoot on each step, which can require traversing a large

data structure. The disadvantage of general matrix methods of storing the form factors is com-

pensated by the regularity of the computations which allows good pipelining and data locality.

The performance advantages of the general matrix methods are not as attractive when the form

factors are computed on the 
y, e.g. when n is large. In that case, the innermost loop consists

of computing the form factors, which generally requires more 
ops than the matrix solving al-

gorithms themselves. Avoiding even a few extra form factor computations by searching through

rows for the most unshot radiosity may then give the edge to radiosity-speci�c methods.

For high average re
ectance environments, which may occur in several applications, the rate of

convergence is slower for all of the iterative methods used. Our experiments have also shown

that the CG Method and the Chebyshev method, with the estimates of the maximal eigenvalues

described previously, represent the fastest approaches to handle those cases.

The experiments also show that selecting the \best" method is delicate, and no single method

is superior in all cases. The relative performance depends on architectural performance features

such as pipelining and data locality as well as problem characteristics. Developing pratical solu-

tion strategies will likely require implementing a variety of linear solvers, with the one actually

used chosen at runtime dependent on problem parameters such as re
ectivity and occlusion, and

�guring out the best parallel implementation for shared memory multiprocessor workstations.

It will also be necessary to bring more numerical linear algebra tools to bear on the problem.

Finally we believe that the understanding of the physical meaning of the eigenvalues and eigenvec-

tors in the radiosity context may help us to obtain even faster approximations for the radiosities

vector. Our future e�orts will be focused on that question.
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Appendix A - Form Factors Accuracy

The major computational bottleneck of any application of the radiosity method is the calculation

of form factors. The form factor Fij between two patches i (emitter) and j (receiver) represents

the fraction of power leaving patchi that arrives directly to patchj . The form factor depends

only on the geometry and the orientation of the two patches (Fig. 10). The analytical expression

of Fij is given by:

Fij =
1

Ai

Z
Ai

Z
Aj

gij
cos�i cos�j

�L2
dAj dAi (29)

where:

Ai = area of patchi.

Aj = area of patchj .

L = length of the ray between the di�erential areas dAi and dAj .

�i = angle that the ray makes with patchi's normal.

�j = angle that the ray makes with patchj 's normal.

gij = visibility term.

The visibility term depends whether there is or not an obstructing surface between dAi and dAj .

If there is no obstacle gij is equal to one otherwise gij is zero.
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Figure 12: Geometry of the form factor between two patches.

There are several methods for the calculation of form factors between �nite areas. These meth-

ods can be divided into deterministic and nondeterministic.

The parametric di�erential method [2] is an example of a deterministic method in which the

integrand of equation 28 is evaluated using a numerical technique called Gaussian quadrature.

Sample points are placed in both patches following a Gaussian distribution (Fig. 11). The value

of gij is determined testing the intersection of rays, connecting pairs of sample points, with

other objects in the environment. For example when we use the 5-points Gaussian quadrature

we employ 25 sample points per patch and a total of 625 rays.

In a nondeterministic approach a set of sample points is randomly distributed in the source patch

(Fig. 12). The rays are shot in a random direction having a cosine density [25]. The number of
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times each patch in the environment is hit by a ray is recorded. The form factor between the

source patchi and a certain patchj is given by the number of rays that hit patchj divided by the

total number of rays shot from patchi. A variation of this approach consists of using a Gaussian

distribution of sample points instead of a random distribution (Fig. 13).

patch i

patch j

sample point with
gaussian distribution

sample point with
gaussian distribution

Figure 13: Deterministic method with a Gaussian distribution of sample points.

patch i

patch j

sample point with
random distribution

Figure 14: Nondeterministic method with a random distribution of sample points.

We performed some tests to compare the two approaches and their variations. The results are

presented in Tables 3,4,5 and 6 in which we use the following terminology:

� PDM - Parametric Di�erential Method;

� SR - Shooting with random distribution of sample points;
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� SD5 - Shooting with 5-points Gaussian distribution of sample points;

� SD10- Shooting with 10-points Gaussian distribution of sample points;

patch i

patch
j

sample point with
gaussian distribution

Figure 15: Nondeterministic method with a Gaussian distribution of sample points.

We considered an environment formed by a cube (Fig. 14). Recall that the summation of the

form factors of one surface regarding the other surfaces of a closed environment must sum to

1.0. We use this relation to evaluate the results accuracy.
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Face 2 is frontal.

Figure 16: Sketch of the test environment.

28



Notice that the number of sample points per patch used by PDM is constant, 25 points. In

the �rst round of tests (Tables 3,4 and 5) we did not take that into account since we were

more concerned about the three variations of the nondeterministic method. In the second round

(Table 6), we reduce the number of rays for the nondeterministic methods in order to get a

better comparison between the deterministic and nondeterministic methods.

From Tables 3 to 6, it seems that the nondeterministic methods are more accurate than the

deterministic methods tested. However since the �gures correspond to summations , it may be

possible that a cancellation of error terms occurs when we perform the sum of the form factors

of each face. In that case, for some geometries a deterministic method may be more suitable

than a nondeterministic one.

The accuracy of the tested methods is a�ected by the singularity in the integrand which occurs

when the two di�erential areas are too close. PDM handles the singularity using an analytic ap-

proach before the numerical evaluation. However it does not remove the singularity completely.

In the case of nondeterministic methods an alternative to minimize this problem consists of

changing the position of the sample points near the edge between two patches. This procedure

may itself represent another source of error.

When the singularity does not occur, e.g. in the case of parallel patches, the results obtained

using PDM are very accurate. The analytic form factors between the parallel faces of the test

environment (Fig. 11) is approximately 0.1998 [9]. As we can see in Table 7, the �gures ob-

tained using the deterministic method are closer to the analytic value than those obtained using

nondeterministic methods.

On the other hand, when the singularity does occur the task of determining which method is more

accurate becomes more complex. Table 8 presents the relative errors regarding the form factors

between perpendicular faces whose analytic value is approximately 0.200043 [9]. As we can

see the average of the relative errors of nondeterministic methods is smaller than the average

of PDM. In fact the values are 0.78%, 0.48% and 0.71% for PDM, SR and SG5 respectively.

However we can also notice that in some cases the error regarding PDM may be smaller.

Final Remarks:

� Nondeterministic methods can be extended to specular case in a more natural way;

� Techniques to solve the singularity problem completely have not been extensively explored;

� Further tests shall take into account more complex environments, with a �nner grid of

patches and including occlusion and curved objects. We expect that these tests may

indicate in which situation is more convenient to use a deterministic or a nondeterministic

method;

� Statistical analysis of the accuracy is required;

� Since the errors of the form factors obtained using a nondeterministic method are non

uniform is necessary to use statistics to evaluate their accuracy.
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Table 3: Environment divided into 216 patches.

Method PDM SR SG5 SG10

number of points/patch 25 1000 25 100

number of rays/point 25 1 40 10

total number of rays 625 1000 1000 1000

� of face l 1.013652 1 1 1

� of face 2 1.013652 0.997333 1.00186 1.00194

� of face 3 1.013652 1.00114 1.00233 1.00292

� of face 4 1.013652 0.998056 0.999 0.998778

� of face 5 1.013652 1.00367 1.00728 1.01075

� of face 6 1.013652 1.00464 1.00431 1.00333

Relative error (%) 8.19 2.43 1.68 2.02

Table 4: Environment divided into 486 patches.

Method PDM SR SG5 SG10

number of points/patch 25 1000 25 100

number of rays/point 25 1 40 10

total number of rays 625 1000 1000 1000

� of face l 1.009103 1.0 1.0 1.0

� of face 2 1.009103 0.997815 0.998494 0.998852

� of face 3 1.009103 1.0009 1.00328 1.00312

� of face 4 1.009103 1.00023 0.997444 0.997938

� of face 5 1.009103 1.00049 1.00523 1.00502

� of face 6 1.009103 0.998506 1.00448 1.00373

� of relative error (%) 5.46 0.53 1.70 1.51

Table 5: Environment divided into 1014 patches.

Method PDM SR SG5 SG10

number of points/patch 25 1000 25 100

number of rays/point 25 1 40 10

total number of rays 625 1000 1000 1000

� of face l 1.006303 1.0 1.0 1.0

� of face 2 1.006303 1.00034 1.00032 1.00042

� of face 3 1.006303 1.00208 1.0047 1.00472

� of face 4 1.006303 0.999124 0.997692 0.997704

� of face 5 1.006303 1.00108 0.999473 0.998828

� of face 6 1.006303 0.995243 0.999568 1.00027

� of relative error (%) 3.78 0.91 0.78 0.81
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Table 6: Environment divided into 1014 patches with a limited number of rays (625) per patch.

Method PDM SR SG5

number of points/patch 25 1000 25

number of rays/point 25 1 25

total number of rays 625 625 625

� of face l 1.006303 1.0 1.0

� of face 2 1.006303 1.00016 1.00301

� of face 3 1.006303 0.97264 0.98485

� of face 4 1.006303 0.999451 0.994348

� of face 5 1.006303 1.00034 0.998968

� of face 6 1.006303 1.00235 1.00153

� of relative error (%) 3.78 0.61 1.27

Table 7: Form factors regarding the parallel faces divided into 169 patches each.

Facei � Facej PDM Rel. error(%) SR Rel. error(%) SG5 Rel. error(%)

1 - 6 0.199841 0.02 0.199044 0.38 0.198570 0.62

2 - 3 0.199841 0.02 0.199044 0.38 0.199508 0.15

4 - 5 0.199841 0.02 0.199195 0.30 0.200398 0.30

Table 8: Form factors regarding the perpendicular faces divided into 169 patches each.

Facei � Facej PDM Rel. error(%) SR Rel. error(%) SG5 Rel. error(%)

1 - 2 0.201615 0.78 0.200502 0.23 0.202556 1.26

1 - 3 0.201615 0.78 0.200634 0.30 0.202622 1.30

1 - 4 0.201615 0.78 0.199044 0.50 0.196781 1.63

1 - 5 0.201615 0.78 0.200625 0.29 0.199470 0.29

2 - 4 0.201615 0.78 0.198892 0.58 0.198692 0.68

2 - 5 0.201615 0.78 0.201051 0.50 0.200312 0.13

2 - 6 0.201615 0.78 0.200691 0.32 0.201941 0.95

3 - 4 0.201615 0.78 0.200161 0.06 0.198343 0.85

3 - 5 0.201615 0.78 0.198305 0.86 0.197955 1.04

3 - 6 0.201615 0.78 0.199138 0.45 0.200057 0.007

4 - 6 0.201615 0.78 0.202159 1.06 0.200133 0.05

5 - 6 0.201615 0.78 0.201164 0.56 0.200833 0.40
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Appendix B - Plots of the Error Norms

We are going to present the graphs regarding the following error norms that we have computed

for the test cases A,B,C,D,E and F:

� L2 norm of the residual, Figures 15-20;

� RMSerror, Figures 21-26;

� percentage of \re
ected" radiosity (error), Figures 27-32;

The stopping criteria and the tolerance used to plot these error norms against the time were the

same as those used previously, max(riAi ) and tol = 10�3 respectively. For RMS error and error

norms we used as an approximation to the exact solution vector the radiosities vector obtained

using Gauss-Siedel Method iterated until the residual vector has norm less than 10�10.
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Figure 17: Residual for test case A.
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Figure 18: Residual for test case B.

GS 

PR 

FEDA 

CHEBY 

CG 

Residual

Time (sec.
3

1e−02

3

1e−01

3

1e+00

3

1e+01

3

1e+02

0.00 5.00 10.00 15.00 20.00

Figure 19: Residual for test case C.
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Figure 20: Residual for test case D.
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Figure 21: Residual for test case E.
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Figure 22: Residual for test case F.

33



GS 

PR 

FEDA 

CHEBY 

CG 

RMS error

Time (sec.
1e−04

3

1e−03

3

1e−02

3

1e−01

3

1e+00

3

0.00 1.00 2.00 3.00 4.00 5.00

Figure 23: RMSerror for test case A.
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Figure 24: RMSerror for test case B.
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Figure 25: RMSerror for test case C.
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Figure 26: RMSerror for test case D.
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Figure 27: RMSerror for test case E.
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Figure 28: RMSerror for teste case F.
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Figure 29: Error for test case A.
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Figure 30: Error for test case B.
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Figure 31: Error for test case C.
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Figure 32: Error for test case D.
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Figure 33: Error for test case E.
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Figure 34: Error for teste case F.
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