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Abstract

A framework, based on syntactic and type constraints, is

provided for de�ning program slices that contribute to a

given type error or similar syntactic property. We specify

soundness, minimality and completeness criterion for these

slices and outline an algorithm for their lazy generation.

1 Introduction

Error diagnosis in current type-reconstruction algorithms

either misses information that is relevant, presents irrele-

vant details, or both. We propose a general framework that

describes a type error in terms of the error's \symptom,"

type constraints logically deriving the symptom, and pro-

gram slices contributing the type constraints that derive the

symptom.

We present two frameworks for diagnostic reasoning that

subsume the analysis of type errors. In the �rst framework,

based on propositional logic, a program slice is a set of pro-

gram subforms that contribute to a given type constraint.

We call these slices location sets. The second, based on

�rst-order logic, is a more �ne-grained framework in which

a program slice is a set of relations (syntactic constraints)

between subforms that lead to a given type constraint. We

call these program slices partial syntactic descriptions.

Our diagnostic error analysis is achieved using a variant,

due to Port [17], of the standard uni�cation algorithm, which

we call diagnostic uni�cation. This algorithm provides in-

formation from which it is possible to directly obtain the set

of all minimal proofs of the derivation of a given type con-

straint in a deduction system consisting of type rules and

type constraints. A proof is minimal if the result of deleting

any step or set of steps is ill-formed. A type error is signaled

by a type constraint that is trivially unsatis�able.

Section 2 reviews related work. Section 3 presents an

extended example of our technique based on the simply-

typed lambda calculus with constants and if. Section 4 for-

malizes diagnostic analysis of type errors in the framework

of propositional logic, including soundness, minimality and

completeness criteria for location sets. A sound and com-

plete algorithm that computes location sets for the simply-

typed lambda calculus is presented. Section 5 formalizes the

notions of syntactic constraints, partial syntactic descrip-

tions, and soundness and completeness criteria for judging

algorithms that generate partial syntactic descriptions. Sec-

tion 6 adapts these techniques to ML-style polymorphism

and polymorphic recursion. Section 7 concludes with di-

rections for further work, including a discussion of how the

framework of this paper may be useful in arriving at a gen-

eral framework for diagnostic analysis of program properties.

2 Related work

Wand [21] was among the �rst to address the problem of re-

porting type errors. He modi�ed the traditional uni�cation

algorithm to accumulate \reason lists" that \explained" the

introduction and binding of type variables. He speculated

that a \completeness result" might be provable for his algo-

rithm, but did not formulate one. We formalize soundness

criteria which Wand's algorithm fails to satisfy. For exam-

ple, for �x�y:f(y x)(y 3)(not x), Wand's algorithm returns

the reason list f(y 3); (not x)g. This set does not imply

enough type constraints to derive the type error.

The network ow approach of Johnson and Walz [9, 20]

attempts to derive all \multiply contradictory hypotheses"

of the type of a program variable and assign them relative

frequencies. The authors claim that their implementation

associates text with type errors, but the details are not pub-

lished. They provide no correctness criterion or characteri-

zation of their complex algorithm.

Gomard [6] isolates the untypable parts of a program

with a two-level syntax and type rules that employ a special

type called \untyped." When an expression with well-typed

subexpressions is ill-typed, the entire expression is agged

with no indication of which parts of the subexpressions con-

tributed to the error. In other words, although his technique



identi�es untypable subprograms, it does not identify mini-

mal slices of these subprograms.

Maruyama et al. [13] use a tracing technique for type

error analysis, but they employ a awed heuristic. Only

parse tree nodes that are adjacent to the node where uni�ca-

tion fails are considered. We demonstrate that more distant

nodes may contribute to the error. Our algorithm employs

adjacency in a type-constraint graph rather than the parse

tree.

Beaven and Stansifer [1] and Soosaipillai [19] develop a

method of explaining the ow of type information in a parse

tree. Duggan et al. [5] have developed a similar method.

While these techniques are useful for building a type debug-

ging environment that guides the user by \explaining" the

process of type inference, they are not designed to identify

the source of a type error.

Program slicing techniques have been studied in the con-

text of \automatic" run-time program debugging [23]. We

demonstrate how program slices may be used to diagnose

static program properites, including type error analysis.

Our approach is related to the more general characteri-

zation of conict sets and diagnosis developed by Reiter [18].

Our location sets can be viewed as Reiter's conict sets.

3 Example

In this section we informally introduce the key notions in

our diagnosis of type errors by analysing a small ill-typed

program in �ifc : the simply-typed lambda calculus with con-

stants and if.

The (pre-term) expressions in our mini-language are

given by the grammar

e ::= x j �x:e j @ e e j if e e e j c� (1)

where @ denotes combination (application), x 2 V is a de-

numerable set of variable symbols, and c� 2 C is a set of

typed constants (primitives). The types � 2 T of �ifc are

given by the grammar

� :: t j �!�
0 j bool j int (2)

where t 2 TV ranges over type variables.

Let e0 be the expression

�x:if x (@inc x) x (3)

where incint!int is the increment constant with type

int!int. The parse tree for e0 is given in Figure 1(a),

in which each parse tree node is given a unique index, called

its location.

The type inference process may be thought of as gener-

ating type constraints (equations) as the expression is tra-

versed [14, 2]. With each type constraint, we associate the

location at which it was generated and the syntactic con-

straint involved. Figure 2 lists the type constraints associ-

ated with our sample expression, e0, along with their associ-

ated locations, syntactic constraints (expressed in informal

English), and an identifying label (a letter in the range a

through i).

These initial type constraints are represented by a term

graph; for our example the solid-edge subgraph of Fig-

ure 1(b). Type reconstruction involves attempting to solve

these equations by term uni�cation implemented as rewrite

rules on the term graph. The rewrite rules may add addi-

tional derived type constraints. In our example, the initial

type constraints f and g, along with the \subterm uni�ca-

tion" rule result in addition of the following derived type

constraints, represented by broken edges in Figure 1(b).

int
:
= t7 : j

int
:
= t4 : k

The type-error symptoms are explained via connectivity

between nodes in the term graph. In our example, a proof for

the equation int
:
= bool can be generated directly from any

path connecting the nodes int and bool. This contradiction

leads to the conclusion that e0 is ill-typed.

A minimal path connecting two nodes in a type graph

corresponds to a minimal proof. The minimal paths from

int to bool in Figure 1(b) are jiec and kdgec.

The equations j and k are not associated with any loca-

tion or syntactic constraint in e0. Instead, they owe their

existence to the subterm uni�cation rule and to the connec-

tivity of the! nodes via the edges f and h. Hence the mini-

mal subsets of the initial edges (type constraints) that derive

int
:
= bool are E1 = fh; f; i; e; cg and E2 = fh; f; d; g; e; cg.

These correspond to two proofs of the untypability of e0,

which are independent and both minimal.

By collecting the locations at which the type constraints

were generated, we get the program slices illustrated in Fig-

ure 3. We may obtain more re�ned program slices, which

we term \partial syntactic descriptions," by collecting the

sets of syntactic constraints corresponding to sets of type

constraints. From E1 and E2 we obtain the slices S1 (Fig-

ure 4(a)) and S2 (Figure 4(b)). Each slice is minimal in

the sense that no proper subset of either will imply enough

type constraints to derive the type error. Further, any other

slice of e0 that generates enough type constraints to cause

the type error int
:
= bool will properly contain either S1

or S2. Each slice S1 and S2 can be thought of as a schema

representing a set of programs, any member of which is guar-

anteed to be ill-typed with the same symptom and proof.

In S1, the absence of an edge from the if node to the @

node suggests that the @ node need not be a direct subex-

pression of the if node to cause the type error. It may occur

anywhere so long as the variable at location 7 is within the

scope of the formal at location 1. In S2, the presence of two

if nodes indicates that the if in which x occurs in the test

part does not have to be the same if in which the nodes 4, 5,

and 6 occur to cause the type error symptom to be derived.

These examples illustrate that each partial syntactic de-

scription generates a maximally weakened precondition on
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Figure 1: Parse tree and type constraint graph for example program

0: e0 is a � with formal at 1 and body at 2 =) t0
:
= t1!t2 : a

2: e2 is an if with the `then' part at 4 =) t2
:
= t4 : b

2: e3 is the test part of an if =) t3
:
= bool : c

2: e4 and e5 are then and else parts of an if =) t4
:
= t5 : d

3: e3 is a variable bound at 1 =) t3
:
= t1 : e

4: e4 is an application of the function at 6 to the argument at 7 =) t6
:
= t4!t7 : f

5: e5 is a variable bound at 1 =) t5
:
= t1 : g

6: e6 is a constant of type int!int =) t6
:
= int!int : h

7: e7 is a variable bound at 1 =) t7
:
= t1 : i

Figure 2: Type constraints and reasons generated for the example program
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Figure 3: Slices in terms of location sets for example program
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Figure 4: Slices in terms of syntactic constraints for example program

syntactic constraints that implies su�cient type constraints

to generate a given type error. In the remainder of this pa-

per we formalize these notions of type constraint, syntactic

constraint, implication, derivation, and minimality.

4 Diagnostic type inference for a simple language

Let the set of expressions e 2 Exp be a free term algebra

generated over a ranked alphabet A and a set V of variables.

Let the set of types � 2 T be another free term algebra over

a ranked alphabet T and a set TV of type variables.

A type environment is a �nite function from V to types.

A[x : � ] denotes the extended type environment �v:if v �

x then � else A(x). A typing judgement A > e : � is an or-

dered triple consisting of a type environment A, expression

e, and type � . A subset of the set of typing judgements

are termed well typings. Elements of this subset are de�ned

by derivability in the logic of a type inference system. Fig-

ure 5 presents a type inference system for the language �ifc
introduced in the previous section.

The typability problem (\is e typable?") is de�ned as:

Given a type system X and an expression e 2 Exp, do there

exist A and � such that A > e : � is a theorem of the type

system X?

Most strategies for solving typability problems for a large

class of type systems involve reduction to the uni�cation

problem and its variants. Uni�cation solves systems of con-

straints over terms generated over a free algebra. The reduc-

tion of the typability problem for an expression e consists of

generating a system of constraints from e.

It is well-known that the typability problem for �ifc is

reducible to �rst-order uni�cation [2, 14, 22]. We use �ifc -

typability as the running example in this paper, but our

techniques are applicable to a broad range of type infer-

ence systems and uni�cation variants, including the ML type

system and polymorphic recursion (where typability is re-

ducible to semiuni�cation [8]).

A type equation, �, is a tuple �
:
= � 0, where � and � 0 are

types. A system of type equations E is a multiset of type

equations.

We often assume expressions are decorated : every subex-

(VAR)
A[x : � ] > x : �

(CONST)
A > c� : �

(ABS)
A[x : � ] > e : � 0

A > �x:e : �!� 0

(APP) A > e : �!� 0 A > e0 : �

A >@ e e0 : � 0

(IF) A > e : bool A > e0 : � A > e00 : �

A > if e e0 e00 : �

Figure 5: The �ifc type system

pression is subscripted with a distinct index, called its loca-

tion. The decorated expression syntax for Exp
�ifc

is

ei ::= xi j �ixj :ek j @i ej ek j ifi ej ek el j c
�
i (4)

Reducibility of �ifc -typability to �rst-order uni�cation is

achieved by the reduction function, R
�ifc

, given in Figure 6.

Each type equation is annotated with the location of the

current subexpression that generated the equation. This in-

formation plays no role in the uni�cation of the type equa-

tions, but is used for building slices that derive a particular

type constraint.

Standard presentations of rewrite rules transform the

initial sysmtem of equations into \solved form" or fail

[11, 12, 16]. Since our focus is on the sources of non-

uni�ability, we instead adopt a presentation due to Port[17]

in which there is no failure. Given a set of type constraints

E, let E� be the closure of E under the rewrite rules of Figure

7.

De�nition 4.1: A type constraint � is any pair of the form

�
:
= � 0 or � � � 0.

De�nition 4.2: � is an error symptom if it has one of the
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R
�ifc

(e) = R(A0; e) where

A0 = fx 7! tj j x free in e and tj is freshg

and

R(A; ei) = case ei of

xi fi
e

=) tA(x)
:
= tig

c
�
i fi

e
=) ti

:
= �g

ifi ej ek em R(A; ej) [ R(A; ek) [R(A; em)[

fi
e

=) tj
:
= bool;

i
e

=) tk
:
= tm;

i
e

=) ti
:
= tkg

@i ej ek R(A; ej) [ R(A; ek) [ fi
e

=) tj
:
= tk!tig

�i xj :ek R(A; fx : jg; ek) [ fi
e

=) ti
:
= tj!tkg

Figure 6: De�nition of R
�ifc

Initially, E� = E.

1. (
:
= propagation ) If f(�1; : : : ; �n)

:
= f(� 01; : : : ; �

0

n) 2

E�, then for each 1 � i � n, add the constraint �i
:
= � 0i

to E�.

2. (
:
= transitivity via variables) If �

:
= t and t

:
= � 0 2 E�,

then add �
:
= � 0 to E�.

3. (� identi�cation) If t
:
= � 2 E� and � is not a type

variable, then add t0 � t to E� if t0 is a variable sub-

term of � .

4. (� transitivity) If t
:
= t0 2 E�, and t00 � t 2 E� or

t0 � t00 2 E�, then add t00 � t0 or t � t00 (respectively)

to E�.

Figure 7: Rewrite rules for diagnostic uni�cation

following forms:

1. f (�1; : : : ; �n)
:
= g(� 01; : : : ; �

0

m) where f 6� g (functor

clash error)

2. t � t (occurs check error)

De�nition 4.3: A type constraint set , E, is any �nite set

of type constraints. Given type constraint sets E and E0,

E v E0, read \E is weaker than E0, if E � E0.

Notation: Ee denotes R(e). E ` � (read E derives �)

denotes � 2 E�. e; � denotes Ee ` �

Theorem 1 (Port[17]) A system of type constraints E is

non-uni�able if and only if E ` � for some error symptom

�.

The rules for diagnostic uni�cation are implemented in

the standard manner using a term graph [16]. Constraints in

E� correspond to connectivity in the term graph. A functor

clash corresponds to an undirected path between two nodes

with di�erent functor symbols. An occurs check error corre-

sponds to a path consisting of undirected and directed edges

(pointing either way) from a variable vertex to itself.

The operation mapping E to its closure E� under the

rewrite rules in Figure 7 is monotonic. This ensures the

following important property:

Proposition 1 For �nite E, if E ` �, then

E(e; �) = fE v Ee j min(E; �)g (5)

is non-empty, where

min(E; �)
def
= E ` � ^ 8E0 v E;E ` � implies E = E

0

If e ; �, Port's algorithm computes E(e; �) by �nd-

ing a regular expression encoding all the minimal subsets

of the initial type constraints (edges) in the term graph con-

necting the nodes representing the type terms of the con-

straint. For example, the expression corresponding to the

minimal subsets of type equations for the example in Sec-

tion 3 is hf(i+ dg)ec. The \words" in the language of this

regular expression are the minimal subsets fh; f; i; e; cg and

fh; f; d; g; e; cg.

4.1 Locations sets as slices

In general, a \slice" is any partially speci�ed syntactic de-

scription of a program. The partial description of the syntax

may be a set of subexpressions, a subgraph of the expres-

sion's syntax tree, or some other syntactic information about

the expression.

First we de�ne a slice to be a set of (locations of) subex-

pressions in a given expression: A location set is any subset

of the set of locations of all subexpressions of a decorated

expression. We assume that the typability-to-uni�cation

reduction function generates type constraints in a syntax-

directed manner: for each type constraint, there is a location

associated with its generation. It is easy to verify syntax-

directedness for the function R
�ifc

de�ned in Figure 6. This

de�nes an implication relation
e

=) between locations and

type constraints for each expression. (This was the rea-

son for associating location names with type constraints in

R
�ifc

.)

Were the relation between locations and the type con-

straints generated a one-to-one function, the minimal loca-

tion sets contributing to a symptom could be directly com-

puted from the set of minimal subsets of type constraints

deriving symptom type constraint. Unfortunately, this is

not so even in �ifc . For example, for if1 true
bool
2 1int3 0int4 ,

1
e

=) t1
:
= t3, 1

e
=) t2

:
= bool, and 2

e
=) t2

:
= bool.
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Let S denote the set of all location indices. Let Se be

the set of location indices in e. We use the meta symbol s

to refer to a location and the meta symbol S to refer to sets

of locations.

De�nition 4.4: A location set is a set of locations of pro-

gram subexpressions. Location sets are ordered by the sub-

set ordering: we write S v S0 (read \S weaker than S0") if

S � S0.

Any syntax-directed de�nition of the reduction function

de�nes a relation
e

=)� S�E such that s
e

=) � if and only

if � was generated \at" location s in e.

We extend
e

=) to sets of locations and type constraints:

(P(A) refers to the set of �nite subsets of A.)

De�nition 4.5: Given expression e, the relation
e

=)�

P(Se)�P(Ee) is given by

S
e

=) E
def
= 8� 2 E; 9s 2 S:s

e
=) �

The order on
e

=) is pairwise: S
e

=) E v S0
e

=) E0 def
=

S v S0 ^ E v E0.

Notation: Let S v Se and E v Ee.

S
e

=) E ` � denotes S
e

=) E ^ E ` �.

S
e
;� denotes 9E:S

e
=) E ^ E ` �.

The following is a straightforward consequence of the

de�nition of
e

=):

Proposition 2 Suppose S
e

=) E and S v S0 v Se and

E0 v E. Then S0
e

=) E and S
e

=) E0.

That is,
e

=) is upward closed on its �rst argument and

downward closed on its second argument.

Proposition 3 1. If S
e

=) E ` �, then there is a mini-

mal E0 v E such that S
e

=) E0 ` �.

2. If S
e

=) E then there is a minimal S0 v S such that

S0
e

=) E.

Proof: By Propositions 1 and 2 2

Given that e; �, our goal is to specify all slices of e that

generate just enough type constraints to imply �. In other

words, given e ; �, we want the minimal elements of the

ordered set fS v Se j S
e
;�g, where the ordering v is given

by De�nition 4.4. These minimal elements, by de�nition,

satisfy the following conditions.

De�nition 4.6: A set of slices S � P(Se) satis�es the

soundness, minimality, or completeness properties with re-

spect to derivation of �, if it satis�es, respectively

Soundness: 8S 2 S; S
e
;�.

Minimality : 8S 2 S;min(S; e; �), where

min(S; e; �)
def
= 8S0 v S; S

0 e
;� implies S = S

0

Completeness: 8S0 v Se; S
0 e
;� implies 9S 2 S:S v

S0.

The following proposition gives us a way to compute the

minimal slices:

Proposition 4 The set of minimal slices of e leading to �

can be computed as

min
S

E2E(e;�)minfS v Se j S
e

=) Eg

Proof:

minfS v Se j S
e
;�g

= minfS v Se j S
e

=) E ^ E ` � for some E v Eeg

= minfS v Se j S
e

=) E ^ E 2 E(e; �)g by Prop 3(1)

= min
S

E2E(e;�)minfS v Se j S
e

=) Eg by Prop 3(2)

2

4.2 Abstract algorithm to compute minimal slices

The computation of S(e; �) follows the proof of Propositions

4:

1. Compute E(e; �).

2. Compute S1 =
S
fS(e; E) j E 2 E(e; �)g, where

S(e; E) = fS j S
e

=) E ^ min(S; e; E)g and

min(S; e; E)
def
= 8S0 v S:S

0 e
=) E implies S0 = S

3. Compute the set S2 of minimal elements (under v) of

S1.

Our de�nition of completeness is with respect to program

slices rather than type constraint sets. In other words, it is

not true that for any E 2 E(e; �) there is an S 2 S2 such

that S
e

=) E and E ` �. This is because it is possible to

have an E 2 E(e; �) such that for every S 2 S(e; E), there

is an S0 < S such that S0
e

=) E0 and E0 6= E.

4.3 Lazy computation of slices

Port's algorithm computes in O(n3) time a (dag representa-

tion of) a regular expression whose language is E(e; �), where

n is the size of the type constraint graph.

The lazy algorithm consists of picking a \term" w from

the regular expression denoting E(e; �). Since the
e

=) rela-

tion is representable as a bipartite graph with vertices parti-

tioned into Se and Ee, �nding S(e; w) corresponds to �nding

minimal dominator sets that dominate the vertices in w in

the graph of
e

=). However, the minimality condition in step

3 of the abstract algorithm requires minimality with respect

to all the elements of S1. In principle this is impractical,

since the number of minimal subsets may be exponential.

At present we do not know an e�cient way to generate an
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expression encoding all the minimal elements of S2. In prac-

tical situations, however, the non-minimality of the slices as

a result of omitting step 3 of the abstract algorithm is un-

likely to be a serious problem. This is because, in the context

of locating obscure type bugs, which is where slices will be

most useful, we expect the total number of slices in S1 to

be quite small even for large programs.

5 Syntactic constraints

Location-set slices indicate which subexpressions of an ill-

typed program generated type constraints that resulted in

the type error. They do not specify how these locations

interacted to cause the error. This section introduces a

program-slicing method that reveals the structural relation-

ships between program fragments that are instrumental in

causing a type error.

We introduce predicates over location indices of subex-

pressions and other values (type expressions). Terms in-

volving such predicates we call syntatic constraints. A par-

tial syntactic description of a program is a set of syntactic

constraints.

To better isolate locations \relevant" to the generation

of a type constraint, we add a \bottom" element, , to our

domain of syntactic objects, which is a placeholder for irrel-

evant information.

De�nition 5.7:

Let N = f0; 1; : : :g be a set of indices and N be the at

domain of locations obtained by lifting N with .

Let C = fc j c� 2 Cg be the set of constant names and

C be the at domain obtained by lifting C with .

Let hT� ;vi denote the partially ordered free-algebra of

terms obtained from any signature � that consists of at least

the elements of N treated as nullary constants. Call the

elements of T� t-terms. T-terms of the form i, where i 2 N

are usually written as ti.

The syntax of types � 2 T for �ifc changes to accommo-

date in the following way:

� ::= ti j �!�
0 j bool j int j (6)

where i 2 N .

What relations are used as syntactic constraints depends

on what information about the syntax tree is deemed inter-

esting. For the �ifc , we de�ne them as follows:

De�nition 5.8:

A syntactic constraint (or s-term) s 2 S is any term of

the following form:

1. �(i0; : : : ; in) where i0; : : : ; in 2 N and (�; n) is an

n-ary constructor of a compound expression of �ifc :

(�; n) 2 f(lambda; 2); (@; 2); (if; 3)g.

2. �bind(i; j), where i; j 2 N .

3. const(i; c; � ), where i 2 N , c 2 C , and � 2 T .

The partial order on N , C , and T induces a partial

order (S;v):

� �(i0; : : : ; in) v �(i00; : : : ; i
0

n) where ij vN i0j , 0 � j �

n, and (�; n) is an n-ary constructor of a compound

expression of �ifc .

� �bind(i0; i1) v �bind(i00; i
0

1), where ij vN ; i0j , 0 � j �

1.

� const(i; c; �) v const(i0; c0; � 0), where i vN i0,c vC
c0, and � vT � 0.

Informally, s v s0 if s can be obtained from s0 by erasure

of (zero or more) subterms of s0.

De�nition 5.9: A partial syntactic description S is any �-

nite set of syntactic constraints. The partial order on partial

syntactic descriptions is the inclusion order on O(S), the set

of all downward closed subsets of S. S1 v S2 if and only if

# S1 � # S2, where # S = fs 2 S j 9s0 2 S:s v s0g.

De�nition 5.10: A type constraint � 2 E is an unordered

tuple �
:
= � 0, where �; � 0 2 T .

The partial order on t-terms extends to type constraints

and sets of type constraints:

�1
:
= �2 v �

0

1
:
= �

0

2
def
= �1 v �

0

1 ^ �2 v �
0

2 _ �1 v �
0

2 ^ �2 v �
0

1

The partial order on sets of type constraints is the inclu-

sion order on O(E). i.e., E1 v E2
def
= # E1 � # E2 where

# E = f� 2 E j 9�0 2 E:� v �0g.

5.1 Relating syntactic and type constraints

Just as the type system speci�es how individual subexpres-

sions of a (well-typed) expression contribute to the type of

the overall expression, we would like to specify how an indi-

vidual syntactic constraint engenders a type constraint. To

this end the relation =)� S � E is de�ned by the schema

given in Figure 8. The order on implies is pairwise:

s =) � v s
0 =) �

0 def
= s v s

0 and � v �
0

Once again our syntax directed reduction function for

reducing typability of e to uni�cation of type constraints

de�nes an implication relation between syntactic and type

constraints. This is accomplished with the following:

De�nition 5.11: Given an expression e,
e

=)�=) is given

by the down-set # (
e

=)
�

), where
e

=)
�

�=) is given in Figure 9

e
=) extends to sets of syntactic and type constraints:

S
e

=) E
def
= 8� 2 E; 9s 2 S:s

e
=) �

7



�(i0; i1; i2) =) i00
:
= i01!i03, i

0

j v ij ; 0 � j � 2

@(i0; i1; i2) =) i01
:
= i02!i00, i

0

j v ij ; 0 � j � 2

if(i0; i1; i2; i3) =) i01
:
= bool, i01 v i1.

if(i0; i1; i2; i3) =) i00
:
= i02, i

0

0 v i0; i
0

2 v i2.

if(i0; i1; i2; i3) =) i02
:
= i03 i02 v i2; i

0

3 v i3.

�bind(i0; i1) =) i00
:
= i01, i

0

0 v i0; i
0

1 v i01.

const(i; c; �) =) i0
:
= � 0; i0 v i; � 0 v �

Figure 8: The relation =) between syntactic and type con-

straints

e
=)=W(;; e) where

W(A; ei) = case ei of

xi case A(x) of

(� : j) f�bind(i; j)
e

=) tj
:
= tig

c
�
i f(i; c; �)

e
=) ti

:
= �g

ifi ej ek em W(A; ej) [W(A; ek) [W(A; em)[

fif(i; j; k; l)
e

=) tj
:
= bool;

if(i; j; kl)
e

=) tk
:
= tm;

if(i; j; k; l)
e

=) ti
:
= tkg

@i ej ek W(A; ej) [W(A; ek)[

f@(i; j; k)
e

=) tj
:
= tk!tig

�i xj :ek W(A; fx : jg; ek)[

flambda(i; j; k)
e

=) ti
:
= tj!tkg

Figure 9: De�nition of
e

=)
�

Let Se be domain(
e

=)
�

) and Ee be range(
e

=)
�

).

The set of minimal partial syntactic descriptions of an

expression e that imply a type constraint set E is

S(e; E) = fS v Se j S
e

=) E ^ min(S;E)g

where min(S;E)
def
= 8S0 v S:S0

e
=) E implies S = S0.

De�nition 5.12: E ` �
def
= � 2 E�, where E� is the closure

under the rules in Figure 7 augmented with the rule

� (Removal of ) Remove any constraint of the form
:
= � where � 2 T before applying any other rule.

5.2 Abstract algorithm

The abstract algorithm is the same as in Section 4, since the

new de�nitions of type constraints, slices, `, and v are such

that Propositions 1, 2, 3, and 4 fall hold.

The minimal E0s are obtained by a re�nement to Port's

algorithm that requires the inclusion of directed edges of the

un�cation graph in the speci�cation of the path expressions.

The re�nement is straightforward and will be reported else-

where [3]. Figure 10 shows the derivation of the minimal

\proofs," along with the related syntactic and type con-

straints for the example of Section 3.

6 Polymorphism

In this section we sketch how our analysis may be extended

to ML-style polymorphic type reconstruction. Rather than

using generic type variables, we adopt a technique due to

Henglein that reduces the type reconstruction problem of

ML to solving a system of equations and inequations (SEI)

by semiuni�cation [8]. Type constraints are de�ned as type

equations or inequations of the form � � � 0, where � and � 0

are type terms. The crucial advantage of this approach is

that the type system can be speci�ed by a system of deduc-

tion rules in which the collection of side conditions implied

by a program form an instance of the semiuni�cation prob-

lem.

Traditional presentations, on the other hand, employ side

conditions that do not have the form of a type equation

or inequation, for in the LET rule the side condition for

\closing" over a type is expressed as a set equation [4, 15].

The set equation is neither a type inequation or equation.

Henglein's framework enables the de�nition of
e

=) as a

relation between syntactic constraints and type constraints;

the traditional approach would require a third relational el-

ement not expressible as a type equation or inequation.

The reduction to semiuni�cation does not introduce any

new syntax for type terms; types are still speci�ed by the

grammar in Equation 2. However, the form of type con-

straints now includes type inequations of the form described

above.

The graph rewrite rules implementing semiuni�cation

add not only new edges but also new vertices to the term

graph. Port's technique can be extended to associate source

information with each new edge (or vertex) in the type con-

straint graph. Details will be reported elsewhere [3].

7 Conclusions

Most systems of static program analysis provide too little or

too much diagnostic information when the result expected

by the user does not match the results of the analysis.

Rather than providing an ad hoc algorithm, the frame-

work presented here makes it possible to precisely charac-

terize what diagnostic information to provide so as to ad-

equately account for a consequence of the type deduction

system. As far as we know, this is the �rst comprehensive

diagnostic analysis of type errors in terms of minimal proofs

of untypability and minimal program fragments implying

8



path : r�1hfpiec path : s�1hfqdgec

const(6; ; int! )
e

=) int!
:
= t6 const(6; ; !int)

e
=) !int

:
= t6

@( ; 6; 7)
e

=) t6
:
= t7! @(4; 6; )

e
=) t6

:
= !t4

�bind(7; 1)
e

=) t7
:
= t1 if( ; ; 4; 5)

e
=) t4

:
= t5

�bind(3; 1)
e

=) t1
:
= t3 �bind(5; 1)

e
=) t5

:
= t1

if( ; 3; ; )
e

=) t3
:
= bool �bind(3; 1)

e
=) t1

:
= t3

if( ; 3; ; )
e

=) t3
:
= bool

Figure 10: Minimal proofs and constraint sets for example program

type constraints that have as their consequence a give type

constraint.

This paper introduces the notion of syntactic constraints

that partially describe the syntax of a program. It is re-

lations between program subexpressions that give rise to

constraints between types or other attributes of the subex-

pressions. This leads to an implication relation between

syntactic and attribute constraints.

The framework presented here assumes that analysis of

program properties can be reduced to solving systems of con-

traints over attributes. If the reduction is syntax-directed

then every attribute constraint generated by the reduction

is associated with some syntactic constraint.

Our technique is directly applicable to the problem of

diagnosing results of constraint-based binding-time analysis

[7, 10]. Since well-annotatedness corresponds to well-typing,

a program slice associated with an annotation of a partic-

ular subexpression will reveal those program elements that

contribute to the subexpression's annotation.

We intend to implement these techniques in a \debug-

ging" front end of an existing type inference system. Due to

algorithmic complexity of the techniques proposed here, we

do not expect them to be used in routine tracking of sim-

ple type errors. Rather, they may be invoked when a type

error is especially di�cult to understand given the feedback

provided by a traditional type inference system.

It appears possible to de�ne program slices with respect

to the result of other static analyses such as set-based or

data-ow analyses. For instance, if a set-based analysis in-

cludes a particular value v in the set approximating the value

of a program subexpression, techniques similar to those in-

troduced in this paper might be used to identify minimal

slices that contribute to the presence of v in the approxima-

tion.
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