
PARALLEL DYNAMIC PROGRAMMING

by

Phillip Gnassi Bradford

Submitted to the faculty of the Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

December 15, 1994

Accepted by the Graduate Faculty, Indiana University, in partial ful�llment of the

requirements of the degree of Doctor of Philosophy.

Gregory J. E. Rawlins, Ph.D.
(Principal Adviser)

Paul W. Purdom, Jr., Ph.D.

Edward L. Robertson, Ph.D.

Larry S. Moss, Ph.D.

December 15, 1994

ii

c
 Copyright 1994

Phillip Gnassi Bradford

ALL RIGHTS RESERVED

iii

DEDICATION

To my family and friends.

iv

Acknowledgements

On to thanking those who had much in
uence on me and therefore on this work.

\Never doubt that a small group of thoughtful, committed citizens can

change the world. Indeed, it is the only thing that ever has." |Margaret Mead

First, I sincerely thank Gregory J. E. Rawlins, my advisor. His advice has always

been solid and prudent. He has stood by me, time and time again and has had the

faith and courage to believe in me|even when I didn't take his excellent advice. His

non-conventional methods are refreshing and gave me the free reign I really enjoy.

His great writing is something I will always try to emulate. His subtle intensity, great

sense of humor, sharp insights, and his friendship are all great!

It is a pleasure to work with Paul Purdom. Paul has taught me a great deal. All

projects I have seen him work on, he always does more than his share of the work.

His relentless search for the truth and knowledge is certainly refreshing. Further, I

really enjoy his congeniality, hospitality and good nature.

Larry Moss helped in a multitude of ways. His understanding of me, mathematics

and computer science made this work much easier and de�nitely very fun. Larry's

open mindedness, his love of theory, his devotion to hard work and his generosity

towards people sparkles in my mind.

Ed Robertson has been very generous by serving on my committee. Ed's sharp

mind and generosity have certainly had much positive in
uence generally on the

v

Indiana's Computer Science Department and in particular on me. Further, he really

cares about the community.

I sincerely thank Kurt Mehlhorn and the whole gang at the Max-Planck-Institut

f�ur Informatik for the wonderful research environment they have introduced me to in

Saarbr�ucken.

Larry Larmore of the University of Nevada at Las Vegas has been a great mentor

and has stood by me in times of need. He is a true scholar who has given me much

needed advice, etc. As with many famous researchers I recall meeting Larry �rst

through his proli�c writings. Then later, when I got to know \Larry the person," as

opposed to \Lawrence L. Larmore" the researcher, I was even more impressed!

Mike Atallah of Purdue University was always a pleasure to talk to and is a star

in my eyes. He is a true team player and a very great person whose pursuit of

knowledge is certainly worthy of substantial note. He also has a very clear high-level

perspective. He has given me excellent advice and his eagerness to know what I will

do in the future has been extremely encouraging.

Mike Loui of University of Illinois has always had an extremely positive in
uence

on me and my work. His ever positive attitude and great encouragement of me and

my work has been extremely invigorating and delightful. He has also been very eager

to see what I do in the future|which is quite encouraging to me. I have always really

enjoyed talking to him at conferences all over the country.

T. C. Hu has already had an profound in
uence on my work. He has been very

generous to me, especially when I visited him at the University of California at San

Diego. He gave me a \tour of the town" and of the University. We also met at

the University of Wisconsin at Madison for a conference on optimization where he

was equally generous. I recall being asked by his chairman to write a letter for his

promotion to distinguished professor. Later I asked T. C. who else was writing such

letters for him. He replied something like: \The 3 Ks: Knuth, Karp and Kleitman."

vi

Knowing T. C. certainly put me in great company!

Tom Spencer of the University of Nebraska has been extremely pleasant to talk

to and to discuss theory with. I have always looked forward to seeing Tom at various

conferences.

Ming Kao of Duke University has been kind and generous to me on several occa-

sions. Ming has given me very good advice and has been a good friend since I met

him. He certainly is a person with high standards.

I �rst met Dan Friedman through reading his book \The Little Lisper" many

years ago when I was in college. One of the reasons I thought so highly about Indiana

University was because I long knew that Dan and several other \Scheme-rs" were

here. I recall spending a very pleasant Saturday afternoon at his house in October of

1990 that solidi�ed my decision to come to IU. This pleasant afternoon made a very

signi�cant impression on me that will last for many years to come.

Dirk Van Gucht has always showed interest in me and my work. I have had many

very pleasant conversations with Dirk and I really appreciate his excellent in
uence.

Andy Hanson has also always showed interest in me and my work. It is always

nice to talk with Andy. Andy is one of those people who is comfortable working in

physics, mathematics, computer science and probably a few other areas to boot. His

great depth and breadth is something only the best scholars can shoot for.

Daniel Leivant has been very generous and pleasant while showing an interest in

me. His high standard for excellence is something I will always try to emulate.

Several times David Wise has given me advice that is solid and on the money. I

appreciate this greatly.

Steve Johnson has also given me advice that is solid and on the money. Now and

then, Steve has also written a useful memos for me, which made things a lot easier.

I appreciate all of this greatly.

vii

Pete Shirley has been everything from a graphics-lab buddy to one of my best

advisors ever. I really hope we cross paths again soon! Together, Pete and Jean

certainly make two great friends.

Randall Bramley has always been very interesting to talk to and get advice from.

He works very hard and his high ethical standards and his intellectual momentum

are superb.

Greg Shannon went way beyond the call of duty and helped me in many ways.

One of the central reasons I worked on a Ph.D. at Indiana University is because of

Greg Shannon, and I am greatful for this. He was my �rst advisor at Indiana.

Alok Aggarwal of IBM Research Labs at Yorktown Heights has always been

friendly and interesting to talk to. Talking with Alok has always been enjoyable

and encouraging.

Zamir Bavel of the University of Kansas is a very good teacher and a �ne scholar.

I must thank the many participants in the \Thursday Theory Thing." They

ranged from computer science theory types to several people from the Biology De-

partment. We always had lots of fun and I'm happy to have organized this group. I

hope it continues long after I leave.

I sincerely thanks Pam Larson for all of her work in helping me get through the

paperwork for my degree. Pam has certainly helped me out to a great extent at

several very important junctures.

John MacCuish has really made my day many times. He is a great friend who

really helped with many things in lots of ways. We have also shared many hearty

laughs together. John's insights and perspective have really been wonderful. I'll never

forget the cold winter nights with John, Kay, Emily in her cat suit, and, of course,

me in my great innocence. There also was the time we bumped into a friend of ours

in Bloomington wearing his 18-th century French wig and packing a pistol in a co�ee

shop.

viii

I was particularly happy that he could schedule several things in Bloomington so

he could be around when I defended this dissertation.

Sushil Louis was always supportive, has a great positive attitude and read through

my work and gave me comments that improved it greatly. His help and perspective

are lasting. Suresh Srinivas was a great help and a good neighbor. Jiyoung Chang

was always encouraging and always had pleasant things to say. Ken Chiu has helped

with this work in many ways both as a friend and graphics lab comrade. He also read

countless things for me always adding quality and conciseness to their presentation.

Shankar Swamy has been a great friend. His hard work and dedication is excellent

and to be admired. He has come through on several occasions that have made a very

big di�erence. It was Shankar who generously helped with the last details of this

dissertation while I was in Germany. Shankar is sometimes too generous. Shankar

and I have had many great times together and I anticipate many more.

I should also thank all those students who were in classes that the department

gave me the privilege of teaching. In particular, there was three classes in the Design

and Analysis of Algorithms and a class in Data Structures. Teaching these classes

was a great learning experience in many ways.

Of particular note are the following people: Je� Bass, Wenfang Chang, Gordon

Diamant, Keith Maull, Joe Povelari, Beata Winnicka, John Zuckerman.

I owe many thanks to my mother, my father, Camille, aunt A, uncle Charles, aunt

Barbara, uncle Paul, Anthony, Ron, John, Suzanne, Anne, Syd, Teresa, Fred, Alex,

and all of the rest of my large extended family. And, of course, who could ever forget

Ota Benga.

Andrea Rafael has helped with this work in several ways. First, several times

she read several drafts of papers I wrote and gave me excellent comments on them.

Further, her support and friendship has certainly been delightful.

ix

Emily Nedell has always been lots of fun. She is very well-rounded and is very

pleasant to be around.

Jenni McDaniel has been a great friend and more almost since my arrival at IU.

The extra e�orts she often exerted will always be remembered. I recall spending many

pleasant times with Jenni.

Jean-Yves and Cecil Marion have always been lots of fun. Perhaps, too much

(unbearable1) fun! I recall a party JY and Cecil had in Bloomington where about

eight of us were doing shots of Pete Shirley's \Lizard Juice." I also recollect many

other great times with JY and Cecil. Now that I am in Saarbr�ucken Germany and

they are conveniently located in Nancy Frence, the fun continues.

Neil Haven has always helped out in many regards. He has been very helpful on

several key occasions. Neil has been an inspiration for me through his everlasting

hard work and dedication. He still knows how to have fun, while excelling in his

academic work and at the same time running a computer vision company.

Mike Wollowski has always been a great friend. I have enjoyed many times when

we studied together, had dinner, picnicked, watched movies, etc. It's only rock-and-

roll, but I like it.

Kate Ksiazek has always been fun to talk with. Her broad knowledge base is

something to be admired. I have spent many pleasant times with Kate.

Tom Loos has helped me a lot. His calmness and solid perspective do the world

wonders. I recall on several di�erent times talking with Tom 'till early hours of the

morning. He was always generous with his time and perspective. Emily is great too!

I have shared many warm laughs with Venkatesh Choppella. Venk is always fun

to be around.

Yue-Herng Lin has always been lots of fun. Y.-H.'s hard work and his perspective

on life is to be admired.

1Thanks to Dimitri Gusev for introducing me to the notion of \unbearable fun."

x

Steve Ryner has also been lots of fun. Steve's autonomous character is great.

Raja Sooriamurthi is a great friend. Since I was in Bloomington, Raja has been

helping me out. He is very warm and friendly|a great friend indeed!

I must thank the following people for helping me though the language requirement.

Neil Haven helped by giving me many practice exams and torturing himself by

grading them. Further, he taught me lots of the grammar and idioms. Kate Ksiazek

helped with grammar, translations, and by giving me practice exams. Dan Jacobson

helped me translate some passages and taught me grammar and idioms. Paul Purdom

helped in many ways, ranging from sending me email in German to encouraging me.

Mike Wollowski helped me several times with translations and various other things

from German. Of course, a few times he was guilty of trying to hand me large

philosophical treatises in German. John Gnassi who on a few occasions corresponded

with me in German.

It was Andrew Lenard who actually administrated some of my exams in German.

He was always very pleasant and generous with his time and energy.

It was my uncle Charles, a psychiatrist, who I �rst heard say something like:

\Why do you expect humans to be logical ?" Wow...I must say that taking this as

an axiom makes my deduction about humans much more complete.

Many thanks everyone!

xi

Abstract

Algorithm design paradigms are particularly useful for designing new and e�cient

algorithms. However, several sequential algorithm design paradigms seem to fail in

the design of e�cient parallel algorithms. This dissertation focuses on the dynamic

programming paradigm, which until recently has only been used to design sequential

algorithms.

A graph structure is given that allows the e�cient parallel solution of some prob-

lems amenable to the dynamic programming paradigm. Using these graphs we show

that dynamic programming is a viable parallel algorithm design paradigm. Several

new parallel algorithms are given for two well-known optimization problems. First an

approximation algorithm is given. Then an algorithm that works by �nding shortest

paths in special graphs is given. Finally, the last two and most e�cient of these paral-

lel algorithms are given. These algorithms work by using new and e�cient techniques

for exploiting monotonic problem constraints.

xii

Contents

Acknowledgements v

Abstract xii

1 Introduction 1

1.1 Algorithm Design Paradigms : 1

1.2 Parallelism : 2

1.3 Dynamic Programming : 4

1.4 On the Origins of Dynamic Programming : : : : : : : : : : : : : : : : 6

1.5 The Structure of this Dissertation : 6

2 De�nitions and Foundations 8

2.1 The PRAM Model : 8

2.2 E�cient and Optimal Parallel Algorithms : : : : : : : : : : : : : : : 10

2.2.1 Asymptotic Notation : 10

2.2.2 Optimality and Work : 12

2.3 The Parallel Computation Hypothesis : : : : : : : : : : : : : : : : : : 13

2.4 The Nature of Some Paradigms : 16

2.5 Historical Notes : 17

3 Sequential Dynamic Programming 19

xiii

3.1 The Basics : 19

3.2 The Matrix Chain Ordering Problem : : : : : : : : : : : : : : : : : : 20

3.3 An Instance of the MCOP : 22

3.4 Triangulating Convex Polygons : 25

3.5 Historical Notes : 27

4 A Dynamic Graph Model 29

4.1 Theoretical Foundations : 29

4.2 Greedy Minimum Cost Parenthesizations : : : : : : : : : : : : : : : : 31

4.3 Minimum Cost Parenthesizations : 34

4.4 Constructing a Dn Graph : 40

4.5 Historical Notes : 44

5 Special Dn Graphs for the MCOP 46

5.1 Nesting Levels of Matching Parentheses : : : : : : : : : : : : : : : : : 46

5.1.1 An Invariance Theorem : 47

5.1.2 Matrix Dimensions as Nesting Levels of Matching Parentheses 48

5.2 Critical Nodes in Dn : 52

5.3 Canonical Subgraphs of Dn : 54

5.4 Historical Notes : 61

6 Approximating the MCOP 63

6.1 A Parallel Approximation Algorithm for the MCOP : : : : : : : : : : 63

6.2 Historical Notes : 68

7 An ~O(n3)-Work Polylog-Time Algorithm 69

7.1 Shortest Paths Without Critical Nodes : : : : : : : : : : : : : : : : : 69

7.2 Combining the Canonical Graphs : 74

7.2.1 Canonical Trees : 75

xiv

7.3 Finding Shortest Paths to All Critical Nodes in Canonical Subgraphs 78

7.3.1 Leaf Pruning and Band Merging : : : : : : : : : : : : : : : : : 80

7.3.2 Contracting a Canonical Tree : : : : : : : : : : : : : : : : : : 87

7.4 Historical Notes : 91

8 An O(lg2 n) Time and n Processor Algorithm 93

8.1 The n3=lgn Processor Bottlenecks : 94

8.2 A Metric for Minimal Cost Angular Paths : : : : : : : : : : : : : : : 95

8.3 A Polylog-Time and n2=lgn Processor MCOP Algorithm : : : : : : : 99

8.4 Merging Bands Using n2=lgn Processors : : : : : : : : : : : : : : : : 114

8.5 E�cient Polylog-Time MCOP Algorithms : : : : : : : : : : : : : : : 117

8.6 Historical Notes : 121

9 Directions of Further Research and Conclusions 122

9.1 Future Directions : 122

9.1.1 Optimal Binary Search Trees : : : : : : : : : : : : : : : : : : 123

9.1.2 Previous Results : 123

9.1.3 Some Comments on Solving the OBST on a Dn Graph : : : : 124

9.2 Conclusions : 125

xv

List of Figures

1 A PRAM with p(n) Processors : 9

2 The Parallel Computation Hypothesis : : : : : : : : : : : : : : : : : : 13

3 A Hypothetical View of P : 16

4 Sequential Matrix Chain Ordering Algorithm : : : : : : : : : : : : : : : 21

5 A Dynamic Programming Table for the MCOP : : : : : : : : : : : : : : 22

6 The Dynamic Programming Table of M1 �M2 �M3 �M4 : : : : : : : : 23

7 Two Di�erent Triangulations of the Same Convex Polygon : : : : : : : : 26

8 The Grammar L1 : 31

9 The Greedy Weighted Digraph G4 : 33

10 The Grammar L2 : 35

11 A Horizontal Jumper with its Associated Weight : : : : : : : : : : : : : 35

12 The Weighted Graph D4 : 38

13 Modi�ed (min;+)-All-Pairs-Shortest-Path Algorithm : : : : : : : : : : : 42

14 The Weight wj with its Match [wi; wk] : : : : : : : : : : : : : : : : : : 48

15 Parentheses and their Depths : 49

16 A D
(i;t)
(j;k) Graph without (0; 0) and with No Jumpers Shown : : : : : : : 55

17 Several Canonical Subgraphs and Their Weight List : : : : : : : : : : : 56

18 ADn Graph Split by a Path of Critical Nodes, Arrows Point Toward Smaller

Weights : 60

19 Two Angular Paths : 72

xvi

20 Two Jumpers and their Complimentary Paths : : : : : : : : : : : : : : : 73

21 Two Jumpers Over the Path p : 73

22 A Canonical Tree of D(1;m) Graphs, the Circles Denote Tree Nodes : : : 78

23 The Variations of Band Merging or Leaf Pruning : : : : : : : : : : : : : 87

24 A Small Canonical Tree : 89

25 A Linear List of Tree Leaves : 89

26 Bottlenecks 1, 2, and 3 for the n3=lgn Processor Algorithm : : : : : : : 95

27 The Dashed Path IS p and the Two Black Nodes Are Super-Critical Nodes 96

28 Two Di�erent Nestings of Two Jumpers : : : : : : : : : : : : : : : : : 97

29 (j; u) Shadowing (k; t)'s Shortest Path Forward : : : : : : : : : : : : : : 98

30 An Inductive Invariant for Band Merging : : : : : : : : : : : : : : : : : 100

31 Solid Arrows: Forward Linked Lists of Trees; Dashed Arrows: Backward

Linked Lists p : 101

32 (s; t) 62 V [p] and the Angular Edge (x; y) * (r; y)! � � � ! (r; u) : : : : 102

33 Two Jumpers in Di�erent Rows : 103

34 Con
icting Angular Paths Between Two Bands Being Merged : : : : : : 104

35 The Bands D
(a;z)
(c;x) , D

(d;v)
(e;u) and the Leaf D(g;t) : : : : : : : : : : : : : : : 105

36 The Two Paths A and D : 109

37 Two Jumpers in Di�erent Rows : 112

38 A O(lgn) Time and n2=lgn Processor Algorithm for Merging Two Bands 115

39 An O(lg2 n) Time and n= lgn Processor Band Merging Algorithm : : : : 119

xvii

Chapter 1

Introduction

This chapter contains a brief introduction to this dissertation. It motivates the entire

dissertation by discussing some of the new challenges of parallel computation. In

doing so, it emphasizes the usefulness of algorithm design paradigms such as dynamic

programming. The main focus of this dissertation is the e�cient parallelization of cer-

tain classical problems which are amenable to the (sequential) dynamic programming

paradigm.

1.1 Algorithm Design Paradigms

Parallel computers promise to solve many problems much faster than their sequential

counterparts, but to realize this increase in speed some challenges must be overcome.

This dissertation addresses the challenge of designing e�cient parallel algorithms

for problems that have elementary and e�cient sequential dynamic programming

solutions.

Algorithm design paradigms, such as divide and conquer, the greedy method, and

dynamic programming often aid the design of e�cient sequential algorithms. How-

ever, some sequential algorithm design paradigms may not lead to e�cient parallel

1

Introduction 2

algorithms. This dissertation focuses on dynamic programming, which until recently

has only been used to design sequential algorithms, and demonstrates how to use it

to design e�cient parallel algorithms for several well-known problems.

Employing new graph structures leads to the e�cient parallel solution of some

problems amenable to dynamic programming. Designing parallel algorithms with

these graphs shows that dynamic programming is a viable parallel algorithm design

paradigm. Several new parallel algorithms are given for two well-known optimization

problems. After the appropriate background is given, this dissertation contains an

e�cient approximation algorithm and two algorithms that work by �nding shortest

paths in these special graphs. Next, the last two and most e�cient of these paral-

lel algorithms are given. The last of these algorithms is the most e�cient parallel

algorithm for solving these problems to date.

These algorithms work by using new and e�cient parallel techniques for exploiting

monotonicity. An optimal log-time algorithm for solving searching problems in special

structured matrices will improve our algorithm to have the same work as the best

sequential algorithms for solving these problems.

In the most general terms, this dissertation contributes to the dissection of certain

problems into independent parallel components. These independent components run

very quickly and taken together they solve the original problem. Dissecting a problem

like this could lead to drastic speed up of many algorithms. On the other hand, all of

this work is done on a particular parallel model which may, in the long run, contribute

to the viability of this model.

1.2 Parallelism

Parallel algorithms are hard to build. There are many parallel architectures to con-

sider, many theoretical parallel models and many factors such as memory con
icts

Introduction 3

and communication costs that are generally not encountered in sequential algorithm

design. To focus on the cost of parallel algorithms in terms of their sequential coun-

terparts, this dissertation chooses a theoretical parallel model called the PRAM, or

Parallel Random Access Machine. The PRAM has a sequential counterpart, the RAM

or Random Access Machine. The RAM model is extensively used for the design of

sequential algorithms due to its correspondence with actual computers.

The PRAM allows us to abstract from available computer architectures and si-

multaneously design algorithms suitable for many parallel computers. In addition,

the PRAM allows the design of parallel algorithms to focus on the inherent parallel

or sequential nature of the problem at hand. It seems that any model stronger than

a PRAM is too powerful and anything weaker is too restrictive for our purposes.

The parallel computation hypothesis basically states that a parallel model of com-

putation is \reasonable" i� the parallel time to solve a problem on this parallel model

is proportional to the sequential space on a \reasonable sequential model." At the

same time, the total amount of work done is about the same.

On a PRAM the parallel computation hypothesis relates the parallel time it takes

to solve a problem with the sequential space it takes to solve this problem on a

RAM. The parallel computation hypothesis is a theorem for various parallel models,

including variants of the PRAM, given that the RAM is a reasonable sequential model

of computation.

The parallel computation hypothesis gives us a notion of inherently sequential

problems. If a problem takes lots of space to solve sequentially, then it will take lots

of time to solve in parallel. No known algorithm for inherently sequential problems

speeds up signi�cantly even with reasonable1 numbers of additional processors. These

inherently sequential problems are the bane of parallel algorithm design, particularly

1Here \reasonable" means polynomially bounded by the input size of the problem instance, see
Chapter 2 for more details.

Introduction 4

on the PRAMmodel. On the other hand, there are problems that have inherently par-

allel algorithms and some of these problems are the work-horses of parallel algorithm

design. The results given in this dissertation use several new inherently parallel al-

gorithms and their design paradigms. Therefore, these new parallel algorithm design

paradigms are suitable for the design of parallel dynamic programming algorithms.

(These parallel algorithm paradigms will be given as they are needed.) This means

the dynamic programming paradigm is, in some sense, useful for designing parallel

algorithms.

1.3 Dynamic Programming

Dynamic programming has become a work-horse in a number of areas. Transporta-

tion and optimization problems are routinely solved using dynamic programming.

Also problems such as string editing (Cormen et al., 1990), context-free grammar

recognition (Hopcroft and Ullman, 1979), and optimal static search tree construction

(Baase, 1988; Cormen et al., 1990) have e�cient sequential dynamic programming

solutions. There is an e�cient parallel algorithm for string editing (Apostolico et al.,

1990), and there are good parallel algorithms for context-free grammar recognition

(Klein and Reif, 1988; Rytter, 1988).

The dynamic programming solution of applied problems has a rich history. The

�rst context-free grammar recognition algorithms were intractable because of their

time costs. Then the problem of recognizing a context-free grammar became feasible

due to elementary and small dynamic programming algorithms. Surprisingly, the

good parallel algorithms for context-free grammar recognition are still quite complex.

The rich history, applications, and ease of sequential solution contribute to our in-

terest in studying optimization problems. Further, the high cost of parallel algorithms

for solving problems amenable to simple sequential dynamic programming solutions

Introduction 5

all contribute to our motivation for studying parallel dynamic programming.

The dynamic programming paradigm is based on the principle of optimality. This

principle is that for a structure to be optimal all of its well-formed substructures

must also be optimal. Hence, the dynamic programming paradigm is essentially

a top-down design method. Conversely, the greedy principle basically is that if a

substructure is optimal then it is part of some optimal superstructure. In some sense

this is a bottom-up design method. The lexicographical greedy principle is when

every optimal substructure is in some optimal superstructure and this substructure

is built lexicographically into the superstructure. Many problems amenable to the

lexicographical greedy principle seem to be inherently sequential (Anderson and Mayr,

1987; Anderson and Mayr, 1987a). This sequential algorithm design paradigm does

not seem to give inherently parallel algorithms. On the other hand, this dissertation

gives some extensions of the dynamic programming paradigm for designing e�cient

parallel algorithms.

The following problems will be addressed in this dissertation and they are represen-

tative of those to which dynamic programming is often applied, see for instance (Aho

et al., 1974; Baase, 1988; Cormen et al., 1990):

� matrix chain ordering problem (MCOP): �nd an optimal way to multiply a

chain of n matrices, where the matrices are pairwise compatible but of varying

dimensions.

� optimal convex polygon triangulation problem: �nd an optimal triangularization

of a convex polygon of n points given the following triangle cost metric: a

triangle with node values t1; t2; and t3 has cost t1t2t3.

� optimal binary search tree construction problem: build a static binary search

tree with minimal average lookup time given a totally ordered set of n elements

and their access probabilities.

Introduction 6

These three problems have O(n3) time sequential solutions with elementary dynamic

programming algorithms, although there are faster, but more complex, algorithms for

each of these problems. (The notation O(n3) will be de�ned in Chapter 2.)

The bulk of this dissertation focuses on the matrix chain ordering problem and

the optimal convex polygon triangulation problem.

These problems are so prevalent in textbooks on algorithms and optimization that

we refrain from listing them. Only the books that are cogent to the research in this

dissertation are cited.

1.4 On the Origins of Dynamic Programming

The term \dynamic programming" came from economic modeling jargon. Just as in

the term \linear programming" the word \programming" refers to economic planning

rather than computer programming. Dynamic programming became an algorithm

design paradigm. Linear programming was and remains a method of solving simul-

taneous linear equations under certain constraints.

The �rst book on dynamic programming is (Bellman, 1957). The authors of (Cor-

men et al., 1990) credit Bellman and his 1957 book as laying the foundations of

modern dynamic programming.

Several important problems were �rst solved e�ciently using dynamic program-

ming algorithms. For example, the problem of parsing context-free grammars had no

e�cient solution until the CKY algorithm (Hopcroft and Ullman, 1979). The CKY

algorithm is a simple and e�cient dynamic programming algorithm.

1.5 The Structure of this Dissertation

Chapter 1 (this chapter) contains a brief introduction to this dissertation. Further,

Introduction 7

it motivates algorithm design paradigms, parallelism, and dynamic programming.

Chapter 2 contains the parallel model the rest of this dissertation relies on. It

also contains formal notions of inherently parallel and inherently sequential problems.

Chapter 3 contains the classical sequential algorithms for solving the matrix

chain ordering problem. E�cient parallel solutions to the matrix chain ordering

problem are the main focus of this dissertation.

Chapter 4 contains the parallel graph model that this dissertation relies on. This

model is given in full generality. A straightforward approach gives three almost iden-

tical O(lg2 n) time and n6=lgn processor algorithms for the three problems outlined

in this chapter.

Chapter 5 contains a specialization of the graphs given in Chapter 4 that are

suited for solving the matrix chain ordering problem. These specializations are also

suitable for an optimal triangularization problem on convex polygons.

Chapter 6 contains a parallel approximation algorithm for the MCOP. This

gives a solution to the MCOP that is within about 15% from optimal.

Chapter 7 contains an ~O(n3) work polylog-time algorithm for the MCOP. This

algorithm is based on special properties of the MCOP-speci�c graphs.

Chapter 8 contains several progressively more e�cient algorithms culminating

with an O(lg2 n)-time and n-processor algorithm for the EREW PRAM model.

Chapter 9 contains conclusions and discusses further directions.

Chapter 2

De�nitions and Foundations

This chapter contains a brief intuitive sketch of the PRAM model. Using this model

basic notions of inherently parallel and inherently sequential problems are given

through a brief introduction to the problem classes NC and P-Complete. More

details about all of the topics of this chapter can be found in (Gibbons and Rytter,

1988; Karp and Ramachandran, 1990; Johnson, 1990; Kumar et al., 1994; J�aJ�a, 1992;

Parberry, 1987; Reif, 1993).

2.1 The PRAM Model

In this dissertation the parallel model is the PRAM (see Figure 1). As stated in

Chapter 1, PRAM is an acronym that stands for Parallel Random Access Machine.

The PRAM is motivated in Chapter 1.

A PRAM has an unbounded shared common memory and polynomially many

processors indexed from 1 to p(n), where p(n) is a polynomial in the size of the input n.

Each processor has its own local memory, and each processor has the same instruction

set as the single processor in the RAM model (Aho et al., 1974; Papadimitriou, 1994).

All processors run the same program and each processor has access to its own index

8

De�nitions and Foundations 9

Processor 1

Common Memory

Processor 2 Processor p(n)

Figure 1: A PRAM with p(n) Processors

so any processor can execute di�erent instructions based on its index.

The PRAM model allows a polynomial number of processors to vary with the

input size because:

� A polynomial number of polynomial time bounded processors can be simulated

in polynomial time using one processor.

� The power of processors is increasing while their expense and size is decreas-

ing. Therefore, designing algorithms expecting a large numbers of available

processors is not unreasonable.

The common memory shared by all of the processors forces us to consider simul-

taneous memory con
icts. The most common distinctions between memory con
ict

are, exclusive reads (ER) versus concurrent reads (CR), and exclusive writes (EW)

versus concurrent writes (CW). Therefore, the CRCW PRAM allows simultaneous

reads and simultaneous writes, where the EREW PRAM does not allow simultaneous

reads or simultaneous writes.

It's easy to imagine several processors simultaneously reading from the same mem-

ory location, but to allow simultaneous writes we must decide either which processor

\wins" or how to combine the di�erent values being simultaneously written.

Here are several well-known models of simultaneous write contention:

De�nitions and Foundations 10

� Priority-CW PRAM: In this model each processor has some given priority, so

memory contentions are resolved by letting the highest priority contesting pro-

cessor win.

� Max-CW PRAM: In this model the processor that is attempting to write the

maximum value in the contended memory location wins.

� Common-CW PRAM: In this model all processors must write the same value

into the contended memory location.

All of the above models can simulate each other within minor time and space

factors (Karp and Ramachandran, 1990). Because these parallel models are so closely

related, we use the most convenient model at hand.

2.2 E�cient and Optimal Parallel Algorithms

The set P is the class of problems that have polynomial time bounded algorithms

on a RAM. These problems are often thought to be tractable on modern computers

(Garey and Johnson, 1979). Since a PRAM can only have a polynomial number

of processors, a RAM can simulate a PRAM in polynomial time. This means the

only problems that have any hope of being tractable on a PRAM are those that are

tractable on a RAM. Therefore, we will examine the problems in P very closely.

2.2.1 Asymptotic Notation

Given an algorithm let In denote the set of all valid inputs of size n. The time

complexity of an algorithm A is a function TA from the set of all its inputs to the

natural numbers, such that for all i 2 In the value TA(i) is the number of steps

algorithm A uses in computing an answer given input i. We write t(n) to denote

De�nitions and Foundations 11

max
i2In
f TA(i) g and call this the worst case time complexity for inputs of size n. Time

complexity re
ects the amount of time it takes an algorithm to solve an instance of

a problem.

The space complexity of an algorithm is de�ned analogously to its time complexity.

Space complexity re
ects the amount of space it takes an algorithm to solve an in-

stance of a problem. Space complexity includes the space used for all data structures

during a computation, but it does not include the space used for the input or the

output. We write s(n) to denote the worst case space complexity for inputs of size n.

The processor complexity of a parallel algorithm is de�ned analogously to space

and time complexities. Processor complexity re
ects the number of processors it takes

a parallel algorithm to solve an instance of a problem. We write p(n) to denote the

worst case processor complexity for inputs of size n.

In this dissertation the processor, time, and space complexities are always poly-

nomially bounded.

The worst case time complexity of a parallel algorithm is the worst case time it

takes all processors to �nish. The worst case parallel time complexity is also written

t(n) for inputs of size n.

The following de�nitions comprise asymptotic notation.

Here all functions1 are from the positive integers onto the positive integers and all

constants are positive.

Given two functions f and g, we write f = O(g), if there are two constants c and

d such that f(n) � cg(n) for all n � d. We write f =
(g), if there are two constants

c and d such that f(n) � cg(n) for all n � d. We write f = �(g) when both f = O(g)

and g = O(f).

Call a function f polylog i� f(n) = �(lgk n) for some constant k > 0. A function

f is at most polylog i� f(n) = O(lgk n) for some constant k > 0, etc. We will always

1See, for example (Marcus, 1978), for a de�nition of a function.

De�nitions and Foundations 12

attempt to build parallel algorithms that work in polylog time. Further, all polylog

and polynomial functions are in terms of the input size n.

We write f(n) = ~O(g(n)) i� f(n) = O(g(n) lgk n) for some constant k � 0. The

expressions f(n) = ~�(g(n)) and f(n) = ~
(g(n)) have the expected meanings.

The function f is within a polynomial of g i� f(n) = O(gk(n)) for some constant

k � 1.

2.2.2 Optimality and Work

Given a problem �, an algorithm is optimal i� there is no algorithm that can solve

� with fewer operations. Likewise, given a problem �, an algorithm is asymptotically

optimal i� there is no algorithm that can solve � with asymptotically fewer operations.

A problem � has time or space complexity f if there is no known algorithm that

can solve � in better than f time or space, respectively.

For a given problem, a parallel algorithm's performance is often compared with

the performance of a sequential algorithm that solves the same problem. The most

common measure of performance of a parallel algorithm is the algorithm's processor-

time product. This is the product of the processor complexity and the time complexity

of a parallel algorithm. The processor-time product is sometimes called the work of

a parallel algorithm. Comparing the work of a parallel algorithm with the work

of a sequential algorithm is often done to within a polylog factor to make up for

di�erences between the models. If the processor-time product of a parallel algorithm

is signi�cantly less than the time complexity of a sequential algorithm for the same

problem, then simulating the parallel algorithm sequentially gives a new and more

e�cient sequential solution.

An e�cient parallel algorithm runs in polylogarithmic time and has processor-

time product within a polylog factor of the best known sequential solution. We allow

the processor-time product to be within a polylog time factor of the best sequential

De�nitions and Foundations 13

solution because di�erent variations of the PRAM model are equivalent to within

log-time factors.

Suppose a problem has an asymptotically optimal sequential solution that costs f ,

then a polylog time parallel algorithm is asymptotically optimal, if its processor-time

product is O(f). There are other notions of optimality for parallel algorithms. A

parallel algorithm has optimal speed if reducing its parallel time complexity forces its

processor-time product to increase.

2.3 The Parallel Computation Hypothesis

A few technical details are omitted in the following statement of the parallel compu-

tation hypothesis since they are not germane to our discussion.

Assuming all time and space complexities are at least asymptotically logarithmic,

the parallel computation hypothesis is:

A parallel model of computation is \reasonable" if the time complexity
of a problem on this model is within a polynomial of the space complexity
of the same problem on a (sequential) Turing machine,
assuming the total work of the parallel and sequential solutions
are within a polynomial of each other.

Figure 2: The Parallel Computation Hypothesis

This is a hypothesis since it assumes that a Turing machine is a \reasonable"

sequential model. That is, this hypothesis de�nes a \reasonable" parallel model in

terms of a \reasonable" sequential model. The Turing machine model is polynomially

equivalent to the RAM model, (Aho et al., 1974; Papadimitriou, 1994). Making a few

assumptions about the processor word-sizes gives the next theorem (Parberry, 1987),

The time complexity of a problem on a PRAM is polynomially equivalent to the

space complexity of the same problem on a RAM.

De�nitions and Foundations 14

As before, this assumes the amount of work on the PRAM is within a polynomial

of the work on the RAM.

For many di�erent parallel models, including variations of the PRAM model, the

parallel computation hypothesis is a theorem assuming the RAM model is a \reason-

able sequential model." In other words, given a polynomial number of processors a

PRAM is a reasonable parallel model.

A decision problem is a problem that has only two possible solutions True or

False. Decision problems free us from details such as the cost of writing the output.

The class NC contains all decision problems solvable in polylog time on a PRAM

with a polynomial number of processors.

A problem is inherently parallel if it is in NC. An algorithm is NC if it runs in

polylog time on a PRAM using a polynomial number of processors.

It is unknown whether any problem in P requires polynomial space, although it

seems likely that some do. Suppose some problems in P require polynomial space

to run. Then by the parallel computation hypothesis these problems cannot run in

polylog time using a polynomial number of processors. This is the basis of the theory

behind inherently sequential problems.

If some problem �1 has polynomial space complexity and there is a log-space

transformation from �1 to �2, then �2 is at least as hard as �1 in terms of the space it

uses. (All log-space algorithms run in polynomial time, see (Papadimitriou, 1994).)

This is because any instance of �1 can be solved by transforming it, in log-space, to

an instance of �2, and then by solving this instance of �2 we have solved the initial

instance of �1. Therefore, if �2 has log-space complexity, then �1 must also have

log-space complexity. On the other hand, say all problems in P can be log-space

transformed to �2, then if any problem in P requires polynomial space, then �2 also

requires polynomial space. Alternatively, if �2 can be solved in polylog space, then

all problems in P can be too. Of course, if a problem in P takes polynomial space

De�nitions and Foundations 15

to solve on a RAM, then by the parallel computation hypothesis it takes polynomial

time to solve on a PRAM (with a polynomial number of processors).

Next is a sketch of how to show a problem is inherently sequential. Given two

decision problems �1 and �2, the notation �1 / �2 means �1 is reducible to �2.

Saying �1 is reducible to �2 means that:

1. There is an algorithm � that transforms any instance of �1 to an instance of �2.

And for any input to �1, say i 2 In, then �(i) is an input to �2 of polynomial

size in n.

2. If A solves �1 and B solves �2 then A(i) i� B(�(i)), since �1 and �2 are decision
problems the programs A and B can only output either True or False.

The notation �1 /t �2 means the reduction algorithm / is polynomially time

bounded. In this case, /t is a polynomial-time reduction. Similarly, the notation

�1 /s �2 means the reduction algorithm / is logarithmically space bounded.

The class P-Complete contains all decision problems in P that appear to require

polynomial space on a RAM and are log-space reducible to each other.

A problem � 2 P is log-space complete for P (P-Complete) i� for each
 2 P
there is a log-space bounded reduction /s such that
 /s �. Generally, a problem

� is shown to be P-Complete by �rst showing that it is in P, then by giving a log-

space transformation from some other P-Complete problem to �. In terms of parallel

computation, this log-space transformation can be replaced by an NC algorithm as

a consequence of the parallel computation hypothesis.

The �rst log-space complete problem in P was given in (Cook, 1974). Such prob-

lems are in some sense among the \hardest" in P in that solving them takes as much

space as does solving any other problem in P.
By the parallel computation hypothesis, a problem in P that appears to take

polynomial space on a RAM also appears to take a polynomial amount of parallel

De�nitions and Foundations 16

'

&

$

%

P

NC

'

&

$

%
P-Complete

'

&

$

%
Figure 3: A Hypothetical View of P

time on a PRAM. It seems that only if we augment a PRAM to have an exponential

number of processors, then we can solve P-Complete problems on it in polylog time.

See Figure 3 for a hypothetical relationship of P-Complete and NC. For ease

of exposition, we simply say a problem is NC or P-Complete when it is in NC or

it is in P-Complete respectively. If any problem is both NC and P-Complete then
NC = P-Complete = P.

A problem inherently sequential if it, or its restriction to a decision problem, is

P-Complete.

2.4 The Nature of Some Paradigms

Not all algorithm design paradigms give e�cient parallel algorithms. Standard se-

quential algorithm design tools, such as depth �rst search, and variations of the greedy

method, do not seem to give e�cient parallel algorithms.

The greedy principle applies when every optimal subsolution is in some optimal

solution, but there is no method speci�ed for getting from the optimal subsolution

to a total solution. On the other hand, the lexicographical greedy principle applies

De�nitions and Foundations 17

when every optimal subsolution is in some optimal solution and this subsolution is

built lexicographically into a solution.

Here depth �rst search to refers to the problem of labeling a graph's nodes in the

order they are traversed by some depth �rst search. The problem of lexicographical

depth �rst search is inherently sequential, though the general problem of depth �rst

search is not known to be either inherently sequential or inherently parallel (Reif,

1985).

In (Anderson and Mayr, 1987; Anderson and Mayr, 1987a) it is shown that many

problems that have elementary solutions by the lexicographical greedy principle are

inherently sequential. This makes many problems that are solvable sequentially using

lexicographical reachability intractable to solve in polylog time. Non-lexicographical

greedyness is not necessarily bogged down in the same way.

On the other hand, since (Valiant et al., 1983), many problems amenable to dy-

namic programming were known to be NC, but their processor complexities were

very high (asymptotically ninth degree polynomials). More recent results have low-

ered this processor complexity. This dissertation shows that some of these problems

have e�cient parallel solutions.

2.5 Historical Notes

The PRAM model was �rst given in (Fortune and Wyllie, 1978).

One of the �rst renditions of the parallel computation hypothesis was in (Chandra

et al., 1981) in terms of alternating Turing machines. Here the main focus was

PSpace and the polynomial hierarchy to describe a notion of parallelism for Turing

machines. This work inspired much work showing the asymptotic equivalence of

parallel time and sequential space on the Turing machine model.

De�nitions and Foundations 18

The authors of (Balc�azar et al., 1988 and 1990) say that the conference pa-

per (Chandra and Stockmeyer, 1976) is where the parallel computation hypothesis

was �rst explicitly mentioned by name. In the same conference (Kozen, 1976) gave

a similar rendition of a parallel Turing machine model. Together, both (Chandra

and Stockmeyer, 1976) and (Kozen, 1976) lead to the journal article (Chandra et al.,

1981).

The authors of (Karp and Ramachandran, 1990) point out that the parallel com-

putation hypothesis is quite robust in that most theoretical parallel models of com-

putation abide by it such as those from circuit complexity, parallel vector machines,

alternating Turing machines, etc.

The class NC stands for \Nick's Class" in honor of Nick Pippenger. The �rst

P-Complete problem was given in (Cook, 1974) while the author was discussing the

question of the space complexity of parsing context-free grammars relative to the

space complexity of all problems in P.

Chapter 3

Sequential Dynamic Programming

This chapter contains sequential dynamic programming algorithms for the matrix

chain ordering problem and an optimal convex polygon triangulation problem. More

details about these and other related problems and their sequential solutions can be

found in several standard textbooks such as (Aho et al., 1974; Baase, 1988; Cormen

et al., 1990; Purdom and Brown, 1985).

A dynamic programming problem is a problem that is amenable to a simple and

e�cient sequential dynamic programming solution.

3.1 The Basics

The dynamic programming paradigm is based on the principle of optimality. This

principle is that for a structure to be optimal all of its well-formed substructures must

also be optimal. Hence, the dynamic programming paradigm is essentially a top down

design method. Conversely, the greedy principle basically is that if a substructure is

optimal, then it is in some optimal superstructure. In some sense this is a bottom up

design method.

Some foundations for the principle of optimality and the greedy principle can be

19

Sequential Dynamic Programming 20

found in (Bellman, 1957) and (Cormen et al., 1990; Korte et al., 1991), respectively.

3.2 The Matrix Chain Ordering Problem

This section contains an in-depth discussion of the matrix chain ordering problem

(MCOP). Its focus is on the classical sequential solution. An optimal convex polygon

triangulation problem is also given and is cast in an almost identical framework.

A solution of the MCOP can be expressed as a parenthesization of the n given

matrices giving an order to optimally multiply them. There are a Catalan number of

ways to parenthesize any n element associative product, which is �(4n=n3=2), hence

an exhaustive search algorithm is not feasible.

Let � denote matrix multiplication1 and take a chain of n matrices M1 �M2 � � � � �
Mn, then there are n(n� 1)=2 possible subproducts of the form Mi;j =Mi � � � � �Mj.

Clearly, the �nal product M1;n must be made up of one of these subproducts. These

subproducts, in turn, are made up of such subproducts with the single matrix base

case when i = j.

Taking the de�nition of Mi;j and applying the principle of optimality gives a

dynamic programming algorithm with a polynomial time solution. This was observed

by several researchers in the early 1970s.

In 1973, the �rst polynomial time solutions of the MCOP were given independently

in (Godbole, 1973) and in (Muraoka and Kuck, 1973). Godbole's algorithm has

become the classical O(n3) dynamic programming solution, and it is where we begin.

Start by letting M [i; j] be the minimal cost of multiplying matrices i through j,

therefore our �nal goal is to compute M [1; n]. Also M [i; i] is the cost of multiplying

1The basic matrix multiplication algorithm can be found in almost any standard algorithms
textbook, take for example those listed in the beginning of this chapter.

Sequential Dynamic Programming 21

matrix i through i, thus M [i; i] = 0. For simplicity, let didj+1dk+1 be the cost of mul-

tiplying two matrices of dimensions di�dj+1 and dj+1�dk+1. The cost of multiplying

these two matrices is written f(i; j; k) = didj+1dk+1. Generalizations of this matrix

product function re
ecting asymptotically better matrix multiplication algorithms,

such as those in (Pan, 1984; Coppersmith and Winograd, 1990), are also acceptable,

see (Chandra, 1975).

Given that the matrix Mi;j is of dimensions di � dj+1, and taking M [i; i] = 0 as a

base case suggests the following recurrence for solving the MCOP:

M [i; k] = min
i�j<k

f M [i; j] +M [j + 1; k] + didj+1dk+1 g (1)

That is, to �nd a minimal product of matrices i through k, �nd the minimal cost of

creating and combining all well-formed subproducts. This natural use of the principle

of optimality is characteristic of dynamic programming algorithms.

The top-down de�nition of Recurrence 1 can be e�ciently solved by the bottom-

up algorithm given in Figure 4. This algorithm assumes a table set up as in Figure 5,

where M [i; j] is in diagonal D i� j � i = D. Therefore, M [1; 1], M [2; 2], M [3; 3] and

M [4; 4] are all in diagonal 0 and M [1; 4] is in diagonal 3.

In diagonal 0 initialize all elements to 0
for each diagonal D from 1 to n� 1 do

for each element M [i; k] in diagonal D do
M [i; k](min

i�j<k
fM [i; j] +M [j + 1; k] + f(i; j; k)g

Figure 4: Sequential Matrix Chain Ordering Algorithm

The algorithm in Figure 4 has time complexity �(n3) because of the two nested

for-loops and the implicit loop in the min operation. The sequential nature of the

diagonal-by-diagonal computation prevents such an algorithm from running in polylog

Sequential Dynamic Programming 22

time on a PRAM. The sequential nature of this classical solution should not be taken

lightly, since it has taken about a decade for researchers to give an e�cient polylog

time parallel algorithm to solve the MCOP.

M[1,1] M[1,2] M[1,3] M[1,4]

M[2,2] M[2,3]

M[3,3]

M[2,4]

M[3,4]

M[4,4]

1 2 3 4

1

2

3

4

Figure 5: A Dynamic Programming Table for the MCOP

3.3 An Instance of the MCOP

This section contains an instance of the MCOP and its sequential solution. This

example is used throughout this dissertation.

Take the four-matrix instance of the MCOP:M1�M2�M3�M4. Say these matrices

are of dimensions 5� 10; 10� 3; 3� 20; and 20� 6, respectively. That is:

d1 = 5 d2 = 10 d3 = 3 d4 = 20 d5 = 6

In other words,

Sequential Dynamic Programming 23

Matrices M1 M2 M3 M4

Dimensions 5� 10 10� 3 3� 20 20� 6

0

0

0

0 150

600

360

450 600

540

1 2 3 4

1

2

3

4

Figure 6: The Dynamic Programming Table of M1 �M2 �M3 �M4

The rest of this section follows the algorithm in Figure 4 giving a solution to this

four-matrix instance of the MCOP.

First calculate the elements in diagonal 1 of the table of Figure 6, this is the cost

of multiplying matrices i though i + 1, for all i; 1 � i < 4, which is:

M [1; 2] d1d2d3 = 5� 10� 3 = 150

M [2; 3] d2d3d4 = 10� 3� 20 = 600

M [3; 4] d3d4d5 = 3� 20� 6 = 360

Sequential Dynamic Programming 24

With this information in hand compute the elements in the next diagonal:

M [1; 3] minf M [1; 2] + d1d3d4; M [2; 3] + d1d2d4 g
= minf 150 + 300; 600 + 1000 g
= 450

M [2; 4] minf M [2; 3] + d2d4d5; M [3; 4] + d2d3d5 g
= minf 600 + 1200; 360 + 180 g
= 540

Both M [1; 3] and M [2; 4] depend on elements from the prior diagonal. In particular,

M [1; 3] and M [2; 4] are in diagonal 2 and computing them uses elements M [1; 2],

M [2; 3] and M [3; 4] which are all in diagonal 1.

Finally, the last value in the table, M [1; 4], is computed as:

M [1; 4] minf M [1; 2] +M [3; 4] + d1d3d5; M [1; 3] + d1d4d5; M [2; 4] + d1d2d5 g
= minf 150 + 360 + 90; 450 + 600; 540 + 300 g
= 600

Therefore, the optimal cost of multiplying the four given matrices is 600. An

optimal order to multiply these matrices is (M1 �M2) � (M3 �M4) because M [1; 2] +

M [3; 4] + d1d3d5 = 600. Other matrix products have much higher costs, for example,

the product ((M1 � (M2 �M3)) �M4) has a total cost of 2200.

Tracking the elements of the table contributing to the minimal value in M [1; n]

gives a minimal ordering for the matrix product.

The computation of M [1; 4] depends on elements from the two prior diagonals,

particularly the elements M [1; 2], M [3; 4], M [1; 3] and M [2; 4] are in diagonals 1

and 2. In general, using the algorithm in Figure 4, to �nd the minimum for an

Sequential Dynamic Programming 25

element in diagonal D this algorithm uses elements from all D�1 previous diagonals.
Given n matrices to order, such \inter-diagonal dependencies" make it di�cult for the

algorithm in Figure 4 to run in polylog time since there is a linear number of diagonals

in such a dynamic programming table (linear in the number of given matrices).

3.4 Triangulating Convex Polygons

This section contains a triangulation problem that is very closely related to the

MCOP.

A polygon is a closed piece-wise linear geometric structure (Cormen et al., 1990;

O'Rourke, 1994). A convex polygon is a polygon such that for any two points on the

border of the polygon if a line connects them together, then this line goes through

either the border or the interior of the polygon, but never through the outside the

polygon.

Given a set of (integer) points that form a convex polygon, such as in Figure 7,

then take the following problem:

� Find a minimal cost triangulation of this polygon, given a triangle with the

node values di; dj; and dk costs didjdk.

This is also a popular optimization problem that is very closely related to the

MCOP (Cormen et al., 1990; Hu and Shing, 1982; Hu, 1982). In a triangulated

polygon there may be triangles that do not have any sides that are in the borders of

the polygon. Further, triangles are not allowed to overlap.

Take the vertices of these polygons and associate the following costs with them,

Vertices V1 V2 V3 V4 V5

Costs 5 10 3 20 6

Sequential Dynamic Programming 26

V1

V2

V3
V4

V5 V1

V2

V3
V4

V5

Figure 7: Two Di�erent Triangulations of the Same Convex Polygon

If these are the costs of the vertices of the polygons in Figure 7, then solving this

instance of the optimal triangulation problem will solve the instance of the MCOP in

the last section. This is because the triangle cost metric is the same as the assumed

matrix product cost.

It is common practice to associate the height (y coordinate) of a vertex in a convex

polygon with its associated cost. In this case, the matrix instance from the last section

would not give a convex polygon, since its dimensions are 5; 10; 3; 20; and 6. But we

may consider a convex polygon with these values associated with its nodes anyway.

This is acceptable, since forgetting the geometry in this way only removes problems

of �nding valid triangulations.

The following recurrence gives the minimal cost of solving the optimal triangu-

lation problem. As with the matrix chain ordering problem, let T [i; j] denote the

minimal cost of triangulating points i through j in a convex polygon. This forces us

to assume there is a line connecting vertex i and vertex j. Taken together, all of these

assumptions naturally lead to the base cases T [i; i+1] = 0 and T [i; i+2] = titi+1tt+2

to the following recurrence:

T [i; k] = min
i<j<k

f T [i; j] + T [j; k] + titjtk g (2)

This recurrence �nds the minimum cost to triangulate the convex subpolygon

Sequential Dynamic Programming 27

from node i through node j and the convex subpolygon from j through k. Then add

in the cost of the triangle formed by nodes i; j; and k, this triangle joins the two

subpolygons to form one larger convex subpolygon from node i through node k.

Recurrence 2 is basically the same as Recurrence 1, the recurrence for solving the

MCOP. This can be seen by the following simple transformation:

1. Relabel the nodes from 0 to n� 1.

2. Let T 0[i; j] denote the cost of triangulating the convex subpolygon consisting of

nodes i� 1; i; i+ 1; � � � ; j.

3. Change base cases to T 0[i; i] = 0 and T 0[i; i + 1] = ti�1titi+1.

Now, Recurrence 2 can be rewritten as

T 0[i; k] = min
i�j<k

f T 0[i; j] + T 0[j + 1; k] + ti�1tjtk�1 g

This recurrence has a very close form to the recurrence for solving the MCOP,

except that indices triangle cost function di�er from the indices for the matrix product

cost function. In any event, the algorithm in Figure 4 solves this recurrence.

3.5 Historical Notes

A recent survey and classi�cation of modern dynamic programming problems is (Galil

and Park, 1992). This paper classi�es dynamic programming problems in terms of

size of the dynamic programming table and the number of table entries a new table

entry depends on. The standard O(n3) MCOP algorithm has a table of size �(n2)

and each new table entry can depend on up to �(n) other elements. This paper

also gives other interesting discussion of convexity, concavity and sparsity in dynamic

programming tables.

Sequential Dynamic Programming 28

According to the authors of (Aho et al., 1974) the MCOP �rst appeared in (God-

bole, 1973) and (Muraoka and Kuck, 1973). The authors of these papers on the

MCOP were apparently motivated by the rich nature of the MCOP. As years passed

the MCOP became a very popular problem for textbooks on algorithm design and

analysis.

The MCOP is one of the standard examples of the dynamic programming algo-

rithm design paradigm since it has an elementary dynamic programming solution.

Between 1980 and 1984 T. C. Hu and M. T. Shing published several papers (Hu and

Shing, 1980; Hu and Shing, 1982; Hu and Shing, 1984) on an O(n lgn) sequential

solution to the MCOP. During this time, F. F. Yao also published several papers

on improving dynamic programming algorithms using monotonicity conditions (Yao,

1980; Yao, 1982). In the process, she gave an O(n2) sequential algorithm for the

MCOP.

Since these papers, there was much interest in parallel algorithms for problems

with elementary sequential dynamic programming solutions.

Also, lower bounds for the MCOP appear in (Bradford et al., 1993b; Bradford

et al., 1995) and lower bounds for problems very close to the MCOP appear in (Ra-

manan, 1991; Ramanan, 1994).

Chapter 4

A Dynamic Graph Model

This chapter contains a dynamic graph model for solving dynamic programming prob-

lems in parallel. These graphs are analogous to classical dynamic programming tables,

except they allow fast parallel computation more readily. This is done by interpreting

dynamic programming problems as shortest path problems in these graphs. Finding

shortest paths in these graphs can be done very fast in parallel, so the related dy-

namic programming problems can be solved fast too. These problems take O(lg2 n)

time to solve in parallel.

However, without other considerations this speed comes with a cost of n6=lgn

processors. The subsequent chapters give ways to maintain the speed while drastically

reducing the number of processors.

One of the key insights of this chapter is that in graphs of size n we only need

edges of size up to dn=2e. This is based on symmetry in these graphs.

4.1 Theoretical Foundations

This section contains theoretical background for the graph model given in this chap-

ter. These foundations are algebraic in nature and model variations on associative

29

A Dynamic Graph Model 30

products. The generality given by the abstractions in this section allows broad appli-

cations of the graph model.

A (�nite) semigroupoid (S;R; �) is a nonempty �nite set S, a binary relation

R � S�S, and an associative binary operator \�" satisfying the following conditions
(Marcus, 1978):

1. If (a; b) 2 R, then a � b 2 S.

2. (a � b; c) 2 R i� (a; b � c) 2 R and (a � b) � c = a � (b � c).

3. If (a; b) 2 R and (b; c) 2 R, then (a � b; c) 2 R.

An associative product is any product of the form a1 � a2 � � � � � an such that

(ai; ai+1) 2 R, for 1 � i < n. A linear product is a product of the form

((� � � (a1 � a2) � � � �) � an)

or

(a1 � (� � � � (an�1 � an)) � � �):

A weighted semigroupoid (S;R; �; pc) is a semigroupoid (S;R; �) with a non-

negative product cost function pc such that if (ai; ak) 2 R then pc(ai; ak) is the

cost of evaluating ai � ak. The minimal cost of evaluating an associative product

ai � ai+1 � � � � � ak is denoted by sp(i; k). That is,

sp(i; k) = min
i�j<k

f sp(i; j) + sp(j + 1; k) + f(i; j; k) g

where f(i; j; k) = pc(ai � ai+1 � � � � � aj; aj+1 � aj+2 � � � � � ak) and and the base case is

sp(i; i) = 0.

Given a weighted semigroupoid and an associative product a1 � a2 � � � � � an the

problem of �nding sp(1; n) is the minimum parenthesization problem (MPP).

A Dynamic Graph Model 31

Assume a globally accessible 4-tuple (S;R; �; pc) represents a weighted semigroupoid.
Represent pc and R by the array, f(1::n; 1::n; 1::n), where

f(i; j; k) =

8><
>:

pc(ai � � � � � aj; aj+1 � � � � � ak) if (ai � � � � � aj) � (aj+1 � � � � � ak) 2 S
1 otherwise

Given ai and aj assume that both ai � aj and pc(ai; aj) can be computed in constant

time. That is, for any values of i; j; and k the cost f(i; j; k) can be computed in

constant time.

4.2 Greedy Minimum Cost Parenthesizations

This section contains a subproblem of the MPP called the greedy parenthesization

problem (GPP). We use this problem to develop the MPP and to discuss some pre-

vious results.

S1;n is the start symbol
Si;i+1 ! i � j i� i + 1 = j and i+ 1 � n
Si;j ! i � (Si+1;j) j (Si;j�1) � j i� i < j � 1

Figure 8: The Grammar L1

Any string derived from L1 is a greedy parenthesization of n elements. We consider this

to be greedy since this grammar describes an associative product that characterizes

\local product growth."

Given a weighted semigroupoid, the greedy parenthesization problem (GPP) is to

�nd minimal products that are generated by the grammar in Figure 8.

For every weighted semigroupoid with a greedy associative product of n elements

A Dynamic Graph Model 32

we can construct a corresponding weighted digraph. Finding a shortest path in such

a graph solves the GPP for the given associative product.

Denote vertices by (i; j), where 1 � i � j � n, and edges by !, " or %. Edge

(i; j) " (i � 1; j) represents the product ai�1 � (ai � � � � � aj), therefore it weighs

f(i�1; i�1; j). Similarly, (i; j)! (i; j+1) represents the product (ai � � � ��aj)�aj+1

and it weighs f(i; j; j + 1). Also, for all i; 1 � i � n, the arrows % represent edges

from (0; 0) to (i; i).

De�nition Given an n-element weighted semigroupoid, the graph Gn = (V;E) has

vertices,

V = f(i; j) : 1 � i � j � ng [f(0; 0)g

and unit edges,

E = f(i; j)! (i; j + 1) : 1 � i � j < ng [
f(i; j) " (i� 1; j) : 1 < i � j � ng [
f(0; 0)% (i; i) : 1 � i � ng

and a weight function W where

W ((i; j)! (i; j + 1)) = f(i; j; j + 1) 1 � i � j < n

W ((i; j) " (i� 1; j)) = f(i� 1; i� 1; j) 1 < i � j � n

W ((0; 0)% (i; i)) = 0 1 � i � n

For example, see the graph G4 in Figure 9.

Given a weighted semigroupoid, n2 processors can construct a corresponding Gn

graph in constant time, since each vertex has in-degree and out-degree of at most

two. The communication costs are being ignored here.

A Dynamic Graph Model 33

The following restricted instance of the matrix chain ordering problem is a special

case of the GPP: As before, \�" denotes matrix multiplication in the four-matrix

instance, M1 �M2 �M3 �M4 of the GPP. The challenge is to minimize the cost of

multiplying this chain while excluding the product (M1 �M2) � (M3 �M4), since it is

not a greedy parenthesization.

(0,0) (4,4)

(3,4)(3,3)

(2,4)(2,3)(2,2)

(1,4)(1,3)(1,2)(1,1)

Figure 9: The Greedy Weighted Digraph G4

Given a vertex (i; j) of Gn, �nding a shortest path from (0; 0) to (i; j) solves the

minimum cost parenthesization problem for the greedy associative product ai � ai+1 �
� � � � aj.

Theorem 1 Finding a shortest path from the vertex (0; 0) to vertex (1; n) in Gn solves

the minimal cost greedy parenthesization problem for an associative product of n elements.

A proof is by induction on the distance of minimal paths up to each diagonal.

Since Gn has �(n2) vertices, computing a minimum path in O(lg2 n) time by a

A Dynamic Graph Model 34

parallel matrix multiplication based minimum path algorithm takes n6=lgn proces-

sors. A (min;+)-matrix multiplication based shortest path algorithm is a matrix

multiplication algorithm where the usual matrix operations of (+;�) are replaced

by (min;+). That is, the vector sums are replaced by minimizations and the dot-

products are replaced by dot-sums, see (Cormen et al., 1990). A (min;+)-matrix

multiplication based shortest path algorithm is easily run in parallel on a common-

CRCW PRAM in O(lg2 n) time using n3=lgn processors (J�aJ�a, 1992; Kumar et al.,

1994).

The processor complexity of special instances of the GPP was improved dramati-

cally in (Apostolico et al., 1990; Aggarwal and Park, 1988; Ibarra et al., 1988). These

methods rely on either divide and conquer or monotonicity properties of the matrices

that are derived from the structure of the particular Gn graphs. These methods can

compute a shortest path in a Gn graph in O(lg2 n) time with n2=lgn processors on a

common-CREW PRAM.

In (Apostolico et al., 1990; Aggarwal and Park, 1988; Ibarra et al., 1988) dy-

namic programming problems are also transformed into graph search problems; these

variations of the GPP are used to solve string edit problems. For example, given

two strings of n characters each, �nd the longest common subsequence of them. The

longest common subsequence of two strings is the longest string that is a subsequence

of both given strings, see for example (Cormen et al., 1990). Applications of this

problem can be found in computational biology and operating systems.

4.3 Minimum Cost Parenthesizations

This section contains a generalization of the Gn graphs that accounts for split paren-

thesizations. These new graphs are particularly suited to problems that seem to

require the principle of optimality for their solution and not the greedy principle.

A Dynamic Graph Model 35

The grammar in Figure 10 characterizes all well-formed parenthesizations of an n

element associative product. The grammar L2's terminals and nonterminals are the

S1;n is the start symbol
Si;i+1 ! i � j i� i + 1 = j and i+ 1 � n
Si;j ! i � (Si+1;j) j (Si;j�1) � j i� i < j � 1
Si;j ! (Si;k) � (Sk+1;j) i� i < k < j � 1

Figure 10: The Grammar L2

same as L1's, however the last derivation rule now lets us generate products of the

form (ai � � � � � aj) � (aj+1 � � � � � ak).
To represent split parenthesizations jumpers are added to Gn graphs. The jumper

(i; j) =) (i; k) represents the product (ai � � � � � aj) � (aj+1 � � � � � ak) and this jumper

weighs sp(j + 1; k) plus f(i; j; k). See Figure 11.

Horizontal jumpers are denoted by =), and vertical jumpers by * and split paren-
thesizations can be expressed as either a vertical jumper or a horizontal jumper.

This leads directly to a balancing argument on jumper length that says for any split

parenthesization of n matrices, one of the jumpers representing it is dn=2e units
long. The vertical jumper (i; j) * (s; j) is i� s units long and the horizontal jumper

(i; j) =) (i; t) is t � j units long, where all non-jumper edges are unit edges 1 unit

long.

(i,j) (i,j+1) (i,k−1) (i,k)

sp(j+1,k) + f(i,j,k)

. . .

Figure 11: A Horizontal Jumper with its Associated Weight

For the moment, when �nding a shortest path to (i; k) we take it on faith that a

A Dynamic Graph Model 36

shortest path to (j + 1; k) will be computed in time for sp(j + 1; k) to be added to

f(i; j; k), see Theorem 3. We make similar assumptions for vertical jumpers.

De�nition The weighted digraph Dn = (V;E[E 0), is a weighted digraph Gn = (V;E)

together with the jumpers,

E 0 = f(i; j) =) (i; t) : 1 � i < j < t � ng [
f(s; t) * (i; t) : 1 � i < s < t � ng

and each jumper has weight

W ((i; j) =) (i; t)) = sp(j + 1; t) + f(i; j; t) 1 < i < j < t � n

W ((s; t) * (i; t)) = sp(i; s� 1) + f(i; s� 1; t) 1 � i < s < t � n

For example, see the graph D4 in Figure 12.

The next lemma and the theorem following it are central for the rest of this

dissertation. These results are based on the symmetry of Dn graphs.

Lemma 1 For all vertices (i; k) in a Dn graph, sp(i; k) can be computed by a path

having edges of length no larger than d(k � i)=2e.

Proof: Suppose that (i; j) =) (i; k) is in a shortest path to (i; k) and k � j >

d(k � i)=2e. (This jumper terminates at (i; k) without loss.) Hence,

sp(i; k) = sp(i; j) +W ((i; j) =) (i; k))

= sp(i; j) + sp(j + 1; k) + f(i; j; k)

But W ((j + 1; k) * (i; k)) = sp(i; j) + f(i; j; k)

so,

sp(i; k) = sp(j + 1; k) +W ((j + 1; k) * (i; k))

A Dynamic Graph Model 37

The jumper (j + 1; k) * (i; k) is of length j + 1� i. Therefore, since

j + 1� i+ k � j = k � i + 1

and k � j > d(k � i)=2e, it must be that j + 1� i � d(k � i)=2e.
On the other hand, a shortest path to (j + 1; k) cannot contain a jumper longer

than k � (j + 1). Since k � (j + 1) < k � j this lemma follows inductively. 2

The proof of this last lemma leads directly to the following theorem.

Theorem 2 (Duality Theorem) If a shortest path from (0; 0) to (i; k) contains the

jumper (i; j) =) (i; k), then there is a dual shortest path containing the jumper (j +

1; k) * (i; k).

The following instance of the matrix chain ordering problem is a special case

of the MPP: As before, \�" denotes matrix multiplication. Take the four-matrix

instance of the MCOP M1 �M2 �M3 �M4. Say these matrices are of dimensions

5� 10; 10� 3; 3� 20; and 20� 6, respectively. These repeat the same example given
in Chapter 3:

Matrices M1 M2 M3 M4

Dimensions 5� 10 10� 3 3� 20 20� 6

The optimal product of matrices M1;M2; and M3 is (M1 �M2) �M3. But this is

not a well-formed subproduct of the optimal matrix product of all four matrices, that

is (M1 �M2) � (M3 �M4). This apparent lack of greediness seems to make techniques

such as those of (Apostolico et al., 1990; Aggarwal and Park, 1988; Ibarra et al.,

1988) fail to work for the MCOP.

Note the similarity of a Dn graph and a classical dynamic programming table, T ,

for the matrix chain ordering problem. The value of sp(i; k) in a Dn graph is the

same as T [i; k] in the equivalent dynamic programming table.

A Dynamic Graph Model 38

Calculating a shortest path to (i; k) gives the minimum cost parenthesization of

ai � � � � � ak, for 1 � i < k � n. So �nding a shortest path from (i; k) to (1; n) gives a

minimal parenthesization of a1 � � � ��ai�1 �P �ak+1 � � � ��an where P = (ai � � � � �ak).

(4,4)(0,0)

(3,4)(3,3)

(2,4)(2,3)(2,2)

(1,4)(1,3)(1,2)(1,1)

Figure 12: The Weighted Graph D4

Theorem 3 Finding a shortest path from (0; 0) to (1; n) in Dn solves the minimal cost

parenthesization problem for an associative product of n elements.

Proof: To prove this theorem it is su�cient to show that the cost of every path from

(0; 0) to (1; n) in a Dn graph corresponds to the cost of a parenthesization of an n

element associative product. In addition, for every parenthesization of an n element

associative product there is a corresponding path in Dn where both the path and the

associative product have the same cost.

The theorem holds for paths in the underlying Gn graph and their associated

greedy parenthesizations, by Theorem 1. So we only consider jumpers.

A Dynamic Graph Model 39

We only show that for each path from (0; 0) to (1; n) in a Dn graph there is a

corresponding associative product of n elements (or n � 1 operators \�-s"). This

proof is by induction on the lengths of the associative products. D2 and D3 are

trivial so consider D4 and the product a1 � a2 � a3 � a4. In D4 the only derivation of

the string 1 � 2 � 3 � 4 that can't be derived in L1 is (1 � 2) � (3 � 4). The jumper

(1; 2) =) (1; 4) has weight sp(3; 4) + f(1; 2; 4). Therefore, the cost of a path using

this jumper corresponds to the cost of the associative product (a1 � a2) � (a3 � a4). A
symmetric argument holds for the jumper (3; 4) * (1; 4). Hence for each associative

product there is a path and for each path there is an associative product.

Now suppose that the theorem holds for all n � k, where k � 4. And n is the

number of associative operators in a given associative product. Thus, the induc-

tive hypothesis is for any path in Dn from (0; 0) to (1; n), where n � k there is a

corresponding associative product of n elements with the same cost.

Without loss of generality, we only consider horizontal jumpers. For m = 2k take

a path in Dm from (0; 0) to (1; m). We will show that for all m � 2k there is a

corresponding m element associative product of the same cost. (This proof holds for

both even and odd length products because Dk�1 is a proper subgraph of Dk.)

The structure of Dm along with the inductive hypothesis gives:

1. The cost of a path from (0; 0) to any node (i; j), such that j�i � k, corresponds

to the cost of a parenthesization of ai�� � ��aj by the inductive hypothesis. Since
the product ai � � � � � aj contains at most k � 1 associative operators (\�-s").

2. The cost of a path from (i; t) to (1; 2k) = (1; m), where k � t � i < m,

corresponds to the cost of a parenthesization of a1 � � � � �ai�1 �P �at+1 � � � � �am
where P = (ai � � � � � at), by the inductive hypothesis. Since P consists of at

least k elements, so the product a1 � � � � � ai�1 � P � at+1 � � � � � am consists of at

most k � 1 associative operators (\�-s").

A Dynamic Graph Model 40

Suppose a path from (0; 0) to (1; 2k) includes the jumper (i; j) =) (i; t). Then

assume that j � i < k � t � i, otherwise by the inductive hypothesis and the two

facts above the proof is complete.

Therefore, consider the jumper (i; j) =) (i; t), where j � i < k � t � i. By the

inductive hypothesis and Fact 2, the cost of a path from (i; t) to (1; m) corresponds

to the cost of a parenthesization of a1 � � � � � ai�1 � P � at+1 � � � � � am, where P =

(ai � � � � � at). Again by the inductive hypothesis and Fact 1 above, the cost of a

path to (i; j) corresponds to the cost of a parenthesization of ai � � � � � aj, where
ai � � � � � aj is a subproduct of P . Furthermore, the jumper (i; j) =) (i; t) is a part

of a path from (0; 0) to (1; m) whose cost corresponds to the cost of the product

(ai � � � � � aj) � (aj+1 � � � � � at). This is because its cost is sp(j + 1; t) + f(i; j; t) and

because t� (j + 1) < j � i we can apply the inductive hypothesis. Vertical jumpers

follow similarly. 2

The converse of this theorem also holds. That is, for any optimal parenthesization

of a weighted semigroupoid there is a shortest path in a corresponding Dn graph.

It is not clear how to generalize the shortest path algorithms in (Apostolico et al.,

1990; Aggarwal and Park, 1988; Ibarra et al., 1988) to Dn graphs. This is at least

partially due to the jumper's weights; computing these weights seems di�cult. This

di�culty seems to correspond to the di�erence between the principle of optimality

and the greedy principle.

4.4 Constructing a Dn Graph

This section contains a method for constructing Dn graphs. In the process, several

key results are given that are used in the following chapters. Jumper lengths are the

basis of the arguments in this section.

In order to construct a Dn graph by starting with a weighted digraph Gn and then

A Dynamic Graph Model 41

perform incremental path relaxation (Cormen et al., 1990) while adding new jumpers.

A shortest path in Dn is found simultaneously. This is done by using a variation of

a (min;+)-matrix multiplication based all pairs shortest path algorithm.

Although Gn can be constructed in constant time with n2 processors, it does not

seem possible to construct Dn in as little time with as few processors. This is because

the weight of a jumper (i; j) =) (i; k) cannot be computed until sp(j+1; k) becomes

available.

Constructing a Dn graph starting with a Gn graph is done as follows. For any

vertex (i; j) the value j � i is the distance from (0; 0) to (i; j). Here distance means

simply the minimal number of unit edges it takes to get from (0; 0) to (i; j). So

starting with a Gn graph, one (min;+)-matrix multiplication computes all sp(i; j) for

any (i; j) where j � i � 21 � 1. Also, the minimum distances between all pairs of

nodes in Gn up to 2 nodes apart are now available. With this, construct all jumpers

of length 2. For length 2 horizontal jumpers, this is done by relaxing (Cormen et al.,

1990, Pages 520-527) them with the two horizontal edges they are directly above. In

Figure 13, the min operations are path relaxations.

Another, (min;+)-matrix multiplication gives sp(i; j) for all (i; j) such that j �
i � 22 � 1. Continue this process inductively. Suppose that for all (i; j), where

j�i � 2r�1, the values sp(i; j) have been computed. At the same time the minimum
distances between all pairs of nodes in Gn up to 2r nodes apart have been computed.

Now we can compute all jumpers of lengths ranging from 2r�1 + 1 through 2r and

then relax them with the appropriate straight paths of lengths from 2r�1+1 through

2r. Another (min;+)-matrix multiplication gives the values for sp(i; j), for all (i; j)

where j � i � 2r+1 � 1.

Lemma 2 Assume all shortest paths have been calculated between each pair of vertices

2r�1 units apart. Suppose, for all (j; k) where k � j � 2r�1 � 1, the value sp(j; k) is

available. Then we can calculate sp(i; t) with one (min;+)-matrix multiplication for all

A Dynamic Graph Model 42

(i; t) such that t� i � 2r � 1.

Proof: Suppose sp(j; k) is available for all (j; k) where k�j < 2r�1. Also, assume that

the all pairs shortest paths have been calculated for all pairs of vertices of distance

up to 2r�1.

Now construct every jumper inDn of length 2
r�1 or smaller. Placing these jumpers

and at the same time relaxing these paths in Dn and performing one (min;+)-matrix

multiplication supplies sp(i; t) for all t� i < 2r by Lemma 1. 2

The algorithm in Figure 13 is a modi�ed (min;+)-matrix multiplication all pairs

shortest path algorithm. It is modi�ed in that minimum paths are dynamically

relaxed with new jumpers. This algorithm is basically the same as Rytter's algo-

rithm (Rytter, 1988). Here (i; j) � (s; t) means that s � i � j � t, which means

there is a path in Gn from (i; j) to (s; t).

for all 1 � i; j; u; v � n in parallel do
W [(i; j); (u; v)] 1
W [(0; 0); (i; i)] 0

for all 1 � i; j � n in parallel do
if j + 1 � n then W [(i; j); (i; j + 1)] f(i; j; j + 1)
if i� 1 � 1 then W [(i; j); (i� 1; j)] f(i; i� 1; j)

loop dlgne times
for all (0; 0) � (i; j) � (s; t) � (u; v) � (n; n) in parallel do

W [(i; j); (u; v)] minf W [(i; j); (s; t)] +W [(s; t); (u; v)]; W [(i; j); (u; v)] g
W [(i; j); (u; j)] minf W [(i; j); (u; j)]; W [(0; 0); (u; i� 1)] + f(u; i� 1; j) g
W [(i; j); (i; v)] minf W [(i; j); (i; v)]; W [(0; 0); (j + 1; v)] + f(i; j; v) g

Figure 13: Modi�ed (min;+)-All-Pairs-Shortest-Path Algorithm

For the next theorem, the adjacency matrix begins as the adjacency matrix of the

appropriate Gn graph.

Theorem 4 Immediately after iteration r, for 1 � r � dlgne, the algorithm in Figure 13,

has computed sp(i; t) for all t� i � 2r � 1.

A Dynamic Graph Model 43

Proof: The correctness of the �rst two loops is straightforward, so consider the third

loop.

The outer loop iterates dlgne times because of Lemma 2. The �rst line of the inner
loop is the standard (min;+)-matrix multiplication all pairs shortest path algorithm;

provided we do not violate the adjacency matrix, its correctness follows from the

correctness of such shortest path algorithms. An adjacency matrix has been violated

when it can no longer be used to correctly determine shortest paths using the same

(min;+)-shortest-path algorithm. That is, we could violate an adjacency matrix by

using edges that are not in E(Dn) or edges that are to long at the wrong iteration of

the algorithm.

Justi�cation of the next two lines follows by induction on jumper length. We only

consider horizontal jumpers here, vertical jumpers follow immediately.

After the �rst iteration of the algorithm sp(j; k) has been correctly calculated for

all (j; k) where k�j < 2. After iteration r; for some r � 1, sp(j; k) has been calculated

for all (j; k) such that k� j < 2r. At the start of iteration r + 1, sp(j; k) has already

been computed for all (j; k) such that k� j < 2r by the inductive hypothesis. During

iteration r + 1 the algorithm computes shortest paths of length between 2r � 1 and

2r+1. By Lemma 2, this gives sp(i; t), for all (i; t) such that t� i < 2r+1.

Next in line 2, during iteration r+ 1 the relaxation of straight vertical unit paths

of length ranging from 2r � 1 to 2r+1 with vertical jumpers occurs. (A unit path is a

path without any jumpers. A unit path has only unit edges.)

This is done by replacing W [(i; j); (i; t)] with

minf W [(i; j); (i; t)]; W [(0; 0); (j + 1; t)] + f(i; j; t) g

for all (j + 1; t) such that t � (j + 1) < 2r+1. This does not violate the adjacency

matrix since any new distance cost may be replaced by smaller, but positive, values

A Dynamic Graph Model 44

because they have not been used yet in the calculation of other shortest paths. So

relax the paths of length from 2r�1 � 1 to 2r with the appropriate jumpers of the

same lengths. 2

The algorithm in Figure 13 solves the three problems given in Chapter 2 inO(lg2 n)

time with n6=lgn processors.

Theorem 4 shows that Dn graphs can be constructed quickly in parallel. These

results are similar to those in (Rytter, 1988).

Any cost function f(i; j; k) can be used to solve the MPP as long as the shortest

paths in the appropriate Dn graph remain the same.

4.5 Historical Notes

There is an interesting history of parallel solutions to the MCOP in the 1980s.

In 1983, (Valiant et al., 1983) showed that many problems with simple O(n3)

sequential dynamic programming solutions are in the class NC. One of the problems
they were considering was the MCOP. They used straight line programs to solve

all of these problems in O(lg2 n) time and with n9 processors. In 1988, Rytter used

pebbling games to show that these same problems can be solved in O(lg2 n) time with

n6=lgn processors.

Most of these models, especially Rytter's, are similar to ours. Our model (and

similar ones) have lots of merit in their own right. Furthermore, for various reasons

it is important to have a re-characterization of Hu and Shing's work on the MCOP.

Also, our model is general enough to capture more than just Hu and Shing's work on

the MCOP.

In 1990, the paper (Huang et al., 1990) improved Rytters result by giving an

O(lg2 n) time algorithm that uses n6=lg5 n processors. Further, (Huang et al., 1992)

gives an O(
p
n lgn) time algorithm using O(n3:5=lgn) processors on a CREW PRAM.

A Dynamic Graph Model 45

Also (Galil and Park, 1992a) gave algorithms that can solve the MCOP (and other

problems) in O(lg2 n) time and n6=lg6 n processors.

We will continue discussing the more recent parallel solutions to the MCOP in

the next chapters as they are relevant to our work.

Chapter 5

Special Dn Graphs for the MCOP

This chapter contains results that allow the decomposition of Dn graphs specially

for solving the MCOP. As before, the associative product costs are computed as

f(i; j; k) = wiwj+1wk+1 where ws = wt i� s = t. All weights are positive integers

and they are distinct only for convenience. These associative product costs model the

matrix chain order problem and the minimum cost triangulation of convex polygons.

The key insight in this chapter is the matrix dimensions of a given instance of the

MCOP in some sense approximate the depths of parenthesis in an optimal solution

to the MCOP. Construct a Dn graph suited to solve an instance of the MCOP.

This chapter shows the matrix dimensions of this MCOP instance give important

structural information about the Dn graph.

5.1 Nesting Levels of Matching Parentheses

This section contains an algorithmic technique that is central to the rest of this

dissertation. Intuitively, this technique allows matrix dimensions to approximate the

nesting level of matched parentheses.

46

Special Dn Graphs for the MCOP 47

Subsection 5.1.1 gives an important invariance theorem that makes the exposi-

tion of these results much easier. Subsection 5.1.2 gives results that show matrix

dimensions can approximate the nesting level of matched parentheses in some sense.

5.1.1 An Invariance Theorem

From here on Dn graphs are the central focus since the greedy version of this problem

has been solved e�ciently in (Apostolico et al., 1990; Aggarwal and Park, 1988; Ibarra

et al., 1988).

Let
 be a cyclic rotation function; in other words
 is a one-to-one and onto

function on the set f1; 2; � � � ; n + 1g such that for some k : 0 � k � n we have

(i) = (i + k mod n + 1) + 1.

Theorem 5 (Deimel and Lampe, 1979) and (Hu and Shing, 1982) Given an

instance of the MCOP with the weight list l1 = w1; w2; : : : ; wn+1 and cyclically rotating

it getting l2 = w
(1); w
(2); : : : ; w
(n+1), then �nding an optimal parenthesization with l2

provides an optimal solution to the original instance of the MCOP with l1.

Directly from this last theorem and Theorem 3 we have the next corollary.

Corollary 1 Finding a shortest path in a Dn graph whose edge weights are constructed

from either a weight list l or a cyclic rotation of l gives an optimal solution to the MCOP.

In the rest of this dissertation let w1 denote the smallest weight in any weight list.

Special Dn Graphs for the MCOP 48

5.1.2 Matrix Dimensions as Nesting Levels of Matching

Parentheses

Given an associative product where the level of each parenthesis in an optimal product

is known, we can compute the parenthesization of this associative product by solv-

ing the following all nearest smaller value (ANSV) problem (Berkman et al., 1989;

Berkman et al., 1993):

Given w1; w2; : : : ; wn drawn from a totally ordered set, for each wi �nd the largest

j, where 1 � j < i, and smallest k where i < k � n, so that wj < wi and wk < wi if

such values exist.

A weight list may contain weights without any matches. For example, in a mono-

tone weight list there are no ANSV matches for any weight.

w
i

wj
wk

Figure 14: The Weight wj with its Match [wi; wk]

Given only a sequence of integers representing the depth of parentheses in an

associative product (for example see the bottom row in Figure 15), then by solving

the ANSV problem for each parenthesis we can compute its matching parenthesis (see

the top row in Figure 15). The correspondence between the ANSV and the nesting

levels of matching parenthesis can be seen by comparing Figures 14 and 15.

Now we investigate the e�ect monotonicity has on weight lists. This is interesting

because we can solve any instance of the MCOP very e�ciently if its weight list is

monotonic.

Special Dn Graphs for the MCOP 49

((()) ((())))
0 1 2 2 1 1 2 3 3 2 1 0

Figure 15: Parentheses and their Depths

As in (Hu and Shing, 1980) let

kwi : wkk =
k�1X
j=i

wjwj+1;

and all such pair-wise sums can be computed by performing one parallel partial pre�x.

A partial pre�x sum of the n+ 1 weights w1; � � � ; wn+1 is the list of values:

w1; w1 + w2; w1 + w2 + w3; � � � ;
n+1X
i=1

wi

That is, the ith partial pre�x element is

iX
j=1

wj:

Sequentially, a partial pre�x sum can be computed easily in O(n) time which is

asymptotically optimal. Also, a partial pre�x sum can be computed easily in parallel

with O(n) work and in O(lgn) time (J�aJ�a, 1992; Kumar et al., 1994).

Theorem 6 (Hu and Shing, 1980) The vector F [i] = kw1 : wik can be computed

by a parallel partial pre�x.

As suggested by this last theorem, we can compute kwi : wkk by performing one

subtraction kwi : wkk = F [k]� F [i]. Therefore calculating the cost of any horizontal

or vertical unit path in Dn can be done by multiplying such a sum by the appropriate

weight.

Special Dn Graphs for the MCOP 50

Let the ith row of Dn be all vertices of the form (i; k) for 1 � k � n and the kth

column be vertices of the form (i; k) for 1 � i � k. So, the unit path along the ith row

costs wikwi+1 : wn+1k where the unit path in the kth column costs wk+1kw1 : wkk.

Lemma 3 Given a Dn graph with a weight list containing a sublist of increasing weights

wi < wi+1 < � � � < wk+1, in Dn the unit path (0; 0) % (i; i) ! � � � ! (i; k) is cheaper

than the unit path (0; 0)% (k; k) " (k � 1; k) " � � � " (i; k).

Proof: Column k costs

wk+1kwi : wkk = wk+1

k�1X
j=i

wjwj+1

and row i costs

wi

kX
j=i+1

wjwj+1

which is

wi

k�1X
j=i

wj+1wj+2:

Clearly, wk+1 > wi and
k�1X
j=i

wj+1wj+2 >
k�1X
j=i

wjwj+1;

hence the lemma follows. 2

Symmetrically to the above we have the following.

Given a sublist of decreasing product weights

wi > wi+1 > � � � > wk+1

then the horizontal unit path

(0; 0)% (i; i)! � � � ! (i; k)

Special Dn Graphs for the MCOP 51

is more expensive than

(0; 0)% (k; k) " (k � 1; k) " � � � " (i; k):

The relative expense of such paths is key to the intuition that leads to the development

of the rest of this chapter.

The two unit paths,

A = (i; i)! � � � ! (i; k)

and

B = (i+ 1; i+ 1)! � � � ! (i+ 1; k) " (i; k)

are adjacent horizontal unit paths.

Lemma 4 (Row Trade O� Lemma) Given two adjacent horizontal unit paths A
and B going to (i; k), which cost wikwi+1 : wk+1k and wi+1kwi+2 : wk+1k+wiwi+1wk+1

respectively, one of the following conditions may hold:

� if wi < wi+1 and wi+2 < wk+1, then A is cheaper

� if wi > wi+1 and wi+2 > wk+1, then B is cheaper

Proof: Since A costs wikwi+1 : wk+1k and B costs wi+1kwi+2 : wk+1k + wiwi+1wk+1,

the di�erence in their costs is

d = wikwi+1 : wk+1k � wi+1kwi+2 : wk+1k � wiwi+1wk+1:

That is, d = (wi � wi+1)kwi+2 : wk+1k + (wi+2 � wk+1)wiwi+1 and when wi > wi+1

and wi+2 > wk+1 then d is positive, hence B is cheaper.

The other case follows similarly. 2

Special Dn Graphs for the MCOP 52

There is a similar Column Trade O� Lemma, and its proof is almost identical.

Cases such as wi < wi+1 and wi+2 > wk+1 are not dealt with in either the Row or

Column Trade O� Lemmas.

5.2 Critical Nodes in Dn

This section relates the ANSV problem to the Row and Column Trade O� Lemmas.

By solving the ANSV problem it is possible to isolate certain nodes that are central

to �nding shortest paths in Dn graphs.

The next de�nition is originally due to (Hu and Shing, 1980), although they

present it in a di�erent framework:

In Dn, a critical node is a node (i; k) such that wj > maxfwi; wk+1g for all i <
j � k.

There are no critical nodes of the form (j; j) for 1 � j � n.

The row and column equations are,

R = (wi � wi+1)kwi+2 : wk+1k+ (wi+2 � wk+1)wiwi+1 k + 1 6= i + 2

C = (wk+1 � wk)kwk�1 : wik+ (wk�1 � wi)wk+1wk k � 1 6= i

Lemma 4 elucidates a key observation about the row and column equations. Partic-

ularly, only the order relationships of four weights is enough to determine whether

equation R will be necessarily positive or necessarily negative. A similar observation

holds for C. This cannot be done for either C or R when both conditions wi < wj and

wj > wk+1, for i < j � k, hold. Generalizing for the possibility of an edge-connected

path of critical nodes and associated row and column equations we say that C and R
are order indeterminate when wj > maxfwi; wk+1g for all j; i < j � k. Critical nodes

determine where both the row and column equations fail to provide any information.

Further, critical nodes indicate where magnitude can overtake order in the row and

column equations.

Special Dn Graphs for the MCOP 53

By solving the ANSV problem we can compute all critical nodes of a Dn graph.

In our nomenclature, (Berkman et al., 1989) shows on a common-CRCW PRAM and

in (Chen 1990; Kim 1990) on a EREW PRAM:

Theorem 7 On a common-CRCW PRAM all critical nodes can be computed inO(lg lgn)

and O(lgn) time using n=lg lgn and n=lgn processors, respectively. On an EREW PRAM

all critical nodes can be computed in O(lgn) time using n=lgn processors.

In our context, this theorem follows trivially as a result of the relationship of

matches in the weight list and critical nodes in Dn graphs.

Critical nodes (i; s) and (j; t) are not compatible when s�i = t�j and there exists
some vertex other than (0; 0) that can reach both (i; s) and (j; t) by a unit path.

The next theorem was originally proved by Hu and Shing in a di�erent framework

and follows from the properties of ANSV matches.

Theorem 8 (Hu and Shing, 1982) In any instance of the matrix chain ordering prob-

lem all critical nodes are compatible.

Proof: Suppose Dn represents an instance of the matrix chain ordering problem

with two non-compatible critical nodes (i; s) and (j; t). Since these are critical nodes,

it must be that either j < s < t or i < j < s. Either case gives a contradiction

since both wk > maxfwi; ws+1g, for i < k < s + 1, and wr > maxfwj; wt+1g, for
j < r < t+ 1, cannot hold. 2

A Dn graph can have as many as n � 1 and as few as zero critical nodes. For

example, a monotone weight list does not have any critical nodes.

The next lemma follows from the ANSV characterization of critical nodes.

Lemma 5 (Hu and Shing, 1982) Any Dn graph has at most n� 1 critical nodes.

Proof: Take a list of n + 1 weights w1; w2; : : : ; wn+1 making up the edge weights of

some Dn graph.

Special Dn Graphs for the MCOP 54

A representative weight for the critical node (i; k) is the weight wj with match

[wi; wk+1]. Each unique critical node has a unique representative weight. Further, a

list of n + 1 weights can have at most n � 1 representative weights, since neither w1

nor wn+1 can be representative weights. Hence, there can be at most n � 1 critical

nodes. 2

A jumper (i; j) =) (i; v) is said to include all critical nodes that are in some path

r from (0; 0) to (j +1; v), where r may contain jumpers too. Suppose there is a path

r from (0; 0) to (j + 1; v) that includes all critical nodes in the set f (k; u) g, for
all j + 1 � k < u � v. Then we say any path q, containing only this one jumper

(i; j) =) (i; v), includes all critical nodes that are vertices of q and all critical nodes

in r. Now generalize this notion recursively to paths with more than one jumper.

Going even further, we can prove the next theorem.

Theorem 9 In a Dn graph there is at least one path from (0; 0) to (1; n) that includes

all critical nodes.

A proof of this theorem follows from the fact that all ANSV matches are compatible

and each match represents a pair of parentheses. If a solution of the ANSV problem

gives a parenthesization of all associative elements, then we are done. So consider the

case where a solution of the ANSV problem only provides a partial parenthesization

of the associative product. In this case, any arbitrary but legal completion of the

parenthesization describes a path in the associated Dn graph.

5.3 Canonical Subgraphs of Dn

This section investigates the interaction between monotonicity and critical nodes.

Weight lists can be broken into monotone sublists and sublists that have ANSV

matches. Such sublists naturally lead to subgraphs that are useful for �nding shortest

paths.

Special Dn Graphs for the MCOP 55

(i,t)

(j,k)

Figure 16: A D
(i;t)
(j;k) Graph without (0; 0) and with No Jumpers Shown

A subgraph D(i; t) of Dn is all vertices and edges of Dn that can reach (i; t) by

a unit path; this includes (0; 0). Formally, D(i; t) is all vertices (j; k) 2 V [Dn] such

that i � j � k � t in addition to the associated edges. The node (0; 0) is also in each

subgraph. A graph D(i; j) is monotonic i� the weights wi; : : : ; wj+1 are monotonic.

Critical nodes may form a unit edge-connected maximal path p that isolates a

subgraph. Suppose that p forms a contiguous maximal path starting at some critical

node (j; k), where k� j � 1 and terminating at the critical node (i; t), then p isolates

D
(i;t)
(j;k). Saying the unit path p is maximal means that if there is any unit edge-

connected path q of critical nodes that p is a subpath of, then p = q.

A canonical subgraph D
(i;t)
(j;k) is the subgraph containing the maximal contiguous

edge-connected path of critical nodes that begins at critical node (j; k) and terminates

at critical node (i; t).

The canonical subgraph D
(i;t)
(j;k) has vertex set

V [D(i; t)]� V [D(j + 1; k � 1)] [f(0; 0)g

and the associated edges, see Figure 16. We write D(i;t) for a canonical subgraph of

the form D
(i;t)
(j;j+1).

A D(i;t) canonical graph is a leaf graph. A D(i;t)
(j;k) canonical graph, where k > j+1,

is a band graph.

Special Dn Graphs for the MCOP 56

Figure 17: Several Canonical Subgraphs and Their Weight List

Generally p denotes the path of critical nodes in a canonical graph.

For instance, a leaf graphD(i;t) is a graph that in some sense isolates the weight list

wi; wi+1; : : : ; wt+1 where wk > maxfwj; wsg for all k, such that i � j < k < s � t+1.

In Figure 17 the weight list is represented as the contour below the Dn graph.

In this contour, four key ANSV matches are represented by dotted lines. The four

corresponding critical nodes are circled in the related Dn graph.

Canonical subgraphs are easily distinguishable by properties of their critical nodes.

So by Theorem 7, we can �nd all canonical subgraphs in O(lg lgn) time using n=lg lgn

processors on a common-CRCW PRAM or in O(lgn) time using n=lgn processors on

a common-CRCW PRAM or EREW PRAM. Notice that there are only two basic

kinds of canonical subgraphs.

Special Dn Graphs for the MCOP 57

Theorem 10 (Monotonicity Theorem) Given aD(i; u) graph with a monotone list

of weights wi < wi+1 < � � � < wu+1, the shortest path from (0; 0) to (i; u) is along the

straight unit path (0; 0)% (i; i)! (i; i + 1)! � � � ! (i; u).

Proof: The proof is in two cases. In the �rst Case, the theorem is shown to be true

for Gn graphs while the second Case shows that the theorem also holds for Dn graphs.

Case i: Take a unit path in G(i; u)

Let (0; 0) % (i; i) ! (i; i + 1) ! � � � ! (i; u) be a horizontal path with

the associated vertical path (0; 0)% (u; u) " (u� 1; u) " � � � " (i; u).

By Lemma 3, the horizontal path is cheaper. Inductive application of the

Row and Column Trade O� Lemmas (see Lemma 4) completes this case.

Case ii: Take a path with jumpers in D(i; u)

This case only addresses horizontal jumpers, since vertical jumpers follow

by symmetry and Lemma 3.

Given an arbitrary path r from (0; 0) to (i; u) in D(i; u) that includes one

jumper, the unit path from (i; i) to (i; u) is shown to be cheaper than r.

Suppose the jumper in this path is (k; s) =) (k; t), for i < k < s < t < u.

Since this is the only jumper in r, the path to (k; s) is (k; k)! � � � ! (k; s).

Therefore, this problem has been reduced to �nding a shortest path to

(k; t). For, if the shortest path to (k; t) is a unit path, then r cannot be a

shortest path by Case i, because (k; s) =) (k; t) is the only jumper in r.

Still, since W ((k; s) =) (k; t)) = sp(s+1; t) + f(k; s; t) we must consider

jumpers in the shortest path to (s+1; t). Say a shortest path to (s+1; t)

is a unit path, then by Case i it is the straight unit path (s+ 1; s+ 1)!
� � � ! (s+1; t). Since f(k; s; t) = wkws+1wt+1 andW ((k; s)! (k; s+1)) =

Special Dn Graphs for the MCOP 58

wkws+1ws+2, it must be that t > s+1 so f(k; s; t) > W ((k; s)! (k; s+1)).

Intuitively, we are trading the associative product cost f(k; s; t) for the

�rst edge of (k; s)! � � � ! (k; t). This �rst unit edge is cheaper than the

associative product cost.

With this, because (k; s+1)! � � � ! (k; t) costs wkkws+2 : wt+1k and the
path (s + 1; s + 1) ! � � � ! (s + 1; t) costs ws+1kws+2 : wt+1k and since

wk < ws+1 the theorem holds.

Otherwise, say there is a horizontal jumper in r to (s + 1; t). Apply this

case again inductively, until there is a jumper that derives its weight from a

straight unit path. We are trading each jumper's associative product cost

for the cost of the �rst unit edge in the associated unit path. These �rst

unit edges are always cheaper than the related associative product cost.

Eventually, the shortest path to (k; t) is shown to be (k; k)! � � � ! (k; t).

Hence, r is a unit path, but this means that it must be the straight unit

path in row i by Case i.

Handling a path with more than one jumper is straightforward. Inductively ap-

plying these two cases to jumpers successively farther away from (0; 0) completes the

proof. 2

This theorem also holds for a monotone list of weights having the relation

wi > wi+1 > � � � > wj+1

where the shortest path is

(0; 0)% (j; j) " (j � 1; j) " � � � " (i; j):

Therefore, if the list of weights wi; wi+1; : : : ; wj+1 is monotone, then we do not have

Special Dn Graphs for the MCOP 59

to construct any jumpers in D(i; j).

We say thatD(i; t) intersectsD(j; v) i� V [D(i; t)]\V [D(j; v)]�f(0; 0)g 6= ;. From
here on, references to monotone subgraphs assume that the monotone subgraphs do

not intersect any canonical subgraphs. This is because canonical subgraphs contain

monotone subgraphs, but such monotone subgraphs are not of particular interest to

us.

Theorem 11 IfD(i; t) does not intersect any canonical graphs and has no critical nodes,

then the weight list wi; wi+1; : : : ; wt+1 is monotonic.

Proof: Say there are no critical nodes in D(i; t). Then there is at most one weight

wj+1 where j + 1 6= 1 such that

wi > � � �wj > wj+1 < wj+2 < � � � < wt+1;

otherwiseD(i; t) would contain critical nodes. But in this case, since w1 = min
1�i�n+1

fwig
it must be that D(1; j + 1) contains the critical node (1; j), which means that D(i; t)

would intersect with a canonical subgraph.

On the other hand, this means both the row and column equations begin and

remain indeterminate so the next fact holds.

Fact 1: For all (j; j + 2) 2 V [D(i; t)], either wj < wj+1 < wj+2 < wj+3

or wj > wj+1 > wj+2 > wj+3.

Applying the row or column equations to the nodes (j; j + 2), for all j; i < j � t,

establishes this fact. For instance, let

R = (wj � wj+1)kwj+2 : wj+3k+ (wj+2 � wj+3)wjwj+1;

then R is order determinant so it must be either wj < wj+1 and wj+2 < wj+3, or

wj > wj+1 and wj+2 > wj+3, but not both.

Special Dn Graphs for the MCOP 60

Suppose wj < wj+1 and wj+2 < wj+3, and assume that wj+1 > wj+2, otherwise if

wj+1 < wj+2, then wj < wj+1 < wj+2 < wj+3 so we are done. This means wj < wj+1

and wj+1 > wj+2, therefore wj+1 > maxfwj; wj+2g and this indicates (j; j + 1) is a

critical node. This is a contradiction, hence it must be that wj < wj+1 < wj+2 < wj+3.

Using Fact 1, the theorem follows inductively. 2

A lack of critical nodes implies the existence of a monotone subgraph. Just the

same, a lack of ANSV matches in a section of a weight list indicates a monotone

sublist. Assuming that D(i; t) does not intersect with any canonical graphs gives the

next corollary.

Corollary 2 If D(i; t) contains no critical nodes, then there are no jumpers in a shortest

path from (0; 0) to (i; t). Moreover, if D(i; t) contains no critical nodes, then the shortest

path from (0; 0) to (i; t) is a straight unit path.

A proof of this follows immediately from Theorems 10 and 11.

Take a canonical subgraph D(1;m), where all critical nodes have been found and

form a unit edge-connected path p. Removing the nodes and adjacent edges of p

splits D(1;m) in two. These two pieces of D(1;m) are U for upper and L for lower. See

Figure 18.

U

L

(1,n)
w1

wn+1

wi

wj

Figure 18: A Dn Graph Split by a Path of Critical Nodes, Arrows Point Toward Smaller
Weights

Let D(1; s) be the maximal well-formed subgraph of U and let D(s+1; m) be the

Special Dn Graphs for the MCOP 61

maximal well-formed subgraph of L. By the maximality of D(i; t) in U we mean that

for any other well-formed subgraph D(j; k), if D(j; k) � U then D(j; k) � D(i; t).

Theorem 12 (Modality Theorem) If D(1; s) � U and D(s + 1; n) � L, where
both D(1; s) and D(s + 1; m) are maximal, then w1 < w2 < � � � < ws+1 and ws+2 >

ws+3 > � � � > wm > wm+1.

Proof: The path p splits D(1;m) into U and L where D(1; s) and D(s+1; n) are maxi-

mal, so (s; s+1) is a critical node. Therefore, it must be that ws+1 > maxfws; ws+2g,
so ws < ws+1 and ws+1 > ws+2.

By Theorem 11, the weight lists w1; w2; : : : ; ws; ws+1 and ws+1; ws+2; : : : ; wm; wm+1

are both monotonic. Thus ws < ws+1, so it must be that w1 < w2 < � � � < ws < ws+1.

In addition, because ws+1 > ws+2, so ws+1 > ws+2 > � � � > wm > wm+1. 2

Take a D(i;t)
(j;k) canonical graph, then both

wi < wi+1 < � � � < wj and wk > wk+1 > � � � > wt+1

follow from Theorem 12.

5.4 Historical Notes

Theorem 5 was �rst proved by (Deimel and Lampe, 1979) and a simpler proof was

later given by (Hu and Shing, 1982).

There seems to be two general approaches to improving the complexity of �nding

minimal paths in special graphs. The �rst is to use speci�c properties of the graphs to

get more e�cient renditions of the (min;+)-matrix based shortest-path algorithms.

This approach can be seen in (Aggarwal et al., 1987; Aggarwal and Park, 1988;

Apostolico et al., 1990), where they use Monge and monotone properties to improve

the processor complexity of the standard (min;+)-matrix multiplication. The second

Special Dn Graphs for the MCOP 62

approach breaks the graph up while only keeping a very small fraction of the pieces.

These pieces can be worked on in parallel and the results of each of these computations

can be joined giving a complete solution to the original problem. The work in this

dissertation is based on a divide-and-conquer approach.

Chapter 6

Approximating the MCOP

This chapter contains a fast parallel approximation algorithm for the MCOP. This

algorithm can run in O(lgn) time using only n=lgn processors on both a common-

CRCW PRAM and a EREW PRAM. Alternatively it can run in O(lg lgn) time using

n=lg lgn processors on a common-CRCW PRAM.

The algorithm given in this section is based on two applications of the ANSV

problem.

6.1 A Parallel Approximation Algorithm for the

MCOP

This section contains a O(lg lgn) time and n=lg lgn processor approximation algo-

rithm for the MCOP. This algorithm is built by combining results of (Chin, 1979),

and (Hu and Shing, 1981) with those of (Berkman et al., 1989). This algorithm ap-

proximates the MCOP to within 15:5% of optimality. In addition, the processor-time

product of this algorithm is linear.

This algorithm is not much more than several applications of the ANSV problem,

63

Approximating the MCOP 64

so various processor complexities and times result in applications of Theorem 7.

The approximation algorithm consists of two stages. The �rst stage isolates rel-

atively heavy weights by �nding matrix products that must be in an optimal paren-

thesization. The isolation of such heavy weights provides optimal substructures that

are in optimal superstructures|essentially giving a converse to the principle of opti-

mality. The second stage is simply a greedy approach for �nding a parenthesization

once we have applied the �rst stage of the algorithm. Therefore, this is basically a

greedy algorithm, but there are no lexicographical constraints on it.

By Corollary 1 rotate any given weight list so that w1 is the smallest weight. For

the next theorem let wi; wi+1; and wi+2 be three adjacent weights in a weight list of

an instance of the MCOP where wi < wi+1 and wi+1 > wi+2 which together means

that wi+1 > maxfwi; wi+2g.

Theorem 13 (Hu and Shing, 1981) If

w1wiwi+2 + wiwi+1wi+2 < w1wiwi+1 + w1wi+1wi+2 (3)

then the product (ai � ai+1) is in an optimal parenthesization.

Proof of this Theorem is left to the literature, see (Chin, 1979) and (Hu and Shing,

1981) for di�erent proofs. When wi+1 > maxfwi; wi+2g fails to hold Equation 3 cannot
hold, so there is no gain in assuming wi+1 > maxfwi; wi+2g.

Corollary 3 If Equation 3 holds, then wi+1 > maxfwi; wi+2g.

A proof follows from Equation 3 with

w1 = min
1�i�n+1

fwig;

and

w1wi(wi+2 � wi+1) + wi+1wi+2(wi � w1) < 0

Approximating the MCOP 65

so it must be that wi+2 � wi+1 < 0. Also, starting with Equation 3 again and

reassociating gives

w1wi+2(wi � wi+1) + wiwi+2(wi+2 � w1) < 0

so wi � wi+1 < 0.

Unfortunately, the converse of this last corollary is not true. An ANSV match

may not represent a minimal parenthesization in the MCOP. But any product that is

in a minimal parenthesization by way of Equation 3 has been isolated by some match.

Therefore, using the ANSV problem, the values in the weight list approximate the

optimal level of parentheses.

A list of weights is reduced i� for all weights, say wi+1, with ANSV match [wi; wi+2]

Equation 3 fails to hold (Chin, 1979). A reduced weight list may be non-monotonic.

Generalizing Equation 3 is done as follows. Suppose by Theorem 13 that (ai�ai+1)

is in an optimal parenthesization. Applying Theorem 13 to the list

l = w1; : : : wi�1; wi; wi+2; wi+3; : : : ; wn+1

works in the same way. That is, ifwi > maxfwi�1; wi+2g and w1wi�1wi+2+wi�1wiwi+2 <

w1wi�1wi + w1wiwi+2, then the parenthesization given by the solution of the ANSV

problem on l indicates that (ai�1 � � � � � ai+1) is optimal.

Given the weight list l = w1; w2; : : : ; wn+1 the approximation algorithm is (Chin,

1979; Hu, 1982; Hu and Shing, 1981):

1. Reduce the weight list l giving the weight list l2, renumbering l2 to be l2 =

w1; w2; : : : ; wr+1 where w1 = min
1�i�r+1

fwig.

2. If l2 has more than two weights, then compute the depths of the parentheses

for the linear product ((� � � (a1 �a2)� � � �)�ar) of cost w1kw2 : wr+1k. With this,

Approximating the MCOP 66

make the parenthesis discovered in Step 1 the appropriate amount deeper.

The depth of the parentheses determines the order to multiply the matrices.

Next techniques are given to run this algorithm e�ciently in parallel. Intuitively,

by Theorem 13, if the match [wi�1; wi+1] represents the nesting level of two parentheses

in an optimal product, then we have characterized wi's in
uence. Remove wi from

the weight list and recursively apply Theorem 13.

Suppose in solving the ANSV problem the weight wj has the match [wi; wk]. Then,

if

w1wiwk + wiwjwk < w1wjwk + w1wiwj (4)

and products (ai�� � ��aj�1) and (aj�� � ��ak�1) are both in an optimal parenthesization,

then the product (ai�� � ��aj�1)�(aj �� � ��ak�1) is also in an optimal parenthesization.

Certainly, by Theorem 13 this is true when i = j � 1 and j = k � 1. In addition,

Corollary 3 generalizes to suit Equation 4.

A weight list can be reduced by two applications of the ANSV problem as follows.

Given the weight list l the next algorithm outputs a reduced weight list. Let

A[1 : : : n+ 1] be an array of n+ 1 integers all initialized to zero.

1. Solve the ANSV problem on the weight list l. Next check to see if there are

any weights satisfying the condition described by Equation 3. If there are none,

then output l since it is reduced, then stop.

2. For all weights wj in l that have matches, say [wi; wk], if wj and wi; wk; satisfy

Equation 4, then assign a 1 to A[j].

3. Now solve the ANSV problem on A[1 : : : n+ 1]. If the nearest smaller values of

A[j] are in the match [A[i]; A[k]], then (ai � � � � � ak�1) is in an optimal paren-

thesization. Removing all of the weights isolated by optimal parenthesizations

Approximating the MCOP 67

gives a reduced weight list, which is output.

This algorithm produces a reduced weight list and optimal parenthesizations that

have been isolated by the conditions of Equation 3.

The �rst step of this algorithm is correct by Theorem 13 and Corollary 3. The

next theorem establishes the correctness of the last two steps of the algorithm.

Theorem 14 If the ANSV match of A[j] is [A[i]; A[k]] where i < k, then the product

(ai � � � � � ak�1) is in an optimal parenthesization.

Proof: The array A contains values from the set f0; 1g, so if A[j] = 0 then A[j] does

not have an ANSV match. On the other hand, if A[j] = 1 then A[j] must have an

ANSV match since A[1] = 0 and A[n+ 1] = 0.

Now consider the case where A[j] has match [A[i]; A[k]]. This means for all t such

that i < t < k, A[t] also has match [A[i]; A[k]]. All of these matches are compatible,

consequently all A[t] = 1 for i < t < k are nested ANSV matches. This means

there must be at least one list of three consecutive weights, say wt; wt+1; and wt+2,

that satisfy Equation 3. Now remove the middle such weight, wt+1, and recursively

continue this argument knowing that Equation 4 has marked the other such weights. 2

By Theorem 7, the three steps of this algorithm cost O(lg lgn) time using n=lg lgn

processors on the common-CRCW PRAM or in O(lgn) time using n=lgn processors

on a EREW PRAM or a common-CRCW PRAM.

Assume that r+1 weights remain after reduction. Then renumbering and rotating

the list of remaining weights gives w1; w2; � � � ; wr+1 where w1 = min
1�i�r+1

fwig. The

second step of the approximation algorithm requires that we form the appropriate

linear product with the remaining matrices.

The depth of the parentheses provides an approximation to within 15:5% of op-

timal for the MCOP. This is due to (Chandra, 1975), (Chin, 1979), and (Hu and

Shing, 1981).

Approximating the MCOP 68

Theorem 15 (Hu and Shing, 1981) If a weight list w1; w2; � � � ; wr+1 is reduced,

then the MCOP can be solved to within a multiplicative factor of 1:155 from optimal in

constant time using n processors. This is done by choosing the linear parenthesization

((� � � (a1 � a2) � � � �) � ar�1) � ar.

That is, after a weight list is reduced choosing a linear parenthesization with cost

w1kw2 : wr+1k gives a matrix chain product that is within a multiplicative factor of

1:155 from optimal.

The approximation algorithm given here is another problem whose solution is built

on the ANSV problem. This algorithm also shows that only a linear number of entries

of a dynamic programming table give a nice approximate solution to the MCOP. That

is, a minor variation of the path of critical nodes in the canonical subgraphs supply

a good approximate solution for the matrix chain ordering problem.

This algorithm is built on the greedy principle more than the dynamic program-

ming paradigm. In terms of the processor-time product, this algorithm is optimal.

6.2 Historical Notes

Both (Chandra, 1975) and (Chin, 1979) gave approximations for the MCOP that

were not quite as good as the 1:155 of Theorem 15. Theorem 15 was conjectured

in (Chin, 1979) and �nally proved in (Hu and Shing, 1981).

The algorithm given in this chapter appeared in (Bradford, 1992; Bradford, 1992a)

and a very similar algorithm was given in (Czumaj, 1992). The content of this chapter

is almost identical to that which the author of this dissertation submitted to the

Symposium on Parallel Algorithms and Architectures (SPAA) 1992.

Chapter 7

An ~O(n3)-Work Polylog-Time

Algorithm

This chapter contains an O(lg3 n)-time algorithm for solving the matrix chain ordering

problem that uses n3=lgn processors. Throughout this chapter leaf subgraphs of the

form D(i;j) are written as D(1;m) where 1 � m � n. In addition, assume that Dn

contains critical nodes, otherwise by Corollary 2 there is an immediate exact solution.

One of the key insights of this chapter is that canonical subgraphs can be treated

atomically while �nding a shortest path in a Dn graph. Further, (min;+)-matrix

multiplication joins these subgraphs together to form a shortest path in an entire Dn

graph.

7.1 Shortest Paths Without Critical Nodes

This section culminates with Theorem 18 which basically states that in aD(1;m) graph

shortest paths have a very rigid structure; this result supplies the �rst step for �nding

shortest paths in canonical subgraphs. All results in this section apply to shortest

paths from (0; 0) to (1; m) in D(1;m) (leaf) graphs and to shortest paths from (j; k) to

69

An ~O(n3)-Work Polylog-Time Algorithm 70

(i; v) in D
(i;v)
(j;k) (band) graphs.

A path q with one jumper contains no critical nodes i� there are no critical nodes

in q and there are no critical nodes in q's dual path. That is, a jumper (i; j) =) (i; k)

contains no critical nodes if both (i; j) and (i; k) are not critical nodes and there

are no critical nodes in a shortest path contributing to this jumper's weight. This

generalizes to paths with more than one jumper.

In our terminology the following result of (Hu and Shing, 1982, Corollary 3) can

be stated as:

Theorem 16 In any canonical graph, the sum of the two products wiwj+1wk+1 +

wj+1wj+2wk+1 where i < j < k, cannot contribute to the weight of any shortest path i�

wk+1 > wj+1 > wi.

Next is a useful technical lemma.

Lemma 6 In a D(1;m) graph if (i; t) 2 V [U], then wi < wt+1.

Proof: Since (i; t) 2 V [U] and i < t, there must be some critical node (i; u) 2 V [p]

where t < u. This means that wj > maxfwi; wu+1g, for all j; i < j � u. Since

i < t < u it must be that wi < wt+1. 2

A symmetric argument to that of Lemma 6 shows that wi > wj+1 for all nodes

(i; j) 2 V [L].

Theorem 17 Any shortest path q to some vertex (i; j) in D(1;m) where q contains no

critical nodes, except possibly (i; j), is a straight unit path.

A proof of this theorem follows from an inductive application of Lemma 4 and

Theorem 12.

The last theorem and all previous results of this section also apply to shortest

paths from (j; k) to (i; v) in D(i;v)
(j;k) canonical subgraphs.

An ~O(n3)-Work Polylog-Time Algorithm 71

Jumpers of the form (i; j) =) (i; k) such that (j+1; k) 2 V [p] are very important.
Such jumpers contain at least one critical node, namely (j + 1; k).

Lemma 7 If a horizontal shortest path q to (i; u) 2 V [U][V [p], is such that q has one

jumper (i; j) =) (i; k) and (j + 1; k) 2 V [p], then q is equivalent to a shortest path to

(j + 1; k) followed by (j + 1; k) * (i; k)! � � � ! (i; u).

The same holds for any such vertical path. A proof of this lemma follows from

Lemma 1 and Theorem 2. That is, this lemma is based on the Duality Theorem.

Suppose (j; k) and (i; t) are two critical nodes in a canonical graph D(1;m), where

i � j � k � t. Then there is a unit path of critical nodes from (j; k) to (i; t). With

this, there are two important symmetric paths between (j; k) and (i; t):

The upper angular path of (j; k) and (i; t) is

(j; k) * (i; k)! � � � ! (i; t)

and the lower angular path of (j; k) and (i; t) is

(j; k) =) (j; t) " � � � " (i; t)

A trivial angular path has only two unit edges and no jumpers. That is, if the three

unit edge connected critical nodes

(j; k)! (j; k + 1) " (j � 1; k + 1)

then there is a trivial angular path

(j; k) " (j � 1; k)! (j � 1; k � 1)

where (j � 1; k) is not a critical node. For examples of angular paths see Figure 19.

An ~O(n3)-Work Polylog-Time Algorithm 72

In a canonical subgraph the shortest path between any two critical nodes that

contains no other critical nodes is an angular path. Angular paths are central to the

rest of this dissertation.

(j,k)

(i,t)

Figure 19: Two Angular Paths

A central result of this section is that a shortest path to a critical node (i; j) in a

canonical graph may be along a path of critical nodes, then through an angular path

then back to a subpath of critical nodes, then through an angular path and back to

a subpath of critical nodes, etc.

In our terminology, Hu and Shing gave the following important theorem.

Theorem 18 (Hu and Shing, 1982) A shortest path to a critical node (i; j) in a

D(1;m) graph is either along a straight unit path to (i; j), along the path of critical nodes

to (i; j), or along subpaths of critical nodes connected together by angular paths and

�nally to (i; j).

A proof of this theorem follows inductively from Theorem 17 and the following.

Say that there is some jumper (i; j) =) (i; k) such that (j + 1; k) 62 V [p]. Then,

since W ((i; j) =) (i; k)) = f(i; j; k) + sp(j + 1; k) and assume without loss that

(j + 1; k) 2 V [L], see Figure 20a. Now, by Theorem 17 we know the shortest path

to (j + 1; k) includes the unit edge (j + 2; k) " (j + 1; k) which has cost wjwj+1wk+1.

Additionally, assume that (j+2; k) 62 V [p]. But, because f(i; j; k) = wiwj+1wk+1 and

since (i; j) and (i; k) are in U Lemma 6 indicates that wi < wj+1 < wk+1. Therefore

An ~O(n3)-Work Polylog-Time Algorithm 73

applying Theorem 16 shows that the jumper (i; j) =) (i; k) can't be in a minimal

path in Dn. A similar case holds for Figure 20b.

(i,j) (i,k)

(j+1,k)

(k,k)

(i,j) (i,k)

(j+1,k)(j+1,j+1)

(a) (b)

Figure 20: Two Jumpers and their Complimentary Paths

By the Duality Theorem and the compatibility of critical nodes, any jumpers over

p have dual paths containing no jumpers over p giving the last case just discussed.

(i,j) (i,k)
(i,j) (i,k)

Figure 21: Two Jumpers Over the Path p

This last theorem and the next corollary also hold for shortest paths from (j; k)

to (i; v) in D
(i;v)
(j;k) graphs.

Corollary 4 A shortest path from (0; 0) to a non-critical node (s; t) in a D(1;m) graph

is either a straight unit path, or it is a minimal path to some critical node (i; j) and from

(i; j) to (s; t) by an angular path.

An ~O(n3)-Work Polylog-Time Algorithm 74

7.2 Combining the Canonical Graphs

This section gives a parallel divide and conquer tool for �nding minimal paths in

Dn graphs based on work of Hu and Shing. This is done by isolating an underlying

tree structure connecting the canonical subgraphs, so we can �nd shortest paths

in these subgraphs individually while essentially ignoring the e�ect of the monotone

subgraphs. This allows the computation of a shortest path in a Dn graph by applying

variations of tree contraction techniques. These techniques incorporate special \leaf

pruning" operations.

As before, by Corollary 1 rotate any given weight list so that w1 is the smallest

weight.

Next we present, without proof, a central result of Hu and Shing. In essence, this

result gives some of the power of the greedy principle together with the principle of

optimality. That is, this result allows the isolation of some substructures that are

necessarily in an optimal superstructure.

Theorem 19 (Hu and Shing, 1982) Given a weight list w1; : : : ; wn+1 with the three

smallest weights w1 < wi+1 < wv+1 and i+ 1 < v, the products w1wi+1 and w1wv+1 are

in some associative product(s) in an optimal parenthesization.

There may be one or two fs that contain the products w1wi+1 and w1wv+1.

The next corollary is central to the results of this section. It essentially guarantees

that certain easily computable nodes are a part of a shortest path in a given Dn graph.

Where Hu and Shing use the results of the last theorem as a sequential divide and

conquer tool, here it is made into a parallel tool.

Corollary 5 (Atomicity Corollary) Given a weight list w1; : : : ; wn+1 with the three

smallest weights w1 < wi+1 < wv+1 and i+ 1 < v, the critical nodes (1; i) and (1; v) are

in a shortest path from (0; 0) to (1; n) in Dn.

An ~O(n3)-Work Polylog-Time Algorithm 75

A proof follows directly from Theorem 19.

Suppose w1 < wi+1 < wv+1 are the three smallest weights in Dn and both D(1;i)

and D(i+1;v) are leaf subgraphs. Then there is a shortest path from (0; 0) to (1; i)

in D(1;i). Applying Corollary 5 to the subgraph D(1; v), which also has the three

smallest weights w1 < wi+1 < wv+1, shows that (1; i) is in a minimal path to (1; v).

Therefore by the structure of Dn graphs the only contribution that D
(i+1;v) can make

to a shortest path to (1; v) is by providing sp values for jumpers along the unit path

(1; i) ! � � � ! (1; v). That is, there may be some jumper (1; j) =) (1; k) such that

(j + 1; k) 2 V [D(i+1;v)] and

(1; i)! � � � ! (1; j) =) (1; k)! � � � ! (i; v)

is cheaper than

(1; i)! � � � ! (1; v):

Shortly, in Lemma 9, we will see that we only have to consider jumpers (1; j) =) (1; k)

such that (j + 1; k) is a critical node in D(i+1;v).

7.2.1 Canonical Trees

Dividing a Dn graph into a tree of canonical subgraphs using Corollary 5 is easily

done in O(lgn) time with n=lgn processors by solving the ANSV problem.

In a Dn graph the structure joining all of the critical nodes is a canonical tree, see

also Hu and Shing (Hu and Shing, 1980; Hu and Shing, 1982; Hu and Shing, 1984).

De�ne the leaves, edges, and internal nodes of a canonical tree as follows. Initially,

in every canonical subgraph D(1;m) the critical node (1; m) is a leaf and is denoted by

(1; m) to distinguish it from other critical nodes. A D(1;m) canonical subgraph only

contains one tree node, namely (1; m). All other tree nodes will also be overlined.

An isolated critical node is a critical node with no critical nodes that are one unit

An ~O(n3)-Work Polylog-Time Algorithm 76

edge away. The internal tree nodes are isolated critical nodes or (i; v) and (j; k) for

D
(i;v)
(j;k) canonical graphs, where k 6= j + 1. A D

(i;v)
(j;k) graph only contains the two tree

nodes (i; v) and (j; k). Notice that all tree nodes are also critical nodes, thus they are

compatible.

The edges of a canonical tree are the straight unit paths that connect tree nodes.

Jumpers may reduce the cost of tree edges. An edge from (i; j) to (i; k) is denoted

by (i; j)! � � � ! (i; k) and all edges are directed towards (1; n).

Since tree nodes are critical nodes with easily discernible properties, they are e�-

ciently distinguishable in parallel. In addition, we can discard all monotone subgraphs

since they have no in
uence on a shortest path to (1; n), except if D(1; j) is monotone

and w1 = min
1�i�j

fwig. That is, since w1 = min
1�i�n+1

fwig, if D(1; i) is monotone for some

i, then a shortest path to (1; n) will travel along the path (1; 1)! � � � ! (1; i). But

this is the only case when a monotone graph contains a piece of a minimal path from

(0; 0) to (1; n).

For the next lemma, assume w1 = min
1�i�n+1

fwig.

Lemma 8 In a monotone subgraph D(i; k) of Dn, the cost of a shortest path to (i; k)

for i > 1 plus the associative weight f(1; i� 1; k) is more than the unit path (1; i� 1)!
� � � ! (1; k).

Proof: SinceD(i; k) is monotone, we either have wi < � � � < wk+1 or wi > � � � > wk+1.

So by Theorem 10, the shortest path to (i; k) in D(i; k) is either (i; i)! � � � ! (i; k)

or (k; k) " � � � " (i; k). Therefore, taking the jumper (1; i� 1) =) (1; k) with weight

sp(i; k) + f(1; i� 1; k) we have two cases.

Case i: The ordering of the weight list is wi < � � � < wk+1.

In this case, the shortest path to (i; k) is (i; i) ! � � � ! (i; k). Clearly,

f(1; i�1; k) = w1wiwk+1 andW ((1; i�1)! (1; i)) = w1wiwi+1. But since

An ~O(n3)-Work Polylog-Time Algorithm 77

wi+1 � wk+1, it must be f(1; i� 1; k) � W ((1; i� 1)! (1; i)). Along the

same lines, W ((1; j) ! (1; j + 1)) < W ((i; j) ! (i; j + 1)) holds for all

j; i � j < k.

Case ii: The ordering of the weight list is wi > � � � > wk+1.

In this case, the shortest path to (i; k) is (k; k) " � � � " (i; k). Since

f(1; i� 1; k) = w1wiwk+1, W ((1; k � 1)! (1; k)) = w1wkwk+1, and wi �
wk, it must be that f(1; i � 1; k) � W ((1; k � 1) ! (1; k)). Along the

same lines, W ((1; i + j � 1) ! (1; i + j)) < W ((i + j + 1; k) " (i + j; k))

for all j; 0 � j < k � i.

2

Suppose Dn has fewer than n � 1 critical nodes. Then Dn may have several dis-

connected canonical trees and one or more monotone subgraphs by Corollary 2. But,

by Theorem 9 there is at least one path from (0; 0) to (1; n) joining these canonical

subtrees. From Lemma 8, after discarding irrelevant monotone subgraphs and for the

moment ignoring D
(i;v)
(j;k) graphs, there are several structures that D

(1;m) graphs may

form together. The relationships of tree nodes is the basis of all of these structures.

Let (i; j); (j + 1; k); : : : ; (u+ 1; v) be neighboring leaves in D(i; v) such that they

are all in a canonical tree rooted at (i; v) or in no canonical tree at all. All of these

leaves together can have the next relationships, or combinations of them.

Case 1: The leaves are not joined together by internal tree nodes. For in-

stance, this case occurs if wi < wj+1 < � � � < wu+1 < wv+1.

Case 2: The leaves form a binary canonical tree, see Figure 22. In this case,

there are internal tree nodes in D(i; v) that connect the leaves together.

Solving Case 1 is done by treating it as an instance of Case 2 by building a

surrogate tree. The viability of treating these situations as Case 2 is now shown.

An ~O(n3)-Work Polylog-Time Algorithm 78

Figure 22: A Canonical Tree of D(1;m) Graphs, the Circles Denote Tree Nodes

Take a list of r monotone leaves, none of which are in a canonical tree. Label the

leaves (i; j); (j + 1; k); (k + 1; t); : : : ; (u+ 1; v) and without loss assume that wi <

wj+1 < � � � < wu+1 < wv+1 so these leaves are all in D(i; v). Now, by Corollary 5 tree

node (i; j) must be in a shortest path from (0; 0) to (i; v). Therefore, applying the

Theorem 2, a shortest path from (0; 0) to (i; v) goes from (0; 0) to (j + 1; v) and then

over the tree edge (j + 1; v) " � � � " (i; v). Now, complete this argument by induction.
Band subgraphs also form trees in the same way. Trees containing band subgraphs

are treated in the same way as above.

7.3 Finding Shortest Paths to All Critical Nodes

in Canonical Subgraphs

This section discusses an algorithm for �nding shortest paths in D(1;m) and D
(i;v)
(j;k)

canonical graphs. As before, p denotes the continuous path of critical nodes in a

D(1;m) or D
(i;v)
(j;k) graph.

First an m3=lgm processor and O(lg2m)-time algorithm for �nding a shortest

path to all critical nodes in a D(1;m) leaf subgraph is given. This is done by treating

angular paths as edges so p is now an (m+1)-node graph with �(m2) edges. That is,

any angular path (j; k) * (i; k)! � � � ! (i; t) connecting the critical nodes (j; k) and

(i; t) becomes one edge from (j; k) to (i; t) costingW ((j; k) * (i; k))+wikwk+1 : wt+1k.

An ~O(n3)-Work Polylog-Time Algorithm 79

Of course, since (j; k) is a critical node but (i; k) is not a critical node and both are

in the same canonical graph, it must be that

W ((j; k) * (i; k)) = wikwi+1 : wjk+ f(i; j � 1; k):

Now by Theorem 17, this also holds for D
(i;v)
(j;k) canonical graphs. Further, using a

(min;+)-matrix multiplication shortest path algorithm, �nding shortest paths in such

an (m + 1)-node graph costs O(lg2m) time with m3=lgm processors. This results in

a polylog time and n3=lgn processor MCOP algorithm at the end of this chapter.

Next is the O(lg2m) time and m3=lgm processor algorithm for �nding a shortest

path to each critical node in a D(1;m) graph. First compute all of the unit paths to

nodes in p in constant time usingm processors. Perhaps, we can best view these paths

as edges from (0; 0) to the nodes in p. Further, the cost of each of the �(m2) angular

paths can be computed in constant time using m2 processors, with preprocessing

costing O(lgm) time and m=lgm processors. The preprocessing is just computing

parallel partial pre�x minima.

Compute the shortest path to each node in p by treating every angular path

as a weighted edge and applying a parallel (min;+)-matrix multiplication all pairs

shortest path algorithm to the nodes in p. This algorithm costs O(lg2m) time and

m3=lgm processors, and provides a shortest path from (0; 0) to every critical node

in a D(1;m) graph. Compute the shortest paths from (0; 0) to all critical nodes in a

D
(i;v)
(j;k) canonical graph in the same way.

Theorem 20 Given a D(1;m) graph computing a shortest path from (0; 0) to all nodes

in p takes O(lg2m) time using m3=lgm processors.

This theorem also holds for �nding shortest paths from all critical nodes in a D
(i;v)
(j;k)

canonical graph to (i; v).

An ~O(n3)-Work Polylog-Time Algorithm 80

7.3.1 Leaf Pruning and Band Merging

Here a basic technique for joining band canonical subgraphs quickly in parallel is

given. This technique is based on edge minimization and builds shortest paths in Dn

graphs.

Take the two jumpers (i; j) =) (i; t) and (i; k) =) (i; u) in row i and without loss

say j < k. Then these jumpers are not compatible i� k < t < u. If (j+1; t) 2 V [p] and
(k+1; u) 2 V [p], then (j+1; t) and (k+1; u) are compatible. Consequently, any two

jumpers in row i such as (i; j) =) (i; t) and (i; k) =) (i; u), where (j + 1; t) 2 V [p]

and (k+1; u) 2 V [p0], must be compatible, where p and p0 are possibly distinct paths
of critical nodes. Notice that if p and p0 are distinct, then they are still compatible.

Given a Dn graph with the jumpers (i; j) =) (i; t) and (i; k) =) (i; u), let p be

a minimal path from (0; 0) to (1; n) in Dn. Then all jumpers (i; j) =) (i; t) and

(i; k) =) (i; u) such that (j + 1; t) 2 V [p] and (k + 1; u) 2 V [p] are compatible.
Minimizing the cost of a straight unit edge path in a canonical tree by using

jumpers is edge minimizing, and we will show that the jumpers only have to get their

sp values from critical nodes. Only tree edges or straight unit paths will be edge

minimized in D
(i;v)
(j;k) graphs. For example, let p be the path of critical nodes in D(k; t)

and consider the straight unit path (i; j)! � � � ! (i; v). If the jumper (i; k) =) (i; t)

is such that (k + 1; t) 2 V [p] and

(i; j)! � � � ! (i; k) =) (i; t)! � � � ! (i; v)

is cheaper than (i; j)! � � � ! (i; v), then we edge minimize (i; j)! � � � ! (i; v) with

(i; k) =) (i; t).

The next procedure edge minimizes the unit path along the ith row to the critical

An ~O(n3)-Work Polylog-Time Algorithm 81

node (i; v) with all jumpers that get their sp values from the critical nodes V [p],

A[i; v] = min
8(k+1;u)2V [p]

f wikwi+1 : wv+1k; wikwk+1 : wu+1k � wikwk+1 : wu+1k
+ W ((i; k) =) (i; u)) g

and the same can be done for straight vertical unit paths. The minimal cost along the

tree edge i to (i; v) is in A[i; v], assuming only one connected path of critical nodes p.

Notice by Theorem 6 that we can compute the cost of the straight unit (sub)paths

in constant time with one processor with the appropriate preprocessing.

Lemma 9 When edge minimizing a tree edge (i; j) ! � � � ! (i; v) in a canonical

subgraph we only have to consider jumpers (i; k) =) (i; t) such that (k + 1; t) 2 V [p].

Proof: Take row i, and (i; i) ! � � � ! (i; v) assuming that some jumper (i; s) =)
(i; t) minimizes row i where (s + 1; t) 62 V [p] and i < s < t � u. Without loss,

say (s + 1; t) 2 V [U], so a shortest path to (s + 1; t) is either the straight unit path

(s+ 1; s+ 1)! � � � ! (s+ 1; t) or this unit path with jumpers by Corollary 4.

All jumpers getting their sp value from a critical node in p must be compatible.

Therefore, there is only one jumper that gets its sp value from a critical node in a

shortest path from (s+ 1; s+ 1) to (s+ 1; t). Now there are three cases to consider.

Case i: A minimal path to (s+1; t) is the straight unit path (s+1; s+1)!
� � � ! (s+ 1; t).

By the Duality Theorem the minimal path along

(i; i)! � � � ! (i; s) =) (i; t)

is equivalent to the path

(s+ 1; s+ 1)! � � � ! (s+ 1; t) * (i; t):

An ~O(n3)-Work Polylog-Time Algorithm 82

But

(s+ 1; s+ 1)! � � � ! (s+ 1; t) * (i; t)

is not an angular path, a straight unit path, or a path of critical nodes

intermixed with angular paths getting their sp value from p. Therefore,

we arrive at a contradiction of Corollary 4.

Case ii: A shortest path to (s+1; t) is along the unit path from (s+1; s+1)

to (s + 1; t) and contains one or more jumpers whose sp values are not

from V [p].

This case would imply that a shortest path from (0; 0) to nodes in U are

not angular paths or straight line unit paths contradicting Corollary 4.

Case iii: A shortest path to (s+1; t) is along the unit path from (s+1; s+1)

to (s+ 1; t) and contains one jumper that gets its sp value from a critical

node in p.

Let (s+1; j) =) (s+1; k) be a jumper such that (j +1; k) 2 V [p]. Thus
by the Duality Theorem the path

(s+ 1; s+ 1)! � � � ! (s+ 1; j) =) (s+ 1; k)! � � � ! (s+ 1; t)

followed by the jumper (s+ 1; t) * (i; t) costs the same as the path

(i; i)! � � � ! (i; s) =) (i; t):

At the same time, the path

(s+ 1; s+ 1)! � � � ! (s+ 1; j) =) (s+ 1; k)! � � � ! (s+ 1; t)

An ~O(n3)-Work Polylog-Time Algorithm 83

is equivalent to a shortest path to (j + 1; k) followed by the angular path

(j + 1; k) * (s + 1; k) ! � � � ! (s + 1; t), by the Duality Theorem. This

means a shortest path from (0; 0) to (i; t) is from (0; 0) to (j + 1; k) then

(j + 1; k) * (s+ 1; k)! � � � ! (s+ 1; t) * (s+ 1; t);

but this is a contradiction by Corollary 4, since this path is not an angular

path.

Cases i and ii can occur at the same time, though the above arguments still hold. 2

This lemma easily generalizes to the case where p is a path of critical nodes in a

conglomerate of canonical subgraphs. Lemma 9 also highlights the role well-formed

subsolutions play in the dynamic programming solution of the MCOP.

Let p be a minimal path from (0; 0) to (k; t) in D(k; t). Then Lemma 9 extends

to the case of only jumpers (i; k) =) (i; t) along tree edges (i; j)! � � � ! (i; v) such

that (k + 1; t) 2 V [p].

Theorem 21 When edge minimizing a tree edge (i; j) ! � � � ! (i; v) in a canonical

subgraph we only have to consider jumpers (i; k) =) (i; t) such that (k + 1; t) 2 V [p].

Proof: Since (i; j)! � � � ! (i; v) is a tree edge it must be that maxfwi; wv+1g < ws

for all s; i � s � v + 1.

For the sake of a contradiction suppose the jumper (i; k) =) (i; t), such that

(k + 1; t) 62 V [p] but (k + 1; t) 2 V [p], is the jumper that minimizes the tree edge

(i; j)! � � � ! (i; v) more than any other jumper.

But since (k + 1; t) 62 V [p], it's safe to assume that the angular path

(r; s) * (q; s)! � � � ! (q; u)

An ~O(n3)-Work Polylog-Time Algorithm 84

is the angular path in p that goes around (k+1; t), so (r; s) 2 V [p] and (q; u) 2 V [p].
In this case, by Theorem 2 a minimal path to (q; u) is

(q; q)! � � � ! (q; r � 1) =) (q; s)! � � � ! (q; u)

such that (r; s) 2 V [p]. In particular, notice that the jumper (q; k) =) (q; t) saves no

more than any other jumper by edge minimizing the unit path (q; q)! � � � ! (q; u)

and, since (i; j)! � � � ! (i; v) is a tree edge, we know that wi < wq and f(i; k; t) <

f(q; k; t). Thus, if (q; k) =) (q; t) saves no more than the jumper (q; r� 1) =) (q; s)

in row q, then (i; k) =) (i; t) saves no more than any other jumper in row i. 2

This last theorem is very important. It says once a minimal path p is discovered in

a subgraph D(j; k), then during edge minimization we only have to consider jumpers

with sp values from p. Of course V [p] � V [p], where p is the path of critical nodes.

Theorem 22 Given a tree node (i; u) where the graphD(i; u) contains the leavesD(i; j)

and D(j + 1; u) so (i; j) and (j + 1; u) are tree nodes, if D(j + 1; u) is a canonical

subgraph, then a shortest path from (i; j) to (i; u) can be found in O(u� j) operations.

Proof: Since (i; j); (i; u); and (j+1; u) are all critical nodes, the three smallest weights

in wi; : : : ; wu+1 are wi; wj+1; and wu+1. Now assume without loss that wi < wu+1 <

wj+1. Hence, by Corollary 5, tree node (i; j) must be in a shortest path from (0; 0)

to (i; u). Therefore, edge minimize the unit path (i; j) ! � � � ! (i; u). Otherwise, if

wu+1 < wi < wj+1 then (j + 1; u) is in a shortest path from (0; 0) to (i; u). Therefore

by the Duality Theorem we can edge minimize the path (i; j)! � � � ! (i; u).

There could be a quadratic number of jumpers of the form (i; k) =) (i; t) such

that j � k < t � u. But by Theorem 21 we only have to consider jumpers along

row i that get their sp values from p. That is, only jumpers such as (i; k) =) (i; t)

where (k + 1; t) 2 V [p]. The appropriate value of sp, which has been computed for

each node in p, can be retrieved and added to the appropriate value of f in constant

An ~O(n3)-Work Polylog-Time Algorithm 85

time. Therefore �nding the minimal values for the paths between nodes (i; j) and

(i; u) takes O(u� j) operations, since there are O(u� j) such compatible jumpers. 2

The O(u� j) operations are easily done in O(lg(u� j)) time using (u� j)= lg(u� j)
processors. In O(lg(u� j)) time and with (u� j)= lg(u� j) processors �rst get all of
the jumper values and then �nd the minimal such jumper.

The last theorem holds for leaves in the canonical tree that have been combined

and become conglomerates of other leaves and internal nodes. In this situation,

jumpers derived from critical nodes in di�erent subtrees are independent and com-

patible, so we can minimize tree edges with them simultaneously. But, canonical

subgraphs of the form D
(i;v)
(j;k) must be considered. In this case, take the leaf D(j; k)

that must be pruned in D
(i;v)
(j;k), where D(j; k) consists of the pruned subgraphs D(j; t)

and D(t+ 1; k).

If there is a shortest path through (j; k) to (i; v), then by Corollary 5 and depend-

ing on whether wj < wk+1 or wk+1 < wj either (j; t) or (t + 1; k), respectively, are in

shortest paths to (j; k). Therefore, by Theorem 22 we would be done. But we must

address the possibility that the cost of paths from (0; 0) to critical nodes throughout

D(j; k) can contribute to shortest paths to critical nodes from (j; k) to (i; v). In fact,

we must combine the information about shortest paths in D(j; k) with information

about shortest paths in D
(i;v)
(j;k). The combining of this shortest path information is

done by edge minimizing unit paths in D
(i;v)
(j;k) with sp values from critical nodes of

D(j; k).

The next theorem is another parallel divide and conquer tool, but it is for merging

a D(j; k) leaf into a D
(i;v)
(j;k) graph.

Theorem 23 In a D
(i;v)
(j;k) graph with a shortest path p from (j; k) to (i; v) and suppose

the four smallest weights are wi < wv+1 < wi+1 < wv, then p goes through one of

1. Either (i + 1; v) or (i+ 1; v � 1) or both

An ~O(n3)-Work Polylog-Time Algorithm 86

2. (i; i+ 1) and (i; v � 1)

3. (v � 1; v) and (i + 1; v)

Proof: Since wi < wv+1 < wi+1 < wv and we are in a D
(i;v)
(j;k) graph, it must be that

(i; v); (i + 1; v); and (i + 1; v � 1) are all critical nodes, so p may go through them.

Clearly, if p goes through (i+1; v�1), then p cannot go through (i; i+1) or (v�1; v).
If the shortest path p has a jumper up to row i, then (i; i + 1) will be in p in the

sense of Theorem 9. Of course, if p goes through (i; i+ 1), then p cannot go through

either (v � 1; v) or (i+ 1; v).

Finally, if (v � 1; v) is in a shortest path to (i; v), then (i + 1; v) is also and both

(i; i+ 1) and (i + 1; v � 1) are not in this minimal path. 2

This theorem also holds for D(1;m) graphs.

By Theorem 23 take a shortest path from (0; 0) to (i; v) that goes through (i; i+1).

Then there might be a straight unit path (i; i+1)! � � � ! (i; v) connecting (i; i+1)

and (i; v). On the other hand, there may be some jumper (i; j) =) (i; k) such that

(i; i+ 1)! � � � ! (i; j) =) (i; k)! � � � ! (i; v)

is cheaper than (i; i + 1)! � � � ! (i; v).

The only possible ways to merge canonical graphs together are in Figure 23.

Merging the two leaf canonical graphs as in Figure 23a is leaf pruning, and Figures

23b,c are band merging. Leaf pruning can be accomplished by edge minimizing after

all shortest paths to critical nodes in the leaves have been found.

In Figure 23c, contracted trees A and B are used to edge minimize the unit paths

marked by \Min-A" and \Min-B." Edge minimizing the unit paths in the outer

band with the contracted trees gives an instance of Figure 23b.

MergingD
(i;v)
(j;t) withD

(j;t)
(k;s) takes O(lg

2m) time usingm3= lgm processors, assuming

An ~O(n3)-Work Polylog-Time Algorithm 87

a) b) c)

A

B

Min−A M
in−

A

Min−B

M
in−

B

Figure 23: The Variations of Band Merging or Leaf Pruning

D
(i;v)
(k;s) has a total of m critical nodes. Let p1 be a minimal path from (i; v) back to

(0; 0) only through D
(i;v)
(j;t) , and let p2 be a minimal path from (j; t) back to (0; 0) only

through D
(j;t)
(k;s). Now, merging these two graphs by �nding all the angular paths from

critical nodes in p2 forward to any critical nodes in D
(i;v)
(j;t) . Next, applying an all pairs

shortest path algorithm combines these bands giving a shortest path from (i; v) back

to (0; 0) through D
(i;v)
(k;s).

7.3.2 Contracting a Canonical Tree

This subsection shows how to use edge minimization and band merging as the prune

operations for a standard tree contraction algorithm. Together these algorithms com-

plete a good algorithm for the MCOP. This algorithm has work ~O(n3) and runs in

polylog time.

In a tree that contains only D(1;m) canonical subgraphs, each prune operation is

an edge minimization that joins leaves together, until the entire canonical tree is one

leaf. Every critical node (i; j) has an associated variable sp(i; j) where sp(i; j) denotes

the cost of a shortest path from (0; 0) to (i; j). Further, a canonical tree has at most

n� 1 critical nodes, so only O(n) such variables are necessary.

Initially, all internal tree nodes have sp(i; j) = 1 and all nodes in p which are

tree leaves have the minimum value from (0; 0) to (i; j) stored in sp(i; j). That is, in

the tree leaves the minimal paths p have been computed. In addition, for all D
(i;v)
(j;k)

An ~O(n3)-Work Polylog-Time Algorithm 88

graphs compute and store the value of the shortest path from all critical nodes in

D
(i;v)
(j;k) to (i; v). Compute these initial values using the methods of Subsection 7.3.

Also, each tree edge (i; j) ! � � � ! (i; k) initially has weight wikwj+1 : wk+1k. After
the appropriate preprocessing, by Theorem 6, computing the initial cost of each of

these O(n) tree edges costs constant time with one processor.

Assume the standard tree contraction algorithm (J�aJ�a, 1992; Karp and Ramachan-

dran, 1990; Kumar et al., 1994) except for the prune operation. Along with the new

prune operation, there is an ordering of the leaves that prevents the simultaneous

pruning of two adjacent leaves. Take two neighboring canonical graphs D(i;j) and

D(j+1;k) with the two leaves (i; j) and (j + 1; k) and the internal node (i; k), say

wi < wk+1 < wj+1. Then prune leaf (j + 1; k) since (i; j) is in a shortest path from

(0; 0) to (i; k) by Corollary 5. Otherwise, say wk+1 < wi < wj+1, then prune leaf (i; j).

While, standard tree contraction algorithms use the Euler tour technique (J�aJ�a, 1992;

Karp and Ramachandran, 1990) to number the leaves appropriately, as just seen the

canonical nodes often provide a natural prune ordering. The viability of this natural

leaf numbering follows by induction. Thus apply the Euler tour technique in case

the leaf ordering is arbitrary, otherwise take the natural pruning order. Take the tree

made by connecting the two leaves (i; j); (j + 1; k) to the internal node (i; k), then

the pruning order is arbitrary if wi = wj+1 = wk+1.

Also, the numbering of tree nodes by the Euler tour technique prevents a band

graph from being merged simultaneously with both the band inside it and the band

around it. See standard tree contraction techniques for details of this use of the Euler

tour technique.

Figure 24 depicts a canonical tree rooted at (i; k) that is the parent of tree nodes

(i; j) and (j + 1; k) which are siblings representing D(i; j) and D(j + 1; k), respec-

tively. Assume that D(j + 1; k) has been pruned into a leaf, and if wk+1 < wi < wj+1,

then compute what contribution, if any, (j + 1; k) makes to the shortest path to (i; k).

An ~O(n3)-Work Polylog-Time Algorithm 89

[i,j] [i,k]

[j+1,k]

[i,u]

Figure 24: A Small Canonical Tree

Figure 25: A Linear List of Tree Leaves

This is determined by edge minimizing the tree edge (i; j) ! � � � ! (i; k) with all

nodes in a minimal path from (0; 0) to (j + 1; k). After this edge minimization,

inactivate (j + 1; k) and its parent (i; k), so (j + 1; k) will not be pruned again.

The tree leaves depicted in Figure 25 can be pruned in any order. They are

\pruned into" the edge joining them by �rst �nding minimal paths to all critical

nodes in each leaf. And then edge minimizing the edge joining them all with jumpers

that get their sp values from the critical nodes in the leaves.

A linear list of leaves as those in Figure 25 can be pruned in any order. Therefore,

choosing to do them simultaneously makes most sense. But, any number of nested

bands must be merged in a way to avoid con
icts. This is easily done using the

Euler tour technique for numbering appropriately for tree contraction, see (Karp and

Ramachandran, 1990).

The next lemma shows that pruning allows the construction of a shortest path

from (0; 0) to (1; n) in a tree made of leaf canonical graphs and isolated critical

nodes. This is necessary for canonical subtrees as in Figure 22. Let D0
n only contain

leaf subgraphs and isolated tree nodes.

An ~O(n3)-Work Polylog-Time Algorithm 90

Lemma 10 Tree contraction of a tree of D(1;m) graphs with isolated internal tree nodes

correctly computes a shortest path from (0; 0) to (1; n) in D0
n.

Proof: The proof is by induction on the tree node depth, where a leaf is of depth 1.

The case where the depth d = 1 is trivial, so consider when the depth is d = 2.

Without loss say the canonical tree of depth 2 has nodes (i; j); (j + 1; k); and (i; k),

(see the subgraph D(i; k) in Figure 24). Now by Corollary 5 and since wi; wj+1; and

wk+1 are the three smallest weights in the list wi; : : : ; wk+1 it must be that (i; j) or

(j + 1; k) is in a shortest path from (0; 0) to (i; k). Thus, the prune operation above

processes this properly.

Suppose the prune operation is correct for all trees Td of depth d, and take the

tree Td+1 of depth d + 1. Without loss, say Td+1 contains two subtrees of depth d

and the root of Td+1 is (i; k). In addition, if the two depth d subtrees of Td+1 have

roots (i; j) and (j + 1; k), then by the properties of critical nodes, we know that

the three smallest weights in wi; : : : ; wk+1 are wi; wj+1; and wk+1. Without loss, say

wk+1 < wi < wj+1, which by Corollary 5 tree node (i; j) must be in a shortest path

from (0; 0) to (i; k).

By the inductive hypothesis, if all the subtrees rooted at (i; j) and (j + 1; k)

have been pruned, then there is a shortest path from (0; 0) to (i; j) and another

to (j + 1; k). Pruning leaf (j + 1; k) �nds all critical nodes that are in each of the

two subtrees rooted at (i; j) and (j + 1; k). The pruning operation is just an edge

minimization to see which combinations of critical nodes may from a shortest path

form (0; 0) to (i; k). 2

The tree pruning of Lemma 10 takes O(lg2 n) time using n=lgn processors follow-

ing standard tree contraction techniques. Either Corollary 5 gives the leaf pruning

ordering, or they can be pruned arbitrarily where we would choose an ordering like

the one given by the Euler tour technique.

An ~O(n3)-Work Polylog-Time Algorithm 91

Lemma 11 Given two nested canonical graphs D
(i;v)
(j;u) and D

(k;t)
(r;s) , where j � k < t �

u, with no such canonical subgraph between them, we can join them with one merge

operation.

A proof of this follows the proof of Lemma 10 in a straightforward manner.

Assume that the shortest paths in all canonical subgraphs are computed �rst at

a cost of O(lg2 n) time and n3=lgn processors. Independently, compute the shortest

paths of all of these canonical subgraphs. Then the pruning algorithm takes O(lg2 n)

time using n3=lgn processors.

Now considering Lemmas 11 and 10 we can solve the MCOP by performing tree

contraction with the prune operation.

Analyzing this algorithm gives the following theorem.

Theorem 24 We can solve the MCOP in O(lg3 n) time using n3=lgn processors.

This algorithm uses O(n) nodes in a Dn graph to solve the MCOP. Thus we can

solve the MCOP by using only O(n) elements of a classical dynamic programming

table.

Theorem 24 also applies to the optimal convex triangulation problem with the

standard triangle cost metrics (Cormen et al., 1990; Hu and Shing, 1982).

7.4 Historical Notes

The algorithm outlined here is basically from (Bradford, 1992). An extended abstract

was published in (Bradford, 1992a) and the full version is in (Bradford, 1992b). The

full version was available and circulated since May of 1992. Other parallel algorithms

for the MCOP with better work were also reported in: (Czumaj, 1993; Ramanan,

1992; Ramanan, 1993; Bradford et al., 1992).

An ~O(n3)-Work Polylog-Time Algorithm 92

The model used in this chapter is important for the study of e�cient parallel

algorithms for the MCOP and other problems. Furthermore, it is nice to have a

re-characterization of Hu and Shing's work on the MCOP.

Chapter 8

An O(lg2 n) Time and n Processor

Algorithm

This chapter contains an O(lg2 n) time algorithm for solving the matrix chain ordering

problem that uses n processors on either the common-CRCW PRAM or an EREW

PRAM. This algorithm can be adapted to take O(lg3 n) time and use n=lgn proces-

sors on either of these models. The best algorithms in this chapter have processor-time

products of O(n lg2 n) just a lgn factor from the work of the sequential algorithm of

Hu and Shing. Further, our algorithms will have processor-time products of O(n lgn)

if an algorithm is discovered that has takes O(lgn) time and n=lgn processors for

�nding the row minima of totally monotone matrices.

This chapter starts by isolating the n3=lgn processor bottlenecks of the O(lg2 n)

time and ~O(n3) work algorithm from the last chapter. The �rst key insight of this

chapter is that a carefully constructed inductive invariant allows the replacement of

the brute force all-pairs shortest paths algorithm by successive applications of parallel

partial pre�x and binary search algorithms. This blasts the process complexity from

n3=lgn down to n=lgn or n=lg lgn, or even n depending on the desired time com-

plexity. The algorithms with these processor complexities have O(n lg3 n) total work.

93

An O(lg2 n) Time and n Processor Algorithm 94

The next central insight is that both the time and work can be improved by using

e�cient parallel algorithms for computing row minima of totally monotone matrices.

8.1 The n3=lg n Processor Bottlenecks

This section gives the n3=lgn processor bottlenecks of the main algorithm in Chap-

ter 7.

Three parts of the algorithm in Chapter 7 use n3=lgn processors. All other parts

of this algorithm use a total of n=lgn processors and take O(lgn) time. The three

bottlenecks are: Finding shortest paths from all critical nodes in leaf graphs back to

(0; 0), see Figure 26a. Merging two bands, see Figure 26b, and merging two bands

that have contracted canonical trees between them, see Figure 26c.

In Figure 26c, contracted trees A and B are used to edge minimize the unit

paths marked by \Min-A" and \Min-B." Edge minimizing the unit paths in the

outer band with the contracted trees gives an instance of the second bottleneck, see

Figure 26b. Edge minimizing the unit paths in the outer band with the contracted

trees costs O(lgn) time with n2=lgn processors. Section 8.5 shows how to perform

such edge minimization in O(lg2 n) time with n=lgn processors.

Finding shortest paths back to (0; 0) from all critical nodes in a leaf graph, as

in Figure 26a, is done by breaking it into nested bands. Therefore, �nding e�cient

parallel methods of band merging and edge minimization gives an e�cient parallel

algorithm for the MCOP. So, �nding e�cient ways to get shortest paths from all

critical nodes back to (0; 0) by edge minimization in leaf subgraphs partitioned as

bands is the focus of the rest of this chapter.

Given the band D
(i;v)
(j;t) , let p

(i;v)
(j;t) denote a shortest path from (i; v) back to (0; 0)

totally contained in D
(i;v)
(j;t) , see Figure 27. When there is no ambiguity, p

(i;v)
(j;t) will be

written as p.

An O(lg2 n) Time and n Processor Algorithm 95

a) b) c)

A

B

Min−A M
in−

A
Min−B

M
in−

B

Figure 26: Bottlenecks 1, 2, and 3 for the n3=lgn Processor Algorithm

Given a band D
(i;v)
(j;t) , whenever p = p

(i;v)
(j;t) starts from the front critical node of the

band, then the nodes V [p] are super-critical nodes.

Take the minimal path back from the front critical node in Figure 27, only the two

black critical nodes are super-critical nodes. Super-critical nodes of a band are all of

the critical nodes in some minimal path from the front critical node back to (0; 0).

Any two super-critical nodes in p are connected by super-critical nodes interspersed

with angular paths by Theorem 18.

When a canonical tree of Dn is totally contracted then the �nal path p from (1; n)

back to (0; 0) gives the optimal order to multiply the set of n matrices. In addition,

the cost of p is the minimal cost of multiplying the given chain of n matrices.

8.2 A Metric for Minimal Cost Angular Paths

This section gives a metric for �nding a minimal cost angular paths by using the

equivalence of angular paths and jumpers along unit paths. This equivalence comes

directly from Theorem 2.

When merging two bands, a unit path has at most one jumper minimizing it

since all of the relevant jumpers are nested. These jumpers get their sp values from

super-critical nodes of the inner band.

The in
uence of an angular edge can be taken as a jumper in a straight unit path

An O(lg2 n) Time and n Processor Algorithm 96

(0,0)

Figure 27: The Dashed Path IS p and the Two Black Nodes Are Super-Critical Nodes

by Theorem 2. In the case of Figure 26c, any unit edge minimization using sp values

from A or B is independent of unit edge minimization using sp values from the inner

band. Therefore, measuring the potential contribution of angular edges to straight

unit shortest paths is done by measuring the potential contribution of jumpers to

shortest paths along straight unit paths.

Take a node (s; t) 2 V [p], where sp(s; t) is the cost of a shortest path back to (0; 0),
with respect to a band, then in row i we want to compare the cost of the jumper

(i; s� 1) =) (i; t) with the cost of the associated unit path (i; s� 1)! � � � ! (i; t).

Given (s; t) 2 V [p], take row i above p with the jumper (i; s� 1) =) (i; t), de�ne

�i(s; t) = wikws : wt+1k � [sp(s; t) + f(i; s� 1; t)]:

If �i(s; t) > 0, then the jumper (i; s�1) =) (i; t) provides a cheaper path along row i

than the unit path (i; s� 1)! � � � ! (i; t). In particular, take both (s; t) 2 V [p] and

An O(lg2 n) Time and n Processor Algorithm 97

(x; y) 2 V [p], and the two possible jumper nestings of Figure 28.

(i,x−1)

(i,y)

(i,s−1)

(i,t)

(i,y)

(i,x−1)

(i,t)

(i,s−1)

a)

b)

Figure 28: Two Di�erent Nestings of Two Jumpers

For the nesting of jumpers of Figure 28a, if �i(s; t) > �i(x; y) > 0, then the

jumper (i; s � 1) =) (i; t) \saves more" than the jumper (i; x � 1) =) (i; y) along

row i because (i; s�1) =) (i; t) doesn't have to deal with the paths (i; s�1)! � � � !
(i; x� 1) and (i; y)! � � � ! (i; t) as well as �i(s; t) > �i(x; y) > 0. Similarly, for the

nesting of Figure 28b, if �i(x; y) > �i(s; t) > 0, then the jumper (i; x� 1) =) (i; y)

\saves more" than the jumper (i; s � 1) =) (i; t) along row i. Notice, in nesting of

Figure 28b, if �i(s; t) > �i(x; y) > 0, then the jumper (i; s � 1) =) (i; t) may or

may not make row i cheaper than the jumper (i; x� 1) =) (i; y). But on the other

hand, for Figure 28b, if (i; s � 1) =) (i; t) makes row i cheaper than the jumper

(i; x� 1) =) (i; y) does, then �i(s; t) > �i(x; y) > 0.

In D(1;m), if (s; t) 2 V [p], then above the path of critical nodes p, the function

�i(s; t) is de�ned for all rows i such that s > i � 1.

Edge minimizing a unit paths is only half of the game, since we must also consider

the shortest paths forward.

Figure 29 is for the next theorem, see also (Hu and Shing, 1982).

Theorem 25 Given a leaf graph D(i;v)
(r;s) and any two critical nodes (j; u) and (k; t) in

D
(i;v)
(r;s) such that there is a unit path from (k; t) to (j; u), then a shortest path from (j; u)

to (i; v) costs less than a shortest path from (k; t) to (i; v).

An O(lg2 n) Time and n Processor Algorithm 98

(i,v)

(j,u)

(k,t)

Figure 29: (j; u) Shadowing (k; t)'s Shortest Path Forward

A proof follows inductively by shadowing trivial angular paths without any jumpers

then showing that any shortest path from (k; t) forward to (i; v) can be shadowed by

a shorter path from (j; u) forward to (i; v) then taking into account the f values. See

Figure 29. Theorem 25 also holds for shortest paths forward in leaf graphs.

The next theorem will also be useful.

Theorem 26 Say (i; s�1) =) (i; t) is in a shortest path forward, and in the next band

merging the value of sp(s; t) decreases due to an edge minimization of row s or a lower

row, then (i; s� 1) =) (i; t) is still in a shortest path forward.

A proof of this theorem follows directly from the basic notions of shortest paths.

In particular, if the shortest path forward from the critical node (s; t) goes through

(s; t) * (i; t), then making the path to (s; t) shorter will not e�ect the jumper (s; t) *
(i; t) or the path from (i; t) to the front node of the present band.

An O(lg2 n) Time and n Processor Algorithm 99

8.3 A Polylog-Time and n2=lg n Processor MCOP

Algorithm

This section contains an O(lg2 n) time and n2=lgn processor algorithm for the MCOP.

This algorithmworks by using a key induction invariant that allows recursive doubling

techniques to break through the bottlenecks given in the last section.

The basic idea of the algorithm is the following. All critical nodes know their

shortest paths to the front of the present bands they are in. Only super-critical nodes

have their shortest paths back to (0; 0) thorough their present bands. When merging

two bands, by Theorem 21, we only have to consider shortest paths from super-critical

nodes in the inner band to any critical node in the outer band. Therefore, all critical

nodes must maintain a shortest path to the front of the band they are in. At the

same time, all super-critical nodes must maintain a shortest path backwards to (0; 0)

through the band they are in. This section supplies the details and correctness of this

algorithm.

Each critical node in Dn has two pointers called front-ptr and back-ptr that rep-

resent angular edges. Back-ptr-s are only used by super-critical nodes. With each

front-ptr there are two values, cost-of-front-ptr and cost-to-front; and with each back-

ptr there is one value cost-to-back. Cost-of-front-ptr is the cost of the single angular

edge going forward from the present node to the front critical node in the present

band. Where, the value of cost-to-front is the cost to the front critical node of the

present band containing front-ptr. Similarly, the value of cost-to-back is the cost from

the super-critical node at hand back to (0; 0) through the present band. Initially,

these pointers connect critical nodes and tree edges in the canonical tree.

Let D
(i;v)
(j;t) and D

(j;t)
(k;s) be nested bands with paths of critical nodes labeled p

(i;v)
(j;t) and

p
(j;t)
(k;s), respectively. Note (i; v) and (j; t) are the front critical nodes of these bands. As

before, p
(i;v)
(j;t) and p

(j;t)
(k;s) are shortest paths from the front critical nodes back to (0; 0)

An O(lg2 n) Time and n Processor Algorithm 100

through the bands D
(i;v)
(j;t) and D

(j;t)
(k;s), respectively. Let p

(i;v)
(j;t) and p

(j;t)
(k;s) be made by two

linked lists of back-ptr-s along super-critical nodes back to (0; 0) in their bands. It

turns out that the shortest paths forward from all critical nodes in each of these bands

are made up of linked lists of trees of front-ptr-s. We will see that this linked list of

trees of front-ptr-s is interconnected through the super-critical nodes as in Figure 31.

1. All critical nodes in both bands have their front-ptr-s in trees of
shortest paths that eventually go to super-critical nodes which go to the
front critical nodes of their respective bands.

2. In the two bands both shortest paths back to (0; 0) of super-critical nodes
are known. These shortest paths of super-critical nodes are made of linked
lists of back-ptr-s from the front critical nodes of each band back through
their respective bands to (0; 0).

Figure 30: An Inductive Invariant for Band Merging

Figure 30 gives the induction invariant for merging two bands. Figure 31 gives an

example of the data structures for maintaining the inductive invariant. In this �gure

only critical nodes are shown and the super-critical nodes are black. The solid arrows

are front-ptr-s and the dashed arrows are back-ptr-s.

Suppose (s; t) is a critical node but not a super-critical node, that is (s; t) 2 V [p]
and (s; t) 62 V [p]. There is a unique angular edge

(x; y) * (r; y)! � � � ! (r; u)

in p that \goes around" (s; t), see Figure 32. Given a canonical graph and take all

rows above p then wi < wr implies that row i is \above" row r as in Figure 32. From

here on the focus is on �nding shortest paths above the path p of critical nodes, the

An O(lg2 n) Time and n Processor Algorithm 101

Outer Band

Inner Band

Figure 31: Solid Arrows: Forward Linked Lists of Trees; Dashed Arrows: Backward Linked
Lists p

symmetric case of shortest paths below the path p of critical nodes follows.

If all unit paths in D
(i;v)
(j;k) are edge minimized with jumpers that get their sp values

from super-critical nodes in D
(j;k)
(s;t) , then we can �nd the shortest path from (i; v) back

to (0; 0) through D
(i;v)
(s;t) . First take one processor at each critical node in D

(i;v)
(j;k) that

sums the cost of the path back to (0; 0) possibly through an edge minimized unit

path with the cost of its shortest path forward. Next, �nd the minimal of all of these

sums, giving the shortest path from (i; v) back to (0; 0) through D
(j;k)
(s;t) .

The basic intuition for the next lemma is if the shorter of two nested jumpers edge

minimizes a unit path r, then any unit path above r with both of these jumpers is

not minimized by the longer jumper, see Figure 33. Assume there is a unit path of

critical nodes from (x; y) to (s; t) to (r; u) as in Figure 32 for the next lemma.

Lemma 12 Given a critical node (s; t) between the super-critical node (x; y) and critical

An O(lg2 n) Time and n Processor Algorithm 102

(s,t)

(x,y)

(r,u)(r,y)

(i,y) (i,u)

Figure 32: (s; t) 62 V [p] and the Angular Edge (x; y) * (r; y)! � � � ! (r; u)

node (r; u) and say i < r < s < x and row i is above row r, that is wi < wr, where rows

i and r are above p then

if �r(x; y) � �r(s; t), then �i(x; y) � �i(s; t)

Proof: Start with �r(x; y) � �r(s; t) which gives that,

wrkwx : wy+1k � [sp(x; y) + f(r; x� 1; y)]

is larger than or equal to

wrkws : wt+1k � [sp(s; t) + f(r; s� 1; t)]

and a little algebra gives the following (where kwi : wik = 0),

wr[kws : wxk+ kwy+1 : wt+1k] < sp(s; t)� sp(x; y) + wr(wswt+1 � wxwy+1)

and sp(s; t)� sp(x; y) is always positive because (r; x� 1) =) (r; y) is nested inside

of (r; s � 1) =) (r; t) and f(r; s � 1; t) < f(r; x � 1; y). Therefore, if sp(x; y) >

sp(s; t), then a shortest path p would go through (s; t) to (r; u) and not over (s; t).

An O(lg2 n) Time and n Processor Algorithm 103

In particular if sp(x; y) > sp(s; t), then since f(r; x� 1; t) > f(r; s� 1; t), it must be

that sp(x; y) + f(r; x � 1; t) > sp(s; t) + f(r; s � 1; t). Therefore row r would have

been edge minimized by jumper (r; s � 1) =) (r; t) and not by (r; x � 1) =) (r; y),

see Figure 33.

Row r

Row i
x-1

x-1

y

y

s-1

s-1

t

t

Figure 33: Two Jumpers in Di�erent Rows

In addition, wswt+1 � wxwy+1 < 0 since both (x; y) and (s; t) are critical nodes

where s � x < y � t, so it must be that wxwy+1 � wswt+1 > 0. Therefore, since

wr[kws : wxk+ kwy+1 : wt+1k+ wxwy+1 � wswt+1] < sp(s; t)� sp(x; y)

holds and because wi < wr and the term sp(s; t)� sp(x; y) is independent of i and r

then it must be that �i(x; y) � �i(s; t). 2

The next theorem follows from Lemma 12.

Theorem 27 Given a critical node (s; t) between the super-critical node (x; y) and

critical node (r; u) and say i < r < s < x and row i is above row r, that is wi < wr,

where rows i and r are above p then

if (r; x� 1) =) (r; y) makes row r cheaper than (r; s� 1) =) (r; t) does,

then (i; x� 1) =) (i; y) makes row i cheaper than (i; s� 1) =) (i; t) does.

A proof follows from Lemma 12 and by the fact that the rows

(i; s� 1)! � � � ! (i; x� 1) and (i; y)! � � � ! (i; t)

An O(lg2 n) Time and n Processor Algorithm 104

are cheaper than

(r; s� 1)! � � � ! (r; x� 1) and (r; y)! � � � ! (r; t)

and the change in f values between (r; x � 1) =) (r; y) and (i; x � 1) =) (i; y) is

greater than the change of f values between (r; s�1) =) (r; t) and (i; s�1) =) (i; t).

That is,

f(r; x� 1; y)� f(i; x� 1; y) > f(r; s� 1; t)� f(i; s� 1; t)

since wx and wy+1 are both bigger than ws and wt+1, in addition wr > wi therefore,

(wr � wi)[wxwy+1 � wswt+1] > 0:

Given two nested bands with paths of critical nodes pi for the inner band and po

for the outer band. Where, pi and po are shortest paths from the front critical nodes

back to (0; 0) in each of these bands. Suppose (s; t) is between (x; y) and (r; u) and

(s; t) 2 V [pi] and if (x; y) 2 V [pi] and (r; u) 2 V [po], then Lemma 12 and Theorem 27

also hold. This is because sp(s; t)�sp(x; y) is positive by an argument similar to that
in the proof of Lemma 12.

Inner Band

Outer Band

Figure 34: Con
icting Angular Paths Between Two Bands Being Merged

An O(lg2 n) Time and n Processor Algorithm 105

Two angular edges above p, say

(x; y) * (r; y)! � � � ! (r; u)

and

(i; j) * (s; j)! � � � ! (s; t);

are compatible if they don't cross each other. Compatibility also holds for angular

paths below p. Theorem 28 shows that when merging two bands and computing short-

est paths forward, only compatible angular edges need to be considered. Figure 34

shows two con
icting angular paths.

Take the canonical graphs D
(a;z)
(c;x) , D

(d;v)
(e;u), and D(g;t), where D(g;t) is nested inside

of D
(d;v)
(e;u) which is, in turn, inside of D

(a;z)
(c;x) , see Figure 35. And assume that D

(a;z)
(c;x) and

D
(d;v)
(e;u) are to be merged together then in the next recursive doubling step the new

band D
(a;z)
(e;u) will be merged with the leaf D(g;t). We can assume D(g;t) is a leaf or a

band.

(a,z)(a,v)

(d,v)

(b,y)(b,u)

(e,u)

(g,t)

(c,x)

D(c,x)
(a,z)

D(g,t)

D(e,u)
(d,v)

Figure 35: The Bands D
(a;z)
(c;x) , D

(d;v)
(e;u) and the Leaf D(g;t)

An O(lg2 n) Time and n Processor Algorithm 106

The next theorem assumes we have found a shortest path from super-critical nodes

in D
(d;v)
(e;u), through critical nodes in the outer band D

(a;z)
(c;x) , see Figure 35. Of course,

(d; v) 2 V [p(d;v)(e;u)] and without loss assume

(e; u) * (d; u)! � � � ! (d; v)

is in p(d;v)(e;u). Suppose the angular edge

(e; u) * (b; u)! � � � ! (b; y)

is in p(a;z)(e;u), that is the minimal path from (a; z) back to (0; 0) through D(a;z)
(e;u).

Theorem 28 In merging two nested bands computing shortest paths forward from super-

critical nodes of the inner band, we can consider only compatibly nested angular edges.

Proof: Suppose for the sake of a contradiction,

(e; u) * (b; u)! � � � ! (b; y)

is in p
(a;z)
(e;u), that is the angular edge

(e; u) * (b; u)! � � � ! (b; y)

is in a shortest path from (a; z) back to (0; 0) through D
(a;z)
(e;u), see Figure 35. Take

(d; v) in the band D
(d;v)
(e;u), therefore (d; v) is between (e; u) and (a; z) in D

(a;z)
(e;u). Now,

when merging D(g;t) with D
(a;z)
(e;u) we will show that a shortest path forward to (a; z)

that goes through (d; v) must go through a critical node in row b or a critical node in

some row below b.

An O(lg2 n) Time and n Processor Algorithm 107

Now assume otherwise, say after merging D
(a;z)
(c;x) with D

(d;v)
(e;u) there is some shortest

path from (0; 0) through (d; v) to (a; z) traveling through an angular path connecting

the bands D
(a;z)
(c;x) and D

(d;v)
(e;u) and this angular path is con
icting with the angular path

(e; u) * (b; u)! � � � ! (b; y):

Say, without loss, this con
icting angular path is

(d; v) * (a; v)! � � � ! (a; z);

see Figure 35. These are con
icting angular paths since the shortest path from (d; v)

forward goes through an angular path that terminates above row b, and the shortest

path forward from (e; u) goes through an angular path that terminates in row b. But,

in D
(a;z)
(e;u) the shortest path from (a; z) back to (0; 0) still goes through the angular

edge

(e; u) * (b; u)! � � � ! (b; y):

In D
(a;z)
(e;u) the angular edge

(d; v) * (a; v)! � � � ! (a; z)

can't be the shortest path forward from (d; v).

By Theorem 2, the shortest path to (b; y) through the angular edge

(e; u) * (b; u)! � � � ! (b; y)

is equivalent to the path

(b; b)! � � � ! (b; e� 1) =) (b; u)! � � � ! (b; y):

An O(lg2 n) Time and n Processor Algorithm 108

And since p
(a;z)
(e;u) goes through

(e; u) * (b; u)! � � � ! (b; y);

the jumper (b; e � 1) =) (b; u) edge minimizes row b. Thus, the jumper (b; d �
1) =) (b; v) saves at most as much as (b; e � 1) =) (b; u) and at the same time

(b; d� 1) =) (b; v) is nested around (b; e� 1) =) (b; u) which means

�b(e; u) � �b(d; v):

Also, by Theorem 2, the shortest path from (d; v) to (a; z) that is through the angular

edge

(d; v) * (a; v)! � � � ! (a; z)

is equivalent to the path

(a; a)! � � � ! (a; d� 1) =) (a; v)! � � � ! (a; z)

But, consider the path,

(a; a)! � � � ! (a; e� 1) =) (a; u)! � � � ! (a; z)

and it must be that (a; e � 1) =) (a; u) is nested inside of (a; d � 1) =) (a; v). In

this case, it is possible that d = e or u = v but not both.

Since (d; v) is between (e; u) and (b; y) and a < b and wa < wb where row a is above

row b and they both are above p, and since the appropriate � values are de�ned, the

following holds by Lemma 12,

if �b(e; u) � �b(d; v), then �a(e; u) � �a(d; v).

An O(lg2 n) Time and n Processor Algorithm 109

Therefore,

�a(e; u) � �a(d; v)

which means the jumper (a; e � 1) =) (a; u) saves at least as much as the jumper

(a; d� 1) =) (a; v) in a path to (a; z).

And because (b; e � 1) =) (b; u) edge minimizes row b, by Theorem 27 and

since �a(e; u) � �a(d; v) the jumper (a; e � 1) =) (a; u) saves more in row a than

(a; d� 1) =) (a; v).

Now, letting

A = (a; a)! � � � ! (a; e� 1) =) (a; u)! � � � ! (a; v)

D = (d; d)! � � � ! (d; e� 1) =) (d; u)! � � � ! (d; v) * (a; v)

see Figure 36.

(a,a) (a,v)

(d,v)

(a,z)(a,e −1) (a,u)

(d,d) (d,e−1) (d,u)

Figure 36: The Two Paths A and D

Path A is a cheaper than path D going from (a; z) back to (0; 0) in D
(a;z)
(e;u) by

Theorem 27. Now, if (d; v) * (a; v) is in a shortest path forward from (d; v), then the

shortest path forward from (e; u) must be through the angular path

(e; u) * (a; u)! � � � ! (a; z)

An O(lg2 n) Time and n Processor Algorithm 110

and not the angular path

(e; u) * (b; u)! � � � ! (b; y)

which is a contradiction. This comes from the application of Theorem 27 to the

jumpers (b; d � 1) =) (b; v) and (b; e � 1) =) (b; u) in row b and then up to row a,

since (b; y) is between (d; v) and (a; z).

Now, suppose D(g;t) is merged with the outer band D
(a;z)
(e;u) then none of the angular

paths connecting super-critical nodes in D(g;t) with paths forward D
(a;z)
(e;u) change. This

case is a straightforward application of the proof above and Theorem 26. 2

It is important to note that Theorem 28 only shows that angular paths that

all start from super-critical nodes in the same path back to (0; 0) are compatible.

Theorem 28 doesn't say that all angular paths are always compatible.

Suppose, there is some angular path from a super-critical node in the inner band,

say (s; t), to the outer band that is in a shortest path from the front node of the

outer band back to (0; 0). Then all super-critical nodes from (s; t) back to (0; 0)

have their shortest paths forward through the angular path starting at (s; t). On the

other hand, all super-critical nodes after (s; t) up to the front super-critical node of

the inner band have their shortest paths through nested angular paths connecting

the inner and outer bands by Theorem 28. In fact, we can inductively apply this

argument together with Theorem 25 giving:

Corollary 6 Take the nested angular paths connecting two bands that are shortest

paths forward from the di�erent super-critical nodes of the inner band, then listing the

path containing the outermost such angular path to the path containing the innermost

such angular path gives more and more costly paths forward.

The next lemma assumes we are merging two nested bands to �nd a shortest path

from the front critical node of the outer band back to (0; 0).

An O(lg2 n) Time and n Processor Algorithm 111

Lemma 13 Given a critical node (s; t) and take the ith and rth rows above p such that

i < r < s and wi < wr, then we have �i(s; t) < �r(s; t).

Proof: The function �i(s; t) measures (i; s�1) =) (i; t)'s potential minimizing e�ect

on the path (i; i) ! � � � ! (i; u) where (i; u) 2 V [p] and i < s < t � u. The cost

of the jumper (i; s � 1) =) (i; t) is sp(s; t) + f(i; s� 1; t). Therefore, the di�erence

�i+1(s; t)��i(s; t) is,

(wi+1 � wi)[kws : wt+1k � wswt+1]

where wi+1 > wi. Since the expression kws : wt+1k � wswt+1 is independent of the

di�erence of weights wi and wi+1 and kws : wt+1k�wswt+1 > 0, because (s; t) 2 V [p],
also when s = t� 1 gives

kws : wt+1k = wsws+1 + ws+1wt+1:

In addition, since (s; t) 2 V [p], it must be that maxfws; wt+1g < wu, for s < u � t,

thus maxfws; wt+1g < ws+1. Therefore,

wsws+1 + ws+1wt+1 > wswt+1

and the proof follows inductively. 2

The proof of the next lemma is similar to that of Lemma 12. The basic intuition

here is that if the longer of two nested jumpers edge minimizes a unit path r, then

any unit path below r, with both of these jumpers, is not minimized by the shorter

jumper, see Figure 37.

This next lemma only considers super-critical nodes since the focus here is on

merging two nested bands. Assume there is a unit path of critical nodes from (v; z)

to (x; y) for the next lemma.

An O(lg2 n) Time and n Processor Algorithm 112

Lemma 14 Given two super-critical nodes (v; z) and (x; y) where r < s < x < v and

wr < ws such that rows s and r are above p, then we have

if �r(x; y) � �r(v; z), then �s(x; y) � �s(v; z)

Proof: Start with �r(x; y) � �r(v; z) which can be written out as the next expres-

sion,

wrkwx : wy+1k � [sp(x; y) + f(r; x� 1; y)]

which is greater than or equal to

wrkwv : wz+1k � [sp(v; z) + f(r; v � 1; z)]:

By Lemma 13 and since each of these jumpers is of length at least 2 it must be that

wrwvwz+1 < wrkwv : wz+1k and wrwxwy+1 < wrkwx : wy+1k. In addition, since wr <

ws it must be that f(r; x� 1; y) < f(r; v � 1; z) and wrkwx : wy+1k > wrkwv : wz+1k
and the same holds in row s, therefore �s(x; y) � �s(v; z). 2

Row r
x−1

x−1

y

y
Row s

v−1

v−1

z

z

Figure 37: Two Jumpers in Di�erent Rows

Theorem 29 Given two super-critical nodes (v; z) and (x; y) where r < s < x < v and

wr < ws such that rows s and r are above p, then we have

if (r; x� 1) =) (r; y) makes row r cheaper than (r; v � 1) =) (r; z) does,

then (s; x� 1) =) (s; y) makes row s cheaper than (s; v � 1) =) (s; z) does.

An O(lg2 n) Time and n Processor Algorithm 113

A proof of this theorem follows from Lemma 14 and the fact that the change of the f

values between (r; v � 1) =) (r; z) and (s; v � 1) =) (s; z) increases faster than the

change in the f values between (r; x� 1) =) (r; y) and (s; x� 1) =) (s; y).

While merging D
(i;v)
(j;t) and D

(j;t)
(k;s) to form p

(i;v)
(k;s) the next lemma shows that we only

need shortest path values backwards to (0; 0) from super-critical nodes. That is, we

don't need shortest path values backwards to (0; 0) from any other critical nodes.

Hence, the back-ptrs will form a linked list between super-critical nodes backwards

eventually to (0; 0) and we can compute the cost-to-back weights using a parallel

pointer jumping partial pre�x.

Lemma 15 Take p
(i;v)
(j;t) and p

(j;t)
(k;s) in D

(i;v)
(j;t) and D

(j;t)
(k;s) respectively, for any critical nodes

in the outer band, say (u; z) 2 V [p(i;v)(j;t)] and (u; z) 62 V [p
(i;v)
(k;s)], we don't need shortest

paths back to (0; 0).

Proof: Take the angular path (x; y) * (q; y)! � � � ! (u; z) between D
(j;t)
(k;s) and D

(i;v)
(j;t) .

That is (x; y) 2 V [p
(j;t)
(k;s)] and (u; z) 2 V [p

(i;v)
(j;t)] but suppose, (u; z) 62 V [p

(i;v)
(k;s)]. Notice

that (u; z) may be a super-critical node in p
(i;v)
(j;t) .

Take the next cases,

Case i: Suppose D
(i;v)
(k;s) is merged with another band nested around it. Then

since (u; z) is not in V [p(i;v)(k;s)] by Theorem 21 we do not have to consider

any angular paths starting from (u; z) going forward to critical nodes in

the band nested around D
(i;v)
(k;s).

Case ii: Suppose D
(i;v)
(k;s) is merged with a smaller band inside D(k; s).

Node (u; z) could be the terminal node of an incoming angular path

contributing to a shortest path forward for some super-critical node in

D(k; s). In this case (u; z) needs to have a shortest path from (u; z) for-

ward. Of course, in this case (u; z) could become a super-critical node

An O(lg2 n) Time and n Processor Algorithm 114

and would have a minimal path back to (0; 0), but while the critical node

(u; z) is not a super-critical node it has no need of a shortest path back

to (0; 0).

These cases complete the proof. 2

A shortest path forward must be found for each critical node. This is because

some angular path from some future inner band may terminate at any critical node.

Therefore, after �nding each super-critical node's minimal cost to the front critical

node of the outer band then do a tree partial pre�x sum from the critical nodes to

the super-critical nodes. This allows all critical nodes to know their shortest paths

to the front of the outer band.

Suppose recursive doubling generates the band D
(i;v)
(j;t) and there is a shortest path

p(i;v)(j;t) from (i; v) back to (0; 0). The next theorem shows inductively how to build

the appropriate data structures to maintain the inductive invariant through recursive

doubling.

Theorem 30 After merging any two nested bands the front pointers of the new band

form a tree and the back pointers of the new band form a linked list.

There is a proof by induction based on Theorem 28.

Theorem 30 shows the inductive invariant holds given the appropriate data struc-

tures and computations.

8.4 Merging Bands Using n2=lg n Processors

This section shows how to merge two bands using n2=lgn processors in O(lgn) time.

This algorithm also merges two optimally triangulated convex polygons when all of

the weights of one polygon are heavier than all of the weights of the other.

An O(lg2 n) Time and n Processor Algorithm 115

Recursively doubling the band merging algorithm while using the proper data

structures and appropriate tree contracting gives the n2=lgn processor and O(lg3 n)

time MCOP algorithm.

Take two adjacent nested bands, say D
(i;v)
(j;t) nested around D

(j;t)
(k;s), such that for each

band individually the inductive invariant holds.

1. for all super-critical nodes (x; y) 2 V [p(j;t)(k;s)] in parallel do

for all angular edges from (x; y) to all (u; z) 2 V [p(i;v)(j;t)] in parallel do

Find the angular edge between the bands that gives a shortest path
from (x; y) all the way to (i; v), compute the cost-of-front-ptr-s
for these new edges let each super-critical node (x; y) have a pointer

to a shortest path through p
(i;v)
(j;t) to (i; v).

For the super-critical nodes in p
(j;t)
(k;s) put the

angular edge that gives them a shortest path forward to (i; v) in M .
2. for all angular edges in M in parallel do

Find the shortest path N from (i; v) back to (0; 0) through D
(i;v)
(k;s).

for all critical nodes in the path N in parallel do
Using pointer jumping build the back-ptr-s giving any new super-critical nodes
and compute the values of cost-to-back for each new super-critical node.

3. for all non-super-critical nodes in p
(j;t)
(k;s) in parallel do

Using pointer jumping expand the tree of front-ptr-s through the new angular
edges in M and their minimal values to (i; v). This gives trees joined by
a linked list through the super-critical nodes.
With this list �nd the shortest path to (i; v) for all non-super-critical

nodes in p
(j;t)
(k;s) by computing a partial pre�x in a rooted tree.

Also compute all of the new cost-to-front values using a parallel partial pre�x.

Figure 38: A O(lgn) Time and n2=lgn Processor Algorithm for Merging Two Bands

The algorithm in Figure 38 merges two bands in O(lgn) time using n2=lgn pro-

cessors. Adding the cost of recursive doubling and tree contraction gives a factor of

O(lg2 n) time to the entire algorithm making the total cost for solving the MCOP

O(lg3 n) time using n2=lgn processors.

An O(lg2 n) Time and n Processor Algorithm 116

The two for loops in step 1 of the algorithm in Figure 38 perform the edge mini-

mizing. This is the only part of this algorithm that uses n2=lgn processors. In O(lgn)

time using n2=lgn processors we can edge minimizing unit paths with contracted trees

such as those depicted in the bottleneck of Figure 26c.

The for loops in step 2 compute the super-critical nodes of the band that is being

merged. Step 3 computes the shortest paths forward for all critical nodes in the inner

band.

The base case for the recursive doubling can be established by breaking the canon-

ical subgraphs into bands of constant width. Then for each band sequentially, let the

n=lgn processors set up the inductive invariant in O(lgn) time. Number the nested

bands consecutively according to their nestings by the Euler tour technique so the

algorithm can track adjacent bands for merging.

The correctness of the algorithm in Figure 39 comes from Theorems 26, 28, and 30.

The time complexity of solving the MCOP can be reduced to O(lg2 n) time with

n2=lgn processors by performing band merging and tree contraction basically at the

same time.

Theorem 31 Recursive doubling with band merging can be done simultaneously with

tree contraction, thereby solving the MCOP in O(lg2 n) time with n2=lgn processors.

Proof: Take any canonical tree T with non-trivial bands and leaves. Then T has at

most n � 1 critical nodes. In general, for any arithmetic expression tree with n � 1

nodes, it takes O(lgn) time to contract it. In a canonical tree we have just seen

that each contraction operation (raking) can be done in O(lgn) time using n2=lgn

processors. This is because in the worst case a leaf raking operation in a canonical tree

is the merging of two bands. Now, each band can be seen as no more than a linked

list in the canonical tree that must be contracted where there is one leaf per list node.

Now, we can just take every band that has k critical nodes and is in any canonical

An O(lg2 n) Time and n Processor Algorithm 117

tree, and we can assume that it has 2c \linked list nodes" such that 2c�1 < k � 2c.

With this, each raking operation will cost at most O(lgn) using n2=lgn processors.

In addition, by assuming k is the nearest power of two greater than or equal to k, we

are at most doubling the number of critical nodes in T , hence the asymptotic bound

claimed holds. 2

8.5 E�cient Polylog-Time MCOP Algorithms

This section contains the last details of the O(lg2 n) time and n processor MCOP

algorithm. Other variations of this algorithm are based on the di�erent complexities

of solving the ANSV problem and the row minima problem on totally monotone

matrices.

This section reduces the processor complexity of the band merging algorithm of

Section 8.3. The results in this section are based on a parallel divide-and-conquer form

of binary search which is tied into some classical problems of �nding row minima in

totally monotone matrices. Theorems 27 and 29 supply the basis for a parallel divide

and conquer binary search algorithm that �nds the jumpers that minimize each unit

path in a canonical graph.

Theorem 32 Suppose that r is the row in the outer band such that the dual of (r; x) =)
(r; y) gives a shortest path forward from the super-critical node (x � 1; y) of the inner

band to the front node of the outer band then to �nd shortest paths forward from other

super-critical nodes,

� It is su�cient to consider only larger nested jumpers in any row s below row r, that

is ws > wr,

� It is su�cient to consider only smaller nested jumpers in any row i above row r,

that is wi < wr.

An O(lg2 n) Time and n Processor Algorithm 118

A proof of this theorem comes directly from Theorems 27 and 29.

The next algorithm replaces the two nested for loops in step 1 in the algorithm

of Figure 38. This next algorithm gives shortest paths forward for all super-critical

nodes originally in the inner band and a shortest path back to (0; 0) through the two

merged bands.

Say each band has m critical nodes, the next procedure �nds shortest paths from

all super-critical nodes of the inner band to the front of the outer band. In addition,

from the shortest path information before the merging and all shortest paths to the

front of the outer band, then the shortest path back from the front node of the outer

band is easily computed. As before, begin assuming the inductive invariant. Also,

all jumpers in the next algorithm are jumpers that get their sp values from the inner

band where the jumpers themselves are in unit rows or columns of the outer band.

The following algorithm is striking similar to those discussed in (Aggarwal et al.,

1987) and (Aggarwal and Park, 1988). This key observation leads to some complexity

improvements.

Now assigning one processor to each unit path in the outer band and then summing

the cost up to the critical node and the cost from the critical node to the front super-

critical node of the outer band gives a shortest path backwards from the front node

of the outer band to (0; 0). Computing these minimal paths costs O(lgn) time using

n=lgn processors. If a unit path has no edge minimizing jumpers, then this algorithm

just �nds the shortest path forward for all super-critical nodes in the inner band.

Since, in this case, the shortest path back to (0; 0) from the front critical node of the

outer band does not go through the inner band.

The algorithm in Figure 39 also breaks through the bottleneck of Figure 26c. It

takes O(lg2 n) time and uses n=lgn processors in the worst case. Considering the cost

of the recursive doubling and the tree contraction gives the O(lg3 n) time and n=lgn

processor matrix chain ordering algorithm.

An O(lg2 n) Time and n Processor Algorithm 119

1. Find the middle super-critical node in the inner band, say (x� 1; y).

2. Using m=lgm processors and in O(lgm) time �nd a shortest path forward from
(x � 1; y) to the front of the outer band. Say this shortest path forward from
the super-critical node (x � 1; y) has an angular edge between the two bands
that terminates in row r.

3. Split the jumpers into two sets,

(a) Those smaller than or equal to (r; x) =) (r; y) call them S, they are nested
inside (r; x) =) (r; y).

(b) Those larger than or equal to (r; x) =) (r; y) call them L, they are nested
around (r; x) =) (r; y).

4. Do the following two steps in parallel:

(a) Assign jSj processors to rows r up through 1 and recursively repeat this
algorithm with the jumpers in S.

(b) Assign jLj processors to rows r down through m and recursively repeat
this procedure with the jumpers in L.

Figure 39: An O(lg2 n) Time and n= lgn Processor Band Merging Algorithm

The next corollary shows that the algorithm given here can be improved by using

e�cient algorithms for �nding the row minima in totally monotone matrices. This row

minima problem is classical and has been shown to be at the root of many important

problems, see for example (Aggarwal et al., 1987; Aggarwal and Park, 1988).

Corollary 7 Solving the row minima problem on totally monotone matrices allows us

to merge two bands.

Proof: Given two nested bands to merge, for ease of exposition take only the horizon-

tal straight unit paths of the outer band. Let each of these straight unit paths denote

the row of a matrix M . Each column of M represents the jumpers that get their sp

values from the super-critical nodes of the inner band. The �rst column represents

An O(lg2 n) Time and n Processor Algorithm 120

the e�ect of the most inner jumper, the second column represents the e�ect of the

immediate jumper containing it, etc. Similarly, several sets of independent jumpers

gives several totally monotone matrices.

By Theorem 32, M is a monotone matrix. But, any submatrix of M repre-

sents neighboring straight unit paths in the rows and neighboring jumpers along the

columns. Since Theorems 27 and 29 still hold it must be that such a submatrix is

also monotone since we can again apply Theorem 32. 2

Therefore, our algorithm is one of the many known to depend on the row min-

ima problem on a totally monotone matrix. Hence, by the results in (Aggarwal and

Park, 1988) and in (Atallah, 1991) our algorithm runs in O((lg2 n)(lg lgn)) time us-

ing n=lg lgn processors on a common-CRCW PRAM or in O(lg2 n) time using n

processors on a EREW PRAM. For the EREW PRAM algorithm note that every-

thing from pointer jumping to tree contraction the time complexity stays the same

asymptotically.

An asymptotically optimal log-time row minima algorithm for totally monotone

matrices would make the work of our MCOP algorithm the same as the work of Hu and

Shing's O(n lgn) sequential algorithm. Hu and Shing's algorithm has the best know

work for solving the MCOP to date. In this regard, (Ramanan, 1991; Ramanan,

1994) shows problems closely related to the MCOP have a
(n lgn) lower bound.

Further, (Bradford et al., 1993b; Bradford et al., 1995) give several lower bounds

for the MCOP on di�erent models of computation including a simple
(n lgn) lower

bound on the comparison based model with a constrained version of the MCOP.

Recently, (Raman and Vishkin, 1994) gave a Las Vegas (randomized) parallel

algorithm for solving the row minima problem on a totally monotone matrix that

\almost always" takes O(lgn) time using n=lgn processors. Therefore, we can solve

the MCOP with high probability in O(lg2 n) time and using n=lgn processors on an

EREW PRAM.

An O(lg2 n) Time and n Processor Algorithm 121

8.6 Historical Notes

The algorithms given in this chapter were motivated by algorithms given in (Bradford,

1992) and (Bradford, 1992a; Bradford, 1992b). The algorithms given here improve

the algorithms given by many people. In particular, both the extended abstract in

(Ramanan, 1992) and the later full version (Ramanan, 1993) give an O(lg4 n) time

and n processor CREW PRAM MCOP algorithm building directly on the work of

Hu and Shing. On the other hand, the full version (Bradford et al., 1992) (versions

circulated since the late summer of 1992) gives an O(lg4 n) time and n=lgn processor

common-CRCW PRAM MCOP algorithm using the model given in this dissertation

and originally in (Bradford, 1992).

Of course, the algorithms outlined in this chapter can run in O(lg2 n) time using

n processors or in in O(lg3 n) time using n=lgn processors on an EREW PRAM. An

extended abstract of the algorithm given in this section is in (Bradford et al., 1994)

and the full version has been submitted.

Chapter 9

Directions of Further Research

and Conclusions

This chapter contains conclusions and directions of further research. Some extensions

to the work in this dissertation have already come to fruition, see (Bradford et al.,

1993b; Bradford et al., 1995). In general, the design and analysis of parallel algorithms

has lots of open problems that make good research topics. Good parallel algorithms

for dynamic programming problems are almost always of interest too.

9.1 Future Directions

Solving dynamic programming problems in parallel is an area with great potential.

This is because dynamic programming is often used to solve optimization problems.

It is not unusual for dynamic programming problems to be solved in parallel using

dynamic graph algorithms. Dynamic graph algorithms are coming along on their own.

The work presented in this dissertation represents strides in this area, hopefully there

will be many more.

122

Directions of Further Research and Conclusions 123

9.1.1 Optimal Binary Search Trees

The development of algorithms for building optimal binary search trees in polylog

parallel time with low processor complexity is cited as an open problem in (Atallah et

al., 1989) and (Larmore, Przytycka, and Rytter, 1993). By low processor complexity

we mean nk for some constant k < 6, The best sequential algorithm for building

optimal binary search trees takes �(n2) time (Knuth, 1973).

There are e�cient parallel algorithms for building Hu�man trees, alphabetic trees

and approximate binary search trees, see (Teng, 1987; Atallah et al., 1989; Larmore

and Przytycka, 1992; Larmore, Przytycka, and Rytter, 1993). But, to date, there

have been no e�cient parallel algorithms for the construction of optimal binary search

trees.

The optimal binary search tree problem (OBST) is: Given n search keys Ki, for

1 � i � n each with an associated probability pi of being searched for all i; 1 � i � n.

Let di be the depth of node i in a tree. The problem of building an optimal binary

search tree is to build a tree so that each Ki is in a node and the tree minimizes the

cost function
nX
i=1

dipi. This is a classic problem, see for example (Aho et al., 1974;

Cormen et al., 1990).

The tree cost function
nX
i=1

dipi ensures that we are building a binary search tree

that is optimal \on average" given the access probabilities. This is given as a dynamic

programming problem in Chapter 1 and a O(lg2 n) time and n6=lgn processor solution

is given in Chapter 4.

9.1.2 Previous Results

In (Atallah et al., 1989), among other things, the authors give a nearly optimal

algorithm for building optimal alphabetic binary search trees in O(lg2 n) time and

using n2=lg2 n processors.

Directions of Further Research and Conclusions 124

Alphabetic trees are binary search trees that have their search keys only in the

leaves. There are several interesting results for the building of alphabetic trees, take

for example (Kirkpatrick and Przytycka, 1990; Larmore and Przytycka, 1992), and

(Larmore, Przytycka, and Rytter, 1993), and for alphabetic trees the best of which

is (Larmore, Przytycka, and Rytter, 1993) giving a polylog time and n2=lgn pro-

cessor algorithm. Although, the alphabetic tree construction problem can be solved

sequentially in O(n lgn).

Many of the parallel and sequential algorithms for solving problems amenable to

dynamic programming solutions depend on monotonicity properties. Early examples

of monotonicity properties used to improve sequential dynamic programming algo-

rithms can be found in (Knuth, 1971) and (Yao, 1982). Some of the techniques of

(Yao, 1982) have been made parallel by (Czumaj, 1993) for attacking the MCOP.

9.1.3 Some Comments on Solving the OBST on a Dn Graph

As we saw in Chapter 4, a Dn graph suited for solving the problem of building an

optimal binary search tree can be constructed in O(lg2 n) time using n6=lgn proces-

sors.

The central research goal is to �nd a a divide-and-conquer tool with which we

could break up the appropriate Dn graph into a tree structure. In the case of the

e�cient matrix chain ordering algorithm in this dissertation, the ANSV problem of

(Berkman et al., 1989; Berkman et al., 1993) in conjunction with some theorems by

(Hu and Shing, 1982; Hu and Shing, 1984) is used as such a tool. Unfortunately,

the MCOP is quite di�erent in character from the OBST, so it does not appear that

the ANSV problem can be used in the same manner to solve the OBST e�ciently

in parallel. But, other possibilities exist, for example in the parallel algorithm of

(Larmore, Przytycka, and Rytter, 1993) for building optimal alphabetic trees both

monotonicity and tree contraction techniques are used.

Directions of Further Research and Conclusions 125

A Dn graph adapted for solving the the OBST exhibits several interesting prop-

erties. It turns out that there are some de�nite relationships between the subgraphs

that might be useful for a tree decomposition divide-and-conquer tool. In particu-

lar, Knuth's principle (Knuth, 1971) or something close to it, may give monotonicity

conditions that lead to a good and cheap tree decomposition allowing e�cient con-

struction of OBSTs in parallel.

9.2 Conclusions

In terms of algorithm design paradigms, Chapter 6 gives a greedy approximation

algorithm. It is greedy in the sense that it isolates certain locally optimal matrix

products. Next in Chapter 7 the principle of optimality comes into play since the

canonical graphs are well-formed substructures that may be in an optimal super-

structure. In addition, the tree contraction algorithm gives an optimal matrix chain

ordering product by combining such well-formed optimal substructures. The same

holds for Chapter 8. Therefore, the dynamic programming algorithm design paradigm

is a viable design paradigm for parallel computation. Also, there are lots of new and

interesting problems to consider regarding these areas of research.

Bibliography

A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilbur: \Geometric Applica-

tions of a Matrix Searching Algorithm," Algorithmica, Vol. 2, 195{208, 1987.

A. Aggarwal and J. K. Park: \Notes on Searching Multidimensional Monotone Ar-

rays," Proceedings of the 29th Annual IEEE Symposium on the Foundations of

Computer Science (FOCS), IEEE Press, 497{512, 1988. Full versions to appear

in the Journal of Algorithms.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman: The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1975.

R. Anderson and E. W. Mayr: \Parallelism and the Minimal Path Problem," Infor-

mation Processing Letters, Vol. 24, 121{126, 1987.

R. Anderson and E. W. Mayr: \Parallelism and Greedy Algorithms," Advances in

Computing Research, Vol. 4, 17{38, JAI Press, 1987.

A. Apostolico, M. J. Atallah, L. L. Larmore, and S. H. McFaddin: \E�cient Par-

allel Algorithms for String Editing and Related Problems," SIAM Journal on

Computing, Vol. 19, No. 5, 968{988, Oct. 1990.

126

BIBLIOGRAPHY 127

T. Archibald: \Parallel Dynamic Programming," in Advances in Parallel Algorithms,

L. Kronsj�o and D. Shumsheruddin (Editors), John Wiley and Sons, 343{367,

1992.

M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L. Miller, and S.-H. Teng: \Con-

structing Trees in Parallel," Proc. 1st Symp. on Parallel Algorithms and Archi-

tectures (SPAA), ACM Press, 499{513, 1989.

M. J. Atallah and S. R. Kosaraju: \An E�cient Parallel Algorithm for the Row

Minima of a Totally Monotone Matrix," Proceedings of the 1st Symposium on

Discerete Algorithms (SODA), 394{403, ACM Press, 1991.

M. J. Atallah and S. R. Kosaraju: \An E�cient Parallel Algorithm for the Row

Minima of a Totally Monotone Matrix," Journal of Algorithms, Vol. 13, 394{

413, 1992.

S. Baase: Computer Algorithms, Second Edition, Addison-Wesley, 1988.

J. L. Balc�azar, J. D��az, and J. Gabarr�o: Structural Complexity I and II, Vols. 11 and

22 of EATCS Monographs on Theoretical Computer Science, Springer-Verlag,

New York, 1988 and 1990.

R. Bellman: Dynamic Programming, Princeton University Press, 1957.

O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin: \Highly Paralleliz-

able Problems," Symposium on the Theory of Computing (STOC) , ACM Press,

309{319, 1989.

O. Berkman, B. Schieber, and U. Vishkin: \Optimal Doubly Logarithmic Parallel

Algorithms Based on Finding All Nearest Smaller Values," Journal of Algorithms,

Vol. 14, 344{370, 1993.

BIBLIOGRAPHY 128

P. G. Bradford: \E�cient Parallel Dynamic Programming," Technical Report # 352,

Indiana University, April 1992.

P. G. Bradford: \E�cient Parallel Dynamic Programming," The 30th Allerton Con-

ference on Communication, Control, and Computation, University of Illinois,

185{194, 1992.

P. G. Bradford: \E�cient Parallel Dynamic Programming," Full Version Manuscript

May, 1992: Version with very minor revisions in Revised TR # 352, Indiana

University.

P. G. Bradford, G. J. E. Rawlins, and G. E. Shannon: \Matrix Chain Ordering in

Polylog Time with n=lgn Processors," Technical Report # 360, Indiana Univer-

sity, December 1992.

P. G. Bradford, G. J. E. Rawlins, and G. E. Shannon: \Matrix Chain Ordering in

Polylog Time with Linear Processors (Extended Abstract)," Proceedings of the

8th Annual IEEE International Parallel Processing Symposium (IPPS), Cancun

Mexico, H. J. Siegel editor, IEEE Press, 234{241, April 1994.

P. G. Bradford, G. J. E. Rawlins, and G. E. Shannon: \Matrix Chain Ordering in

Polylog Time with Linear Processors," Full Version Submitted to SIAM Journal

on Computing.

P. G. Bradford, V. Choppella, and G. J. E. Rawlins: \On Lower Bounds for the

Matrix Chain Ordering Problem," Full version to be Submitted, Earlier version:

Technical Report # 391, Indiana University, October 1993.

P. G. Bradford, V. Choppella, and G. J. E. Rawlins: \On Lower Bounds for the Matrix

Chain Ordering Problem," Extended Abstract to appear in the proceedings of

LATIN '95, Springer Verlag, 1995.

BIBLIOGRAPHY 129

D. Z. Chen: \E�cient Geometric Algorithms on the EREW PRAM," Proceedings

of the 28th Allerton Conference on Communication, Control, and Computation,

Monticello, Illinois, 818{827, 1990. Full version accepted to IEEE Trans. on

Parallel and Distributed Systems.

F. Y. Chin: \An O(n) Algorithm for Determining Near-Optimal Computation Order

of Matrix Chain Products," Communications of the ACM, Vol. 21, No. 7, 544{

549, July 1978.

A. K. Chandra: \Computing Matrix Chain Products in Near Optimal Time," IBM

Research Report RC-5625, IBM T. J. Watson Research Center, Oct. 1975.

A. K. Chandra and L. J. Stockmeyer: \Alternation," Proceedins of the 17th Anual

IEEE Symposium on the Foundations of Computing (FOCS), IEEE Press, 98{

108, 1976.

A. K. Chandra, D. Kozen, and L. J. Stockmeyer: \Alternation," Journal of the ACM,

Vol. 28, 114{133, 1981.

S. A. Cook: \An Observation on Time-Storage Trade O�," Journal of Computer and

System Sciences, Vol. 9, No. 3, 308{316, 1974.

S. A. Cook: \A Taxonomy of Problems with Fast Parallel Algorithms," Information

and Control, Vol. 64, 2{22, 1985.

D. Coppersmith and S. Winograd: \Matrix Multiplication via Arithmetic Progres-

sions," Journal of Symbolic Computation, Vol. 9, 251{280, 1990.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest: Introduction to Algorithms, McGraw

Hill, 1990.

BIBLIOGRAPHY 130

A. Czumaj: \An Optimal Parallel Algorithm for Computing a Near-Optimal Or-

der of Matrix Multiplications," Scandinavian Workshop on Algorithms Theory

(SWAT), Springer Verlag, LNCS # 621 , 62{72, 1992.

A. Czumaj: \Parallel Algorithm for the Matrix Chain Product and the Optimal

Triangulation Problem (Extended Abstract)," Symposium on Theoretical Aspects

of Computer Science (STACS), Springer Verlag, LNCS # 665 , 294{305, 1993.

Full version submitted.

L. E. Deimel Jr. and T. A. Lampe: \An Invariance Theorem Concerning Optimal

Computation of Matrix Chain Products," North Carolina State Univ. Tech Re-

port # TR79-14, 1979.

S. Fortune and J. Wyllie: \Parallelism in Random Access Machines," Proceedings

of the 19th Annual IEEE Symposium on the Foundations of Computer Science

(FOCS), IEEE Press, 114{118, 1978.

Z. Galil and K. Park: \Dynamic Programming with Convexity, Concavity and Spar-

sity," Theoretical Computer Science, Vol. 92, 49{76, 1992.

Z. Galil and K. Park: \Parallel Dynamic Programming," Manuscript, 1992.

M. R. Garey and D. S. Johnson: Computers and Intractability, W. H. Freeman, 1979.

A. Gibbons and W. Rytter: E�cient Parallel Algorithms, Cambridge University

Press, 1988.

S. S. Godbole: \An E�cient Computation of Matrix Chain Products," IEEE Trans-

actions on Computers, Vol. C-22, 864{866, 1973.

R. Greenlaw: \Polynomial Completeness and Parallel Computation," 901-953, in

Synthesis of Parallel Algorithms, J. H. Reif (Editor), Morgan-Kaufmann, 1993.

BIBLIOGRAPHY 131

R. Greenlaw, H. J. Hoover, and W. L. Ruzzo: A Compendium of Problems Complete

for P , Revision 1.46, Technical Report from Universities of Alberta (TR 91-11),

New Hampshire (TR91-14) and Washington (TR 91-05-01), 1991.

J. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, 1979.

S.-H. S. Huang, H. Liu, and V. Viswanathan: \Parallel Dynamic Programming,"

Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing,

497{500, 1990.

S.-H. S. Huang, H. Liu, and V. Viswanathan: \A Sublinear Parallel Algorithm

for Some Dynamic Programming Problems," Theoretical Computer Science,

Vol. 106, 361{371, 1992.

T. C. Hu: Combinatorial Algorithms, Addison-Wesley, 1982.

T. C. Hu and M. T. Shing: \Some Theorems about Matrix Multiplication", Pro-

ceedings of the 21st Annual IEEE Symposium on the Foundations of Computer

Science (FOCS), IEEE Press, 28{35, 1980.

T. C. Hu and M. T. Shing: \An O(n) Algorithm to Find a Near-Optimum Partition

of a Convex Polygon," Journal of Algorithms, Vol. 2, 122{138, 1981.

T. C. Hu and M. T. Shing: \Computation of Matrix Product Chains. Part I," SIAM

Journal on Computing, Vol. 11, No. 3, 362{373, 1982.

T. C. Hu and M. T. Shing: \Computation of Matrix Product Chains. Part II," SIAM

Journal on Computing, Vol. 13, No. 2, 228{251, 1984.

O. H. Ibarra, T.-C. Pong, and S. M. Sohn: \Hypercube Algorithms for Some String

Comparison Problems," Proceedings of the IEEE International Conference on

Parallel Processing, IEEE Press, 190{193, 1988.

BIBLIOGRAPHY 132

J. J�aJ�a: An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

D. S. Johnson: \A Catalog of Complexity Classes," Chapter 2 in Handbook of Theo-

retical Computer Science, Vol. A: Algorithms and Complexity, V. Van Leeuwen

(Editor), Elsevier, 67{161, 1990.

R. M. Karp and V. Ramachandran: \Parallel Algorithms for Shared Memory Ma-

chines," Chapter 17 in Handbook of Theoretical Computer Science, Vol. A, Al-

gorithms and Complexity V. Van Leeuwen (Editor), Elsevier, 869{942, 1990.

S. K. Kim: \Optimal Parallel Algorithms on Sorted Intervals," TR 90-01-04, Depart-

ment of Computer Science and Engineering, University of Washington, Seattle,

WA, 1990.

D. G. Kirkpatrick and T. Przytycka: \Parallel Construction of Near Optimal Binary

Search Trees," Proceedings of the 2nd Symposium on Parallel Algorithms and

Architectures (SPAA), 234{243, 1990.

P. N. Klein and J. H. Reif: \Parallel Time O(lgn) Acceptance of Deterministic CFLs

on an Exclusive-Write P-RAM," SIAM Journal on Computing, Vol. 17, 463{485,

1988.

D. E. Knuth: \Optimum Binary Search Trees," Acta Informatica, Vol. 5, 14{25, 1971.

D. E. Knuth: The Art of Computer Programing, Volume 3: Searching and Sorting,

Addison-Wesley, 1971.

B. Korte, L. Lov�asz, and R. Schrader: Greedoids, Springer-Verlag, 1991.

D. Kozen: \On Parallelism in Turing Machines," Proceedins of the 17th IEEE Sym-

posium on the Foundations of Computing (FOCS), IEEE Press, 89{97, 1976.

BIBLIOGRAPHY 133

V. Kumar, A. Grama, A. Gupta, and G. Karypis: Introduction to Parallel Computing,

Benjamin/Cummings, 1994.

L. L. Larmore and W. Rytter: \E�cient Sublinear Time Parallel Algorithms for the

Recognition of Context-Free Languages," Scandinavian Workshop on Algorithms

Theory, (SWAT), Springer Verlag, LNCS #577, 121{132, 1991.

L. L. Larmore and T. M. Przytycka: \Constructing Hu�man Trees in Parallel (Ex-

tended Abstract)," Proceedings of the 3rd Symposium on Parallel Algorithms and

Architectures (SPAA), 71{80, 1991.

L. L. Larmore, T. M. Przytycka, and W. Rytter: \Parallel Construction of Optimal

Alphabetic Trees (Extended Abstract)," Proceedings of the 5th Symposium on

Parallel Algorithms and Architectures (SPAA), 214{223, 1993.

M. Marcus: Introduction to Modern Algebra, Marcel Dekker, 1978.

Y. Muraoka and D. J. Kuck: \On the Time Required for a Sequence of Matrix

Products," Communications of the ACM, Vol. 16, No. 1, 22{26, 1973.

J. O'Rourke: Computational Geometry in C, Cambridge University Press, 1994.

V. Pan: How to Multiply Matrices Faster, Lecture Notes in Computer Science, # 179,

Springer Verlag, 1984.

C. Papadimitriou: Computational Complexity, Addison-Wesley, 1994.

I. Parberry: Parallel Complexity Theory, Research Notes in Theoretical Computer

Science, Pitman Publishers, London, 1987.

P. W. Purdom Jr. and C. A. Brown: The Analysis of Algorithms, Holt, Rinehart and

Winston, 1985.

BIBLIOGRAPHY 134

R. Raman and U. Vishkin: \Optimal Randomized Parallel Algorithms for Comput-

ing the Row Minima of a Totally Monotone Matrix," Proceedings of the Fifth

Symposium on Discerete Algorithms (SODA), ACM Press, 613{621, 1994.

P. Ramanan: \A New Lower Bound Technique and its Application: Tight Lower

Bounds for a Polygon Triangularization Problem," Proceedings of the Second

Annual Symposium on Discrete Algorithms, (SODA), ACM Press, 281{290, 1991.

P. Ramanan: \An E�cient Parallel Algorithm for Finding an Optimal Order of

Computing a Matrix Chain Product," Technical Report, WSUCS-92-2, Wichita

State University, June, 1992.

P. Ramanan: \An E�cient Parallel Algorithm for the Matrix Chain Product Prob-

lem," Technical Report, WSUCS-93-1, Wichita State University, January, 1993.

Submitted.

P. Ramanan: \A New Lower Bound Technique and its Application: Tight Lower

Bounds for a Polygon Triangularization Problem," SIAM Journal on Computing,

Vol. 23, No. 4, 834{851, 1994.

G. J. E. Rawlins: Compared To What ?, Computer Science Press/W. H. Freeman,

1992.

J. H. Reif: \Depth First Search is Inherently Sequential," Information Processing

Letters, Vol. 20, No. 5, 229{234, 1985.

J. H. Reif (Editor): Synthesis of Parallel Algorithms, Morgan-Kaufmann, 1993.

W. Rytter: \On E�cient Parallel Computation for Some Dynamic Programming

Problems," Theoretical Computer Science, Vol. 59, 297{307, 1988.

BIBLIOGRAPHY 135

S-H. Teng: \The Construction of Hu�man-Equivalent Pre�x Code in NC," SIGACT
News, 18(4), 54{61, 1987.

L. G. Valiant, S. Skyum, S. Berkowitz, and C. Racko�: \Fast Parallel Computation

of Polynomials Using Few Processors," SIAM Journal on Computing, Vol. 12,

No. 4, 641{644, Nov. 1983.

F. F. Yao: \E�cient Dynamic Programming Using Quadrangle Inequalities," Sym-

posium on the Theory on Computing (STOC), ACM Press, 429{435, 1980.

F. F. Yao: \Speed-Up in Dynamic Programming," SIAM Journal on Algebraic and

Discrete Methods, Vol. 3, No. 4, 532{540, 1982.

