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In the last few years several massively parallel computers based on the same microprocessors as workstations

{ such as Thinking Machines CM-5, Intel's Paragon Intel's Paragon [1], Cray's T3D [2] { have emerged.

This paper demonstrates that high-performance simulators { running on cost-e�ective workstations or servers

{ can be used for developing systems and application software for parallel machines such as these. Massively

parallel machines are very good at running debugged, well tuned parallel programs fast. But they are not very

good for software development. The development tools that come with these machines (compilers, debuggers,

performance tools etc.,) are still in a state of infancy in comparison with those on workstations. Also massively

parallel machines have restricted interactive use and are more expensive to do development on.

Using simulators on workstations or servers to develop systems and application software for parallel machines

has several advantages. It allows reuse of familiar and robust workstation development tools { such as sequential

debuggers for example gdb and programming environments for example CaseVision/Workshop { during the

development process. Also simulators allow �ne grain access to performance information that real machines

rarely provide and this is very useful for performance tuning parallel applications.

Workstations and servers are good for di�erent development tasks. High performance simulators running on

workstations are fairly adequate for:

� Prototyping runtime systems and language extensions for high-level parallel programming languages.

� Debugging the parallel application for software bugs.

The reason being small problem sizes and machine sizes are almost always used for the above tasks. But deter-

mining performance bottlenecks or scaling problems in parallel applications usually requires them to be run on

bigger problems or machine sizes. We �nd workstations are not suitable for this task since the physical memory

size of the workstation turns out to be a limiting factor.

Medium size servers such as SGI's PowerChallenge [3] or Sun's SPARC 2000 [4] or HP's HP 9000 [5] { that

are becoming commonplace { could be used for:

� Observing parallel performance and debugging the application for performance bottlenecks.

� Analyzing and predicting the behavior of the application on larger problem and machine sizes.

�This research is supported in part by ARPA under contract AF 30602-92-C-0135, the National Science Foundation O�ce of

Advanced Scienti�c Computing under grant ASC-9111616. and the National Science Foundation and ARPA Grand Challenge Award,

\The Formation of Galaxies and Large-scale Structure."
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These servers have huge physical memory (several gigabytes) and therefore allow bigger problem and machine

sizes to be simulated. For example a 20 processor SGI Challenge server with 2048 megabytes of memory can

easily simulate 512 processors with 8 megabytes of memory. Since these servers typically have several processors,

parallelizing and thus speeding up the simulation is also of interest. Studying parallel application performance

by simulation also alleviates the problem of perturbation in application behavior which users of instrumentation

have to deal with. The reason being instrumentation introduced into the simulation can be controlled.

This paper describes how parallel machines and applications can be simulated. It mostly focuses on our

experiences in using a direct execution simulator in the context of pC++ [6], an object parallel language. Our

experience includes developing runtime systems, language extensions, data structure visualization tools, and

debuggers for pC++. This paper also describes strategies for speeding up the simulation and focuses on one such

strategy where parallelism is used to speed up the simulation on a 20 processor SGI Power Challenge Server. The

main contribution of this paper is to show the applications of direct execution simulation in the context of a high

level parallel programming language.

1 Simulating parallel machines and parallel applications

Workstation Workstation Parallel 
Machine

ServerServer

Sequential
Simulation

Parallel
Simulation

Parallel
Program

Cycle by Cycle simulation:  The simulator 
running on the workstation cycles through all 
the processors simulating one instruction at a 
time from each processor. MIT’s Alewife
machine simulator.

Direct execution simulation: This is a high 
performance simulation technique where the 
local instructions of the multiprocessor are 
directly executed on the workstation and the 
non−local interactions are simulated by calls 
into the simulator. Proteus, Tango, FAST
running on Sun and SGI workstations.

Simulating a shared memory machine
on a shared memory server. TangoLite for
simulating DASH on SGI multiprocessors.

Simulating a distributed memory machine 
on a shared memory server. Approach in
the last section of this chapter.

Simulating a shared memory machine on a 
distributed memory machine. Wisconsin’s Wind 
Tunnel for simulating cache coherent shared 
memory machines on the CM−5.

Simulating a distributed memory machine 
on another distributed memory machine. 
ICASE’s  LAPSE for simulating a Paragon on a 
Paragon. 

Figure 1: SIMULATION EXECUTION OF A PARALLEL PROGRAM can be performed on a worksta-
tion environment or an actual parallel machine. On the workstation environment there are two methods for performing
the simulation. On the parallel machine there are four possibilities for simulation. The example systems in each of
these categories are highlighted and are in italics.
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EXECUTION METHOD FOR HIGH−LEVEL PARALLEL PROGRAMS

ABSTRACT
EXECUTION

SIMULATION
EXECUTION

ACTUAL
EXECUTION

− Rapid prototyping by reusing workstation development
    environment.
− Examine entire distributed data structure from every
    processor (since it is in single address space).
− Fine grained/Coarse grained  access to
    performance information
 

Essential Idea

− A lightweight thread of control for simulating a processor.
− Single address space.
− Simulate interprocessor communication and execute other
    code directly.
− Context switch between processors.

Advantages

Workstation Environment

Figure 2: AN OVERVIEW OF THE APPROACH described in this paper. There are 3 basic execution
models for parallel programs. Simulation execution is the middle ground approach. It is less accurate than actual
execution but provides detailed information.

Simulation is an important tool for designing all aspects of parallel computer systems. It has a broad spectrum

of applications ranging from virtual prototyping of new parallel computers as in Wisconsin's Wind Tunnel [7] to

studying parallel applications as in LAPSE [8].

Simulating multiprocessors on a uniprocessor can be done in several ways as Figure 1 shows. The simplest

(and the slowest) way is to cycle through all the processors simulating one instruction at a time from each

processor. This gives a great deal of accuracy but is very slow. The simulator ASIM for the Alewife [9] machine

at MIT is one such example. Cycle by cycle simulators by virtue of their accuracy are used often by parallel

computer architects in studying architectural design and tradeo�s.

Direct execution simulation [10] is another way of simulating multiprocessors. It is much faster compared to the

cycle by cycle instruction simulators. In direct execution simulation the local instructions of the multiprocessor

are executed directly on the workstation and nonlocal instructions are simulated by procedure calls. Nonlocal

instructions include message passing instructions which cause access to other nodes of the multiprocessor being

simulated. Since the local instructions are executed directly, the assembly code has to be augmented to keep

track of the number of instruction cycles simulated in the local portions of the code.

Several direct execution simulators are available today: Proteus [11] from MIT, TangoLite [12] from Stanford,

FAST [13] from Berkeley. The advantages and disadvantages of direct execution simulation has been extensively

addressed in the paper [14] .

Performing the simulation on a parallel machine is an attractive proposition as well as Figure 1 shows. Since
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parallel machines come in two avors (shared memory and distributed memory) there are 4 possibilities for

simulation. The �nal section in this paper is about executing a parallel program on a simulated distributed

memory machine; the simulation is performed on a shared memory server.

Trace-driven simulation is another technique for simulating multiprocessors. Here traces generated on one

multiprocessor system are used in the simulation of a multiprocessor system with di�erent characteristics. This

has been predominantly used in evaluating memory-system performance and requires that the environment for

trace generation be very close to the system being simulated.

Figure 2 highlights the approach described in this paper.

2 Direct execution simulation of pC++ programs

Processor 0 Processor 1

Element
Class Simple {

 int x;

 void f(int);

 void g();

};

pC++ Basics

Collection: DistributedVector<Simple> C(&D, &A);

Element Reference  C(5)
(Global Pointer)

Field Reference        C(5)−>x

Parallel Operation    C.f(0)

Collection DistributedVector: SuperKernel{
public:
// Data members here are duplicated on
// each processor of a parallel system.
// Member functions are executed in
// parallel on all processors of the
// system.
MethodOfElement :
// Data members and member functions here
// are added to the element class.

};

Defining a collection

Figure 3: IN pC++ A DATA STRUCTURE CALLED COLLECTION is used to describe a set of objects
distributed over the processors of a parallel machine. One of the base collections that pC++ collection library provides
{ for building other collections { is the SuperKernel collection. It builds arrays of element objects and provides global
name space for the element objects.
To access an individual member of a collection, one can use the overloaded operator () which returns a global pointer
to an element. For example, C(5) returns a global pointer to the 5th element in the collection. A global pointer is
a pointer that spans the entire address space of a distributed memory machine. But the most important feature of a
collection is the ability to apply a function in parallel across all the element objects. For example, C.f(0) is a parallel
application of the method f() to all the elements of the collection with argument 0.
The box on the right illustrates how a collection is de�ned. There are two types of data and member functions in a
collection de�nition. Data members and functions labeled as MethodOfElement represent new functions and data that
are added to each element class. The member functions are invoked just as if they are member functions of the element
class. Other data member not labeled as MethodOfElement are duplicated on each processor and the functions are
invoked in the SPMD (Single Program Multiple Data) mode.

This section describes the details of direct execution simulation for high-level pC++ programs. It starts o� with

a brief description of pC++ and N-body applications written in it. Next it describes the architecture of the

system for direct execution simulation of pC++ programs. It then runs through a complete example showing the

transformations performed on an actual pC++ program. It concludes with a description of the runtime system
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Class Segment {
 public:
 int pcount; //  Number of particles
   double x[pcount],y[pcount],z[pcount];
 double vx[pcount],vy[pcount],vz[pcount];
 double mass[pcount];
};

Collection ParticleList: SuperKernel {
 public:
  ParticleList(Distribution *D, Align *A);
  void sortParticles();
 MethodOfElement:
  void pushParticle(Mesh<MeshElement> &G);
  void updateGridMass(Mesh<MeshElement> &G);
   :
   :
};

Class MeshElement {
 public:
 double mass[nz], position[nz];
};

Collection Mesh : SuperKernel {
 public:
 Mesh(double lx, double ly, double lz ...);
 void computePotential();
 :
 :
};

main()
{
 Processors P;
 Distribution DP(seg_count, &P, BLOCK);
 Align AP(seg_count, "[ALIGN(particlelist[i], DP[i])]");
 Distribution DM(x_count, &P, BLOCK, WHOLE);
 Align AM(x_count, y_count, "[ALIGN(mesh[i], DM[i])]");

 ParticleList<Segment> particleList(&DP, &AP);
 Mesh<MeshElement>     mesh(&DM, &AM);

 // Initialize particle list
 ...
 // main loop
 
  for(int i=0; i < nsteps; i++) {
  mesh.computePotential();
  particleList.pushParticle(mesh);
  if (needed) particleList.sortParticles();
  particleList.updateGridMass(mesh);
 }
 ...
}

One Dimensional Particle list Three Dimensional Mesh

The Simulation Loop

Figure 4: THE 1D PARTICLE LIST AND THE 3D MESH are the primary distributed data structures in the
particle mesh code. The one dimensional particle list comprises of segments and each segment has several particles in
it. For each particle the position (i.e., x, y and z co-ordinates), velocities (i.e., velocities in the x, y, and z directions
vx, vy, vz), and mass (mass) are stored. The three dimensional mesh is logically a three dimensional array of mesh
points each containing the value of density and position.
The function sortParticles() is a routine that sorts the particles in lexicographic order according to their po-
sitions. The function pushParticle() uses the gravitational force to update the positions and velocities of the
particles. The argument passed to pushParticle() is a collection designed for the mesh data structure. The function
updateGridMass() is used to add the mass of a particle to the total mass of the mesh point to which it is closest.
The mesh element, which contains an array of mesh points that have the same x and y coordinates but di�erent z
coordinates is shown on the box to the right. In the Mesh collection the function computePotential() computes the
gravitational potential using the total mass at each mesh point and lx, ly, lz are the numbers of mesh points in the
three x, y, and z dimensions, respectively.
The main loop involves parallel computation on both Mesh and ParticleList. First the potential is computed in
parallel on the grid. Second, the particle velocities and positions are updated. If particles have moved to new grid
points, the appropriate data structure updates must then be made. If the particles have moved a lot since the last
time they were sorted, the particles are sorted again. Third, the particle masses are accumulated in their corresponding
points for the next iteration step.

implementation.

2.1 pC++ basics

pC++ [6] is a simple extension to C++ that supports a data parallel style programming. To accomplish this,

pC++ provides a very simple mechanism to build \collections of objects" of a base element class. Member

functions from this element class can be applied to the entire collection (or a subset) in parallel.

pC++ has two basic extensions to the C++ language:

� A mechanism to declare a distributed data structure comprising of objects distributed over the parallel

machine.
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� A mechanism to describe how operations can be invoked over a set of objects in parallel as well as to refer

to an individual object.

Figure 3 succinctly illustrates the basics of pC++.

2.1.1 N-body application codes

This section illustrate the use of collections to de�ne parallel data structures for the N-body simulation codes

which are a part of the GC3, the Grand Challenge Cosmology Consortium, project. More details can be found

in [15]. The primary reason for describing it here is that these application programs were the basis for language

extensions and data structure visualizations performed under the simulation environment describe later on.

There are two distributed data structures that natural for the N-body code: a one-dimensional particle list

and a three dimensional mesh. Both of these distributed data structures are illustrated in Figure 4 along with

the skeleton of the simulation loop.

2.2 Architecture for direct execution simulation of pC++ programs

Figure 5 illustrates the architecture for direct execution pC++ programs.

    pC++ 
 (Parallel)
 Program

Augmentation

Simulated
Machine
Configuration

Simulator
Engine

pC++ runtime
Library

Simulator Run 
Simulation

Execution data  pC++
compiler

    C++
compiler

    C++ 
 Program

 Assembly 
    Code

Builder

Augmented
Assembly 
    Code

 Simulator
Executable

Figure 5: ARCHITECTURE FOR DIRECT EXECUTION SIMULATION of pC++ programs: The
pC++ program is �rst preprocessed by the pC++ compiler to produce C++ code as shown in Figure 6. The C++
code is then converted into assembly code by the native C++ compiler. This assembly code is then augmented with
additional assembly code { as shown in Figure 7 { that is mainly responsible for a) Counting instruction cycles in
the direct executed assembly code, b) Context switching between the simulated processors when the time quantum for
the processor that is simulated expires. The assembly code is then linked in with the simulator engine and the pC++
runtime library to give a executable program. This program when executed mimics the execution of pC++ program on
the simulated parallel machine. The simulated machine con�guration provides information on the number of processors
in the simulated machine, the type of interconnection network, and it's characteristics etc., .

The simulator engine works quite like an operating system. It multiplexes a single resource (the workstation's

processor) among the processors and network of the simulated machine. Also it interleaves the execution of the
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    :
    :
void Processor_Main()
{
  Processors P;
  Distribution Temp(TDSIZE, &P, BLOCK);
  Align A(TDSIZE, "[ALIGN(F[i],T[i])]");
  DistributedTridiagonal<Vector> U(...);
  :
 
  for (i=0, i < SIZEVECT, i++)
     U.setValue(i, (double) 1.0*i);

  U.set(0, (double) 0.0);
  U.set(TDSIZE−1, (double) 0.0);

  U.cyclicReduction(&a, &b);

  :
  :

}

    
    :
    :
void Processor_Main()
{
  Processors P;
  Distribution Temp(TDSIZE, &P, BLOCK);
  Align A(TDSIZE, "[ALIGN(F[i],T[i])]");
  DistributedTridiagonal__Vector U(...);
  :

  for (i=0, i < SIZEVECT, i++)
  {
     ResetLocal(&(U));
     for ((*VarpC_0)=FirstLocal(); (*VarpC_0) >= 0;
          (*VarpC_0) = Local((*VarpC_0))) 
     {
       Poll();
       ((U))((*VarpC_0)))−>setValue(i,(double) 1.0*i);
     }
  }
  :
  :

pC++ program C++ code after preprocessing

Figure 6: EXAMPLE ILLUSTRATING pC++ COMPILER TRANSFORMATIONS on a portion of
the cyclic reduction program. The collection (distributed data structure) declaration is shown in bold face. The
transformation that is applied to the parallel method invocation is shown in the enclosed box. The pC++ compiler
converts the parallel operation on the distributed data structure into a loop which performs the operations on all
the local elements on the processor. The compiler temporary is a pointer to an integer due to an artifact of the
implementation under the simulator.

parallel application program with the simulation of the parallel machine such as simulating the message passing

between the simulated processors. It is based on an event driven simulation mechanism.

The pC++ runtime library manages all the inter-processor communication. The runtime library is implemented

using the primitives the simulator provides for inter-processor communication and is described more in detail in

the next section.

The sequential implementation runs on the Silicon Graphics machines and Sun SPARC's.

2.3 An example

This section steps through an example - a pC++ application from the test suite - to show how the various com-

ponents of the architecture transform the program. Figure 6 illustrates the transformations that are performed

by the pC++ compiler and Figure 7 illustrates the transformations introduced by the augmentation phase.

2.4 The runtime system

A key idea in the design of pC++ is to enable programmers to build distributed data structures whose data

movement operators can be closely linked to the semantics of the datatype. The programmer thinks abstractly

about the distributed data structure and does not worry about the inter-processor communication in sharp

contrast to the message passing paradigm where explicit send's and receives are used.

It is then the responsibility of the runtime system and the compiler to provide the abstraction of distributed

data structures. The runtime system has to manage:

� The partitioning of the distributed data structure among the processors of the parallel machine.

� The references to portions of the distributed data structure that are not local to the processor causing the

references.
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_Processor_Main:
.stabn 68,0,1845,LM1010
LM1010:
        !#PROLOGUE# 0
        save %sp,−4096,%sp
        ta      0x20
        sethi   %hi(_stackmin_),%l0
        ld      [%l0 + %lo(_stackmin_)],%l1
        subcc   %sp, %l1, %g0
        bgu     L11251
        ta      0x21
        call    _SimStack
        nop
L11251:
 ! block 0: 8 instructions
        ta      0x20
        sethi   %hi(_cycles_), %l3
        ld      [%l3 + %lo(_cycles_)], %l1
        subcc   %l1, 8, %l1
        st      %l1, [%l3+%lo(_cycles_)]
        bpos    L11252
        ta      0x21
        call    _SimQuantum
        nop
L11252:
        add %sp,−2456,%sp
        !#PROLOGUE# 1
.stabn 68,0,1847,LM1011
LM1011:
LBB60:
.stabn 68,0,1848,LM1012
LM1012:
        add %fp,−56,%o0
        add %fp,−12,%o2
        mov 257,%o1
        mov 1,%o3
        call___12DistributioniP10Processorsi,0
        nop
        :

Assembly code after augmentation
As shown in the simulation architecture figure
the augmented program is linked in with the 
pC++ runtime system (written using the 
simulator primitives) and the code that
corresponds to the configuration of the parallel 
machine being simulated to produce
an executable.

This executable when run simulates the execution
of the high−level pC++ parallel program on a
Sun SPARC workstation.

The augmentation phase has been modified to
 work on SGI workstations as well.

_Processor_Main:
.stabn 68,0,1845,LM1010
LM1010:
        !#PROLOGUE# 0
        save %sp,−4096,%sp
        add %sp,−2456,%sp
        !#PROLOGUE# 1
.stabn 68,0,1847,LM1011
LM1011:
LBB60:
.stabn 68,0,1848,LM1012
LM1012:
        add %fp,−56,%o0
        add %fp,−12,%o2
        mov 257,%o1
        mov 1,%o3
 call___12DistributioniP10Processorsi,0
        nop
        :
        :

Assembly code after compilation

Figure 7: EXAMPLE ILLUSTRATING AUGMENTATION OF SPARC ASSEMBLY code of the same
cyclic reduction program. The augmentation phase introduces: a) Stack checks at the beginning of the subroutine. b)
Cycle counting code for the basic blocks. c) Calls to SimQuantum to determine if the processor that is being simulated
has exceeded its time quantum. The assembly code shown here is a small portion of the complete assembly code for
the program.

� The termination of parallel operations on the distributed data structure using barrier synchronization.

The runtime system was completely written using the primitives that the simulator engine provided. The

simulator engine provides mechanisms for interrupting a processor thread from another thread and the runtime

system manages the non-local distributed data structure references using that mechanism. A tree barrier syn-

chronization routine synchronizes the parallel operations. Figure 8 contains a portion of the runtime system

software. This contains the core of the implementation.

One of our �rst applications after was to build a simple debugger for pC++ on top of gdb. The debugger

written as an extension to the gdb mode gdb.el in elisp. The new primitives allowed:

� Displaying the entire distributed data structure. For example pc++print mesh.mass would display the mass

�eld in the mesh collection.

� Allowing break points on the distributed data structure methods. For example pc++break mesh::computePotential()

would place a breakpoint on the element method computePotential.
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Remote Access Management Spawning the SPMD threads

int AskForData(int where, int index, int offset, 

               int info, int *data1, int *data2 ...)

{

  if (where != mynode()) {

    *message_flag = FALSE;

    SUM_METRIC(no_of_nonlocal, 1.0);
    send_ipi(where, 2, READ_DATA_MSG, ...);

    while (*message_flag == FALSE) {

     CYCLE_COUNTING_OFF;

     PassControl(); /* Return to Simulator Engine */

     CYCLE_COUNTING_ON;

    }

    *message_flag = FALSE;

    *data1 = *read_buf1;

    :

    :

}

static

void spawn_spmd(int argc, Word argv[])

{ 

 thread_create_and_wakeup((FuncPtr) Processor_Main, 

                           PM_STKSIZE ...);

}

GLOBAL void usermain(int argc, char **argv)

{

  InitRunTime();

  InitBarrier();

  SPAWN_SPMD = define_new_ipi((FuncPtr)spawn_spmd,
                              "ProcessorThread");

  for (i=1; i < NO_OF_PROCESSORS; i++)

   send_ipi(i, 2, SPAWN_SPMD, ...);

  Processor_Main();

  PassControl();

}

Figure 8: PORTION OF RUNTIME SYSTEM SOFTWARE for direct execution simulation of pC++
programs. The box on the right illustrates the creation of lightweight threads of control on each of the processors.
Usermain is called from the simulator engine by Processor 0 and it performs initialization for barrier synchronization as
well as the various tables for the runtime system. All the other processors would be in an idle state at that point of time.
Processor 0 then interrupts all the other processors and request them to spawn the thread of control corresponding
to Processor Main which is the routine provided by the pC++ programmer. This portion of the code is highlighted;
send ipi is a system call for sending an interprocessor interrupt. On receipt of the interrupt the remote processor
executes a handler which in this case is the routine spawn spmd and creates the lightweight thread corresponding to
Processor Main. The box on the left illustrates the portion of the runtime system which manages the remote accesses
by using the send ipi system call. It is called from the SuperKernel class which was introduced in the pC++ basics
section. Notice that while the processor is waiting for the data which it requested it transfers control to the simulator
engine and also indicates not to count the cycles.

The extensions are really simple. They know about the de-mangling of pC++ collections by the pC++ compiler

and by virtue of executing in a single address space they can display entire distributed data structures.

The simulator with the debugger was useful in �xing a bug in one of the NASA's NAS benchmarks (the CFD

benchmark) { that our group rewrote in pC++ { which was not apparent earlier. All of the pC++ test suite

programs (7 medium size parallel programs) were moved to work under the simulator.

Coupling the runtime system with the simulator also allowed detailed high level (distributed data structure

level) information to be recorded. For example it becomes possible to determine the communication to compu-

tation ratio of time spent in the distributed data structure mesh or particleList in the N-body code. Since

parallelism is restricted to distributed data structure operations this gives an accurate pro�le of the distributed

data structure operations that are using the parallel computer's (computation and communication) resources.

Our experience suggests that the development time for sophisticated runtime systems and debuggers for parallel

programming languages are much shorter using a parallel simulator than on an actual machine. Also much of the

software infrastructure on sequential workstations can be leveraged to give a better parallel program development

environment.
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3 Experiences with direct execution simulation of pC++ programs

on workstations

Our experience with direct execution simulation on workstations in the context of pC++ has been in experimenting

with runtime systems, language extensions, debugging, and data structure visualization. This section describes

briey the experiences with prototyping language extensions, data structure visualization, and strategies for

improving the speed of the simulation.

3.1 Prototyping language extensions

As mentioned in the previous section the distributed data-structures in pC++ are called Collections and they

are homogeneous and contain classes as elements. If c is a collection of type C<E> then any processor thread may

access the ith element of c by the syntax c(i). The () operator is overloaded to provide this functionality.

In the �rst version of the pC++ language there was no support for remote execution at the element level.

Such a support was needed for implementing one of the N-body astrophysics codes in pC++. The idea is that

just as a possible non-local element can be accessed from another element with the syntax c(i), it should also

possible to run a method f on a possible non-local element using the syntax c(i)->f(). This technique is used

in implementing the function pushParticles to update particles on remote processors.

The implementation was non-trivial and is described in more detail in the next paper. The entire language

extension was written and debugged under the simulator using compiler transformations and extensions to the

runtime system. The compiler transformations were implemented using Sage++[17], the object oriented toolkit

for building program transformations systems for Fortran90 and C++. The runtime system was extended to

handle remote execution messages. The �nal debugged version was moved to work on the CM-5 fairly quickly.

3.2 Data Structure Visualization with direct execution

The direct execution simulator for pC++ programs was the substrate for many of our distributed data structure

visualization experiments [18]. The idea was to show using visualization and animation the time based evolution

of the distributed data structure and the inter-processor communication that occurs in distributed data structure

references. The following �gure (Figure 9) shows the snapshot from an animation of particle densities in a

distributed adaptive particle mesh during the course of a N-body simulation. The adaptive version of the code is

similar to the version that described in the introductory section but there are two meshes a coarser mesh and a

�ner mesh.

The visualizations and animations were extremely useful and they revealed several bugs in pC++ programs.

Two examples are the bug in the copying stage of an adaptive mesh re�nement computation and a bug in the

distribution portion of the runtime system.

Our experiences show that direct execution simulators provide an alternative and fast development time for

the visualization of high-level parallel programs than traditional methods which were performed by collecting

traces by executing the parallel program on an actual parallel machine. Using direct execution simulation both

interactive and post-mortem visualizations can be performed unlike the traditional method which allowed only

post-mortem visualization. Also collecting traces are a lot simpler on workstations since familiar sequential I/O

mechanisms can be used in contrast to the more complex I/O on parallel machines.
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  Visualizing the evolution of the density field in an Adaptive Particle Mesh

a)  Initial time step

b)   Several time steps later

Particle densities of cells
with high density

Particle densities of cells
with low density

Particle densities of cells
in the adaptive grid

Figure 9: SNAPSHOTS FROM THE ANIMATION of particle densities in an N-body pC++ program (view
in color).

4 Strategies for improving the speed of the simulation

High performance is an important factor in building a fast parallel architecture simulator. There are several

possible ways of improving the performance of a direct execution simulator:

11



� Performing fast context switches among the simulated processors or reducing the total number of context

switches.

� Using parallelism.

This section discusses how parallelism can be used to improve the speed of the simulator. The applications

for this as mentioned in the introduction are in studying and debugging the performance of parallel applications

under large problem sizes or large machine con�gurations.

The parallel programming model that is used in pC++ is similar to the BSP [19] model. The parallel pro-

gram alternates between a sequential single threaded mode and a parallel multi-threaded mode which has local

computation, communication and global synchronization. An implementation on a distributed memory machine

would duplicate the globals as well as the single thread on all the processors.

Given this model there are two opportunities for parallelizing the simulation of the parallel application running

on a distributed memory machine:

� Executing the single threaded portion in parallel.

� Using a parallel discrete event simulation for the executing the parallel multi-threaded portions.

Figure 10 illustrates the programming model and parallelized implementations of the simulator.

Our implementation at the present time is based on parallelization using the �rst method and runs on a 20

processor SGI Power Challenge recently acquired by Indiana University. The parallel execution driven simulator

was implemented using the functionality provided by the SGI's IRIX parallel processing library. The library

provides functions that allow processes to be spawned and these processes can run on di�erent processors but

they can share the same address space, it also provides parallel synchronization primitives such as semaphores.

Parallelization a sequential simulator involves several changes to the augmentation portion of the simulator:

� The parallel portions of the application do not need context switching and the augmentation in the parallel

portions should not include the context switching code. This also has the e�ect of reducing the total number

of context switches.

� The parallel portions have to maintain a per-thread cycle counter instead of a global cycle counter in the

sequential simulator. Also additional code to perform a addition of all the per-thread cycle counters has to

be introduced when the parallel portions terminate.

Also referring to the program globals in the parallel portion of the simulator is handled di�erently. The parallelized

implementation at present does not work for pC++ programs but has been shown for simple parallel C programs.

A compiler pre-processor is needed for performing the mapping. It has to perform transformation to generate

additional code to create parallel threads of execution as shown in the �rst simulation execution model �gure.

Using that we would be able to do scalability studies on large-scale pC++ programs.

5 Related work and Future directions

This paper is unique in illustrating the applications of direct execution simulation in the context of a high level

programming language. It also shows the importance of both sequential versions and parallel implementations of

simulation for developing application and system software for parallel machines.
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parallel.
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Parallel Multi Threaded mode 
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Sequential Single 
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Parallel Multi Threaded mode 
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Parallel Programming Model used in pC++ The first parallel simulation execution model 
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Logical
Thread

Physical
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Description

Figure 10: PROGRAMMING MODEL AND MAPPINGS TO PARALLEL SIMULATION EXE-
CUTION on distributed memory machines for high-level parallel programs. The box on the upper left represents
the application programmers conceptual model. The box on the upper right and the lower left illustrate the use of
parallelism for simulating their execution on distributed memory machines. The approach in this section is as described
in box on the upper right.

The system is built on top of the Proteus [11] from MIT. Proteus has support for simulating both shared

memory multiprocessors and distributed memory multiprocessors. Only the distributed memory support in

Proteus is used for all of our simulations.

FAST [13] from Berkeley is another sequential execution driven simulator that concentrates on managing

context switching well to simulate large shared memory multiprocessors. Tango [20] and TangoLite [12] from

Stanford are both memory system simulators. Tangolite supports both execution-driven simulation and trace-

driven simulation.

None of the sequential simulators except Proteus for some degree discuss how they have applied the simulator

to enable the development of better parallel software. Also by virtue of running on workstations they do not

allow scalability studies on large-scale parallel applications.

Wisconsin Wind Tunnel (WWT) [7] from University of Wisconsin by using execution-driven, parallel discrete-

event simulation allows evaluation of larger and more realistic applications and system software. They have

performed several interesting studies using the WWT. But the WWT has several disadvantages:

� It is speci�c to Wisconsin's CM-5. Their implementation is based on several kernel modi�cations and other

researchers cannot use their simulator easily.

13



� They choose to perform the simulation on a massively parallel machine (the CM-5) which has very high

cost and more controlled (i.e less interactive) access.

LAPSE [8] is much more general but has the restrictive goal of performing scalability and performance analysis

only on Intel Paragon applications. It has a similar disadvantage of choosing a massively parallel machine (the

Intel Paragon) to perform the simulation. But the results obtained from both Wisconsin Wind Tunnel and LAPSE

really show the potential for parallel execution driven simulators.

Both WWT and LAPSE provide support for one type of parallel machine. WWT allows simulation of shared

memory multiprocessors and provides much support for cache-coherency. And LAPSE provides support only

for distributed memory and message passing applications. We believe with the convergence in technology that

support in parallel simulators for both kinds of machines are important.

The massively parallel machines are still in a state of ux 1 and providing parallel simulators for developing

parallel software on them makes it too restrictive. As we mentioned in the introduction, high performance servers

using the symmetric shared memory multiprocessing technology are a much better platform for building parallel

simulators.

Input/Output (I/O) which is well understood on sequential machines is rather poorly understood on parallel

machines. We also believe that simulators that support simulation of the I/O subsystem (all the way down to the

simulation of parallel RAID disks) would be invaluable in building better I/O systems as well as implementing

better abstractions for I/O in parallel programming languages. This could also be the substrate for designing the

future parallel object oriented databases which would be based on object persistence.

6 Summary

This paper described our experiences with direct execution simulation of parallel machines on workstations and

servers, in the context of the high level object oriented parallel language pC++. It also showed that implementing

a simulator on a parallel server allows the simulation of large parallel machine con�gurations and large-scale

applications.

To summarize the lessons learned from our experiences:

� By using simulation for development the existing software infrastructure on workstations can be leveraged

resulting in shorter development cycles.

� Implementing a high level parallel language's runtime system on top of a simulator allows programs in that

high level language to be executed on simulated machines. This execution yields detailed as well as high level

information (for example distributed data structure level information) about the program execution. This

information can be used for visualizing parallel program behavior and for identifying potential performance

bottlenecks caused by distributed data structures.

� Execution driven simulation on workstations is su�cient for debugging small scale parallel applications,

prototyping runtime systems, and extending high level parallel languages.

� Execution driven simulation on high performance servers makes possible the simulation of large parallel

machine con�gurations and large-scale applications since servers have large physical memories. This enables

the scalability analysis and performance tuning of large-scale parallel applications.

1Considering the recent demise of both Thinking Machines and Kendall Square Research
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� Parallelizing simulators is important for reducing the simulation time. Implementing the simulator on

a parallel server makes it accessible and inexpensive compared to implementations on massively parallel

machines like the CM-5 or Paragon.

� With the convergence of shared memory and message passing technologies simulators should soon provide

support for simulating both shared-memory and distributed memory parallel machines.
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