
Page 1

pC++/streams: a Library for I/O on Complex Distributed
Data-Structures

Jacob Gotwals    Suresh Srinivas    Dennis Gannon

Department of Computer Science, Lindley Hall 215,

Indiana University, Bloomington, IN 47405.

{jgotwals, ssriniva, gannon}@cs.indiana.edu

Abstract

In this paper we described/streams, a language-independent abstraction with a small set of simple primitives

for buffered I/O on distributed data-structures.  We describe the interface and implementation ofpC++/streams, a

library that implements d/streams in the object-parallel language pC++ to provide simple and expressive primitives

for I/O on distributed arrays of arbitrary variable-sized objects.  We present performance results on the Intel

Paragon and SGI Challenge which show that d/streams can be implemented efficiently and portably.  pC++/streams

is intended for developers of parallel programs requiring efficient high-level I/O abstractions for checkpointing,

scientific visualization, and debugging.

1   Introduction

Operating systems provide I/O primitives that allow the programmer to read and write blocks of bytes.

I/O libraries on the other hand can provide I/O primitives that allow the programmer to work at higher levels of

abstraction.  For example, the C standard I/O library allows the programmer to perform I/O directly on integer, real,

and string variables and the C++ streams library provides primitives for working at an even higher level of

abstraction: I/O on arbitrary objects.

Distributed arrays (as found in HPF [10]) are a common data-structure for parallel programming.  Recently I/O

libraries have been developed that provide primitives supporting I/O on distributed arrays of fixed-size elements

(e.g. distributed arrays of reals).

Adaptive parallel applications using dynamic distributed data-structures of variable-sized elements (e.g.

distributed grids of variable density) are now emerging.  In addition, parallel object-oriented programming

languages supporting complex distributed data-structures (e.g. distributed arrays of variable-sized objects) are now

becoming available.  The design and implementation of portable, efficient I/O libraries providing expressive I/O

primitives that support I/O on these complex distributed data-structures is a challenging problem which we address

in this paper.

We first identify parallel programming tasks for which the use of high-level I/O primitives is appropriate.  Next



Page 2

we describe d/streams, a language-independent abstraction for I/O on distributed arrays.  We then discuss the

interface, implementation, and performance of pC++/streams, an implementation of d/streams supporting I/O on

complex distributed data-structures with variable-sized elements in the object-parallel language pC++.

2   Parallel Programming Tasks Requiring High-Level I/O Mechanisms

I/O mechanisms operating at different levels of abstraction are appropriate for different I/O tasks (see

Figure 1).  In general, the higher the level of abstraction at which a set of I/O primitives operates, the less control it

gives the programmer over the details of the I/O process.  I/O libraries such as pC++/streams that provide the

programmer with primitives for explicit I/O at a high level of abstraction are appropriate for a wide range of parallel

programming tasks in which ease of coding, portability, and performance are important factors and where a high

degree of programmer control over low-level I/O details is not required.  Such tasks include:

• Communicating partial and final results to other applications and to tools such as scientific visualization

Control over storage format
Ability to write special-format files

for communicating data-sets to applications that use
different I/O mechanisms

Ease of checkpointing complex data-sets, saving them between
program runs, and communicating them to other

applications (provided the other applications
use the same I/O mechanism)

Implicit I/O
(i.e. Persistence)

C++ Streams Library

pC++/streams

Object Store,
Versant, Shore

Shore ParSets

Level of
I/O
Abstraction:

Examples:
for
Non-distributed
Data Structures:

for
Distributed
Data Structures:

Most
Suitable for
I/O Tasks
that Require:

 Parallel file
systems: CM-5
CMMD I/O,
SP-1/2 Vesta,
Paragon PFS

Explicit I/O
on Blocks of Bytes

UIUC’s Panda
Library,  Argonne’s
PetSc/Chameleon

with support for
Variable-Sized

Elements (e.g. objects)

of
Fixed-Sized Elements

(e.g. doubles)

Explicit I/O
on Aggregate Data-Structures

(e.g. arrays)

Machine
Specific

Machine
Independent

UNIX file systems

Transparent I/O

Portability
Ability to use

machine-specific
I/O features

Figure 1.  A RANGE OF I/O MECHANISMS:  Those mechanisms offering a higher degree of control over
low-level I/O details are grouped toward the left; those offering greater ease of use and supporting I/O
primitives operating at a higher level of abstraction are grouped toward the right.   I/O libraries such as
pC++/streams are appropriate for a wide range of I/O tasks common in many parallel applications, where
ease of coding, portability and performance are important; for example, checkpointing complex data-sets,
saving them between application runs, and communicating them to other applications and tools.  (The
thickness of the shapes under a given I/O mechanism in this figure is intended to represent the suitability of
that mechanism for the indicated I/O task.)

PASSION

ExtensibLe File Systems (ELFS)

PPFS,
MPI-IO, Jovian,
(and many others)



Page 3

tools.

• Checkpointing: Many long-running parallel applications need to save the state of complex distributed

data-sets periodically so that computation can be resumed at a later point.  Periodically saving data-sets

provides insurance against program termination by software bugs and job-control facilities.

• Debugging: Many parallel applications originate from sequential versions of the same program.  During the

parallelization process application developers often need to compare results of parallel and sequential runs

on the same problem, to confirm that parallelization has not introduced bugs.  This frequently involves

output of large distributed data-structures from the parallel program.

Persistence is another I/O mechanism that can prove useful for such tasks.  In addition, persistence can serve as

an interface to object-oriented databases.  However, explicit I/O on complex distributed data-structures is a more

appropriate mechanism when a higher degree of control over the I/O process and storage format are desired or when

the maintainance of a persistent database would entail complexity disproportionate to the size of the I/O task at

hand.  The integration of persistence with parallel languages, machines, and programming environments is currently

an ongoing research problem.

Parallel platforms offer low-level abstractions for I/O to secondary storage through diverse and often complex

interfaces.  Obtaining high I/O performance using these interfaces often requires a knowledge of parallel I/O, disk

striping, and memory alignment of I/O buffers.  Higher-level I/O libraries can be used to encapsulate this low-level

I/O complexity.  This is beneficial for the great majority of developers of parallel programs who generally prefer

not to delve into the low-level details of I/O optimization.

3   d/streams: An Abstraction for Buffered I/O on Distributed Arrays

A d/stream is a language-independent abstraction with a small number of simple primitives to be used for

buffered I/O on distributed arrays containing variable-sized elements.  In this section we define an interface for

d/streams, and in the section following we discuss the interface, implementation, and performance of an actual

d/streams implementation.

Conceptually a d/stream is a buffer associated with a file.  Data can be inserted from distributed arrays into an

output d/stream’s buffer and later written to the file; data can be read from the file into an input d/stream’s buffer

and later extracted into distributed arrays.  Refer to Figure 2, which gives a language-independent description of the

primitives used to perform these operations.

The state diagrams in figure 2 show the order in which the primitives are called.   Several constraints on the use

of the primitives that cannot be indicated in the state diagrams so we discuss them here.  Data written must be read

back in the same order.  More specifically:

• When a file written by an output d/stream is read by an input d/stream, everyread or unsortedRead must

correspond to awrite  that occurred when the file was written, and everyextract must have a

correspondinginsert.

• Each extracted array must have the same size, number of dimensions, and element type as the

corresponding array that wasinserted.

D/streams are intended to supportinterleaving [22], in which data from corresponding elements of separate

arrays can be written contiguously in the file even if the corresponding elements are not contiguous in memory.

The intended implementation of interleaving is one where arraysinserted into an output d/stream consecutively,

with no interveningwrite , will have their elements interleaved in the file.  To support this, we require that if more



Page 4

than one array isinserted before awrite , then those arrays must have the same size and number of dimensions.

Both read andunsortedRead transfer a block of data (written by a correspondingwrite ) from the file into the

d/stream’s buffer, to beextracted into distributed arrays later.  Whenread is used, then elements of the extracted

arrays will be in exactly the same order as the elements of the originallyinserted arrays.  This may require

interprocessor communication by the d/stream implementation on distributed-memory parallel machines with

Paragon-style parallel I/O systems.unsortedRead is intended to be used to read array data in which the element

indices perform no important role in the computation.  WhenunsortedRead is used, no guarantee is made about the

order in which the element data is extracted into elements of the receiving array, so the interprocessor

communication can be avoided, resulting in higher performance.

4   pC++/streams: A Library Implementing d/streams
in an Object-Parallel Language

pC++ [2] is a portable object-parallel programming language for both shared-memory and distributed-memory

parallel systems.  Traditional data-parallel systems are defined in terms of the parallel action of primitive operators

on distributed arrays. Object-parallelism extends that model to the object-oriented domain by allowing the

concurrent application of arbitrary functions to the elements of more complex distributed data-structures.  This

allows the construction of parallel applications having complex dynamic distributed data structures, within an

object-oriented framework.  pC++ is based on a simple extension to C++ that provides parallelism via thecollection

construct.  A collection is a distributed array of objects with additional infrastructure supporting the implementation

of arbitrary distributed data-structures (e.g. distributed trees of objects) over the distributed array base.  pC++

provides facilities for specifying HPF-style distribution and alignment of collections.

The I/O library pC++/streams is a portable implementation of d/streams supporting parallel I/O on pC++

Closed

Empty Buffer

Non-Empty Buffer

(start)

close

open

write

insert

insert

Opened

Output d/stream

Closed

Empty Buffer

Non-Empty Buffer

(start)

close

open

read or

extract

last extract

Opened

Input d/stream

 unsortedRead

open(filename):
Opens a d/stream file for output or input

insert(distributedArray) :
Inserts a distributed array into an output
d/stream’s buffer - may be performed
multiple times before writing

write() :
Writes the buffer to the file, using
parallel I/O if possible

read() andunsortedRead():
Reads a block of data (which must have
been written by a corresponding write())
from the file into the d/stream’s buffer.

extract(distributedArray) :
Extracts a distributed array from a
d/stream’s buffer

close():
Closes the file

Figure 2.  D/STREAM INTERFACE:  A d/stream is a simple abstraction with a small number of primitives
to be used to express I/O operations on distributed arrays of variable-sized elements.  A d/stream provides
a high-level interface for buffered I/O to files, so the use of d/streams is similar to the use of lower-level file
interfaces (e.g., data is read in the same order as it was written).   The d/stream primitives are listed below.
The state diagrams below to the right specify the order in which the primitives are intended to be used.

Both read and unsortedRead transfer a block of data
(written by a corresponding write) from a file into an input
d/stream’s buffer. unsortedRead yields maximum input
performance when reading un-ordered array data, as
discussed in Section 3.



Page 5

collections.  Figure 3 gives a simple example of how d/streams are used in pC++,  and Figure 4 sketches the internal

structure of the implementation of pC++/streams for distributed-memory multicomputers having parallel file

systems, such as the Intel Paragon and Thinking Machines CM-5.  The implementation for shared-memory

multicomputers is somewhat simpler; depending on the capabilities of the system-provided file system, the

"per-node" d/stream buffers can be reduced to one or eliminated.

4.1    pC++/streams Implementation

Implementation of open and close

The pC++/streams library implements d/streams as collections having the same alignment and number of

elements as the collection(s) on which I/O is to be performed.  Using the pC++/streams library, the programmer sets

up a d/stream and invokes theopen primitive by declaring a d/stream object.  An output d/stream "s" is declared as

follows:

oStream s(&distribution, &alignment, "filename");

where distribution  and alignment  are objects which specify the distribution and alignment of the

collection(s) to be output, andfilename  is the name of the file in which the data to be output is to be stored.  An

input d/stream is declared the same way, except "iStream " is substituted for "oStream ".  Multiple d/streams may

be set up and connected to the same file if collections with differing distributions and alignments are to be output.

A d/stream isclosed automatically when the program block containing the d/stream is exited.

Output Program:
#include "declarations.h"
Processor_Main {

Processors P;
Distribution d(12, &P, CYCLIC);
Align a(12,"[ALIGN(dummy[i], d[i])]");

 // defining a distributed grid of ParticleLists g
DistributedParticleGrid <ParticleList> g(&d,&a);

// defining an output d/stream s:
oStream s(&d, &a, "wholeGridFile");

// to insert the entire collection g:
s << g;
// to insert only the numberOfParticles field
s << g.numberOfParticles;   // from each element

s.write();
}

Input Program:
#include "declarations.h"
Processor_Main {

Processors P;
Distribution d(12, &P, CYCLIC);
Align a(12,"[ALIGN(dummy[i], d[i])]");

// defining a distributed grid of ParticleLists g
DistributedParticleGrid <ParticleList> g(&d,&a);

// defining an input d/stream s:
iStream s(&d, &a, "wholeGridFile");

s.read();

// extracting the entire collection g:
s >> g;
// extracting only the numberOfParticles field
s >> g.numberOfParticles;  // into each element

}

Declarations:
class Position {

double x, y, z;
};

class ParticleList { // the element class
int numberOfParticles;
double * mass;      // variable sized
Position * position;  // arrays

};

Collection DistributedParticleGrid {
updateParticles(); // could be used to move the

}; // particles over the grid

Figure 3.  A SIMPLE pC++ D/STREAMS EXAM-
PLE:  pC++ supports collections, complex
data-structures based on distributed arrays of
arbitrary objects.  We have implemented
d/streams for pC++ to support I/O on collections.
The two pC++ programs below demonstrate how
d/streams can be used in pC++ to output and then
later input a distributed grid of objects which
hold lists of particles.  The declarations to the
right are included in both programs below.



Page 6

Implementation of insert and extract

pC++ allows a particularly elegant programmer interface for the d/streaminsert andextract primitives.  In

pC++, parallel operations on collections can be expressed using a data-parallel style syntax: if a and b are

collections and if * is an operator on the element types of a and b, thena * b  specifies the concurrent application

of * to the corresponding elements of a and b.  As in C++, any binary operator can be overloaded by the

programmer to implement any binary function.

The pC++/streams library implements the d/streaminsert primitive by overloading the operator <<.  This lets

the programmer insert an entire collection g into a d/stream s in parallel with a single line of code:

s << g;

which concurrently applies the operator << to the corresponding elements of s and g.  This syntax is similar to that

used for formatted ASCII I/O in C++, implemented by the C++ iostream library [3].

pC++/streams defines the << insertion operator for each of the fundamental pC++ types (such as integers and

doubles) and for arrays of the fundamental types.  These operators insert pointers to the data to be output into the

per-element pointer lists, as described in Figure 4.  Additionally, pC++/streams provides a straightforward means

for the programmer to indicate the way in which complex programmer-defined types are to be inserted.  The

programmer can specifyinsertion functions to decompose the insertion of any complex type in terms of simpler

Node 1

1 5 9Collection "g"

d/stream "s"

Node 2

2 6 10

Node 3

3 7 11

Node 4

4 8 12

Per-Element
Pointer Lists

Per-Node
Buffers

Elements

Parallel File System

Figure 4.  D/STREAM IMPLEMENTATION IN pC++:  This diagram shows the internal structure of the
pC++ d/stream implementation used for distributed-memory multicomputers with parallel file systems,
such as the Intel Paragon and Thinking Machines CM-5.  The diagram also depictsg, an example
collection containing a one-dimensional distributed array of 12ParticleList  objects.  pC++ allows an
elegant programmer interface to the d/stream primitives.  The programmer caninsert the entire collection
g into the d/streams  with a single line of code:s << g .  Any subfield of the elements of collection g can be
inserted in a single line as well, for example:s << g.numberOfParticles .  Invocation of the insert
primitive causes a pointer to the inserted data to be added to each of the per-element pointer lists in the
d/stream.  Invocation of thewrite primitive with s.write()  causes the pointer lists to be traversed and
the corresponding data from g to be output to the system-provided  file system using parallel I/O, as
described in Section 4.1.  Invocation of theread primitive with s.read()  inputs data from the file system
into the per-node buffers, then invoking the extract primitive (using s >> g  or
s >> g.numberOfParticles,  for example) causes that data to be transferred into collectiong.

(used only

during output)

class ParticleList {
public:
  int numberOfParticles;
  double * mass; // variable sized
  Position * position;     // arrays
};



Page 7

insertions of the fields of that type.  For example, for the type ParticleList described in Figures 3 and 4, which

contains the dynamic arraysmass andposition , the programmer could define an insertion function as follows:

declareStreamInserter(ParticleList &p) {
  //insert the numberOfParticles field of p, an integer:
  s << p.numberOfParticles;

  //insert the mass field, a variable-sized array of size numberOfParticles:
  s << array(p.mass, p.numberOfParticles);

  //similarly, insert the position field
  s << array(p.position, p.numberOfParticles);
}

(declareStreamInserter  and array  are macros defined by the pC++/streams library.)  This insertion

function would have to be defined before the programmer could insert a collection of ParticleLists (withs << g

for example).  Recursively structured data types such as trees can be output naturally using recursive insertion

functions.

In addition to inserting entire collections in a single line, pC++/streams allows the programmer to insert any

single field of the elements of a collection in a single line.  For example:

s << g.numberOfParticles;

Assumeg2  is a second collection aligned withg and containing a double precision fieldparticleDensity .

The programmer can invoke

s << g.numberOfParticles;
s << g2.particleDensity;
s.write();

which will cause the correspondingnumberOfParticles  andparticleDensity  fields of g andg2  to be

written contiguously in the file, even if they are not contiguous in memory.  This feature, calledinterleaving, is

useful for writing files for communication with many visualization tools which require related data to be written

contiguously.

The d/streamextract primitive is implemented similarly to theinsert primitive.  The programmer can extract

data from an input d/stream into an entire collection usings >> g , or into a single field of a collection using

s >> g.numberOfElements .  As with insertion, the programmer can define extraction functions to define

how complex types are to be extracted.

Implementation of write, read, and unsortedRead

pC++/streams allows the programmer to invoke thewrite  primitive on an output streams  by calling

s.write() , which initiates the following two output steps:

1) Writing distribution and size information :  First, information about the distribution of the collection s

(and thus the distribution of all collections that could have inserted data into s) and about the size of the

data to be output from each element is written to the file in a single parallel write.

2) Writing the actual data:  Next the actual data is written.  The per-element pointer lists are traversed, the

data referenced (which the programmer previously inserted) is marshaled into the per-node buffers, and

the per-node buffers are written in a single parallel write.

Each parallel write operation described above transfers a single block of data from each compute node to the file

system concurrently and writes those blocks to the file in node order, using the I/O primitives of the underlying

parallel file system.



Page 8

The programmer invokes the d/streamread primitive on an input streams  by calling s.read() , and the

unsortedRead primitive by callings.unsortedRead() .  When either primitive is invoked, the input stream

reads the distribution and size information which were stored in the file in step one above in one parallel read

operation, then reads the actual data into the per-node buffers in a second parallel read.  IfunsortedRead was

invoked, then the actual data is ready to be extracted directly from the per-node buffers by the programmer.  Ifread

was invoked, then the actual data may need to first be sorted and sent to the owner nodes by the library if the

number of processors or distribution has changed since the data was written.

Note that no information about the distribution or size of the data to be read needs to be passed to the library by

the programmer when reading, since that information is stored directly in the file, preceding the data itself.  The

programmer simply invokess.read()  and the library does the paperwork involved in determining the structure

of the data that was written, reading it in correctly regardless of differences in the number of processors and

distribution of the reading and writing arrays.

4.2    Compiler Support

In Section 4.1 we mention that the programmer can write inserter and extractor operators to specify exactly

how programmer-defined types are to be inserted and extracted.  We have developed a simple tool (stream-gen) that

analyzes pC++ programs and generates the inserter and extractor operators for all programmer-defined types. The

library can be used without the tool but the tool makes the programmer's job easier.  In dynamic types containing

pointersstream-gen generates a comment statement allowing the programmer to specify exactly how the pointer

should be handled.Stream-gen is written using the Sage++ compiler toolkit [8].

Additionally, the pC++ compiler supports I/O on local data that is replicated on each node, by transforming

programs to insure that local data is output and input by only one node.  Also for input, the data is broadcast to the

rest of the nodes after it is read.  This is similar to what is done in PetSc/Chameleon [11], but they do not have

compiler support and the programmer has to explicitly distinguish between I/O on non-distributed and distributed

data-structures.

4.3    Performance

The Benchmark

We developed a benchmark that contains the I/O skeleton from a Grand Challenge application1 written in

pC++, the Self Consistent Field (SCF) code [12] [9].  SCF  is an N-body code in which the primary data structure is

a one dimensional collection ofSegments  where each segment stores data corresponding to severalparticles .

There could be several segments on a given processor. Per-particle information includes the x, y, and z

co-ordinates of the particles, their x, y, and z velocities, and their masses.

In the SCF code particle data is periodically saved for later analysis (to visualize how the particles interact as

well as to compare the results to the sequential algorithm). The SCF code is mostly an "output only" application,

but in our benchmark we perform both input and output on the particle data.  We code the I/O in 3 ways: using the

pC++/streams library, using operating system I/O primitives directly with buffering, and using operating system I/O

primitives without buffering.

1"Grand Challenge Computational Cosmology"



Page 9

Performance results

Figure 5 shows preliminary performance results for implementations of pC++/streams on the Intel Paragon and

the SGI Challenge.  The library also runs on the CM-51 [15] and a number of workstation platforms.  We are

debugging the library on the KSR-1 and will present performance results of the library running on it in the final

paper.  We are also in the process of porting the library to the IBM SP-2 using the Vesta file system and the

Cray T3D.

Our preliminary performance results indicate that the library is competitive with hand-optimized buffered I/O

and out-performs the unbuffered I/O.  Application developers often use unbuffered I/O - which was the case in the

SCF code - to avoid the extra bookkeeping involved in buffering, and this can lead to I/O performance problems.

The results also show that the overhead introduced by the library decreases as the total number of elements

increase - that is the performance of the library scales well with problem size.

The results show that abstractions for high-level I/O on distributed data-structures can be implemented without

substantial performance penalties, in a portable fashion.

1On the CM-5 the wall clock time has to be used for measuring I/O since the CMMD timers do not account for I/O and so

we do not give detailed performance results since we do not have access to dedicated time on the CM-5 to run our benchmark

Table 1: Benchmark Results on Intel Paragon
(4 processors)(in seconds)

Number of
Segments

256
(1.4MB)

512
(2.8MB)

1000
(5.6MB)

2000
(11.2MB)

Library 3.76 sec 3.98 11.07 57.08

Buffered I/O 1.99 3.08 7.00 45.54

Unbuffered I/O 7.13 14.73 283.00 556.78

Library speed 53% 77% 63% 80%

Table 2: Benchmark  Results on Intel Paragon
(8 processors)(in seconds)

Number of
Segments

256
(1.4 MB)

512
(2.8 MB)

1000
(5.6MB)

2000
(11.2 MB)

Library 3.77 4.95 8.25 15.77

Buffered I/O 2.95 4.12 7.04 14.48

 Unbuffered I/O 7.53 14.47 273.77 561.72

Library speed 78% 83% 85% 91%

Table 4: Benchmark Results on
Multiprocessor SGI Challenge(8 processors)

Number of
Segments

1000
(5.6MB)

2000
(11.2MB)

8000
(44.8MB)

Library 0.39 0.75 2.65

Buffered I/O 0.22 0.34 2.38

Unbuffered I/O 0.55 1.10 4.95

Library speed 56% 45% 89%

Table 3: Benchmark Results on
Uniprocessor SGI Challenge

Number of
Segments

1000
(5.6 MB)

2000
(11.2 MB)

20000
(112MB)

Library 1.32 2.71 21.84

  Buffered I/O 1.05 2.13 20.9

Unbuffered I/O 1.68 3.42 32.20

Library speed 79% 78% 95%

Figure 5.  pC++/STREAMS PERFORMANCE:  The timings below are in seconds and the measurements
are for a collection output operation followed by an input operation. The total number of elements in the
collections (i.e., the number of segments) is varied to determine the performance of the library using
unsortedRead for various I/O sizes.  The I/O sizes (in megabytes) for the various segment sizes are given in
parentheses in the first row of each table. Each Segment contains particle list data of size 700 doubles (i.e.
5600 bytes).  The final row in every table gives the library’s I/O rate as a percentage of the rate obtained
with buffered I/O method.  This indicates the overhead of storing distribution and size information in the
file in the current implementation of pC+/streams.



Page 10

5   Related Work

The libraries PetSc/Chameleon [11] from Argonne and Panda [22] [21] from UIUC, and the software system

PASSION [6] from Syracuse, provide support for I/O on distributed arrays of fixed-sized elements in the context of

the distributed-memory data-parallel programming model.  pC++/streams differs from these systems in that it

supports buffered I/O on distributed arrays of objects whose size may vary over the array itself, for example

distributed arrays of variable-density grids or distributed arrays of lists of particles, in the context of a portable

object-parallel language.  PetSc/Chameleon supports I/O on block-distributed arrays.  Panda supports more general

HPF-style array distributions and interleaving, as does pC++/streams.  PASSION is a large effort at Syracuse which

provides support at the language, compiler, runtime, and file system level for I/O on distributed arrays as well as for

computing over out-of-core distributed arrays.  It should be noted that pC++/streams is not intended to be used for

out-of-core computation.  The two-phase access strategy described in passion for parallel access to files, where data

is first read in a manner conforming to the distribution on disk and then redistributed among the processors, is

similar to the implementation of the pC++/streamsread primitive.  Language extensions for parallel I/O on

distributed arrays have been discussed in the HPF Forum [10].

6   Conclusions

This paper makes several contributions:

• It describesd/streams, a language-independent abstraction with a small set of simple primitives for buffered

I/O on distributed data-structures, which can be implemented in I/O libraries.

• It describes the interface and implementation ofpC++/streams, a library that implements d/streams in the

object-parallel language pC++ to provide simple and expressive primitives for I/O on distributed arrays of

arbitrary variable-sized objects.

• It presents performance results which show that d/streams can be implemented efficiently and portably on a

range of distributed-memory and shared-memory parallel machines.

• It shows that compiler support can be used to ease the coding of I/O.

• It provides a good picture of the landscape of mechanisms for I/O on distributed data-structures.

pC++/streams is intended for developers of parallel programs requiring efficient high-level I/O abstractions for

checkpointing, scientific visualization, and debugging.  It uses parallel I/O primitives on machines that provide

them, to implement the abstractions efficiently.

Acknowledgements

This research is supported in part by ARPA under contract AF 30602-92-C-0135, and the National Science

Foundation Office of Advanced Scientific Computing under grant ASC-9111616.


