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Abstract

Parallel I/O systems are gaining popularity as a
means for providing scalable high bandwidth I/O. In
this paper we develop abstract models of parallel I/O
systems and provide empirical results that show how
I/O intensive applications interact with the elements
of parallel I/O systems. The abstract models are useful
for explaining parallel I/O performance to developers
of applications requiring high performance I/O and the
experimental results provide insight into the I/O per-
formance of present generation parallel machines. We
also identify optimizations for improving I/O perfor-
mance, which should be useful for developers of appli-
cations and I/O libraries.

1 Introduction

Restricting a parallel machine to a single I/O device
would cause I/O to become a bottleneck, since I/O
power would be unable to scale with computational
power. Therefore, many present-generation parallel
machines provide a scalable parallel I/O subsystem
consisting of several I/O nodes each connected to a
high speed I/O device. This enables high bandwidth
co-operative I/O i.e., parallel I/O to be performed
from the compute nodes [1, 2, 3]. Many large-scale
parallel applications require the use of parallel I/O to
achieve high performance [4].

In this paper, we design models and experiments to
examine how parallel I/O systems perform and scale.
We provide experimental results for parallel I/O scal-
ability and performance on the Intel Paragon and the
Thinking Machines CM-5. The models and results
presented in this study should be useful for optimizing
I/O performance in applications, con�guring existing
parallel I/O systems and designing new ones.
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Figure 1: ARCHITECTURAL ELEMENTS OF
DISTRIBUTED MEMORY I/O SYSTEMS:
A variable number of I/O nodes share a scal-
able network with the compute nodes, allowing
I/O power to be scaled with compute power.
Each I/O node has a disk bu�er and is con-
nected to a disk device, which could be a RAID
(Redundant Array of Inexpensive Disks) sub-
system. The compute nodes in the parallel
machine are grouped into compute partitions.
The I/O nodes do not belong to any one com-
pute partition but are shared across all of them.

2 Parallel I/O systems: A brief
overview

Distributed memory parallel machines are converg-
ing towards a common architecture for parallel I/O



systems (see Figure 1). Some of the present genera-
tion parallel machines that provide such a system are
the Intel Paragon, Thinking Machines CM-5 [1] and
IBM SP-1 [5].

Both the Paragon and the CM-5 provide a special
UNIX �le system that gives applications high speed
access to the parallel I/O system. These �le systems
can be used in the same way as normal UNIX �le sys-
tems, but in addition, they are accessible through spe-
cial system calls provided for parallel I/O. The system
call interface for parallel I/O is similar to the interface
for normal UNIX I/O, with a single extension. An I/O
mode, associated with each �le descriptor, coordinates
the way in which the compute nodes access the �le.

3 Performance and scalability of I/O
in three models of parallel I/O sys-
tems

In this section we start with a simple model of a par-
allel I/O system, then successively re�ne the model, at
each step discussing the relationship between the el-
ements of the model and the way I/O performance
scales under increasing I/O loads.

Let us start with a machine having p compute nodes
and a parallel I/O system with one I/O node (see Fig-
ure 2). Assume that:

� An application, when run on the compute nodes,
issues a parallel input or a parallel output request
to the I/O system. The parallel I/O request con-
sists of a system call executed by each compute
node which causes a total of n bytes to be concur-
rently read or written (n=p bytes on each node).

� The time for I/O is the same on each node.

� We repeatedly run our application for increasing
output sizes, and that we wait for the I/O system
to clear after each run.

For such a parallel I/O operation we de�ne:

� Application I/O time denoted by T imeapp(n) as
the time the system call takes to move data be-
tween the application's bu�er and the top level of
the I/O system.

� Actual I/O time denoted by T imeactual(n) as the
actual time for the I/O operation to complete i.e.,
the time it takes for data to go all the way between
the application and the disk.

These times are signi�cant because while data is
being transferred into the operating system, the appli-
cation must leave the bu�ers holding the data undis-
turbed, and until the data reaches the �le, other ap-
plications cannot read it.

We can associate a rate with each of these times:

� Application I/O rate denoted by Rateapp(n)
which is equal to n=T imeapp(n).

� Actual I/O rate denoted by Rateactual(n) which
is equal to n=T imeactual(n).

3.1 Model with unlimited compute node
memory and no I/O system memory

Assume the compute nodes have unlimited mem-
ory and the I/O system has no memory. In this case,
the I/O node moves data directly between the com-
pute nodes and the disk. Therefore T imeapp(n) =
T imeactual(n) and this implies that Rateapp(n) =
Rateactual(n). Let us call this Rate(n).

As we increase n, we would expect to see Rate(n)
to start low at �rst due to overheads, and to quickly
increase to some Ratelimit corresponding to the raw
I/O rate of the physical disk (see the �rst graph in
Figure 2). After this point there is no change in I/O
performance when the number of compute nodes or
the size of the computation is scaled upwards. So if
we scale the number of compute nodes by a factor of
f , the time for I/O changes by the same factor f .

3.2 Model with a �nite I/O bu�er on the
I/O node

Now assume that the I/O node has a disk bu�er of
�nite size b bytes. In this model and the next we limit
our discussion to output, for clarity. Parallel I/O in
this model consists of two processes. Data is trans-
ferred from the application through the operating sys-
tem to the disk bu�er and from the disk bu�er to the
disk concurrently. Due to the relative bandwidths of
current disks and interconnection networks, it makes
sense to assume that the transfer of data from the ap-
plication's bu�er into the disk bu�er happens much
faster than the transfer from the disk bu�er to the
disk.

As the second graph in Figure 2 shows, when the
total amount of output (n) that the application per-
forms is less than the size of the disk bu�er (b) then
the application output rate will be much higher than
the actual output rate, since the operating system can
quickly copy the contents of the application's bu�ers
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Figure 2: ABSTRACTMODELS OF PARALLEL I/O. The Application I/O time is the time the system
call takes to move data between the application's bu�er and the top level of the I/O system. Actual
I/O time is the actual time for the I/O operation to complete i.e., the time it takes for data to go all
the way between the application and the disk. n is the total amount of data in the I/O operation.
Application I/O rate is n=T imeapp(n) and Actual I/O rate is n=T imeactual(n).

into the I/O node's bu�er and then release the appli-
cation's bu�ers. Therefore the system calls can return
before the data is actually written to the disk. When n
is very small, overheads will slow the application out-
put rate, so a graph of the application output rate as a
function of n will start low, rise quickly, then asymp-
totically approach a value corresponding to the peak
rate at which the operating system can transfer data
from the compute nodes into the I/O node's bu�er.

However when the amount of output performed is
greater than the disk bu�er size, the system calls will
start to take longer to return, for the following rea-
son. The transfer rate from the operating system to
the disk bu�er will be at the same rate at which data
is being transferred from the disk bu�er to the disk.
Therefore at b bytes of output, the graph of the appli-
cation output rate will start dropping, asymptotically
approaching the actual output rate.

More formally:

n < b ) Rateapp(n) > Rateactual(n)

n� b ) Rateapp(n) = Rateactual(n)

3.3 Model with virtual memory on com-
pute and I/O nodes

Actual parallel systems have �nite memory on both
the compute and I/O nodes but provide virtual mem-
ory through paging mechanisms. In this section we
extend our model to include virtual memory on both
the compute and I/O nodes. Let the size of the disk
bu�er be b bytes and let the physical memory size on
both the compute nodes and the I/O node bem bytes,
where b > m (so the entire bu�er is too large to �t into
the I/O node's memory).

For n < m the behavior of this model is the same
as that of the model in the previous section. When
n > m paging starts on the I/O node. The behavior
of the model will be complex, and will be determined
by the paging algorithm and the raw I/O rates of the
paging disk and the actual disk. Also for n > p �m
paging will occur on both the I/O and compute nodes.



Analytical modeling of this behavior is di�cult so we
have developed a program to simulate this behavior
(see Figures 3 and 4).
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Figure 3: COMPARING OUTPUT PERFOR-
MANCE with and without virtual memory
on the I/O system (compares performance of
models in sections 3.2 and 3.3). (This data was
obtained from a simple virtual memory simu-
lator). We assume the raw output disk band-
width is one �fth the interconnection network
bandwidth, and that the raw paging disk band-
width is one half the raw output disk band-
width. This preliminary result suggests that
the use of virtual memory for the I/O system
can improve application output rates at the ex-
pense of actual output rates.

Several further extensions to the model are possible.
They include adding the e�ects of the interconnection
network, the e�ect of the disk con�guration i.e., the
mapping between I/O requests and the disk array, and
the e�ect of multiple I/O nodes.
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Figure 4: COMPARING PAGING ALGO-
RITHMS for the model with virtual memory
on the I/O nodes (simulator data). Both ac-
tual and application performance start to drop
(due to paging) when the total amount of data
written equals the total I/O system memory.
The severity of the drop depends on the paging
algorithm used. With a simple demand pag-
ing algorithm, the actual rate drops to 60% of
the raw disk rate when 5 times the I/O system
memory size is written. With an improved pag-
ing algorithm which incorporates early page-in
of paged blocks to unused I/O system mem-
ory, the actual rate drops to 85% of the raw
disk rate, a smaller drop than for the simple
algorithm.

4 Experimental evaluation of parallel
I/O performance on the Paragon
and CM-5

On real machines, large reads and writes are often
broken into series of smaller ones to improve I/O per-
formance. Let us de�ne a parallel write operation as
a single parallel write system call performed on each
compute node of a parallel machine, and a parallel
output operation as a series of one or more parallel
write operations with no intervening computation. As
mentioned in the previous section, there are two signif-



icant amounts of time associated with a given parallel
output operation: the application output time and the
actual output time. Also there are two data transfers
rates application output rate and actual output rate
that are associated with these times. We de�ne paral-
lel read operation, parallel input operation, application
input rate, and actual input rate similarly. Our experi-
mental results for input are all in terms of actual input
rate. The reason being that after initiating the read
operation, there will be some period of time during
which no data is being transferred into the user's pro-
gram, while the data is being read from the disk and
sent through the network. But none of the current
parallel operating systems that we are aware of pro-
vide a way to measure that time. So we have no way
of measuring the remaining time when data is being
transferred into the application's bu�ers. Therefore,
even though it makes sense to talk about an applica-
tion input rate for a parallel read operation, we have
no way of measuring that rate.

4.1 Intel Paragon: Experiments and Re-
sults

We ran our Intel Paragon experiments on the
Paragon at Indiana University, which has 92 compute
nodes, 2 I/O nodes and 4 partition managers. The �le
partition we used has 2 RAID-3 arrays; each array has
5 disks for a total of 10 disks. We were the only users
on the machine during most of the experiments.

The I/O nodes on this machine are in a service
partition. This is not the most optimal con�guration
since a heavyweight OSF/1 kernel that runs all UNIX
commands issued by the users resides on the service
nodes, using up potential I/O bu�er space.

On the Paragon we started with a simple test pro-
gram that linearly increased the total amount of I/O,
and measured the I/O rates for the M SYNC mode. We
successively added the following optimizations that
the Paragon User's Guide[2] suggests:

1. Align read/write bu�ers to page boundaries1.

2. Use the paragon's record (M RECORD) parallel I/O
mode. This mode requires that the same amount
of data be read or written by each processor in
any given parallel I/O operation.

3. Break large write operations into multiple smaller
operations, where the amount of data written by
each processor is either equal to the stripe unit

1If properly aligned bu�ers are not used, the software must

copy the data to new, aligned bu�ers, worsening performance.

size, or is an integer multiple of the full stripe
size. This makes optimum use of �le striping,
keeping all the I/O nodes busy at once.

4. Begin each read and write request on a �le system
block boundary.

The results presented in the paper are for the �nal
most optimized test programs.

4.1.1 Parallel Input Performance

Figure 5 is a graph of the empirically measured actual
input rate for varying sizes of parallel input opera-
tions, each comprised of a single parallel read opera-
tion, for 2, 4, and 8 processors.

The Paragon User's Guide indicates that parallel
write performance can be improved by breaking large
parallel write operations into a series of smaller oper-
ations, where the amount of data written by each op-
eration is equal to the stripe unit size. We found that
breaking up large parallel read operations into smaller
read operations does not improve performance.
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Figure 5: INPUT PERFORMANCE of the
Paragon in terms of the actual input rate. No-
tice the performance drop when the input size
exceeds the physical memory of the compute
nodes, causing paging



4.1.2 Parallel Output Performance

The output rates are graphed as functions of the total
amount of data output in a parallel output operation.
Each parallel output operation was comprised of a se-
ries of smaller parallel write operations of size equal
to the I/O system's stripe unit size.
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Figure 6: COMPARING APPLICATION AND
ACTUAL OUTPUT PERFORMANCE mea-
sured using two compute nodes on the paragon.
The graph shows that the actual output rate
remains nearly constant, no matter how much
data is written. The graph of the application
output rate, on the other hand, rises to a peak
around 5MB then suddenly begins to drop. A
possible cause of this behavior becomes appar-
ent in Figure 7.

In Figure 6 we see a sudden drop in the application
output rate beyond a certain point. So, what causes
the sudden drop in the application output rates of the
parallel write operations? Our model predicts that
if small parallel write operations are repeatedly per-
formed, then the application output rates of those op-
erations should be high until the memory of the I/O
nodes is �lled, at which point the application output
rates should suddenly drop due to the extra time re-
quired for paging on the I/O nodes. Indeed this is
what we observe. If this explanation is correct, then

the location of the peak in the application output rate
of the parallel output operations should depend only
on the total amount of data written, and not on the
number of compute nodes doing the writing. This
is what we observed experimentally. Figure 7 shows
a comparison of application output rates of parallel
output operations of varying size for 2, 4, and 8 pro-
cessors. The three graphs all have the same shape,
and the peak in all the three graphs appears at the
same place.
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Figure 7: COMPARING APPLICATION OUT-
PUT RATES for varying numbers of proces-
sors measured on the paragon. Notice that the
performance drop happens at around the same
point (close to 5MB) for all the graphs. We
believe this drop is caused by the I/O system
memory �lling up.

Our model predicts that if after writing enough
data to �ll the I/O nodes' memory, the compute nodes
wait for that data to be completely written to the disk
(freeing the I/O nodes' memory once again), then the
compute nodes should see a high application output
rate when the writing is resumed. The above behavior
is similar to what we observed in our experiments as
shown in Figure 8. The line corresponding to the case
where no waiting was done was obtained as follows:
a series of small parallel write operations were per-



formed to a single �le, and the application output rate
was recorded for each write. These rates were plotted
in the graph from left to right, the x coordinate of the
rate of the i'th write being determined by the sum of
the sizes of all the previous writes in the series. So the
rate at x coordinate i is the application output rate
that will be observed from a small write performed im-
mediately after i bytes of data have been written. The
line corresponding to waiting was obtained similarly,
except that at the point when enough data had been
written to �ll the I/O nodes' memory, at 3 Mbytes of
data written per processor, the fsync system call was
used to wait for that data to be completely written to
the disk, then writing was resumed.
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Figure 8: TWO TIME VIEWGRAPHS OF AP-
PLICATION OUTPUT RATES of small re-
peated parallel write operations. The rate
starts high in both graphs, then suddenly drops
when the I/O system's memory is �lled, due
to the onset of paging. Then in one graph,
an fsync() system call is performed (at about
3 MB), forcing the I/O system's memory to
clear before writing is resumed, at which point
a second hump appears in the graph. In the
other graph, no fsync() is performed, and the
rate remains low after the initial drop.

Figure 9 examines the implications of paging on the

I/O nodes when we write large amounts of data.
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Figure 9: WHEN THE AMOUNT of data writ-
ten exceeds the I/O system's memory, doubling
the amount of data written causes the applica-
tion output time to increase by a factor of 4.
The following is a possible explanation. If the
I/O system's memory �lls up paging will be-
gin, causing disk I/O time to be added to the
application output time, which before was just
the time to transfer data through the intercon-
nection network to the I/O system's memory.
Consequently, when the I/O system is satu-
rated, paging disk I/O time will begin to dom-
inate the application output time. This could
account for the dramatic slowdown.

4.2 Thinking Machines CM-5

We ran these experiments on the machines at
NCSA and at UMIACS, Maryland. We present re-
sults only for the CM-5 at UMIACS. The CM-5 at
UMIACS has 32 compute nodes, 2 I/O nodes, 1 par-
tition manager. Our results are preliminary since we
used the wall clock timer for our measurements with
other users on the system, since the virtual timers on
the CM-5 cannot be used for I/O measurements.
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Figure 10: INPUT AND OUTPUT PERFOR-
MANCE of application output and actual in-
put rates on the Maryland CM-5. Notice the
performance drop for both input and output
rates beyond 6MB

5 Related work

Kwan and Reed [6] study the performance of the
Scalable File System on the NCSA CM-5. Their mo-
tivation was to compare the performance of the CM-5
parallel I/O interfaces of CM-Fortran and C/CMMD.
Their C/CMMD experiments are similar to ours. Our
results on the CM-5 are preliminary but are compara-
ble with theirs.

Bordawekar, Rosario and Choudhary [7] present an
experimental performance evaluation of the Touch-
stone Delta Concurrent File System. The actual read
(6 MB/sec) and actual write (1.2 MB/sec) rates we
measured on the IU Paragon are a lot lower than the
rates they report for the Intel Touchstone Delta (also
reported in [6]). .

6 Conclusions

We identify two important data transfer rates for
I/O: the application rate and the actual rate. The ap-
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Figure 11: COMPARING THE APPLICATION
OUTPUT PERFORMANCE of the IU's Intel
Paragon and the Maryland's CM-5. Both mea-
surements are for 32 processors. Each Paragon
output operation was comprised of a series of
parallel write operations each of a size equal
to the stripe unit size. Also each CM-5 in-
put/output operation was comprised of a single
parallel read/write operation.

plication rate is the rate at which data is transferred
between the user's bu�er and the operating system;
the actual rate is the rate at which the data is trans-
ferred between the user's bu�er and the disk. Both
rates are useful for evaluating I/O performance.

We develop three successively more detailed models
of parallel I/O systems and describe the I/O perfor-
mance of a simple I/O intensive application for each
model. Many further extensions to the most detailed
model are possible (see section 3.3). These models
are useful for explaining parallel I/O performance to
developers of applications requiring high performance
I/O. We examine the e�ect of I/O system virtual
memory on I/O performance through simulation. We
then describe the I/O performance of actual parallel
I/O systems on the Intel Paragon and the Thinking
Machines CM-5.

We identify the following optimizations for improv-



ing I/O performance:

� The user's bu�er should be properly aligned in
memory so that the operating system doesn't
have to make an aligned copy of the bu�er.

� Striping mechanisms provided in parallel I/O sys-
tems should be used e�ectively to balance the I/O
load among the components of the parallel I/O
system.

� If a fast application rate is desired (for example,
in applications that can overlap output with com-
putation involving the user's output bu�er mem-
ory), then care should be taken to write no more
data than will �t into the I/O system's memory
in a given output cycle.

� Our preliminary simulation results suggest that
the use of virtual memory for the I/O system
can improve application output rates at the ex-
pense of actual output rates. However, more work
is needed to determine how varying the relative
bandwidths of the paging disk and the output
disk a�ects this result.

� Our simulation data indicate that if virtual mem-
ory is to be used for parallel I/O systems, spe-
cialized paging algorithms, such as early page-in
to unused I/O system memory, are necessary to
maintain good actual output performance.

� If virtual memory is used for the I/O system then
the user can improve actual output performance
if I/O system paging is avoided by writing only
enough data to �ll the I/O system memory, then
waiting until that data is completely written to
the disk (using the fsync() system call) before
writing more data.

Several e�orts are under way to provide parallel
I/O libraries for the current generation of parallel lan-
guages. The above optimizations should be included
in those libraries, making parallel I/O simpler and
more e�cient for application developers.
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