EFFICIENT AXIOMS FOR ALGEBRA SEMANTICS

Mitechell Wand

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TECHNICAL RePORT No. 42
EFFICIENT AxIoMS FOR ALGEBRA SEMANTICS
MiTcHELL WAND

NOVEMBER, 1975

Research Reported herein was supported in part by the National

Science Foundation under grant number DCR75-06678.

Efficient Axicms for Algebra Semantics

Mitchell Wand
Computer Science Department
Indiana University

Bloomington, Indiana 47401

Abstract

Algebra semantics is the specification of semantic models of
computation by sets of algebraic identities. Sets of.identities
have a convenient, well-known model theory which can characterize
the class of implementations of a given model and which can con-
struct data structures for a canonical implementation of <the cor-
responding formal system without recourse to lattice-theoretic or
other external devices. In this paper we will consider how the

control structures for a canonical implementation may be deduced

from the axioms.

.

l. Introduction

Let us consider a simple example of how first order identities
may be used as a defining language. Reynolds [6] provides a series
of interpreters for a simple language with recursion. Each function
in his interpreters consists of a conditional expression. Each
test turns out to be a test for membership in a subtype, so the
order of the tests in immaterial. The archetypical situation in

the interpreter is:

eval = A(r,e)...

appl?(r) -+ apply(eval(opr(r),e).,eval(opnd(r),e)) 2 i

If appl?(r) is true, then r must be of the form mk-agpl[xl,xgj

where Xx and X, are of type EXP; then opr(r) = X

1
opnd(r) = x

l 3
5 - We deduce that for all Xq,%X,5 € EXP , e € ENV ,

eval[mk—appl[xl,xzj,e] = apply[eval[xl,e],eval[xg,e]] (%)

Equation (¥*¥) 1is nothing more than an axiom relating eval ,
apply , and mk-appl . Scott and Strachey [8] call such axioms
semantic equations and use them to construct lattice-theoretic seman-
tics. Goguen et al. [1] interpret (*) as saying that eval is
the unique homomorphism from the "initial algebra" with mk-appl
as a blnary operator to another algebra A with the binary operator
apply , the environment parameter e Dbeling eliminated by a clever
choice of carrier for the algebra A

We adopt the following interpretation for axiom (¥) : A model
for axiom (¥) is a set A with three binary operations together
satisfying (¥) . So long as we restrict ourselves to first-order

identities like (¥) , the theory of universal algebras gives a

general construction for such models.

By allowing any set of ildentities, we can model systems where
the conventional technique of metacircular interpretation sheds
less light than usual. One such system is the model of Hewitt [2].
In this semantic model of computation, the basic units, called actors,
have the capability to send and receive messages in rather sophis-
ticated ways. While they provide an attractive model of the macro-
scopic behavior of complex control and data flow regimes, there
is some doubt as to whether such complex beasts exist 1In any reason-
able ontology. Algebra semantics can provide a non-metacircular
definition for actor-like objects.

Although we will present some brief examples of algebra semantics
this paper is not primarily concerned with the programming implica-
tions of algebra semantics (g.v. [9]). It is, rather, concerned
with a technical difficulty, which may be stated as follows: The
original formulation of 1line II.5 has a fairly direct interpreta-
tion in an operational semantics, while axiom (¥) does not. If
we attempt to interpret (¥) as some kind of rewriting system,
then further difficulties arise: since identities are symmetric,
we might want to use (¥) from right to left. In thilis paper we
will show how to interpret a set of identities as a rewriting system,
and give sufficient conditions under which the system is unidirec-
tional and close to deterministic.

In Section 2 we will give some algebraic preliminaries about
theories and presentations. In Section 3 we will give a formal
definition of algebra semantics and give some short examples. In

Section 4 we will tackle the technical issues.

L

2. Algebra Preliminaries

We presume familiarity with the concepts of category, functor,
and algebraic theory [3,4,5]. Except for the definition of actor
theory below, this section sets forth notational conventions for
standard material.

If C is a category, C(a,b) is the set of arrows or morphisms
from objeect a to object b . If f ¢ C(a,b) and g e C(b,ec) ,
their composition, a member of C(a,c), is denoted g.f . If

f ¢ Cla,b) then dom(f) = a and cod(f) =D

Let w denote the nonnegative numbers 0,1,2,... . A ranked
set is a map Q:S - w for some set S . If s € S , we say s
is the rank of s . Alternatively, if Qs = n , we say s is
an n-ary member of S . When no ambiguity results, we will write

Q Tor 8 : B.B., 1T 8 e} 4 then Q8 e @@ . We may gpeclily Q
by its graph: e.g., & = {(+,2),(e,1)}

An algebraic theory is a category T whose objects are the

non-negative numbers 0,1,2,... and in which the obJect n is the
categorical product of the obJect 1 taken n times. If T is
a theory, and fl,..,fn e T(k,1) , then the product morphism in

T(k,n) 1is denoted [fl""fn] . We write for the projection

53
morphisms. If & 1is a ranked set, then the free theory TQ may
be constructed by standard methods. If TQ is a free theory, the

ranked set Pairs(f) is
(L, 0"y m) | £L.E' & Tﬂ(n,l)}

An Q-identity is an element of Pairs(Q) . If A ¢ Pairs(Q) we

will often write (f,f') e A for ((£f,f'),n) ¢ A . A theory-functor

is a product-preserving functor between theories.

If A is a set of identities, we construct a formal system
E, , whose formal objects are pairs (£,£7vYy =uch that
00 £ TQ(n,m) for some n and m . We denote this formal object
(f,f')in = m 1in order to make n and m explicit. The system

E& is defined as follows:

Axioms: If ((f,f'),n) e & , then (£f,f'):n = 1 EA
For any f e Tﬂ(l’l,m) 3 F(f,f):n » m ER
Rules: (f,g):n > m 5 CEgp)on o Eg.b)om @ n i
(R f)m > m (f,h):n » m

(g.g)om >k (P F'i:n =1 (B, h)sp * 0
(g.f.h,g.f'.h):p > k

EC

(fl,f' Jim > l,...,(fn,f'n):m e I

i
([fl,..,fn],[f'l,..,f'n]):m * b

EP

A theory may be presented by (Q,A) , where Q is a ranked

set (of generators) and A 1is a set of Q-identities. (Q,A) presents

the theory T where T(n,m) = TQ(n,m)/E&(n,m) » wWhere

Ey(n,m) = {(f,f*) | (£f,£'):n » m is a theorem of E,}

It is easily confirmed that EA preserves composition and products,
and so T 1s a theory, and the functor F:TQ -+ T sending each mor-
phism to its equivalence class is a full theory functor. T 1s often

denoted TQ/&

If T 1s a theory, a T-algebra is a product-preserving functor

A:T » Sets . The underlying set of the algebra is A(l) ; to each

morphism f ¢ T(n,m) there is a map Af:A(n) > A(m) ; since A

is product-preserving, af:a” 5 ™

Definition: Let X be any set. The free theory of actors with

primitive actors X is the free theory generated by
{(x,0) xex} v {(send,2)} , and is denoted AX

An AX-algebra C is a set (of "actors"), with distinguished
elements Cx for each x ¢ X and a binary operation Csend (trans-
mission) such that Csend(a,b) 1is the actor which results from
sending the message b to target a . We write <a b> for

send(a,b) and we make the convention that transmission assoclates

5 P e e e o0 o &
to the left; thus <al an> means << <al a2> a3> e

Definition: An actor theory is a quotient theory of a free actor

theory. The actor theory presented by (X,A) is AX/&

3. Examples of Algebra Semantics

An algebra semantics is a full theory-functor F:TQ + T from

a free theory TQ to some other theory T . We identify T-algebras

X:T » Sets with implementations. The underlying set X(1) of X

is the set of values in the implementation X . A denotation is a

morphism in TQ(O,l) . If d 1is a denotation, then XF(d) X(1)
is the value denoted by d in the implementation X . Note that

F(ad = F(dg) i 2 and d2 denote the same value in every

1) 1
implementation. We call TQ the theory of denotations and T the

semantic theory of F . The set of programs 1s a subset (often

proper) of the set of denotations. (See Figure 3.1.)

"semantics"

theory of denotations 'I'Q —& T semantic theory

"Implementation"
Sets
Figure 3.1

An algebra semantics may be presented by (2,A) where §Q 1is
a ranked set and A 1is a set of Q-identities. (R,A) presents
the algebra semantics F:'I'Q + TQ/& where F is the canonical functor.

A computation in (Q,A) is a derivation in the formal system E

A
Let H < TQ(O,I) be a set of denotations regarded as "known" (e.g.,

representations of integers). If d is a denotation, we say d

halts relative to H iff there is an h ¢ H such that (d,h) e E(A)
A typical choice of H 1s the set of denotations d such that

for no d4' is (d,d') a substitution instance of an ildentity in A
We will give two examples of algebra semantics. Both use actor

theories, though this use is not mandatory.

Example 1. A language with assignment, sequencing, and while [10].
Here, <list S, S,> 1is the denotation for (8438,) 5 <while B S>
denotes while B do S 3 and <assign I EXP> denotes I := EXP ;
and 1f S is a statement and ENV an environment, <S ENV> denotes
the environment produced by executing S 1in ENV . For a more
detailed discussion of the axioms, see [9].

For these examples, we will drop the requirement that projections
be named €158 - Instead, lower case italic identifiers will
be used for the projections. Boldface will be used for generators.

Let I be a finite set of identifiers. Let | be the actor

theory specified by:

<list first rest env> = <rest <first env>> H.I

<while b s env> = <choose <b env> <while b s <s env>> env> H.Z2

<assign 1 exp env> = <ext i <exp env> env> H.3

<choose true x, X,> = X, H.4

<choose false Xq x2> = X, H.5

<identifier z <ext i1 v env>> =

<choose <eq z 1> v <identifier z env>> H.6

for each 1 € I ,

<eg 1 1> = true HS.7
and for each 1,i' € I such that 1 = i'

<eq 1 i'> = false HS.8

Since there are no rules for expressions or booleans in the
original, any "useful" computation must occur in some particular
H-algebra. For instance, let X Dbe an H-algebra, b,s,e ¢ X(1) ,
and in X det b &> = frue , %=b <8 e>> = frue , and

<b <s <8 e>>> = false . Then in X 4

]

<while b s e> <chooge <b e> <while b s <35 e>> e>

= <choose true <while b 8 <s e>> e>

= <while b s <5 e>>
= <choose <b <g e>> <while b s <8 <s e>>> <g e>>

= <choose true <while b s <8 <8 e>>> <3 e>>

= <while b 8 <8 <g e&>>>

= <choose <b <3 <8 e>>>
<while b s <3 <g <3 e>>>>
<5 <85 e>>>>

= <choose false <while b s <s <35 <3 e>>>>

<8 <8 e>>>

= <3 <3 e>>

Example 3.2. A simple applicative language [6]. Let I be a

set of identifiers, with {zero,suce,equal}l <« I , and let R be

the actor theory presented by the following axioms:

<identifier id env> = <env id> B.

<apply opr opnd env> = <opr env <opnd env>> R
<cond pred thenpart elsepart env> = <choose <pred env>
<thenpart env>
<elsepart env>> R.
<letrec vble pbody body env> = <body <label vble pbody env>> R
<lambda vble pbody env arg> = <pbody <ext vble arg env>> R.
<ext vble value oldenv probe> =
<choose <eg vble probe> value <oldenv probe>> R.
<label vble pbody oldenv probe> =
<choose <egq vble probe>
<pbody <label vble pbody oldenv>>

<oldenv probe>> R.

=] fe=

<choose true Xl x2> = Xl
<choose false Xl x2> = X

For egeh 1« I ,

<eg 1 1> = frue

For each i1,i' € I such

<eg i1 i'> = false

<initenv sucec> = succ

<initenv equal> = equal

<initenv zero> = zero

<equal zero zero> = true

2

that X Zdr 4

<equal <succ x> <sucec y>

<eggual <succ x> zero>

1

<equal zero <succ X>>

Again, for a discussion of the programming issues

= <sgual x g

false

false

this choice of axioms, see [9].

R

Bes

RS

RS

involved in

= s S v B = s B E= s B =

8
9

- L1

Sl I

.12

=11

4. Theory Presentations and Rewriting Systems

In this section we will see how an arbitrary set of axioms may
be interpreted as a rewriting system (in fact, a subtree replace-
ment system [7]). With fairly natural restrictions on the axioms,
the resulting system has the Church-Rosser property, with pleasant
consequences. Under some additional plausible conditions, we will
show that "outermost" ("topmost", "leftmost") derivations suffice
to perform all useful computations.

Let A Dbe a set, Rc A x A , and let R¥ be the reflexive

transitive closure of R . We say R has the Church-Rosser property

1ff for every x,y,z ¢ A , if (x,y) ¢ R¥# and (x,z) ¢ R¥ , there
isa t ¢ A such that (y,t) « R¥ and (z,t) ¢ R¥ . We say ¢t

is an R-normal form of x iff (x,t) € R¥ and there is no u such

that (t,u) « R . If R has the Church-Rosser property, then
every x € A has at most one R-normal form. Let R# denote the
reflexive, symmetric, transitive closure of R

Theorem 4.1: If R has the Church-Rosser property, (x,y) € R#

and y 1is R-normal, then (x,y) € R¥

Proof: We will show that if (x,y) ¢ R# , then there is a =z

such that (x,z2) ¢ R¥* and (y,z) ¢« R# . If (x,y) ¢ R# , then
there exist Xg = X5¥35Xy5¥qs--5%Xy5¥, =¥ such that (xj,yj) ¢ R¥
and (yj,xj+l) e (R7')* . (Figure 4.1.) We proceed by induction

on k . If k=0 the claim is trivial. Assume the claim for
k -1 . Then for some 2z , (x,z) ¢ R¥ and (yk—l’z) e R¥#¥ . Now
) e R# | so (x) ¢ R¥# and (x

(x) ¢« R# . By the

k-1 k>? k>Yk
Church-Rosser property, there is a z' such that (z,z') ¢ R¥ and
(yk,z') e R# . So (x,z') ¢ R¥ and (y,z') ¢ R¥ . To complete
the proof, note that if y 1is R-normal and (y,z) ¢ R¥ , then

y=2z . 1

=12

% Z gl
X5 Xy @S — — — G- — O
x/ 70 / /
* / /
X — L 7 ¥
1 y / /
* i 7 7
% / /
y2 / /
: / /
: / /
y ! //
k-—l‘dir /
o/f//" ’
X o4
yk = ¥
Figure 4.1

We now consider the case where the set A 1is a set of morphisms
in a free algebraic theory.

Definition: If A 1s a set of identities and k € w , the set

of A-moves on Tg(k,l) , denoted mﬁ(k) ol
{(g.h,g.h') | g ¢ Tﬂ(p,l), hi k! e Tg(k,p) and for each 1 either

- 1 = 1 o= ' '
e;-h=e;.h! or e,.h=1f.q and e;.h £r.q where (f£,0') ¢ A}

In Rosen's terminology, if A 1is a set of rule schemata, mﬁ(k)
is the general replacement system induced by A on Tg(k,l) ;. If
k=0 |, mﬁ(k) = {(g.f.h,g.f'.h) | (£,£') e A} ; for k > 0 , this
simpler definition does not work. Note that parallel rewritings are
permissible but not mandatory.

We say A 1is monic iff if (f,f') e A , then f 1is a mono-
morphism (i.e., f' has no variables not in f). We say A 1is

linear iff if (f,f') € A then f has no repeated variables.t We

T We leave as an exercise the algebraic characterization of linearity.

=il B

say A has no common substitution instances iff if (f,f'),(g,g') € A

and for some h and h' », f.h =g.h' , then (f,f') = (g,g")

Theorem 4.2 (Rosen [7]): If A 1is monic, linear, and has no

common substitution instances, then m&(o) has the Church-Rosser
property.

We define a formal system M, as follows:

Axiomss EE (D 87) & mﬂ(k) s then R(f,f'):k = 1 MA

If f e T,(k,1) , then WeES | MR
Rules: (f,g):k =~ 1 NS (f.g)ik» 1 I[g,h)ek » 1 MT
(g,f):k - 1 (f,h):k » 1

(f Yale o L s e s g (fn,gn):k * 1

1281
([fl,--,fn],[gl,--,gn]):k + B

MP

Define mg(k,n) = {(f,f') | (f,f'):k = n is a theorem of MA}

Lemma 4.1: My + (f,8):k > n iff My k (ei.f,ei.g):k * T Por

each i (1l=<isn) .
Proof: If n > 1 , then (f,g) can only come from an applica-
tion of rule MP. §

Lemma 4.2: If M, + (f,f'):k = 1 , then Mﬂ - MP (f£f,f"):kx > 1 N

A
Hence mg(k,l) is just [ma(k)l# . We write mi(k) for this

set. Similarly we write mg(k) for [m,(k)I* .
Lemma 4.3: If M& - (fi’fi):k + 1 , then

M& = (g.[fl,..,fi,..,fn],g.[fl,..,f',..,fn]):k o
Proof: By induction on the proof of (fi’fi) in M& v LE

(f,fi) is an axiom, so is (g'[fl""fi""fn]’g'Efl""fi""fn])

If the end of the proof of (fi’fi) is

—1h-

(Bl CER P
i i s g MT
1
(£,,2])
Then by the induction hypothesis,
M) F (g.[fl,..,fi,..,fn]sg.[fl,..,f",..,fn]) and
Mﬂ [(g'[fl""f;""fn]’g'[fl""fi""fn]) , SO the result follows

by MI. MS is similar; MP is irrelevant by Lemma 4.2. ®
Lemma 4.4: If My F (£,f'):k = 1 , then L (foh,Tr h)ip % L
Proof: Another easy induction on proofs in M& -MP . B

Theorem 4. 3: E&(n,p) = mg(n,p)

prgefs (1) mi(n,p) = Eﬁ(n,p) . Every axiom of Mﬂ is provable
in EA , and every rule in M& is a rule in E&
fdd) Ea(n,p) c mi(n,p) . Proof by induction on proofs
in Eﬂ . Every axiom in E& is an axiom of Mﬁ . We have one

case for each rule in E&

(E8)¢ IP My F (f,g)in > m then for each i ,
M& = (ei.f,ei.g):n -1 . By MS , M& [(ei.g,ei.f):n ¥ 1y and
then by MP , MA F (g,f)n - m

(ET): Similar.

(EP): Identical to MP .

(EC): We must show that if M& EF (£,8")ym +~ 1 5 g € TQ(m,k)
and h e Tg(p,n) , then M, } (g.f.h,g.f'.h):p > Kk

If m="1 , then the result follows from Lemmas 4.3 and 4.4,

Assume m > 1 . Then construct morphisms q(j'):n > m for

each J'(0<j'sm) so that for each J(lsjs<m)

8 fh df J 5 47

gV 4B F 2)

ej.q(j') =

wll Bl

For each 1(ls<is<k) and j(0<jsm) , My F (ei.g.q(j),ei.g.q(j+l)):n +]
by Lemma 4.3. By repeated use of MT (noting that gq(0) = f and
q(m) = £' , M, + (ei.g.f,ei.g.f'):n + 1 . Hence by Lemmas 4.1

and 4.4 M, | (g.f.h,g.f'.h):p >k . B

A set of identities A 1is nonoverlapping iff for every (f,f') ¢ A

and (f.g,h) € my(k) either h = f'.g or h = f.g' . Roughly
speaking, A 1is nonoverlapping iff rewrite sites are always disjoint.
If A 1is nonoverlapping, define the set of outermost moves in

mﬁ(k) as the set of all moves (g.h,g.h') such that

ALY B e Tg(p,l) and g 1is A-normal
(ii) h,h' e To(k,p)

(1ii) for each 1 , either e,.h is a projection or

1
ei.h = P.q for some (f,f') ¢ A .
(iv) for each i , either e;-h =e;,.h' or e;-h = f.q

and e;.h' = f'.q for some (f,f') € A

Since 'I'Q is a free theory, to any non-normal morphism f there
is exactly one g (up to isomorphism) which fits the definition;
it consists of the tree down to the top of the first rewritable
spot on each branch. An outermost move consists of rewriting some
of those "outermost" or "topmost" sites.
Lemma 4.5: If (f,f') is outermost, so is (f.h,f'.h) . B§
Lemma 4.6: If A 1is nonoverlapping, g is not normal, and
(g.h,f) 1is outermost, then f = g'.h for some outermost move (g,g')
Proof: In Figure 4.2, consider what regions of g.h may be
rewritten. If the rewritten section lies entirely within h (as in
Figure 4.2(b)), then the move cannot be outermost. The rewritten

sectlon cannot overlap (as in (c¢)), since that would violate the

TG

nonoverlapping property of A . The only remaining possibility
is (d), which corresponds to the conclusion of the lemma. B

Note that this lemma depends on the fact that T is a free

theory.

2

A A
[\ [B,

Figure 4.2

(e) (d)

Since mz(k,l) is the reflexive transitive closure of m&(k) 5
every nontrivial proof in mz(k,l) may be represented by a string

of members of mA(k) , each step representing a rewriting.

Theorem 4.4: If (f,g) € mz(k) and A 1is nonoverlapping, then

there is a derivation of (f,g) in which every outermost move precedes
every non-outermost move.

Proof: Consider a non-outermost move which precedes an outermost
move :

“(g.h,g.h"),(g.h",T)
where g,h, and h' are as in the definition of a move. Since
the first move is non-outermost, g 1is non-normal. By Lemma 4.5,
f = g'.h' for some outermost move (g,g') . Now we change the
derivation to
(g.h,g'.h),(g.h,g'.h')

putting the outermost move first. Repeat until all violations are

eliminated. @

i

Corollary W.1: If (Pf.p) & mi(k) , A 1s non-overlapping,

and g 1is A-normal, then there is a derivation in which every move
i1s outermost.

Proof: Apply Theorem 4.4 to put all non-outermost moves last;
but if g is normal, the last move must be outermost. §

We maﬁ summarize our results as follows:

Theorem 4.5: If A 1is linear, monic, non-overlapping, and has

no common substitution instances, then a denotation d halts rela-
tive to the set of A-normal denotations 1ff there is derivation
(d,h) € mK(O) where h is A-normal and every move is outermost.
Furthermore, h 1is unique.

Proof: From Theorems 4.1, 4.2, 4.3, and Corollary 4.1. N

This says that without loss of generality, we may always compute
in the forward direction only, and with only outermost moves. In
most cases, the limited degree of nondeterminism is acceptable,
since usually the root of the tree is belng rewritten (and there
is therefore only one outermost more possible).

(We have a fair amount of intuition about when a completely
deterministic strategy is possible; we hope to include this in the

final draft of this paper.)

] B

6. Conclusions

The initial attraction of algebra semantics was that the model
theory of first-order identities gave an immediate handle on the
data structures for an implementation. In this paper we have shown
how algebra semantics gives a reasonable control structure for an

interpreter in terms of subtree replacement systems.

Typed by Christopher Charles

.

References

L.

10.

Goguen, J.A., and Thatcher, J.W. Initial algebra semantics.
Proc. 15th TIEEE Conference on Switching and Automata Th., New
Orleans (1974).

Hewitt, C.; Bishop, P.3; and Steiger, R. A universal modular
actor formalism for artificial intelligence. Proc. IJCAI 3,

San Francisco (1973).

Lawvere, F.W. Functional semantics of algebraic theories. Proc.
NAS USA 50 (1963), 869-872.

MacLane, S. Categories for the Working Mathematician, Springer-
Verlag, New York (1971).

Pareigis, B. Categories and Functions, Academic Press, New York

(1970).

Reynolds, J.C. Definitional interpreters for higher-order pro-
gramming languages. Proc. ACM National Conference (1972), 717-
T40.

Rosen, B.K. Tree-manipulating systems and Church-Rosser theorems.
JACM 20 (1973), 160-187.

Scott, D., and Strachey, C. Toward a mathematical semantics for
computer languages. Computers and Automata, J. Fox (Ed.), Wiley,
New York (1972), 19-46.

. Wand, M. First order identities as a defining language. Technical

Report No. 29, Computer Science Department, Indiana University,
Bloomington (1975).

Hoare, C.A.R., and Lauer, P. Consistent and complementary formal
theories of the semantics of programming languages. Acta Infor-
matica 3 (1974), 135-153.

