
TECHNICAL REPORT NO. 411

Notes on Adaptive Quadrature on the Hemisphere

Peter Shirley
Indiana University and Cornell University

Program of Computer Graphics
580 Engineering and Theory Center

Cornell University
Ithaca, NY 14853

shirley@graphics.cornell.edu

Kenneth Chiu
Indiana University

215 Lindley Hall
Indiana University

Bloomington, IN 47405

chiuk@cs.indiana.edu

July, 1994

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY

Bloomington, Indiana 47405-4101



Figure 1: Left: rendered image. Right: low resolution radiosity
image used to calculate L̄0 at each visible point in the image to the
left.

1 Introduction

This report discusses several issues that arise when integrating field
radiance functions on the hemisphere. Rather than representing new
work, it is an expression of what issues underly our current research
strategy for scenes that contain specular surfaces. It outlines sev-
eral basic practical concerns, and identifies problems in adaptive
sampling strategy that remain unresolved. It also provides some
background on how the images in [4] were produced.

Many modern rendering algorithms perform one or many “gathers”
at each pixel from some type of world-space global illumination so-
lution. This can be thought of as a quadrature over a hemisphere (for
opaque receiving surfaces) that uses an approximate field radiance1

derived from a zonal (radiosity) solution:

L(x; !) � Le(x; !) +

Z
Ω
�(x;!; !0)L̄0(x; !0) cos �d�(!0) (1)

where L(x; !) is the surface radiance at a point x in direction
!, Le(x;!) is the emitted component of the surface radiance, Ω
is the set of incoming directions !0, �(x;!; !0) is the BRDF at
x, L̄0(x;!0) is the approximate field radiance incident at x from
direction !0, � is the angle between the surface normal vector at x
and !0, and � is the solid angle measure. The approximate field
radiance function L̄0(x; !0) is typically evaluated by firing rays from
x into a zonal (radiosity) solution over a discretized environment.
This zonal solution can consist of diffuse or more general BRDF
surfaces, and may not have values for specular or near specular
surfaces. Our strategies for calculating L̄0 were inspired by [12],
but the idea of using an approximate field radiance goes back to at
least [5]. An example of a high resolution image that shows L and
the low resolution radiosity solution used to calculate L̄0 are shown
in Figure 1.

In these notes we examine the issues that arise when trying to
numerically evaluate Equation 1 when L̄0(x; !0) is potentially com-
plicated (e. g., contains small spatial features with large values such
as luminaires). This treatment differs somewhat from previous tech-
niques used in graphics in that we will assume very little a priori

1We are using the terminolgy of [2]: the field radiance function describes
the incident radiance from a direction at a point, and the surface radiance
function describes the outgoing radiances at a point in a direction.

knowledge of L̄0(x; !0), and will assume that L̄0(x;!0) contains
potentially significant contributions from small objects and reflec-
tions of small objects. Our rationale for why some scenes imply the
desirability of such assumptions is in [4].

In Section 2 we explain our assumptions about L̄0, and why this
implies we need a naive adaptive algorithm. In Section 3 we cat-
egorize previous adaptive quadrature techniques used in rendering.
In Section 4 we discuss how feature characteristics in the integrand
influences adaptation strategy. In Section 5 we discuss how to
extend the results of Section 3 to integrals with hemispherical do-
mains. In Section 6 we discuss our current attempts to improve our
quadrature strategy.

2 Characteristics of Field Radiance Function

Some of the bright parts of the field radiance function can be virtual
luminaires (reflections of luminaires). These are hard to identify in
complex environments because a set of luminaires and mirrors can
cause an arbitrarily large number of virtual luminaires. This makes
any method that preferentially treats areas covered by luminaires
suspect because real and virtual luminaires are treated differently.
Working backwards from the luminaires can be effective (e. g.,
[1, 15, 6]) but this method usually stores some information on the
primitives which is problematic if the geometry is procedural. We
could also use the image method[13] to account for specular transfer,
but this is difficult when mirrors are not planar.

Virtual luminaires are often not important. However, if we can
handle them correctly, then we can painlessly model several basic
effects, such as varnish on wood. Also, dew or frost on grass or a
pane of glass might also be something difficult to portray accurately
without virtual luminaires. Windows can be faked by simply ignor-
ing the glass when tracing shadow rays, but what about architectural
simulations of buildings that actually have virtual luminaires in their
design? For example, an architect might put a fountain in the middle
of a mall with a sky light above it, counting on the virtual luminaires
to provide the effect he desires. Or he might use faceted glass to
break up the light coming through a sky light. Also most light
bulb and reflector combinations cast some kind of pattern into the
environment. All of these situations can probably be handled with
special case code, but it is attractive to have a general method that
is robust against greatly varied scene characteristics.

3 Adaptive Quadrature on the Unit Square

Although Equation 1 has the unit hemisphere as the domain of
integration, in this section we will examine integration with the
domain [0; 1]2. In Section 5 we will extend this discussion to the
hemisphere. Consider the integral I over a square two dimensional
domain Ω = [0; 1]2

I =

Z
Ω
L(x; y)dA

where L(x, y) is the integrand value of the point (x; y) on the square.
If we think of the function L as the radiance of points on a square

1



pixel, then I would represent the value of a pixel calculated using a
width-one box-filter.

3.1 Direct and Indirect Lighting

One way to attack the problem is to break the integrand into two
parts, where one part contains the peaks. Suppose that L and Ω
are those shown in the upper-lefthand part of Figure 2. Here there
are several bright circles on a fairly dim backgound (this might
represent lights seen in the distance). The two integrals would then
be:

I =

Z
Ωr

Lr(x; y)dA+

Z
Ωe

Le(x; y)dA

Where Lr is the reflected component of the color, and Le is the
emitted component. In practice Ωr = Ω because even luminaires
are reflective. BecauseLe is zero for the background, the domain Ωe

is simply the union of circle domains. If we have a priori knowledge
of what the Ωe is (i. e., we know where all the bright spots might
be), the techniques of Ward[16] or Shirley and Wang[14] can be
used.

3.2 Naive Adaptive Quadrature

Unfortunately, when specular reflections or transmissions of lumi-
naire images might be seen (virtual luminaires), then we will lack
a priori knowledge of Ωe. A more naive integration strategy on
the square could find these virtual luminaires, however. There are
integration strategies that work directly on I without looking at
emitted versus reflected properties as shown in Figure 3. Glassner
suggests using adaptive weighted Monte Carlo integration, where
samples are generated adaptively, placing more samples in “interest-
ing” areas[7]. The estimate for I is then taken by using the Voronoi
diagram to decide the weight for each sample:

I �

NX
i=1

AiL(xi; yi)

where Ai is the area of the Voronoi cell for sample (xi; yi). The
attrative part of this scheme is that samples can be chosen arbitrarily
because a reweighting is carried out as the last step.

Many authors have modified Whitted’s adaptive subdivision to in-
clude randomness to avoid aliasing (e. g., [11]). The chief problem
with this method is that if important features are missed the er-
ror can be high. Also, great care needs to be taken if bias needs
to be avoided[9]. An adaptive scheme has also been used that
places sample points using an adaptive triangulation scheme on the
hemisphere[3].

Kirk and Arvo[10]suggest domain partioning and calculating the
sum of integrals of L over each subdomain by Monte Carlo Integra-
tion. Domains are chosen so that they will include luminaires, and
more samples are taken in these domains. This strategy is shown at
the top of Figure 3.

We have used two different criteria for subdividing cells. The
first criteria is based on the contrast weighted by the cell size and

20.5

100

4.5

10.5

black : 0.0
gray: 0.0−1.0
white: 1.0+

0.5

0.5

0.5

0.5

7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777
7777777777777

20.0

99.5

4.0

10.0

77
77 = not part of domain

20.5

25

4.5

10.5

Ωe

ΩrΩ

Ω’

Figure 2: Domains of integration.

BRDF. This criteria attempts to capture the likely maximum error
contribution of each cell. In other words, if the integrand in this
cell is actually much more like one of its neighbors than revealed by
its sample value, how much error could this contribute to the final
radiance?

Another criteria is simply value weighted by cell size and BRDF.
This sends samples in brighter regions because they have a greater
contribution to the final radiance.

Which of these criteria should be used depends on the nature of
the luminaires. If the luminaires are more or less compact, then
we won’t expect any important features internal to the projected
boundary. In this case, determining the edges of the luminaires
accurately will reduce variance. If, however, the luminaires are
very irregular in shape, perhaps because they are virtual luminaires,
then we cannot expect them to have projected boundaries that are
short relative to their projected area. In this case, we might as well
give up, and just sample where it is bright.

Using the Delaunay triangulation instead of a quadtree to partition
and weight samples is easier to work with, because of the regularity
imposed by the triangulation (i. e., each region always has a fixed
number of neighbors, etc.), and should also produce better results.
We believe that the improvements will only be incremental, however.

4 Dealing with Small Features in the Inte-
grand

The adaptive strategies discussed in the last section can be divided
into two categories: those that use a priori knowledge of the in-

2



Adaptive Weighted Monte Carlo

Adaptive Subdivision Domain Partitioning

Figure 3: Methods of integration.

tegrand to preferentially sample in areas of the integration domain
likely to have large integrand values (e.g. shadow rays in Ka-
jiya’s path tracing[8]), and those that sample naively on the square.
Unfortunately, the former will have trouble accounting for virtual
luminaires, and the latter will always have the potential to miss small
bright sources (e.g. a halogen filament). In this section we discuss
why this problem is difficult and speculate on solutions to it.

Suppose our image is made up of a bright luminaire with value
1:0=A and projected area A on the pixel, and a background with
value 0.5 and area (1�A). The value of I is:

I = (1�A) � 0:5 +A(1=A) = 1 + (1�A)=2 = (3�A)=2

For very small values of A, I will be very near 1.5. If we approxi-
mate I by a method such as adaptive quadrature shown in Figure 3,
then our estimate will be quite good if any of the initial samples
hit the source, but will be 0.5 if none of them do. Without a priori
knowledge that the bright region is in the pixel, it will be hard to
design a method that is guaranteed to sample the bright spot without
an excessive number of initial samples. This will make the image
somewhat dark on average; this is a special case of the bias discussed
in [9].

However, we could approximate I by increasing the size of the
luminaire to have a projected area kA and value (1/(kA)). The value
of this integral I 0 would then be:

I 0 = (1�kA)�0:5+kA(1=kA) = 1+(1�kA)=2 = (3�kA)=2

So our error would be:

E(I 0) = I � I 0 = (3�A)=2� (3� kA)=2 = (k � 1)A=2

so as long as kA is small, or the background value is small, this
method has potential. This basic idea is shown in the lower-left
corner of Figure 3.

How might this be used in practice? Suppose we use 100 samples. If
the samples are jittered, then there is a 100 percent chance that disks
of area �(1=102 +1=202) are detected, so each disk is replaced by a
bigger one. This introduces systematic error, but for many purposes
this is acceptable. Certain kinds of errors are visually disturbing,
such as aliasing, but very low frequency errors, and high frequency
random errors (noise) are tolerated well by our visual system.

Another strategy would be the use of shrinking luminaires to locate
important directions. The initial luminaire size would be determined
to satisfy some likelihood of detection criterion. For example, if the
luminaires were spheres, and the samples were jittered, we could
choose the initial size such that the luminaires were guaranteed to
be detected. During successive resampling, the size of the lumi-
naire could be coupled to the sample density such that at least one
hit was always guaranteed. In the presence of shadows and curved
reflectors, such an assurance would be difficult if not impossible,
but probabilistic methods can also be satisfactory. When the lumi-
naires are shrunk to correct size, we have now determined at least
one ray per luminaire that hits that luminaire, and we can use that
information to perform adaptive quadrature.

5 Extensions to the Hemisphere

To actually evaluate the radiance at a point we need to evaluate
Equation 1 which has the hemisphere of directions as the domain of
integration. In spherical coordinates this becomes:

L(x; �; �) � Le(x; �; �) +Z 2�

0

Z �

2

0

�(x; �; �; �0; �0)L̄0(x; �0; �0) cos �0(sin �0d�0d�0) (2)

In principle, we could transform this to an integral on [0; 1]2 by
simply substituting � with (2=�)a and � with b=(2�). Although
this is convenient for non-adaptive quadrature, it causes practical
problems for adaptive implementations. The main problem is that
points that are nearby in (�; �) space might be far apart in (a; b)
space–for example (�; �) and (�; 2�� �) are nearby in (�; �) space
if � is small, but are quite far apart in (a; b) space because a “cut”
is introduced at � = 0. This can play havoc in (a; b) space if the
concept of nearness is used to select new sample points. Another
problem is that features that have a small aspect ratio in (�; �) (e.g.
the directions subtended by a light bulb) will typically have a larger
aspect ratio in (a; b) space (features are streched), and can thus be
harder to locate in an initial sampling phase.

To avoid the problems with a simple (�; �) to (a; b) mapping, we
seek a mapping that preserves adjacency, aspect ratio, and fractional
area. This is probably an overconstrained transform, but we use one
that preserves adjacency, area, and does not change aspect ratio too
much. The pinciple behind the basic transform is illustrated in Fig-
ure 4 for a square to disk. The square to hemisphere transform is
slightly more involved to keep the fractional area property, and the
code for this transform is available in the Appendix. The transform
from a checkerboard on [0; 1]2 to the himisphere is shown in Fig-
ure 5. The use of this transform allows us to work in the unit square
which simplifies code design a great deal, although some overhead
is added.

3



θ
dy

d
d

d

d

dy

dy

dy

θ

θ
θ

Figure 4: Area preserving transform from square to disk uses equal
area strips. A similar transform is used to go from square to sphere.

Figure 5: Map of a checkerboard on [0; 1]2 to the hemisphere.

6 Discussion

Assuming we wish to do an adaptive quadrature of a complex field
radiance function, we either need to change the integrand to make
the problem easier to solve, or we need a good predictor for where
large values of the integrand are expected. Of course, we can also try
using both tactics. Nothing precludes us from sending shadow rays,
and also searching for virtual luminaires. Whether these shadow
rays are useful will depend on the scene.

Also, we should not overlook the usefulness of human input. The
user already controls such parameters as lighting, colors, textures,
movements, positions, etc. Giving him additional control of the
rendering algorithm should not be considered taboo.

Acknowledgements

Special thanks to Andrew Glassner who got us interested in high-
cost quadrature techniques during his visit to Indiana University in
1993. Thanks to Jim Arvo for help on terminology. Thanks to Bruce
Shei for keeping software working on weekends and evenings when
it was needed most.

This work was supported by Indiana University and by NSF grant
True Virtual Reality Systems NSF-CCR-92-09457.

Appendix: Code for square to sphere mapping

The following code accomplishes the square to sphere map-
ping discussed in Section 5. It is available via anonymous
ftp at ftp.moose.cs.indiana.edu (129.79.254.191) in
pub/chiuk.

/*
* This function takes a point in the unit square,
* and maps it to a point on the unit hemisphere.
*
* Copyright 1994 Kenneth Chiu
*
* This code may be freely distributed and used
* for any purpose, commercial or non-commercial,
* as long as attribution is maintained.
*/

void
map(float x, float y,
float *x_ret, float *y_ret, float *z_ret) {

float xx, yy, offset, theta, phi;

x = 2*x - 1;
y = 2*y - 1;

if (y > -x) { // Above y = -x
if (y < x) { // Below y = x

xx = x;
if (y > 0) { // Above x-axis

/*
* Octant 1
*/

offset = 0;
yy = y;

} else { // Below and including x-axis

4



/*
* Octant 8
*/
offset = (7*M_PI)/4;
yy = x + y;

}
} else { // Above and including y = x

xx = y;
if (x > 0) { // Right of y-axis

/*
* Octant 2
*/
offset = M_PI/4;
yy = (y - x);

} else { // Left of and including y-axis
/*
* Octant 3
*/
offset = (2*M_PI)/4;
yy = -x;

}
}

} else { // Below and including y = -x
if (y > x) { // Above y = x

xx = -x;
if (y > 0) { // Above x-axis

/*
* Octant 4
*/
offset = (3*M_PI)/4;
yy = -x - y;

} else { // Below and including x-axis
/*
* Octant 5
*/
offset = (4*M_PI)/4;
yy = -y;

}
} else { // Below and including y = x

xx = -y;
if (x > 0) { // Right of y-axis

/*
* Octant 7
*/
offset = (6*M_PI)/4;
yy = x;

} else { // Left of and including y-axis
if (y != 0) {

/*
* Octant 6
*/
offset = (5*M_PI)/4;
yy = x - y;

} else {
/*
* Origin
*/
*x_ret = 0;
*y_ret = 1;
*z_ret = 0;
return;

}
}

}
}

theta = acos(1 - xx*xx);
phi = offset + (M_PI/4)*(yy/xx);

*x_ret = sin(theta)*cos(phi);
*y_ret = cos(theta);
*z_ret = sin(theta)*sin(phi);

}

References

[1] James Arvo. Backward ray tracing. Developments in Ray

Tracing, pages 259–263, 1985. ACM Siggraph ’85 Course
Notes.

[2] James Arvo. The irradiance jacobian for partially occluded
polyhedral surfaces. Computer Graphics, 28(3), July 1994.
ACM Siggraph ’94 Conference Proceedings.

[3] Markus Beyer and Brigitta Lange. Rayvolution: An evo-
lutionary ray tracing program. In Proceedings of the Fifth
Eurographics Workshop on Rendering, pages 137–146, June
1994.

[4] Kenneth Chiu and Peter Shirley. Rendering, complexity and
perception. In Proceedings of the Fifth Eurographics Work-
shop on Rendering, pages 19–33, June 1994.

[5] Micheal F. Cohen, Donald P. Greenberg, David S. Immel, and
Philip J. Brock. An efficient radioisty approach for realistic
image synthesis. IEEE Computer Graphics and Applications,
6(2):26–35, 1986.

[6] Steven Collins. Adaptive splatting for specular to diffuse light
transport. In Proceedings of the Fifth Eurographics Workshop
on Rendering, pages 119–135, June 1994.

[7] Andrew S. Glassner. Dynamic stratification. In Proceedings
of the Fourth Eurographics Workshop on Rendering, pages
5–14, 1993.

[8] James T. Kajiya. The rendering equation. Computer Graphics,
20(4):143–150, August 1986. ACM Siggraph ’86 Conference
Proceedings.

[9] David Kirk and James Arvo. Unbiased sampling techniques
for image sysnthesis. Computer Graphics, 25(4):153–156,
July 1991. ACM Siggraph ’91 Conference Proceedings.

[10] David Kirk and James Arvo. Unbiased variance reduction for
global illumination. In Proceedings of the Second Eurograph-
ics Workshop on Rendering, 1991.

[11] James Painter and Kenneth Sloan. Antialiased ray tracing
by adaptive progressive refinement. Computer Graphics,
23(3):281–288, July 1989. ACM Siggraph ’89 Conference
Proceedings.

[12] Holly Rushmeier, Charles Patterson, and Aravindan
Veerasamy. Geometric simplification for indirect illumina-
tion calculations. In Graphics Interface ’93, pages 227–236,
May 1993.

[13] Holly E. Rushmeier and Kenneth E. Torrance. Extending the
radiosity method to include specularly reflecting and translu-
cent materials. ACM Transaction on Graphics, 9(1):1–27,
January 1990.

[14] Peter Shirley and Changyaw Wang. Direct lighting by monte
carlo integration. In Proceedings of the Second Eurographics
Workshop on Rendering, 1991.

[15] Brian E. Smits, James R. Arvo, and David H. Salesin. An
importance-driven radiosity algorithm. Computer Graphics,
26(2):273–282, July 1992. ACM Siggraph ’92 Conference
Proceedings.

[16] Greg Ward. Adaptive shadow testing for ray tracing. In Pro-
ceedings of the Second Eurographics Workshop on Rendering,
1991.

5


