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} Introduction }

Our purpose here is to show how the quaternion formalism can be applied with great
success not only to the interpolation between coordinate frames, but also to a remark-
ably elegant description of the evolving coordinate-frame geometry of curves. Speci�c
applications of these techniques include the generation of optimal renderable ribbons
and tubes corresponding to smooth mathematical curves appearing in computer graph-
ics or scienti�c visualization applications.
The correspondence between the orientation of a 3D object represented by a 3�3

orthonormal matrix in the group SO(3) and unit quaternions has long been known to
physicists (see, e.g., (Misner et al. 1973)) and mathematicians (see, e.g., (Helgason 1962,
Cartan 1981)), and was brought to the attention of the computer graphics community
by (Shoemake 1985). Unit quaternions are isomorphic to the topological 3-sphere S3,
which is also the topological space of the Lie group SU(2), the simply connected two-
fold cover of the group SO(3) describing rotations in ordinary 3D Euclidean space. The
key motivation for representing 3D rotations in terms of quaternions is the fact that
the geodesics in S3 correspond to beautiful interpolations between coordinate frames in
3D space that cannot be directly achieved with other rotation representations such as
Euler angles. Below, we show how to extend this general structure to moving coordinate
frames of space curves.

} Framed Curves }

The di�erential geometry of curves (Gray 1993,Flanders 1963,Eisenhart 1960) tradi-
tionally begins with a vector ~x(s) that describes the curve parametrically as a function
of s that is at least thrice-di�erentiable. Then the tangent vector ~T(s) is well-de�ned
at every point ~x(s) and we may choose two additional orthogonal vectors in the plane

perpendicular to ~T(s) to form a complete local orientation frame. Provided the cur-
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vature of ~x(s) vanishes nowhere, we can choose this local coordinate system to be the

Frenet frame (also known as the Frenet-Serret frame) consisting of the tangent ~T(s),
the binormal ~B(s), and the principal normal ~N(s), which are given in terms of the
curve itself by these expressions:

~T(s) =
~x0(s)

k~x0(s)k

~B(s) =
~x0(s)� ~x00(s)

k~x0(s)� ~x00(s)k
(1)

~N(s) = ~B(s)� ~T(s) :

We illustrate this standard frame con�guration in Figure 1. Di�erentiating the Frenet
frames yields the classic Frenet equations:2
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~T0(s)
~N0(s)
~B0(s)

3
75 = v(s)

2
4 0 �(s) 0
��(s) 0 �(s)
0 ��(s) 0

3
5
2
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~T(s)
~N(s)
~B(s)

3
75 : (2)

Here v(s) = k~x0(s)k is the scalar magnitude of the curve derivative, and the intrinsic
geometry of the curve is embodied in the curvature �(s) and the torsion �(s), which
may be written in terms of the curve itself as

�(s) =
k~x0(s)� ~x00(s)k

k~x0(s))k3
(3)

�(s) =
(~x0(s)� ~x00(s)) � ~x000(s)

k~x0(s)� ~x00(s)k2
:

Ribbons and tubes. Ribbons and tubes centered on the curve may easily be gen-
erated using the continuous values of the normal plane coordinate system de�ned by
(~N(s); ~B(s)). Detailed methods for accomplishing this are spelled out in (Gray 1993).
Closed curves are guaranteed by construction to have matching frames at the closure
point, so this is an ideal method for creating ribbons and tubes to represent \thickened"
curves in computer graphics applications.
Inverse versions of this procedure are often of interest as well:

� Curvature driven: If we specify a priori the velocity (non-vanishing), the curvature
(non-vanishing), and the torsion of a curve, then we may start the curve with an
initial Frenet frame and integrate the Frenet equations (2) to get the values of the
entire frame triad at every point. Integrating the tangent vector (2) then yields
the curve ~x(s) itself, along with any desired ribbon or tube centered on the curve,

e.g., by sweeping lines along the curve in the (~N; ~B) plane. (See (Gray 1993) for
examples.)
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Figure 1. The triad of orthogonal axes forming the Frenet frame for a curve with non-vanishing curvature.

� Frame-driven. Alternatively, we may already have an expression for the frame triad
(~T; ~N; ~B) as a function of s. In this case, one derives the curvature and torsion

using (2) and (4) and integrates ~T(s) directly to get ~x(s) (and a corresponding
ribbon or tube, if desired).

Vanishing Curvature and Parallel Transport Frames

But what if the curvature vanishes because ~x00(s) = 0 at some set of points? The
Frenet frame before and after the zero-curvature set can be entirely di�erent, so there
may be no way to de�ne a unique continuous Frenet frame over the whole curve, and
any heuristics one might use to mend the situation are arbitrary.

This di�culty led (Bishop 1975) to introduce an alternative framing based on parallel
transport rather than local curve derivatives. The basic concept is to observe that
while ~T(s) is unique, we may choose any convenient basis (~N1(s); ~N2(s)) in the plane
perpendicular to ~T(s) at each point. If the derivatives of (~N1(s); ~N2(s)) depend only on
~T(s) and not each other, we can make ~N1(s) and ~N2(s) vary smoothly throughout the
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Figure 2. The parallel-transport curve framing of (Bishop 1975). The Frenet frame would be discontinuous
along the “roof peak” where the curvature vanishes.

path regardless of the curvature. We therefore choose the alternative frame equations

2
64

~T0(s)
~N0

1
(s)

~N0

2
(s)

3
75 = v(s)

2
4 0 k1(s) k2(s)
�k1(s) 0 0
�k2(s) 0 0

3
5
2
64

~T(s)
~N1(s)
~N2(s)

3
75 ; (4)

illustrated in Figure 2. One can show that

�(s) =
�
(k1)

2 + (k2)
2

�
1=2

�(s) = arctan

�
k2

k1

�

�(s) = �0(s) ;

so that k1 and k2 e�ectively correspond to a Cartesian coordinate system for the polar
coordinates �; � with � =

R
�(s) ds.

Just as for the Frenet frame, one can begin with a curve ~x(s) and an initial frame, or
a pair of functions (k1(s); k2(s)) and an initial frame, or a frame over the entire curve,
and then integrate where needed to compute the missing variables.
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Closed Ribbons and Tubes. One minor drawback of the parallel transport frame
for creating ribbons and tubes is that the frames at the beginning and end of a closed
curve do not necessarily match up as they must for a Frenet frame; this phenomenon is
easily corrected by measuring the relative rotation of the beginning and ending frames,
and distributing the total rotation de�cit evenly around the entire curve.

} Quaternion Frames }

Next, we sketch the correspondence between the unit quaternions and the orthonormal
coordinate frames; this will take us to our main result, which is a reformulation of the
Frenet and parallel-transport frames in terms of quaternions only.

Theory of Quaternion Frames. A quaternion frame is a unit-length four-vector q =
(q0; q1; q2; q3) = (q0; ~q) that corresponds to exactly one 3D coordinate frame and is
characterized by the following properties:

� Unit Norm. The components of a unit quaternion obey the constraint,

(q0)
2 + (q1)

2 + (q2)
2 + (q3)

2 = 1 (5)

and therefore lie on S3, the three-sphere.

� Multiplication rule. Two quaternions q and p obey the following multiplication
rule, which is isomorphic to multiplication in the group SU(2), which is the double
covering of the ordinary 3D rotation group SO(3):

q � p =

8>><
>>:

[q � p]
0

[q � p]
1

[q � p]
2

[q � p]
3

9>>=
>>;
=

8>><
>>:

q0p0 � q1p1 � q2p2 � q3p3
q0p1 + p0q1 + q2p3 � q3p2
q0p2 + p0q2 + q3p1 � q1p3
q0p3 + p0q3 + q1p2 � q2p1

9>>=
>>;

: (6)

� Inverse. The inverse quaternion is de�ned as q = q�1 = (q0;�~q), so that qq =
qq = (1; ~0).

� Mapping to 3D rotations. Every possible 3D rotation R (a 3 � 3 orthogonal
matrix) can be constructed from either of two related quaternions, q = (q0; q1; q2; q3)
or �q = (�q0;�q1;�q2;�q3), using the transformation law:

[q � ~V � q]i =
3X

j=1

RijVj
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where, with v = (0; ~V) a pure 3-vector, we can compute Rij directly from Eq. (6)
to be the quadratic formula

R =

2
4 q2

0
+ q2

1
� q2

2
� q2

3
2q1q2 � 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0
� q2

1
+ q2

2
� q2

3
2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3 + 2q0q1 q2
0
� q2

1
� q2

2
+ q2

3

3
5 : (7)

We can quickly check that all rows of this matrix expressed in this form are or-
thogonal by construction, and that the squared length of any one row or column
reduces to ((q0)

2+(q1)
2+(q2)

2+(q3)
2)2, which is unity if the constraint (5) holds.

Rotation Correspondence. When we substitute q = (cos �
2
; n̂ sin �

2
) into Eq. (7),

where n̂ � n̂ = 1 is a unit 3-vector lying on the 2-sphere S2, R(�; n̂) becomes the
standard matrix for a rotation by � in the plane perpendicular to n̂; the quadratic form
ensures that two distinct unit quaternions in S3, q and �q correspond to the same

SO(3) rotation.

} Quaternion Moving Frames. }

The quadratic form (7) for a general orthonormal SO(3) frame suggests that the Frenet
and parallel transport frames and their evolution equations might be expressible directly
in terms of a linear equation in the quaternion variables. If we identify the columns of
(7) as (~T; ~N; ~B), respectively, we �nd that di�erentiation yields

d~T = 2[A] � [dq]

d~N = 2[B] � [dq]

d~B = 2[C] � [dq]

where

[A] =

2
4 q0 q1 �q2 �q3

q3 q2 q1 q0
�q2 q3 �q0 q1

3
5

[B] =

2
4 �q3 q2 q1 �q0

q0 �q1 q2 �q3
q1 q0 q3 q2

3
5 (8)

[C] =

2
4 q2 q3 q0 q1
�q1 �q0 q3 q2
q0 �q1 �q2 q3

3
5 :
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The Frenet equations themselves must then take the form

[A] � [q0] = ~T0 = v�~N

[B] � [q0] = ~N0 = �v�~T + v� ~B

[C] � [q0] = ~B0 = �v� ~N :

By simply writing out the right-hand sides of these equations and grouping terms, we
derive the following fundamental expression, the quaternion Frenet frame equation:

[q0(s)] =

2
664
q0
0

q0
1

q0
2

q0
3

3
775 =

1

2
v

2
664

0 �� 0 ��
� 0 � 0
0 �� 0 �

� 0 �� 0

3
775 �
2
664
q0
q1
q2
q3

3
775 : (9)

This equation has the following key properties:

� The matrix on the right hand side is antisymmetric, so that q(s) � q0(s) = 0 by
construction. Thus all unit quaternions remain unit quaternions as they evolve by
this equation.

� The number of equations has been reduced from nine coupled equations with six
orthonormality constraints on a non-simply-connected space to four coupled equa-
tions incorporating a single constraint that keeps the solution vector con�ned to
the simply-connected 3-sphere.

Equation (9) allows us to do the same sort of thing we did with Eq. (2):

� Curvature Speci�cation. Given v(s), �(s), and �(s), where only �(s) may vanish,
Eq. (9) can be integrated directly to give q(s), which in turn uniquely generates
(~T(s); ~N(s); ~B(s)) via Eq. (7).

� Frame Speci�cation. If only the 4-vector �eld q(s) corresponding to a smooth
moving frame is speci�ed, a simple di�erentiation gives us the curvature and torsion
for the curve provided we specify v(s).

Similarly, a parallel-transport frame system with (~N1(s); ~T(s); ~N2(s)) (in that order)
corresponding to columns of Eq. (7) can be shown easily to be completely equivalent
to the following the parallel-transport quaternion frame equation:

[q0(s)] =

2
664
q0
0

q0
1

q0
2

q0
3

3
775 =

1

2
v

2
664

0 �k2 0 k1
k2 0 �k1 0
0 k1 0 k2

�k1 0 �k2 0

3
775 �
2
664
q0
q1
q2
q3

3
775 : (10)

where

[B] � [q0] = ~T0 = vk1 ~N1 + vk2 ~N2
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[A] � [q0] = ~N0

1
= �vk1~T

[C] � [q0] = ~N0

2
= �vk2~T :

Spinors. We append one parenthetic observation to �ll in a gap in the story of quater-
nion frames. The question to ask is a simple one: if orthogonal matrices act linearly
on vectors, and quaternions are like square roots of orthogonal matrices, on what do
quaternions themselves act linearly? The answer is that quaternions act linearly to
generate rotations of spinors , which are the subject of an incredibly vast literature
in mathematics and physics (see, e.g, (Misner et al. 1973,Cartan 1981)). This is not
obviously important for computer graphics, but is interesting as general background
knowledge if one is concerned with where quaternion-like geometric descriptions actu-
ally �t in the \big mathematical picture." We will perhaps pursue this subject another
time.

} Conclusion }

In order to generate acceptable renderable structures corresponding to curves in a com-
puter graphics scene, we must often thicken the curve to produce a belt, ribbon, or
tube. The Frenet-frame and parallel-transport-frame equations provide the mathemat-
ical machinery to accomplish that; however, the nine-component equations that result
are unwieldy and subject to accumulating errors in the maintenance of the six con-
straints necessary to reduce the actual number of parameters of the frame to the three
Euler angles. The quaternion frame approach greatly improves this situation by reduc-
ing the problem to four quaternion frame variables with the single constraint that the
quaternions lie on the unit three-sphere. Possible extensions to consider would include
a similar treatment of the di�erential geometry of surfaces.
Acknowledgment. This work was supported in part by NSF grant IRI-91-06389.

The author is indebted to Bruce Solomon for acquainting him with the method of
Bishop (Bishop 1975).

} Remark }

The author has consulted numerous mathematical references and mathematicians, and
has thus far been unable to discover an existing formulation of Frenet frames equivalent
to the one presented here. Most likely, identical observations were made in the late nine-
teenth century but have been lost to contemporary mathematical practice. One might
surmise that when the compelling formalism for treating moving coordinate frames us-
ing the exterior algebra of di�erential forms (see, e.g., (Flanders 1963)) replaced the
tensor formalism for coordinate frames of curves used in classical treatments of di�eren-
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tial geometry like (Eisenhart 1960), there was little motivation to seek or utilize other
expressions.
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