
INDIANA UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT NO. 402

Analyzing Data-structure Movements in

Message-Passing Programs

Sekhar R. Sarukkai

Recom Technologies,

MS 269-3, NASA Ames Research Center,

Mo�ett Field, CA 94035-1000

email: sekhar@kronos.arc.nasa.gov
phone: (415) - 604 - 4242

Jacob K. Gotwals

Dept. of Computer Science,

Indiana University,

Bloomington, IN - 47405

email: jgotwals@moose.cs.indiana.edu
phone: (812) - 855 - 9761

March 1994

1

Abstract

In this paper we show that the analysis of interprocessor data movement in terms of source-

level data structures can be e�ective in performance debugging. We present a method for the low

overhead run time monitoring of interprocessor communication in terms of data structures. We show

how performance indices based on postmortem analysis of the collected trace data can guide the user

directly to the causes of poor performance.

One of the most important decisions a programmer has to make in writing parallel programs

is with regard to data structure distributions and alignments. Even so, there are very few perfor-

mance tools which attempt to provide statistics or views of programs in terms of the data structure

interactions resulting from those alignments. Current tools for message passing programs provide

mechanisms for studying performance from the processor and function perspectives only. We demon-

strate that our approach, based on postmortem analysis of trace �les augmented with data structure

information, o�ers a rich set of performance indices and views that can be used to debug the perfor-

mance of parallel programs.

1 Introduction

Theoretically, current and future generations of distributed memory, massively parallel multicomputers

can provide the high level of performance required to solve the grand challenge computational science

problems. However, harnessing the power of these machines has proven elusive and successes have been

laborious. This can be attributed to the programming paradigm involved (i.e. explicit message passing)

compounded by the lack of useful performance tools to aid in the process of developing e�cient parallel

programs e�ciently.

Recently there have been signi�cant e�orts toward developing parallel programming paradigms

supporting higher level abstractions of parallelism, such as in HPF [8] and pC++ [9]. These languages

provide means for explicit speci�cation of data alignments and distributions. Though this approach

largely hides explicit message communication from the programmer, the programmer still makes the

important decisions on how to distribute and align the various data structures to be operated on. These

decisions play a critical role in determining the nature and amount of communication performed during

program execution. To study the impact of these decisions on the program executions, performance

tools that highlight the cost of data structure interactions are essential.

Thus, if any sort of performance tool is to be useful in the context of either explicit message passing

programs or for higher-level languages such as HPF, it has to address the issue of isolating the perfor-

mance of individual data structures and contextual data structure interactions. In this paper we address

this issue for explicit message passing programs, while the approach can be extended for monitoring the

movement of data in languages such as HPF as well.

In recent years there have been a number of e�orts in providing software tools for debugging the

performance of programs. These tools can broadly be classi�ed into:

2

� Performance visualization tools such as [15, 13, 16, 7].

� Performance tools centered on metrics, such as [11, 6, 1].

� Expert systems for performance debugging [17].

In the next section we discuss some tools which are centered on metrics. Then with the help of

a number of examples, we show how we can complement traditional performance indices centered on

functions and processes, with a set of data structure indices that can be used to systematically guide

the programmer towards performance bottlenecks.

1.1 Related Work

Quartz [1] is a tool for tuning parallel program performance on shared memory multiprocessors. The

principle metric of Quartz is the normalized processor time. This is the total processor time spent in

each section of the code divided by the number of other processors which are concurrently busy when

that section of the code is being executed.

IPS-2 [11] is a parallel performance tool which provides a set of system and application based metrics,

by which program performance is debugged. Pro�le tables similar to the type of information presented

by the standard UNIX pro�ling tool Gprof[6] are provided. Critical path analysis is based on identifying

the path through the program's execution that consumed the most time. The pro�le table lists actual

amounts of time spent in selected phases of the computation and communication as well. The above

metrics support isolation of a problem with respect to procedures, phases and processors.

The most signi�cant di�erence between the above tools and the one described in this paper has to

do with the tracking of interprocessor data movement. Previous tools present performance information

mainly in terms of processors and functions. But we have found that some of the most useful and

intuitive information for tuning parallel program performance is information presented in terms of

source level data structures. To our knowledge, our tool and methodology is the �rst to allow the

e�cient tracking of interprocessor data movement in terms of source level data structures in distributed

memory parallel programs. This information on data movement is used to help the user determine the

locations and causes of performance bottlenecks.

Further, once poorly performing sections of code have been identi�ed, most of the above tools do not

provide any feedback to the user about the possible causes of poor performance within those sections.

This is a hard problem for distributed memory machines with message passing, since there are a number

of possible causes of poor performance. We provide a comprehensive set of performance indices that

highlight the signi�cance of many of the possible causes of poor performance.

In this paper, we introduce a performance debugging methodology from a data structure perspective.

This methodology helps in isolating data structures which have the most signi�cant interprocessor

communication times. Our methodology identi�es a data structure pair for each communication: the

3

data structure being communicated, and the data structure using the communicated data. We highlight

performance problems in terms of these data structure pairs, with the help of a comprehensive set of

performance indices.

The concept of using data structure oriented views was incorporated into the MemSpy system [10].

This tool provided a means of studying performance with respect to individual data structures, based on

tracking individual data structure references for sequential and shared memory systems. The statistics

were primarily geared to determine the hit ratio of data structure references in cache and to provide a

possible explanation for the same. Since this tool needs information regarding cache hits and misses,

it was built on top of the Tango-lite simulator [4]. Our work di�ers from this work in a number of

signi�cant ways.

Firstly, we do not track every data use. Instead we track those which are potentially the most

expensive: interprocessor data references, involving movement of data between processors. Further,

with each such interprocessor data movement, we associate a sending (u) and using (v) data structure.

This corresponds to communication of parts of data structure u, required to update the values of parts

of data structure v not local to the sending processor. For message passing programs, determining these

data structures involves the use of static ow analysis.1

Secondly, for a tool to be applicable to real problems (and for users to want to use it), it must run

without signi�cant time and/or space overheads. To meet that requirement, our approach is based on

trace collection, rather than simulation. The traces are obtained by executions of the program directly

on the target multiprocessor.

In keeping with the need for low penalty for tracking data movements, we have designed techniques

whereby the overheads associated with tracking data structures are not signi�cantly larger than over-

heads for generating traces without data structure information, as shown in section 3. In the programs

we tested, the entire monitoring process (involving the monitoring of data structure information along

with the monitoring of more standard information) had a maximum overhead of about 30% of the

parallel execution time. In contrast, simulations of parallel programs are much more expensive, even

without monitoring, and take orders of magnitude more time than actual parallel execution times.

Finally, data should be presented in a manner that enables programmers to readily detect the

cause of poor performance. We present performance data in terms of indices which highlight common

performance problems encountered in message passing programs, associated with interprocessor com-

munication. This allows the user to easily determine the cause of performance problems associated with

the distribution and alignment of data, and to develop more scalable parallel programs.

1Performance optimizations on parts of the code that do not involve interprocessor communication are also possible.

These optimizations may also be assisted by the use of performance tools. However, we do not address that issue here.

Instead, we concentrate on optimizations involving interprocessor communication. Once interprocessor communication has

been optimized, sequential performance tools are available to optimize local computations.

4

2 A Methodology for Automatically Tracking Data Movement

Our approach to tracking data structure movements is built on top of methodologies and tools already

available for tracking message movements, in distributed memory programs.

Typically there are 3 phases to be followed in trace based analysis of programs. First, the program

is instrumented by inserting calls to appropriate monitoring routines at important locations in the pro-

gram. Second, during the execution of the instrumented program, a monitor enables the collection of

records which signify the type and time of the occurrence of events, into a trace �le. Finally, post-

mortem tools to display visualizations and statistics are used to comprehend and debug the program's

performance.

Figure 1 summarizes the steps involved in our method. Before compilation, a program restructuring

tool (the instrumenter) is used to transform communication system calls into calls to the monitor

library. Input from a ow analysis tool helps determine the data structures that are \important" in

terms of interprocessor communication. Those data structures appear as parameters to the monitor

library calls. At execution time, the monitor makes the intended communication calls, and generates a

trace �le, augmented with codes for the important data structures. The monitor also outputs a lookup

table relating the data structure codes to the actual data structure names in the source code. Finally,

postmortem analysis tools use the trace �le and the lookup table to present statistics and views of

the execution. The data structure information allows the tools to display information in terms of data

structure interactions, as well as in more traditional formats.

In our implementation, we restrict our focus to arrays in SPMD message passing FORTRAN pro-

grams, on distributed memory multiprocessors. We consider only simple, point to point transfers of

data. All monitored global operations (such as broadcast) are treated as a sequence of point to point

communications.

Our model of interprocessor communication is as follows. Communication is required when a portion

of an array (the source array) on one node is needed for a computation on another node. The portion

of the source array to be sent may have to be copied into a temporary array (a \send bu�er") to put it

into contiguous memory before sending. The �nal destination for the data is a region of some array, the

destination array, on the receiving node. If the receiving region of the destination array is a contiguous

block of memory, then the data can be received directly into the destination array; otherwise, the data

is received into a temporary "receive bu�er", then copied into the destination array. The destination

array may then be used to compute values for another array, the using array, on the receiving node.

In this section we will present the approach we follow at compile and execution time in tracking

interprocessor data structure interactions. Our goal is to automatically determine the identity of a pair

of arrays for each communication, the sending and using arrays, and to make that array pair information

available to postmortem performance analysis tools.

5

"syncsend"

Monitor

timer

(type, time, ..., addr(buff))

"buff" addr(buff)

... ...

Postmortem
Analyzers

contention
index

array
pair

commn
overhead

a−>b

a−>c

..

...

.....

....

"csend"
"crecv"
...

"syncrecv"
...

Instrumenter

[In trace file]

Data structure Info

AddressName

commn_event

"csend"

...
"crecv"

Figure 1: A schematic of the data structure analysis system, showing interactions between the various

components.

2.1 Version 1: No Static Analysis

Our instrumenter implementation is built using the Sigma system [5]. Sigma parses the user's source

code, building an internal representation and performing data ow analysis. We make calls to the Sigma

library routines, to analyze and instrument the user's code, and to output the instrumented version of

the program.

Consider a segment of a simple Single P rogram Multiple Data (SPMD) program whose data

structure movement has to be tracked. For simplicity, assume that the only important data structures

are arrays (as in F77). Figure 2 shows a segment of code where a part of array A is copied to a bu�er

buff which is then sent to another processor (using a call to csend), where it is received into a di�erent

part of bu�er buff , which eventually gets copied into array B.

The �rst version of the algorithm that we follow during instrumentation, to track the data structure

associated with each communication call, is as follows (see Figure 1):

� Replace the original communication call with a call to a monitor library routine.

6

� Detect the data-structure being communicated (which is a speci�c parameter to the original

communication call) and pass its name (as a string) and base address as additional parameters to

the library call.

� At run time, the monitor performs three major functions:

1. Obtains timestamps and stores communication event in local memory, which is periodically

ushed to the trace �le. (Communication events have �elds which signify the data-structure

being communicated),

2. perform the actual communication call, and

3. output a data-structure look-up table, containing data-structure names and starting ad-

dresses.

� At analysis time, interpret the trace �le, using the data structure lookup table to relate the data

structure addresses in the trace �le to data structure names from the source code.

In Figure 2 we show the result of the transformation to the communication calls after instrumen-

tation. The instrumenter replaces the call to the communication routine by a call to a library routine

with two additional parameters: the name of the data structure and the starting address of the data

structure. For example, the csend is replaced by syncsend with two additional �elds.

2.2 Version 2: Avoiding Problems with Bu�ers

The simple implementation discussed in the previous section, does not resolve the issue of the use of

communication bu�er arrays. If temporary bu�ers are used in the communication process, it is likely

that the names of the real data structures being communicated will not show up in the �nal statistics;

the names of the temporary bu�ers will show up, instead. We would much prefer to have data structure

interactions labeled with the names of the actual data structures that are communicated. Furthermore,

if bu�ers are reused, then separate data structures may be labeled with the same bu�er name; then

when performance information is tabulated by data structure name in the postmortem analysis, this

may lead to the presentation of misleading information. For these reasons, the previous version will not

su�ce.

So for example, in the example considered in Figure 2, the statistics displayed by the analysis

tools will only show communications from buff to buff , when in reality, it was array A which was

communicated to array B. To detect such situations automatically, we need to make use of static

program ow analysis.

To detect the case where the actual data structure is copied into a bu�er, we use the following

heuristic: if the closest reaching de�nition of the bu�er is a simple copy within a loop (as in the

example in �gure 3), then the array being communicated is considered to be a bu�er, and the array

7

subroutine foo ()

do i = 1, 10

buff(i) = A(i*n + p)
enddo

csend (.. , buff , ...)

crecv (.. , buff(11) , ...)

do i = 1, 10

B(i*n+p) = buff(i)

enddo

stop

end

syncsend (type , buff , size , to_proc , pid , buff ,

 "buff")

csend (type , buff , size , to_proc , pid)

syncrecv (type , buff , size , to_proc , pid , buff ,

 "buff")

crecv (type , buff , size , to_proc , pid)

Figure 2: Transformation of communication calls during instrumentation. Top: the original program;

Bottom: the communication call is replaced with a call to a monitor library routine with two additional

�elds.

from which the data is copied is the one we associate with the communication. A similar process is

used on the receiving end; if there is a reaching use of the received array which is a simple copy within

a loop, then the receive is associated with the array to which the data is copied, rather than the array

in which the message is received. Thus, for the case considered in Figure 3, the send is associated with

the array A and the receive is associated with array B.

With the above technique, postmortem analyzers can more accurately segregate data structure

interactions involving reused bu�ers, than in the previous case. In our implementation, the ow analysis

required is carried out by the Sigma library.

2.3 Version 3: Tracking Use of Data Structures

Typically, data structure values are communicated to enable new values of a (possibly di�erent) data

structure to be updated, using the communicated values. Consider �gure 4. The program on the left is

the original, and the one on the right is the instrumented version. In this case, array A is communicated

so that parts of array C can be updated, using the communicated values. In order for the information

about the use of the communicated data to be captured in the trace �le for postmortem analysis, we need

to perform static ow analysis to determine where the communicated data structure is being used. So,

8

subroutine foo ()

do i = 1, 10

buff(i) = A(i*n + p)

enddo

syncsend (.. , buff , ..., A, "A")

syncrecv (.. , buff(11) , ..., B, "B")

do i = 1, 10

B(i*n+p) = buff(i+11)

enddo

stop

end

Figure 3: Communication calls with bu�er copies, after instrumentation. Actual data communicated

from A to B.

we extend the analysis discussed so far to determine the next use of the actual receiving data structure.

Figure 4 illustrates the program dependence information as arcs. Arcs are drawn between the locations

of de�nitions of data structures and corresponding statements which they reach. These dependence arcs

are traversed by the instrumenter in determining the actual data structure being communicated.

2.4 Version 4: Parameters to Functions

We would like to have a single name for each region of array storage in memory. A di�culty is that

arrays can be (and generally are) renamed when they are passed into subroutines as parameters. So we

have adopted the following array naming convention: arrays are named by the identi�er given them at

the original point of declaration. If the array is not originally declared in the main program, then its

name is pre�xed by the name of the subroutine where it is originally declared, followed by a period. So

an array x originally declared in the main program would be named x. An array x originally declared

in a subroutine f would be named f.x. If that array is passed into a subroutine g (from subroutine f) as

formal parameter y, then we will still call that array f.x, because it was originally declared in subroutine

f.

The implementation of this approach, for static arrays in FORTRAN, is actually a fairly straightfor-

ward extension of the implementation discussed so far. Instead of passing the array names with every

9

subroutine foo ()

do i = 1, 10

buff(i) = A(i*n + p)

enddo

csend (.. , buff , ...)

crecv (.. , buff(11) , ...)

do i = 1, 10

A(i*n+p) = buff(i)

enddo

stop

end

A:

subroutine foo ()

do i = 1, 10

buff(i) = A(i*n + p)

enddo

syncsend (.. , buff , ..., A)

 syncrecv (.. , buff(11) , ..., C)

do i = 1, 10

A(i*n+p) = buff(i)

enddo

stop

end

B:

do i = 1, N

enddo

C(i) = C(i) + A(i)

do i = 1, N

enddo

C(i) = C(i) + A(i)

Figure 4: \Use" of communicated data. Left: Original program; Right: Instrumented program. Arcs

show that the communicated data comes from A, and is used by C.

communication call, pass only the base addresses, and introduce a new monitor call to de�ne the array

names in terms of the base addresses. The parameters to that call are the name and address of the array

to be de�ned. The instrumenter should insert a call to this routine for each array name encountered in

the program, immediately following the declaration of that name. At run time, that monitor routine

simply accumulates the name/address pairs into a list, appending a pair to the end of the list with each

call. That list then becomes the array name/address table output by the monitor. In the trace �le,

arrays are coded by their address. At analysis time, when a array address is encountered in the trace

�le, it is translated to a name by simply �nding the �rst matching address in the name/address table.

The name corresponding to that �rst address is guaranteed to be the original name of the array, before

being passed to any subroutine, since arrays must be declared before being passed into subroutines

(hence the name as originally declared would appear earlier in the name/address list).

2.5 Additional Features

In some cases, the receive is performed directly into the receiving data structure with no intervening

bu�er. Handling this situation is not di�cult, but cannot be discussed in this paper due to space

limitations. Our implementation is robust enough to detect these cases.

Situations can arise that cannot currently be handled by the heuristic we use for identifying the

10

important data structures. The analysis performed by our implementation currently does not cross

function boundaries, so we can identify bu�er copies only when they are performed in the same function

as the corresponding communication calls. 2

3 Performance of Our Implementation

Using our approach, existing postmortem performance analyzers can be extended to track interprocessor

data structure references and uses, with a very low additional overhead in storage requirements and

execution time.

Existing postmortem performance analyzers such as AIMS [16] instrument the source code of the

program being analyzed, replacing communication system calls with calls to a monitor library. The

monitor library subroutines perform the intended communication calls, appending timing and other

performance information onto a trace �le. Other calls to the monitor library record information such

as times of subroutine entrances and exits.

Using our approach, data structure information can be added to existing postmortem performance

analyzers, with a storage overhead of just two integer �elds per communication-related trace record. At

monitor time, in addition to the typical overheads due to monitoring, we incur overhead in maintaining

the data structure table. Table 1 shows execution times for several applications, instrumented several

di�erent ways. The applications are a number of di�erent versions of a block tridiagonal solver, and

one of the NAS parallel benchmarks. Execution times are given for each application (in msec) without

instrumentation and monitoring, with normal AIMS instrumentation and monitoring, and with the

additional instrumentation and monitoring that implement our data structure tracking method. Each

of the executions is for a single time step or iteration of the program. Procedure begins and ends and all

communication events are monitored in the instrumented runs. The table shows that the time overhead

for adding data structure information to existing monitoring systems is less than 4%, and the time

overhead for monitoring itself is less than 28%, for all the cases presented.

Table 2 shows the di�erence in ASCII trace �le size for the instrumented applications discussed

above, in terms of number of �elds (counted by the standard unix utility 'wc'). This table illustrates

that the percentage increase in size for data structure tracing is not a function of trace �le size. Rather,

it is a function of the percentage of communication events in the trace �le. In all cases in the table, the

trace �le size overhead for data structure tracing is less than 12%.

The low overhead of our approach is made possible by the fact that we have singled out interpro-

cessor data structure references for attention. This approach is reasonable, since interprocessor data

references are several orders of magnitude slower than local references, and thus account for signi�cant

2Note however that our method is not inherently limited to single procedure analysis; interprocedural analysis is just

more complex to handle.

11

XT1 XT2 XT3 XT4 XT5 XT 7

Un-instrumented 149 55 143 54 154 58

Instrumented w/o D-str 180 64 182 61 158 60

% Instrumenting overhead 21 16 27 13 2.5 3.4

Instrumented w D-str 185 65 188 62 159 62

% D-str overhead 2.7 1.6 3.3 1.6 .6 3.3

Table 1: Execution times in msec for various versions of a tridiagonal solver (run on 16 nodes for a

problem size of 256� 256 for one iteration).

XT1 XT2 XT3 XT4 XT5 XT7

Instrumented w/o D-str 263624 35144 246298 33050 32456 13498

Instrumented w D-str 294380 39020 275014 36678 35052 13796

% di�erence 11.6 11.0 11.6 10.9 8.0 2.2

Table 2: Trace �le size overhead for tracing data structure information, for various versions of a tridi-

agonal solver (run on 16 nodes for a problem size of 256� 256 for one iteration).

performance degradation. Tracking local data structure references (such as in Mtool [10]) is another

possible approach, which can yield information on local data structure performance (e.g. cache interac-

tions between data structures), at the expense of signi�cant increases in execution time (for simulation

based analyzers), or trace �le size (for postmortem analyzers).

All the above results are for relatively short executions, with the e�ect that there is no signi�cant

perturbation of the program execution. As the number of events collected increases with increasing

run time, run-time perturbation may become more signi�cant. However, recently techniques have been

established to eliminate or reduce the e�ect of ushes and monitor overheads (and hence perturbations)

for SPMD programs, as discussed in [12, 14]. We have incorporated this methodology for perturbation

compensation into AIMS, but since it is beyond the scope of this paper we do not discuss it any further.

4 Data structure Oriented Statistics and Views

The trace data collected on typical executions of a program is very large, and hence cannot be mean-

ingfully understood by manually looking through the mire of numbers. Instead, tools are often used

to present statistics of the program as well as to graphically depict program executions, based on the

trace data. In this section we will describe some useful statistics that can be generated using the trace

12

data. In the next section we will consider some graphical representations.

Statistics such as the communication and computation times can be tabulated by functions and

processors. However, these raw numbers do not provide a uniform platform for comparing the perfor-

mance of di�erent programs, or of di�erent versions of the same program. To circumvent this problem,

a number of indices have been proposed, such as the communication/computation ratio, the normalized

CPU-time index and critical path analysis. All the above indices can be useful in identifying a bottle-

neck's location, in terms of functions and processors. We will show that performance indices phrased in

terms of data-structures can be of further use in identifying the actual causes of the bottleneck, in terms

of interprocessor data structure interactions, within the identi�ed function or processor. Furthermore,

some bottlenecks related directly to data structures themselves can be most e�ciently tracked down by

�rst considering statistics in terms of data structures, then in terms of functions and processors. For

example, when poor performance is caused by poor combinations of data structure distributions, the

poor performance will be manifest across all functions and processors using those data structures. In

those cases, statistics tabulated by processor and function may fail to clearly identify the location of,

or even the existence of the performance bottleneck, since the performance degradation will be spread

across the functions and processors involved.

The aim of the performance tuning process is to minimize the total execution time (or lifetime) of

the program. Hence, each of our indices highlights the contribution of a particular performance problem

to the lifetime of the program; each index represents the percentage reduction in lifetime that could

be achieved, if the problem were completely eliminated. By comparing the indices one can determine

the most signi�cant performance problems and determine ways of eliminating them from the program.

With the methodology we describe, users can trace such problems directly to the source code data

structures being communicated.

We take the following three step approach to the systematic detection of the cause of performance

problems:

� Select Data structure: Identify the data structure communications that cause the degradation in

performance.

� Select code regions: Identify the function(s) in which those data structure communications have

a signi�cant performance cost.

� Determine cause of poor performance: Identify possible reasons for poor performance for the data

structure communications, in the regions of code identi�ed.

Each step requires the use of various indices in order to focus on the cause of the problem.

In this section we consider an example: a tridiagonal solver, which implements several methods for

solving systems of tridiagonal equations. This kernel operation is used commonly in a number of uid

dynamics computations such as a block tridiagonal solver (one of the NAS parallel benchmarks [2])

13

which solves multiple, independent systems of block tridiagonal equations. Our example program is

executed on an Intel iPSC/860 hypercube with 16 nodes. All the statistics shown in this section are

derived by the data movement analyzer, from trace �les generated during execution of the program on

the hypercube.

This code was written by S. K. Weeratunga at NASA Ames Research Center. A complete description

of the application is beyond the scope of this paper, but we will briey discuss the nature of the

communication and computation complexities involved in the program.

In this program a number of systems of the form A � b = c are solved, where b and c are vectors

and A is a tridiagonal matrix. This data is organized e�ciently into four distributed arrays, which

represent the entire set of systems to be solved. The data is organized so that each processor does not

have the complete information regarding the N/P systems it is supposed to solve. For the computation

to be performed, pieces of data from all the processors are required to be communicated (achieved by

using a transpose). A transpose of the four arrays are performed in log(p) stages using bidirectional

nearest neighbor communications, across successive hypercube dimensions, in sequence. The transpose

is performed in the routine xtrans. This data is then used to solve the N=P systems locally, and the

�nal solution vectors are transposed to correspond to the original distribution. This reverse transpose

is performed in the routine xrtrans.

4.1 Which Data Structure Interactions cause Poor Performance?

As mentioned earlier, data structure interactions to enforce dependencies are the main reason for in-

terprocessor communications. Typically, relative data distributions and alignments of data-structures

signi�cantly impact the performance of the program and dictate the communication-computation ratio

in di�erent functions or subroutines in the program. Thus, identifying costly data-structure interactions

is a necessary �rst step in identifying the cause of poor performance.

The relative importance of a data-structure can be gauged by considering the signi�cance of the

total communication time involving the data-structure with respect to the entire program execution

time. That is, a data structure's signi�cance for performance debugging can be gauged by the fraction

of total program execution time spent in communication involving that data structure, either as sender

or receiver. We call this fraction the communication index.

Tsend(d; �) corresponds to the sum over all processors of the times during which the processor is

blocked while sending the data structure d to any receiving data structure (�). Similarly, Trecv(�; d) is

the total time blocked in receives into the data structure d from any data structure (�). Ttotal is the

sum over all processors of the program execution time.

CI(d) =
Tsend(d; �) + Trecv(�; d)

Ttotal

Just as we de�ne the communication index CI , we can de�ne send index and receive index to be

14

Figure 5: A: Communication index for individual data-structures that are communicated, in a version

of a tridiagonal solver. B: Communication index for data structure pairs: shows that data structures

are communicated to themselves (X-axis label).

SI(d) = Tsend(d;�)
Ttotal

and RI(d) = Trecv(�;d)
Ttotal

respectively. Then, CI(d) = SI(d) + RI(d).

Sending a segment of a data-structure involves bu�er copy and communication initiation times. This

time is incorporated into the Tsend time of the data-structure being sent. Receiving into a data-structure

could have idle time (enforced by synchronization at the receiving end), the network latency, and bu�er

copy time. This time is incorporated into the Trecv time of the data-structure which uses the data being

sent.

The data structure which generally should be tuned �rst is the one with the largest communication

index, since the larger the communication index value, the larger the potential savings in execution time

achievable by the reduction of communications involving that data structure.

Figure 5 shows the communication index of all the arrays, during the execution in our example

program. The �gure shows that array f is the array with the largest communication index, roughly

accounting for about 25% of the execution time of the program. Arrays a; b and c also have signi�cant

communication indices accounting for a total of about 35% of the lifetime of the program. The two tem-

porary arrays xtrans:tmp and xrtrans:tmp have very low communication-indices and hence optimizing

their communications will not have a signi�cant impact on the program execution. For performance to

be improved, we need to study arrays f; a; b and c in that order.

The indices de�ned so far have been in terms of single data-structures. But to detect problems

that occur in communication between particular pairs of data structures, we require indices in terms

15

of data structure pairs. Hence we can de�ne a communication index for data structure pairs, that

encapsulates the performance cost of the communication of values from data-structure (ds), received by

data-structure (dr) as:

CI(ds; dr) =
Tsend(ds; dr) + Trecv(ds; dr)

Ttotal

Using the communication index of data structure pairs, we can focus in on the data structure interactions

which have the most signi�cant impact on the lifetime of the program.

Figure 5 (B) shows the communication index for array pairs. The X-axis corresponds to the array

interactions, showing sending and receiving arrays, and the Y-axis corresponds to the communication

index. In this case, arrays are communicated to themselves (to perform a transpose); hence the sending

and receiving arrays match in all the array pairs, and the communication index is the same for individual

arrays and for array pairs.

4.2 Where does Costly Data-structure Interaction Manifest?

Once we have determined the actual data-structures causing poor performance, we need to determine

the functions or code segments in which these data-structure communication times are most signi�cant.

Instrumenting function entries and exits generally results in trace �les of acceptably small size (unlike

instrumenting loops and basic-blocks), so instrumentation of function entries provides a convenient

means of demarking important code segments. 3.

As before with data structures, we use the communication index as a means of prioritizing the order

in which functions need to be studied. That is, the communication index for the data structure pair

(with sending data-structure ds, and receiving data-structure dr) in function f is given by:

CI(ds; dr; f) =
T
(f)
send(ds; dr) + T

(f)
recv(ds; dr)

Ttotal

Figure 6 shows the communication index of various array pairs across two functions. The �rst set

of four indices correspond to array communications in function xtrans, while the last two represent

array communications in xrtrans. (None of the other functions have any communication in them and

are hence not displayed in this �gure.) It can be observed from this �gure that all the array pair

communications indeed take roughly the same amount of time. To determine how we can improve the

performance of these array interactions, we need to study various performance indices described in the

next subsection.

3Finer level instrumentation can be automatically enabled by using suitable selections in the AIMS instrumenter [16].

User de�ned blocks can be introduced and statistics of data-structure interaction in these blocks will also be reported.

Further, linking the code segment to the data-structure interactions is possible, using the standard clickback facility in

AIMS [16]

16

Figure 6: Communication-index for data-structure pairs: in terms of individual functions

Given the communication index values for array-pairs, tabulated over the whole program and over

each function/subroutine, we can quickly determine the communications which should be studied, and

the signi�cance of these communications with respect to the overall execution of the program. The next

step is to determine if the performance of these data structure interactions can be improved.

4.3 What is the Cause of Poor Data Structure Interaction?

Some of the common causes for poor performance of parallel programs are:

� Load imbalance

� Poor Link utilization

� Communication contention

� Communication overhead

� Bandwidth Utilization

� Poor communication computation overlap.

We de�ne indices for each of these factors, with a goal of identifying the cause of poor performance in

a particular data-structure interaction. All the indices are presented with respect to individual data-

17

structures, data-structure pairs and data-structure pairs in individual functions or user-de�ned blocks

of code. These indices are automatically generated and are all determined postmortem from trace data.

The range of values for all the above indices is between zero and one: zero being good and one being bad.

Having a normalized range for the performance indices helps in quickly tracking down the signi�cant

factors contributing to poor performance. In this paper, we will not discuss how we extract these index

values from the trace �le, due to space limitations. However, we will show how these statistics can help

in comprehending program performance.

Figure 7 shows a summary view of all of our index values for each array pair in the tridiagonal

solver program. Each axis corresponds to a performance index. There are six di�erent performance

indices displayed in this �gure. A line is drawn connecting the corresponding values in each axis, for

each array pair interaction. If performance indices for some data structure interactions are the same,

then the index values are marked on top of each other.

Figure 7 (A), shows the performance indices for two bu�ers (both called tmp but local to two di�erent

functions). From the �gure we can gather that the most signi�cant performance problem with these

bu�er movements is associated with communication overhead (the value of communication overhead

in this plot is expressed as a fraction of the communication time between the two data-structures).

This is due to the fact that these are temporary bu�ers used to transmit zero byte messages to set

up a forced message communication of the actual arrays to be transposed. 4 Zero byte messages are

used to set up links and bu�ers for the forced message containing the actual data to be communicated.

The startup time is signi�cant with respect to the communication time of these messages. However,

since the communication index involving these data-structures is very small, we know that reducing the

communication time of the two bu�ers will have little or no signi�cant impact on the lifetime of the

program.

Figure 7 (B) on the other hand shows that the other arrays (a; b; c and f) do not have a communica-

tion overhead problem, because their message sizes are large (in this case each message is approximately

16 Kbytes). The �gure also indicates that the only performance related issue which could potentially

be improved is the communication link utilization. As shown in the �gure, the link utilization index

is around 0.67. This implies that on the average, only about a third of the links are used during

communication phases.

Hence, if there is any scope for improving the performance of this program, we need to reorganize

the code in order to more e�ectively utilize the links (if possible).

Consider the algorithm for transpose, to understand why only a third of the links are used on

the average during communication. There are log(p) stages (p = 8) for performing a transpose. The

processors communicate by exchanging data along each dimension of the cube, one dimension at a time.

4Forced messages are messages which exhibit better communication characteristics on the hypercube, by eliminating

the need for lower level handshaking.

18

Figure 7: Comparison of various performance indices for array interactions. A. Performance indices for

arrays xtrans:tmp and xrtrans:tmp B. Performance indices for arrays a; b; c and f .

Thus, each processor uses only one of its bidirectional links at any given time. This implies that for a

p processor hypercube, there are only p=2 bi-directional links which will be used for each stage of the

transpose. That is, p�log(p)�p

2 links are not in use. For a cube with 8 processors, the number of links

not in use for each stage is therefore twice that in use. This agrees with the link utilization index, for

each data-structure, presented in the data-structure statistics.

Another aspect of the performance of this code is highlighted by a large value for send-index (not

shown in the graph). The large value for the send-index indicates that the copy time for the source-

array from the user space to I/O space is signi�cant and signi�cant reductions in communication times

could be obtained by overlapping this copy time with useful computation. However, hardware support

is needed to hide this copy time.

Unfortunately we cannot do better than the current performance of this program on the hypercubes

(at NASA), since they do not have a communication co-processor to handle multiple communications

on di�erent links or overlap bu�er copy time with useful computation. This implies that this program

performs very well on the existing machine and its communication performance cannot be improved

signi�cantly without hardware support. Any improvements in the solution time for the problem will

have to be made by modifying the algorithm.

In addition to the statistics discussed above, graphical representations showing interprocessor data

movement can be useful for performance debugging. Figure 8 shows one such graphical view of the

program with data structure information. This screen dump is a view of a run of the tridiagonal solver

19

Figure 8: A time-line diagram of the tri-diagonal solver, with data structure information indicated by

the color of the communication lines.

on eight processors. The X axis corresponds to time and the Y axis corresponds to processors. The

state of each processor over time is indicated by the color of the horizontal bar associated with that

processor. Interprocessor communication is indicated by lines between the communicating processors'

bars. Data structure information is encoded in the color of the communication lines; all communications

involving the same pair of sending and using data structures have the same color. For example, in the

tridiagonal solver, the �rst 75% of the computation is dominated by communication. During this time

four di�erent arrays are transposed (each in log(p) = 3 stages); this is reected in the view by four

communication phases, each with a di�erent color. Encoding data movement information in views such

as this one provides the user with a richer data set to use in understanding program execution and

performance.

The examples in this section were primarily used to demonstrate the exibility of our methodology

and to illustrate the detailed statistics that are generated for array interactions in Fortran programs.

We have shown that with little additional space and time overhead at run time, it is possible to collect

data that can be used to de�ne a whole class of performance indices which can help in pinpointing the

data structures with poor performance in speci�c functions, as well as in determining the causes of poor

performance within those functions.

4.4 A Pipelined Version of Gaussian Elimination

In this section we consider a di�erent version of the tridiagonal solver executed with a problem size of

256 � 256 on 16 processors. Here, instead of an explicit transpose of various matrices, the Gaussian

elimination phase of the computation is parallelized. A pipelined Gaussian elimination algorithm is used

20

Figure 9: Left: Communication time and communication index for varying block sizes of communication

from data structure sbuf to rbuf . Right: Send and receive indices for communication of sbuf to rbuf .

Receive index increases more than send index.

for this purpose. Pivot elements of each column are determined in sequence and these values are used

for updating succeeding columns. Processor i has the columns (i�1)�n

p
to i�n

p
. Processors are arranged

in a ring, so that each processor receives the updated pivot element from its left neighbor, updates its

own column, and then transmits the data to its right neighbor.

There are a number of decisions that need to be made with respect to communicating the arrays

around the ring, in order to obtain good performance. One obvious optimization is to pack the pivot

elements from all the arrays into a single message (called sbuf on the sending end and rbuf on the

receiving end), thus reducing the number of messages to be transmitted. With this optimization, the

number of pivot elements that need to be transmitted in a message governs the execution time of the

program. The number of pivots from each array, in each message from sbuf to rbuf , is the block size,

which can range anywhere from 1 to 256. The maximum block size of 256 corresponds to all pivot

updates of all arrays being sent in a single message from sbuf to rbuf . So as we increase the block size

from 1 to 256, the number of messages reduces from 256 messages to a single message.

Consider Figure 9, which shows the communication time and the communication index of the pro-

gram as the number of pivots transmitted in a message is increased. An interesting feature is that the

communication time starts to decrease initially as the block size is increased, but when the block size

is increased above 4, the communication time starts to increase again. By analyzing the trace �les for

various block sizes, we should be able to explain the reason for this performance problem automatically.

21

Figure 10: Performance indices for communication from sbuf to rbuf : For small block sizes, commu-

nication overhead, contention and load-imbalance are all signi�cant issues, while for large block sizes,

load-imbalance becomes signi�cant.

Figure 9 compares the send index and receive index for varying block sizes. We see that the receive

index reduces for block sizes from 1 to 4, but starts increasing beyond that, while the send index reduces

(though not in proportion to the receive index) for increasing block sizes. This suggests that a problem

in the receiving end becomes signi�cant as the block sizes are increased.

The reason for this behavior is exposed by the performance indices used for studying the data-

structure interactions. These indices show that load imbalance, communication overhead and contention

are the most signi�cant performance factors for this program. Figure 10 compares these indices for

di�erent block sizes. (The values of these performance indices, for this data-structure interaction, are

obtained automatically from the trace events by the data movement analyzer, and will be described in

a future paper.) We can see in this �gure that for a block size of 4, all the indices have low values,

beyond which the load-imbalance increases while the other indices continues to decrease. This increase

in load imbalance index indicates that the receive into rbuf is initiated before the communication of

sbuf is initiated, resulting in larger idle times (and hence larger receive index values shown in Figure

9). This results in an imbalance where processors have completed their work and are idling for data

22

dependencies to be satis�ed, before proceeding. When the block size is 4, a delicate balance between

the communication overhead and idle times in processors has been achieved, for this problem size and

number of processors, resulting in the lowest execution time for the program.

5 Conclusion

While it has long been understood that improving performance of a parallel program is dependent

on understanding the communication characteristics of data structure interactions, there have been

very few tools that provide means of studying program performance in terms of these interactions.

In this paper, we have presented a novel scheme for generating such statistics automatically, through

instrumentation, monitoring and postmortem analysis.

We detect data structure de�nitions and uses with the help of static ow analysis (without the need

for inter-procedural analysis). This information, supplemented with some run time information, enables

the generation of trace data tracking data movements, with minimal additional time overhead at run

time. This data is then interpreted postmortem by a suite of graphical and statistical tools that output

information with respect to source code data structures.

With the help of several examples, we have demonstrated that performance can be e�ectively ana-

lyzed by tabulating performance indices based on data structure interactions. The performance indices

hide raw numbers from the application developers, instead highlighting the signi�cance of various per-

formance problems to the reduction of the program's lifetime. The causes of performance degradation

are attributed to speci�c data structure pairs. This enables programmers to identify ways to rearrange

the code and/or algorithm to eliminate the performance problem, or to change the alignments and

distributions of the relevant data structures, in order to improve performance.

There are still a number of issues which are areas of on-going research: currently our implementation

does not obtain information about the speci�c array subsections that are actually sent when commu-

nication takes place. This information may be essential for determining the applicability of certain

types of communication optimizations: for example, the replacement of all to all communications with

a broadcast. We have implemented our approach for F77 with message passing and static data struc-

tures; we have not yet considered some more complex issues that arise in e�ciently tracking dynamic

data structures. We are currently testing our approach and the robustness of our implementation on

larger applications, and hope to present our experiences with these codes at a later date.

References

[1] Thomas E. Anderson and Edward D. Lazowska, " Quartz: A Tool for Tunning Paralel Program

Performance," Proceedings of the 1990 Conference on Measurement and Modeling of Computer

Systems, May 1990.

23

[2] David Bailey, John Barton, Thomas lasinski and Horst Simon, " The NAS Parallel Benchmarks,"

Report RNR-91-002, NASA Ames Research Center, January 1991.

[3] S. H. Bokhari, " Communication Overhead on the Intel iPSC/860 Hypercube," ICASE Interim

Report 10, May 1990.

[4] H.Davis, S.R. Goldschidt and J. Hennessy, "Tango: A Multiprocessor Simulation and Tracing

System," Proceedings of the International Conference on Parallel Processing, August 1991.

[5] D. Gannon, J.K.Lee, B. Shei, S.R.Sarukkai, S.Narayana, N.Sundaresan, D.Atapattu, F.Bodin, \

SigmaII: A toolkit for Building Parallelizing Compilers and Performance Analysis Systems ," ,

Proceedings of the Programming Environments for Parallel Computing Conference, Edinburgh,

April 1992.

[6] S. L. Graham, P.B. Kessler and M. K. McKusick, " An Execution Pro�ler for Modular Programs,"

Software Practice and Experience, August 1983.

[7] Michael T. Heath, Jennifer A. Etheridge, \Visualizing the Performance of Parallel Programs,"

IEEE Software, September 1991.

[8] High Performacne Fortran Forum, " High Performance Language Speci�cation," Rice University,

1993.

[9] Jenq Kuen Lee and Dennis Gannon, "Object Oriented Parallel Programming Experiments and

Results," Proceedings of Supercomputing '91, 1991.

[10] Margaret Martonosi and Anoop Gupta, " MemSpy: Analyzing Memory System Bottlenecks in

Programs,"Proceedings of the 1992 ACM International Conference on Measurement and Modeling

of Computer Systems, June 1992.

[11] Barton P. Miller, Morgan Clark, Je� Hollingsworth, Steven Kierstead, Sek-See Lim and Timothy

Torzewski, "IPS-2: The second Generation of a Parallel Program Measurement System," IEEE

Transactions on Parallel and Distributed Systems, April 1990.

[12] Sekhar R. Sarukkai and Allen Malony, " Perturbation Analysis of High Level Instrumentation

of SPMD Programs, Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, San Diego, May 1992.

[13] Sekhar R. Sarukkai and Dennis Gannon, "SIEVE: A Performance Debugging Environment for

Parallel Programs," Journal of Parallel and Distributed Computing, June 1993.

[14] Sekhar R. Sarukkai and Jerry Yan, "Integration of Perturbation Compensation and Application

Monitoring Tools for Message Passing Parallel Porgrams," Submitted to IEEE Transactions on

Parallel and Distributed Systems

24

[15] Eileen Kraemer and John T. Stasko, " The Visualization of Parallel Systems: An Overview,"

Journal of Parallel and Distributed Computing, June 1993.

[16] Jerry Yan, Charles Fineman, Phil Hontalas, Melisa Schmidt, Sherry Listgarten, Pankaj Mehra,

Sekhar Sarukkai and Cathy Schulbach, " The Automated Instrumentation and Monitoring System

(AIMS) Reference MAnual," NASA Ames Research Center, June 1993.

[17] \UNICOS Performance Utilities Reference Manual," Cray Research Inc., 1991.

25

