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An Environment for Multiple-valued Recursive Procedures

Daniel P. Friedman
David S. Wise
Computer Science Department
Indiana University
Bloomington, Indiana 47401

Abstract - A problem with existing language provisions for program-
ming procedures which return multiple results is the facility with
which such results are passed along as arguments to other functions.
We define the functional operation of combination which provides a
method of using such multiple results conveniently, say, for writing
é multi-value procedure which recurses directly on itself. "Lists"
of functions, called combinators, take lists of arguments and the
length of the result is determined by the shortest of the combinator
or 1ts arugments. Notation is presented for constructing lists which
are arbitrary repetitions of a single element so that one parameter
can be "spread" across a combinator, or a single function can be
spread into a combinator across lists as arguments. Finally, the
provision of a functional application notation is introduced and
shown to be a very important adjunct to the other features of our
enhanced recursive language. Several examples of purely recursive
code illustrate its power, including one on coroutining and one on

batch searching.

Keywords and Phrases - functional combination, pure recursion, func-

tional application, form evaluation, extractor, mapping functions,

projections, LISP, lexpr, expr.

CR Categories - 4.22, 4.12, 4.13.




Introduction

The importance of functions (procedures) in programming
has been demonstrated by several languages which depend solely
on function or macro invocation to control computations. The
central theme of this paper is enhancement of the standard
treatment of functions. This enhancement not only facilitates
multiple results from functions (i.e. multi-dimensioned range),
as in LISP or APL, but also provides for the use of.such a
multiple-value as an argument to other functions without requiring
its explicit decomposition. |

The value of a function which returns a multiple result
may be pictured as a fixed length vector in algebraic languages
ﬁr as a list in list processing languages. If the language
under consideration depends on function invocation for program
control, then those vectors or lists must be allowed as arguments,
as well as results, for functional composition. When the multiple
result of one function is to be an argument to the next, treatment
of the formal parameter which represents the multiple result as
a data structure of several results becomes necessary. Extra
assignments or nested functions can be used to rebind elements
of that structure to individual variables for access by the next
function, but such intervening overhead is confusing. The
programmer bothered with unnecessary rebindings is more likely to
make mistakes; the reader of such a program is more likely to
be confused; the compiler of such a program will likely generate
less efficlent code then would be posslible 1 a standard access

protocol were available.



The immediate need for a protocol for linkage of such
argumenté arose from an ongoing project aimed at the development
of a practical translator of "stylized recursions" [F&W74] into
stackless iterations. Early in this project the decision was
made to restrict the source language to the purer forms of
recursion. This frustrated attempts to provide legal function
definitions which could be translated to code like that for common
iterative programs which yield several results. The preimage of
such an iteration under such a translation must be recursive and
must return several values. Stylized preimage code is possible
if the tool of "functional combination" introduced in this paper
is included as a technique of stylized recursion.

Although functional combination can be simulated at the cost
of the rebindings discussed above, it does not exist in any major
programming language. That fact is a bit surprising after one
considers a few examples of 1ts use. It is particularly powerful
when a called function has already been defined to return several
results in a non-trivial structure. Such is usually the case
when a multiple-value-returning function 1s being defined recursively
and it, itself, is the called function. Highly recursive languages,
like pure LISP, can use the expressive power particularly well,
and we therefore choose a form of LISP as the main communication
language below. We refer the reader to [Wei67] for an explanation
of list processing and to [Fri74] for an introduction to recursive

programming in LISP.



Functional combination is a scheme for weaving a new function
from conceptually parallel invocations of extant functions, so
that the structures of the parameters and of the results for the
new function are determined by a fixed arrangement of those
structures and the original functions. It is a version of the
Caretsian product of functions in common use by algebraists
[M&B6T7,B&LT4], modified to make the parameter-structure more like
the structure of the result and generalized using a star notation
to allow tuples of a function (or an argument) to be of indefinite
dimension. The first change makes it a comfortable tool for
composing functions in a programming language. The latter
generalization extends the formalism to practical cases wherein
the determination of the length of the result can be deferred
until data is available.

The remainder of this paper is in seven sections followed
by conclusions. IThe first_section on motivation is followed by
a Section présenting notation. The third section introduces
functional combination in its elementary form, which is extended
in the fourth section to allow for structures of arbitrary size.
These sections present elementary examples of these functional
construction techniques, which become a foundation for two sections
on the implications of this scheme for the function interface and
upon the need for functions defined for an arbitrary number of
arguments. The final section presents two uses of functional
combination, each presenting recursive definitions for algorithms

which require special techniques in iterative languages.



Motivation

Consider the common problem in statistical analysis of
computing the mean and variance of a set of data. The principal
computational step is to sum the list of data and to derive the
sum of their squares. The two PASCALesque [Wir7l1l] functions
below represent a standard recursive scheme to derive each of

these results:

function sigma (var arr: vector; n: integer): real;

sigma := 1f n=0 then 0.0

else arr[n] + sigma(arr,n-1)

and

function sumsq (var arr: vector; n: integer): real;

sumsq := if n=0 then 0.0

else arr[n] ¥ arr[(n] + sumsqg(arr,n-1)

Because these functions are often used together, one might
consider a syntax for invoking them simultaneously. That is, the
expression [sigma,sumsql](a,l5) might be expected to return the
ordered pair [sigma(a,15),sumsq(a,15)] . An advantage of dispatching
the function calls simultaneously is that the compiler would be
allowed to provide for simultaneous computation as a single task.

In this example simultaneous computation could result because the
recursion patterns are identical. If the recursion paths part at
some point in the computation then separate tasks would be invoked.
Note that the second (ordered pair) expression above requires

collateral elaboration in the ALGOL 68 ‘@Wiﬁg] sense.



A well founded criticism of recursive programming has been
its limited capacity to express functions which return more than
one value [Lan66]. When the program above is written with an iterative
loop, two registers are required to maintain the sums; when
written recursively (in PASCAL) one register might contain the
value of the recursive function and the other register could

transmit 1its value through a parameter passed specifically to

receive the second value. With careful study of the implications
of reference parameters used with recursion, one might discover

the following recursive function:

function sigma (var sumsq: real; var arr: vector; n: integer): real;

if n=0 then

begin
sigma := 0.0;
sumsg := 0.0
end
else
begin
sigma := arr[n] + sigma(sumsqg,arr,n-1);
sumsq := arr[n] ¥ arr[n] + sumsqg
end

The envisioned use of the above code would require compilation
of the recursion into the standard style iterative code. However,
the problems of compiling recursions with reference parameters
is so complex that one quickly wishes them away and turns to the
problem of compilation of pure recursion, which uses only value

parameters [D&B73,B&D75,Ris73,F&WT7H4].



The syntax described below allows the function invocation
given by [sigma(a,15),sumsqg(a,15)] to be expressed, in an extension
of LISP (as described in Chapter 1 of [McC62] ), by
([sigma sumsq] *a *15). Moreover, it allows a trivial definition
of a pure recursive function which returns the same pair from

a single recursion.

Defintions and notations

The term list is used to refer to a linear structure of
arbitrary length, the actual length to be determined at execution
Time by the structure of data. A vector is a linear structure
whose length may be determined by inspection of the code at
program—defiﬁition fime. For instance, if x is to be an arbitrary
1list (of length greater than one) which will be bound at execution
time, then an occurence of (list (car x)(cadr x)) in the code may
be described as a vector since it must have length 2: but an
occurence of (cdr x) can only be a list.

Many funétions can be generalized to take an arbitrary number
of arguments, The term lexpr (as opposed to expr, which
takes a fixed number of arguments [MecC62] ) used in Stanford LISP 1.6
[Qua69] will describe such functions. For example, sum is a lexpr
which sums its arguments, append is one which concatenates its
arguments, and equal is one which determines if its arguments are
the same.

We present notations for elementary operations on.sequential
structures: square brackets for list building; angle brackets for
functional application; integers as extractor functions; the use

of the hash "#" symbol as an ignored argument. In LISP each of
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these may be locally represented using existing notation, but
only by allowing for some other programming structures which we
wish to prohibit. These notations provide the expressive power
which we need without allowing any dangerous generalities.

The notation [a b c¢] is used in two contexts for representing
a vector or record of fixed length. In the function position it
represents a functional combinator (discussed in the next section)
formed from the functions a, b, and c¢. As an argument the notation
is synonomous with (1list a b c¢) used by Teitelman [TeiT7l4] and
Hewitt and Smith [H&S75]. Evaluation of such an expression results
in a vector of the evaluated expressions within the brackets.
The length of this vector 1s the same as the length of the bracketed
expression. For instance, [(sum 4 2) 3 (product 3 3)] evaluates
kg L6 .3 )}

The function apply takes a function and a list (or vector)
of its arguments as parameters. A common use 1s the application
of a fixed function to an arbitrary list of parameters which is
yielded by an expression. In LISP this case often appears as

(apply (function f) x) where evaluation of x ylelds a 1ist of

1 [] is a function invocation which returns the empty list. This
fact offers a very palatable alternative to the notational problems
surrounding the atom NIL in LISP. NIL is a distinguished atom
which at once represents the empty 1list and logiesl false. It
appears frequently in programs in one role or the other, usually
unQUOTEd because NIL is one of a very few atoms in LISP which 1is
globally bound to itself. These two uses of NIL have previously
been distinguished [FriT4] by systematically using P for false

and () for the empty list. The latter convention 1is distasteful
because it depends on the global binding of NIL and on the behavior
of the lexical scanner in interpreting as NIL the form () which
appears to be a bogus function call. Therefore, when the empty
1ist is needed, the notation [] will be used.




arguments, perhaps of fixed length. We define the notation

<f x> for such an application in order to avoid the words apply
and function; (f a b ¢) is usually? synonomous with <f [a b c]>
(See also [H&S75] and their discussion of message passing.)
There are always exactly two elements between the angle brackets
[Bac73]: a list or vector and a function. This notation for
functional application is particularly useful for lexprs applied
to data structures: if arr is a list of numbers, then <sum arr>
sums its elements.

All integers are implicitly defined as lexprs. For example,
the function (or projection) 17 returns its seventeenth argument.
(3 (sum 4 2) 3 (sum 3 4) (product 5 7)) returns 7 and <3 x> returns
the third element of the list x. An integer in the functional
position within angle brackets is useful for extracting a specific
element from a vector which results from a function invocation
in the argument position. Since (car x) is the same as <1 x>,
(cadr x) is the same as <2 x>, and so forth, function invocations
returning multiple arguments are often the object of the application
of integer functions to access a single piece. Such applications

are called extractions.

The symbol # is used as a pseudo-argument. Within square
brackets it is dropped during argument evaluation before parameter
binding. The evaluation of # converges to some value which is
dropped and is, therefore, immaterial. For example,

<f [# a #b # # ¢cl]> is synonomous with <f [a b c]> .

The exceptions involve funarg and #.
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Functional Combination

In our scheme, when a bracketed form occurs in the function
position of a form it is left unevaluated. A form which begins
with a bracketed form is called a C-form (combinator form), and

the car of the C—form is called a combinator [F&WT75]. A combinator

is composed of functions or combinators. Each argument for the
combinator must also evaluate to a vector or be starred (discussed

in the next section). The semantics of the evaluation for such

a functional combination is as follows: Ilet
([fl fo o fmoj p] Po cc Py ) be a C-form where each
03 is (ail Bip oee aimi )3 its wvalue is [<fl Y1> <f5 v5>e . <L ym>]
where m = min m, and Yy = (alj amj) for j<m but
O0<di<n £
eXcluding values aij = #.

The argument, py> can be viewed as a row of a jagged matrix,
{aij}, which is passed to the combinator in column-major fashion.
The length of the vector which results from an invocation of
functional combination is the minimum of the lengths of the combinator
and o} all its arguments. This definition allows the value of
a C-form to be determined by the leftmost functlons in the combinator
if an argument yields a row, Py which is too short (i.e. ms< Mg o
The examples will have their arguments written with each row
on a separate line and vertically aligned to suggest the columnar
relationship. Furthermore, the function names will be hyphenated
to suggest the length of the vector result. For example,
(s-p-gq-r [1 9 7 5] [0.1 1 10]) evaluates to (1 9 7 5)
where

s-p-g-r (v w) = ([sum product quotient remainder]

v
wo).
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This example shows that C-forms can be interpreted out of the
context of recursiony,yet it is in that context where they will
find the most use. The availability of commonly used alternatives
(e.g. call-by-reference illustrated above) allows programmers to
avoid the C-form with its unorthodox order of argument evaluation
and parameter binding. It can promote terseness, however, in
instances where assignment statements or auxiliary functions would
be needed to rearrange argument order from that provided as the
result of nested functions. That facility is important when one
works with functions such as divide which return vectors (in [McC62]
(divide x y) is defined to be [(quotient x y)(remainder x y)1]).
It is particularly important when calls on those functions are
recursive calls, because the order of evaluation would be clouded
by intervening rearrangements.

Fdr the recursive definition of the summation function described
earlier  one would be very likely to treat arr as a list of numbers.

Then the function, here named len-sigma-sumsg, would return an

ordered triple: [the length, the sum, the sum of squares] and
might be defined as follows:

(len-sigma-sumsq arr) =

if (null arr) then [0 0 0]
else ([addl sum sum ]
[ # .(car arr) (product (car arr)(car arr))]

(len-sigma-sumsqg (cdr arr)))

For example, (len-sigma-sumsg [1 2 3]) evaluates to (3 6 14),.
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To complete the computation of mean and variance it is only
necessary to invoke an auxiliary function of three parameters,

al-pha, on the list which is the result of len-sigma-sumsq:
(al-pha len sigma sumsq) =

[(quotient sigma len) (difference (quotient sumsqg len)

(sguare (quotient sigma len)) ) J;

 (mean-variance arr) = <al-pha (len-sigma-sumsq arr)>

The example of mean~variénce is chosen as a common example
of a computation which returns two results from a single pass.
The fﬁnction, lt-eq-gt, has as its parameters a number, n, and
4. 1ist, &, of numbers in ascending order and returns a vector
of three lists as a result of its single recursion. Each member
of the triple contains elements of s: [a list of numbers less than
n, a list of numbers equal to n, and a list of numbers greater
than n]. Thus (lt-eg-gt 5 [1 2555 6 8 91) is ((1 2)(5 5 5)(6 8 9)).
(lt-eg-gt n s) =
if (null s) then [LICIL]]
elseif (greaterp (car s) n) then [[1[] s].
elseif (lessp (car s) n) then ([cons 1 1]
[(car s) # #]
(1t-eg-gt n (cdr s)))
else ([ 1 cons B |

[ # (car s) #]

(1t-eq-gt n (ecdr s))) |
This example exhibits the use of the # sign as an ignored
argument within a functional combination. Within a bracketed
argument it sustains the length of the rows which are arguments
to the combinator, and acts as a place marker which is ignored
when the columns of values are passed as arguments to the elements

of the C-form.
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Star on arguments and functions

The notation ¥p will stand for a list of infinitely many
instances of p and it is ah instance of a new data type which
is called starred. Any data type, including starred, can be
starred. For instance ¥#(0 is "the zero matrix" of two dimensions
and infinite size, Starred arguments to
a bracketed inatance of a functional
combinator act like.a vector of the same length as the combinator
or shortest unstarred pi because of the minimization of row lengths:

([sum product]

%2

L 3 i
evaluates to (5 8) and

<1 ([sum product]

"3
B3 e

evaluates to 6.

A starred function may appear wherever a combinator may
and is considered a special case of a combinator. This convention
totally subsumes all uses of mapcar [Weib7]. Such a combinator
acts as if it were molded to the length of the shortest unstarred
argument with every element of the combinator being the function
which was starred:

(¥sum

Ti 2]

%51

evaluates to (6 7). If all arguments are starred, then a starred
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result may be computed. After a single star is "stripped" from
the combinator and each argument, normal evaluation proceeds and
finally, the star is "replaced:"
(*sum
¥2
%3)
evaluates to %¥5 . A starred result is useful only as an intermediate
value. Its effective length may be fixed by the row minimization
rule in subsequent and more rigorous invocations of functional
combination.
Because the afguments of C-forms may be structures which are
solely data dependent, many instances of starred functions within
C-forms are expanded according to the data which i1s not availlable

until execution time. For example, the dotproduct?® of two linear

arrays may be expressed as

(dotproduct arrl arr2) = <sum (¥product

arrl
arr2 )>

Their outerproduct, based on any function prdct is given by the

function

(*¥*scalarproduct

(outerproduct arrl arr?)

¥arrl
arr?)

with

3For the masochistic, if a matrix is a list of rows then
Gaussian matrix multiplication is

(matrixmpy ml m2) = (¥row ml ¥<¥1list m2>)

where

(row r mt) = (¥dotproduct ¥*r mt)
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(scalarproduct arr elem) = (¥*prdct

arr
#elem).
With the lexpr equal discussed above
(¥*equal
x1
x2
x3 )
returns a pattern of true's and false's whose length is that of the
shortest of the lists x1, x2, and x3. The true's indicate the
position where all lists have the same element and the false's
indicate the positions where they differ.

Using the * notation, we may rewrite len-sigma-sumsq as follows:

(len-gigma-sumsq arr) =

if (null arr) then *0

else (¥sum
[1 (car arr)(product (car arr)(car arr))]

(len-sigma-sumsqg (edr arr))) .

The result of len-sigma-sumsg is usually separated by extraction

using integer functions. For instance, if n-s-s is such a result
then <1 n-s-s>, <2 n-s-s>, and <3 n-s-s> are the three pieces. If
arr is initially empty thehn-s-s is ¥0, but each of the three pieces
is still zero; any extraction from a starred value yields that value.
A final example summarizes the generality of functional combination

and demonstrates some of the possibilities for nesting combinators?

(L2 *cons [product quotient] quotient]
[5 ¥0 [ 5 20 -
[8 EL1-2F03 411 5 0 1

evaluates to (8 ((0 1 2)(0 3 4)) (25 L))
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The funection junetion

The preceding discussion introduces functional combination
with extractor functions and functional application. These
programming structures vastly enrich the facility for function
linkage by allowlng multiple values to be handled easily. We
have also introduced three pseudo-types for purposes of
interfacing functions. These are starred values, heterogeneous
vectors and homogeneous lists. Although some of these types
are consistent with uses beyond the function interface (namely
input and output for the program) this classification makes sense only
at the interface. For this reason the types are called "pseudo. "

The classification is useful for describing the allowable
arguments and values of various kinds of functional combination.

If the combinator is bracketed then arguﬁents are usually
heterogeneous vectors or starred values, and the result is a vector.
If the combinator is starred, then allowable arguments are starred
values and homogeneous lists? che result is a homogeneous

list (unless all arguments are starred yielding a starred value).
Although " starred values and heterogeneous vectors may be

treated as special cases of homogeneous lists which, in turn, are
elementary data structures, usually these pseudo-types are used
internally only by larger programs. The multiple results of one
function should be passed to another combinator, to an extractor, or
to an invocation of functional application with the multiple value
as the parameter list.

When a multiple value is passed to extractors, it is common

that each value is extracted from apparently duplicated invocations
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of functional combination. (See equaltips below.) Duplicated

invocations, particularly in a sequence of extractions, are intended

to be cdllapsed into one whose result is stored locally for all to use.
The other use of multiple value is as a list of arguments for

a functional application. The notation <f arglist> often has a

C-form for arglist. The resultant type of the C-form should be

consistent with f. If f takes a fixed number of heterogeneous arguments

(an expr in LISP parlance) then the C-form should return a vector.

If £ takes an arbitrary number of homogeneous arguments (a lexpr)

then the C-form may return a list. A starred value may be used in the

former case where the parameter count is fixed, but not in the latter.
The above discussion on parameter linkage and result generation

at the function junction has intentionally omitted any specification

of the order in which independent events occur. For instance, the

arguments to the functional combination may be evaluated in any order.

The application of an element in the combinator to its column of

arguments may occur whenever the column is available, perhaps before

other columns become available. Since we are considering a side-effect

free environment the unspecified nature of the evaluation protocol

cannot affect final results. It does, however, permit Implementors

to take advantage of local machine characteristics. We intend that

argument evaluation and application of combinators should be implemented

using pafallel processors wherever available. Furthermore, we | |

anticipate that many instances of functional combination can be compiled

to run on a single processor with no sacrifice in performance.

Table 1 illustrates the various pseudo-types as parameters to each of

the new kinds of function invocation given above: application of

extractors, exprs, lexprs, and functional combination using

bracketed and starred combinators.:
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[lexprs not obsoletel

The convenient angle bracket notation facilitates writing
recursive lexprs. For instance, the functibn, max, which returns
the largest of an indefinite number of arguments, is expressed
in terms of the binary function greater which returns the larger
of its two arguments. If x represents the list of evaluated
arguments for max, then the body of max may be

1£ (puld, (edr x)) then  (car x)
else (greater (car x) <max (cdr Xx)>)
The use of functional application in defining this lexpr is a

typical recursive call. An invocation of max appears as (max a b

Using the other bracketing notation this same invocation can
be (max [a b ... Z]) when max 1s defined as an expr:
(max x) =

if (null (edr .x)) then loar &)

else (greater (car x)(max (cdr x)))

This observation brings two interesting points to the surface.
First, the respective codes for the lexpr and expr versilons
of max differ only in the bracketing used in expressing their
recursive calls. Second, the convenience of the bracketlng which
allows trivial construction of the expr invocatioh suggests that
all potential lexprs be written instead as exprs with bracketing
changes at their invocations [H&S75].

Functional combination provides another sort of lexpr invocation
which precludes such lexpr conversion. When a lexpr appears as an

element of a combinator with its arguments extracted from the argument

of the C-form it is impossible to use bracketing to assemble its
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arguments into a list. For example, the C-form

([max cons min]

[ 3 # 2

LT # ]

L4 F 9
where p-gq-r is bound to (1 (6 7 8) 1) evaluates to (7 (5 6 7 8) 1).
If max and min were written as one argument exprs there would be
no way to avoid errors in the parameter binding conventions for
C-forms in any version of this example.

The above example shows that the bracketing , conversion does
not aﬁoid the need for lexprs. The same argument shows that the
avallability of the notation [a b c¢] for (list a b c¢) does not
obviate the need for the lexpy list. In Footnote 3 we applied
¥list as a combinator in order to transpose a matrix. Without
a name for the function of arbitrarily many arguments performed by
the brackets it would have been impossible to use that function
within a combinator.

The integers, defined as extractor functions, are also lexprs
but all uses of them hitherto have been under functional application?
which could be handled if integers were exprs which extracted from
thelir single argument. That would allow <2 x> to be written as (2 x).
The reason that the lexpr definition, ﬁhich allows redundancies
liké (2 abc d) as b, was chosen again lies in the use of extractor
functions within combinators. In that role the ith extractbr selecty

the value in the ith row of its column which is a very useful projection

function. It plays the role of progi (i.e. progl, prog2, or progn),

a function which was long thought to have no role in pure LISP.
In an environment enriched with functional combination, however, this

assumption collapses.
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Examples using the extended LISP

With the notational extensions and the functional combination
tool in hand, we present two examples to demonstrate the power of
these extensions. The first illustrates the use of direct recursive
calls as elements of a combinator and the second illustrates how
these extensions handle a ﬁroblemlfrom coroutining lore.

The first example is borrowed from the area of searching and
sorting [Knu73]. Let tree be a binary search tree (one whose inorder
[ knu68] traversal visits the nodes in order of their distinct values).
Let s be a softed 1list of (perhaps duplicated) elements with the

same ordering relation. For simplicity, assume we are dealing with
numbers and let s and the inorder of tree be in ascending order.

The function, batch, returns a list whose ith element is either the
subtree of tree whose root has as its key the ith element of s or
the empty 1list if the ith element does not occur in tree. The
previously defiﬁed function, lt-eq-gt, whose value is a 1list of three
sorted lists is an auxiliary function of ggggﬁ.

The program below performs a binary search for each element
of s on tree. It does this, however, with each node of tree visited
at most once®. Combinators allow us to solve this problem by taking
advantage of the efficiencies of batch-probing complex data
structures [S&G75]. Each node has three fields: key, left, and

right [Knu68, page holh7,

“The problem has an obvious solution which handles each target in
the list separately but which may visit a node in tree once for
each element of s: (¥find
3
¥tree).
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(batch s tree) =
if (null s) then []
elseif (null tree) then (*[] s)
else <append ([batch *2 batch ]
(1t-eq-gt (key tree) s)

[(left tree) *tree (right tree)])> .

For example, let tree be 5
g 7
3 9
& 4

then (batch [1 3 3 8 9] tree) yields the list

( 1 3 3 NIL 9 ),
g ety saiglhge o od
2 R ik B 8

The final example illustrates the application of functional
combination to a problem taken as typical of the use of coroutines
[B&D75] : test if the atomic elements of two list structures are
equal under left-to-right traversal with a single traversal of each
Iiat.

(equaltips x1 x2) =
if (equal <1 (tip-rmdr x1)> <1 (tip-rmdr x2)>)

then (equaltips <2 (tip-rmdr x1)> <2 (tip-rmdr x2)>)

else false ,

The auxiliary function, tip-rmdr is defined as follows
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(tip-rmdr x) =
if (null x) then [[1[]]
elseif (atom (car x)) then [(car x)(cdr x)]
elseif <1 (tip-rmdr (car x))> then CE-1 cons]
(tip-rmdr (car x))
[ # (cdr x)])

else (tip-rmdr (cdr x)) .«

The auxiliary function returns - the next atom found and a
structure of the remainder of the tree yet to be traversed. In a
compiling environment the compilation of tip-rmdr should yield
the information that tip-rmdr is side-effect free and during the
subsequent compilation of equaltips identical invocations of
tip-rmdr could be collapsed into a single call whose result 1s
maintained locally. This function can

easily be generalized (as a lexpr) to test

an arbitrary number of lists for equality of atoms using the

¥ notation:

(equaltips x) =

if <equal <*¥1 (¥*tip-rmdr x)>> then <equaltips <*2 (¥tip-rmdr x)>>

else false
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Conclusion

The entire system described in this paper is implemented
and running transparently in LISP 1.6 . A description of the
interpreter appears as the appendix. In an earlier paper [F&WT75]
we used lists in place of bracketed expressions to represent
combinators. The current notation better relates to its bracketed
arguments (rows) and preserves INTERLISP's error trapping feature
which is keyed to lists as functions.

Experience with this system indicates that this formulation
of functional combination is both donvenient and powerful. Even
before it was implemented, some of this notation crept into our
verbal communications with colleagues and students. The star
notation is particularly convenient for expressing "MAPping" results
which usually require trivial and conventionally constructed
auxiliary functions. Coding quality has improved with the convenient
notation for a function to build and use multiple results from
a single recursion [Abré66].

Future work is directed at the construction of a translator
for "stylized recursion," which will include functional combination,
into stackless iterative code. The degree to which recursive calls
from within a combinator will be translatable will depend on
characteristics of the target machine. A rich multi-processing
environment will guarantee maximum efficiency for the image code

of a programmer who uses all the features of functional combination.
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Appendix

Embellished LISP interpreter in the form of Chapter 1 of [McC66].

Several functions: bracketed, bracket, unbracket; starred, star,
allstarred; angled, unangle, are assumed to be iﬁplementation dependent,
based on the structure which the lexical scanner builds for [a b],

#(a b), and <a b> respectively. It is assumed that (car *a) = a and

(cdr *a) = *g.

The key words label and funarg (which 1s not available to the
user except through FUNCTION), are handled differently when detected
in «&¥gL Versus ggggi. Argument evaluation proceeds 1n an
environment, determined by which stage of the interpreter uncovered

the key word.



(apply fn x a)

= -25~

if (atom fn) then

elseif

elseif

elseif

if (numberp fn) then
' if (onep fn) then (car x)
else (apply (subl fn) (cdr x) a)

elseif (eq fn NIL) then NIL

elseif (eq fn #) then <1 x>

elseif (eq fn CAR) then (car <1 x>)

elseif (eq fn CDR) Then (cdr <1 x>)

elseif (eq fn CONS) then (cons <1 x> <2 x>)

elseif (eq fn EQ) then (eq <1 x> <2 x>)

elseif (eq fn ATOM) then (atom <1 x>)

else (apply (eval fn a) x a)

(starred fn) then

if (allstarred x) then

. (star (apply (car fn) (omit# (¥*car x)) a))

elseif (member NIL x) then NIL

else (cons (appiy (car fn) (omit# (*car x)) a)
(apply fn (¥*cdr x) a)

(bracketed fn) then

if (eq (unbracket fn) NIL) then NIL

elseif (member NIL x) then NIL

else (cons (apply i(car(unoracket fn)) (omit# (¥car x)) a)
(apply (bracket(cdr(unbracket fn))) (*cdr x) a))

(angled fn) then (error)

elseif (eq <1 fn> LAMBDA) then

elseif

elseif

elself

lse

(eval e a) =

0]

(eval <3 fn> (append (¥*cons <2 fn> x) a))
(eq <1 fn> NLAMBDA) then

(eval <3 fn> (append (¥cons <2 fn> #¥x) a))
(eq <1 fn> FUNARG then (apply <2 fn> x <3 fn>)
(eq <1 fn> LABEL) then

(apply <3 fn> x “(cons (cons<2 fn><3 fn>) a))
(error)

if (atom e) then

elseif
elseif
elgeif

elseif

elseif

elseif
elseif

if (numberp e) then e

elseif (eq e NIL) then e

elseif (eq e #) then e

else (cdr (assoc e a))

(starred e) then (star (eval (car e) a))

(bracketed e) then (¥*eval (unbracket e) ¥a)

(angled e) then

(apply <l(unangle e)> (omit# (eval <2(unangle e)> a)) a)
(atom <1 e>) then

if (eq <1 e> QUOTE) then <2 e>

elseif (eq <1 e> FUNCTION) then [FUNARG <2 e> a]

elseif (eq <1 e> COND) then (evcon (cdr e) a)

elseif (numberp <1 e>) then (apply (car e) (*eval (cdr e) *a) a)
elseif (member <1 e> [CAR CDR CONS EQ ATOM] then

(apply (car e) (*eval (cdr e) *a) a)

else (eval (cons (eval (car e) a) (cdr e)) a)
(or (starred<l e>)(bracketed<l e>) (angled<l e>)

(member <1<1 e>> [LAMBDA NLAMBDA]) ) THEN

(apply (car e) (*eval (cdr e) *a) a) :

(eq <1<1 e>> FUNARG) then (eval (cons <2<1 e>>(cdr e)) <3<1 e>>)
(eq <1<1 e>> LABEL) then

(eval (cons <3<1 e>> (cdr e)) (cons (cons<2<l e>><3<1 e>>) a) )

else (error)

(omit# x) =

if (eq X NIL) then x

elseif
else

(eq (car x) #) then (omit# (cdr x))
(cons (car x) (omit# (cdr x)))
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