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Abstract.

A context-free language 1s shown to be equivalent to a set
of sentences describable by sequences of strings related by fi-
nite substitutions on finite domains, and vice-versa. As a re-
sult, a necessary and sufficient version of the classic pumping
lemma is established. This result provides a guaranteed method
of proving that a language is not context-free when such is the
case. An example is given of a language which neither the classlc
pumping lemma nor Parikh's theorem can show to be non-context-free,
although Ogden's lemma can. The maln result also establishes
{a™5a™} - 88 & language which is not in the Boolean closure bf

deterministic context-free languages.



Introduction

One of the most useful results about regular languages is Nerode's
Theorem [U4], which yields a "sure-fire" scheme for proving either that a
language is regular (by presenting a finite state automaton) or that
it is not (by violating any finite right congruence on I¥ ).

The standard technique for establishing that a language 1s context-
free is to present a context-free grammar which generates it or a
pushdown automaton which accepts it. If it is not context-free,
the classic pumping lemma [2] or Parikh's Theorem [7] often can
establish the fact, but they are not guaranteed to do so, as will
be seen. The characterization of context-free languages by non-
deterministic pushdown automata does not solve the problem because
of the difficulties in establishing constraints on arbitrary non-
deterministic computations.

In this paper context-free languages are characterized by three
finite substitutions on a finite domain (closely related to self-
embedding non-terminals), such that a sentence is in a language
precisely when a finite sequence of strings exists which are related
by these substitutions in a manner reminiscent of the pumping lemma
(Property 3 below). The domain is analogous to the finite set
of partition blocks in Nerode's Theorem. The main
theorem (Theorem 2) also establishes a form of the pumping lemma

applied to sentential forms (Property 2) as equally powerful.
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Two applications are presented which demonstrate the power of

the results. Theorem 4 establishes
{abchr[p,q,r_z o and p #q #r # p}

a non-context-free language using Property 2, whereas the classic
pumping lemma and Parikh's Theorem fail to do so. Theorem 5, which
is not directly obtainable from characterizations of context-
free languages in terms of grammars of machines, states that
{anbamn} is not expressible as a finite intersection of context-
free languages. It was a corollary to Theorem 5, the fact that
this language is not in the Boolean closure of deterministic

languages, which originally motivated this work.
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Definitions.

| The notation generally follows Aho and Ullman [1]. If I is

a vocabulary, I¥ denotes the set of strings on I, and £¥ denotes the
set of non-empty strings on L. A grammar is a quadruple (N,I,P,S)
where N 1s a set of pon-terminals, I 1is a terminal alphabet

such that NnZ =@ , S ¢ Nul is the start symbol, and

P < (NU{S})+ x (Nuz)* 4is the set of productions. A grammar is

context-free if P < (Nu{S}) x (Nur)#

Lower case Roman letters denote characters in 3§ 1if early in
the alphabet and strings in I¥ 1if at the end of the alphabet.
Upper case Roman letters usually denote characters in N and
upper case QGreek letters wili denote auxiliary alphabets. Lower
case Greek letters denote arbitrary strings. Of special note is
¢ , denoting the empty string. The length of a string o 1is
written |a| ; |e| =0 .

The derives relation applies between two strings, o g B

when a production of G applies to o and results in B , O0Often

a production (A,B) € P 1s displayed as A-+B ,

with G wunderstood. A derivation of Un from 00 1s a sequence

of strings TsTqse--50, such that 941 = o4 for all 0 < i1=n .

The transitive closure of 9 1s denoted by 3 , and its reflexive transitive

%
closure is denoted Dby i . Note that if we say A g g then



i

the derivation of ¢ can proceed without regard to the context
%
in which A appears. If, however, 61A62 g 51052 it is not neces-
#
sarily true that A =2 o . The set of sentential forms of G ,

G
%
denoted SF(G) , is {o]S g 6} . The language of G , denoted

L(G) , is BSF(G)nL¥*

A finite substitution, f , 1s a mapping of a finite set

onto finite subsets of A* for some finite set A
The mapping £ may be
extended to strings in the natural manner: f(e) = e and
f(Ao) = f(A)f(a) for Ael,ael* .
A set, S , of n-tuples of non-negative numbers is said to be
linear if there is an integer k =2 0 and n-tuples Vgse=esVy such
that , 8 = {v, ¢ z?=l(mivi)[mi > 0 are integers}. A set of n-

tuples is semi-linear if it is a finite union of linear sets. A

Parikh mapping [9], q , is a mapping of zer¥* into a |[I|-tuple

of non-negative integers defined by q(z) = (#a (z),...,#a| [(z))
i i3

where #a (z) 1is the number of times ai e T Peemes InT e Y “hor
i

Ler*® |, define q(L) = {q(z)|zeL}

A non-terminal A 1is cyclic if A 3 A and any derivation by
which A 3 A is a cycle. Any derivation including a cycle can be
trivially shortened.

A non-terminal A i1s self-embedding in a context-free grammar

& FI£ _A = BAY , where By = e¢ . Other authors restrict B = e 2 vy
The new definition specifies a somewhat larger class of non-terminals,
elsewhere described as "recursive but not because of a cycle," which
characterize grammars that are necessarily context-free, as we shall

see. A production A + o 1s said to be self-embedded at the jth




step of a derivation o, 0, D eee > o, if for

1 2

< 3 . = = =
1 1 <J)=n3 oy 61A62 5 GJ élsﬁyég s, and °j+1 516a762
where the productlons applied in the ith through the (j-1)st step

effect the self-embedding A E'BAY s . By 2z ¢ . Intuitively, a
production is self-embedded if its left part has already generated
a self-embedding at that point in the sentential form. A gelf-

embedding chain from A 1s a derivation A 3 BAy with no self-
embedded productions. The derivation tree of any self—embedding

chain 1s bounded in depth by |N| and in degree of any node by
the length of the longest production, so for any context-free

grammar there are only a finite number of them.

Results

The "reflex" tactic for proving that a language is not context-
free 1s to obtain a contradiction of Bar-Hillel's "pumping" lemma
[2] (the "classic pumping lemma"), Parikh's "semilinear" theorem
[7], or Ogden's lemma [6] (an extended version of the classic

pumping lemma)., Often the gilven language is intersected
with a regular set or transformed by a gsm mapping before one

of these techniques is applied. If a language is context-free then

the conditions stated in the pumping lemma, Parikh's theorem, and
Ogden's lemma are necessarily satisfled, but none of them are

known to guarantee that a language is context-free. Therefore,

there 1s no guarantee that these statements_will generate a contra-
diction if it is improperly assumed that a language or its trans-
formed lmage 1s context-free. Ogden's Lemma is, however, more powerful
than the classic pumping lemma or Parikh's theorem and may characterize

context-free languages.
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Theorem 1 (Ogden's lemma) [6]. For each context-free grammar

G = (N,Z,P,S) there is an integer k such that for any word
z ¢ L(G) , if any k or more distinct positions in z are desig-
nated as distinguished, then there is some A ¢ N , and strings
B, V,W;X,y ¢ Z¥ such that
(i) S < uly ; A 5 VAX A'g W 3 UVWXY = 2
(ii) w # e contains at least one distinguished position.
(iii) Either u and v both contain distinguished positions
or x «and. .y .iboth -do.
(iv) vwx contains at most k . distinguished positions.
I know of no non-context-free language which displays the property
cited for any of its grammars, but it is not known whether satis-
fying (i) - (iv) of Theorem 1 is sufficient to establish that a
language 1s context-free. The emphasis of the theorem is on "dis-
tinguished positions", yet it is unclear why a grammar which
satisfies (i) - (iv) might necessarily describe a context-free
language.
In an attempt to capture the essence of the context-free language
property, we shall prove the following three statements to be equi-

valent.

. L 1is context-free.

II[\J fi—=

There is an unrestricted grammar G and an integer k such
that L = L(G) and when 0 ¢ SF(G) , |o] > k , then

0 may be rewritten as o0 = vvwxyY where w #z e , U z ¢

or X #e , |vux| £k , and there is a non-terminal A

in G such that S 5 vVAYy , A % vAy , and A % W

3. L ¢ £*¥ and there exist

a finite alphabet T and a distinguished S ¢ I' |,



disjoint from % ,

a-substitution, h , mapping I uv {S} onto finite
subsets of (T'uvZ)* whose domain is extended to &g
by defining h(a) = {a} for a € I and extended
thence to strings on I u T v {S} in the usual manner,

and two substitutions, f and g , mapping T u {S}
onto finite subsets of (TuI)* such that e ¢ f£(C)g(C)
for all C eI but £f(S) = {e} = g(8)
such that whenever 2z ¢ L there 1s a finite seguence
0g30130,500250, of strings in (Zul')* such that S = o s

2 =Gy - and for lrs1)is m % may be rewritten Uj = vvwxy

3
03_1 = ﬁcw for some: € e T w {8F , where w» e £(€) , @ € K(C) .,
X € gfE) 5 =and h(uvicxiw) nig®e e Leoforiall ckosap
Property 3 is somewhat unwieldy but does avoid the terminology
of grammars and derivations. The flavor of a context-free grammar
shows through; self-embeddings are the essence of other characteriza-
tions as well. We may consider C € I' to be a triple (B,A,Y)
which represents a self-embedding chain A % BAy 1in some context-
free grammar G for L . If p 1s a substitition mapping each
nonterminal A 1into the set of triples which represent self-embedding
chalhe' for A 1in G thén flC) = p(B) -y glC).= ply) ., and
h(c) = {p(U)|A=% 0 with no self-embedded productions} . Property
3 concentrates our attentlion upon the finiteness of self-embedding

chains, which 1s somewhat analogous to the finiteness of congruence

classes in Nerode's theorem [8].

Theorem 2 (Strong pumping lemma). Properties l, 2, and 3 above are

equivalent.

Proof. 132 . If G = (N,Z,P,S) 1is context-free, construct
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N' , X' , and P' by priming all characters in the vocabulary.
Phen @' = (H* v Ef, N.®w Z,, . P' v fA!' = A[A e Nuk}, S') 1is con-
text-freet ands 1 ElG) = SB(B) 2. wIf Lo ¢ SF(&)” then Theprem 1l can
be applied (using G' ) whenever |o| > k 1if all positions are
distinguished. The trivial homomorphism from SF(G') to SF(G)
establishes 2.

2 ® 3. Given sk and @ = (N,Z,P,S') as described in 2, for
every A ¢ N define p(A) = {(B,A,y)|BY ¢ (NuZ)¥ | A%BAY )
and 0 < |By| = k} . The set p(A) dincludes all self-embedding
chains on A which are necessary to enforce Property 2. Some other
self-embedding chains from G not necessary to Property 2 (perhaps
because G 1is ambiguous) may be excluded by the'length restriction
of k .1t is also possible that G allows derivation steps which
are not reflected in Property 2 and therefore do not contribute to p(A)
for any non-terminal A . Since Property 2 applies to every
sentential form, however, we shall be able to describe some deriva-
tion for every sentence in L in terms of the p mappings. Since
G is unrestricted, P(A) may not be effectively constructable,
but it does exist and is finite because of the bound k .

Define S = (e¢,3',e) and T = L_JAeNp(A) . I 1is clearly: a
finite set. Define p(a) = a for a ¢ £ and extend p to a length-
preserving string substitution on (NeI)*¥ in the natural manner.

The substitutions £ , g , and h defined as follows are also
finite:

h((B,A,Y)) = U p(w)
o] <k

A % w
hig)e= 5l a5l 208
£{(B,A,Y))

(B AT

p(B) , and

p(y)



Let zeL . If |z| £k we have z e h(S)
and Property 3 is satisfied with m =1

Suppose that |z| > k . Beginning with =z apply Property 2

repeatedly to get a sequence of sentential forms
- +

- e o0 ' = e e 0 =
z G >, such that |;1] = k> , 5 %Ci? ?Cm z and

. = v where, for some A, e-N . = V. A,y.
o $V35%5%5%s 2 ;i > Sy T Vytghy

#
A =9 vj J , and Aj ?wj for all 1 < jJ <m . Moreover, Property
2 assures the existence of such a sequence with lvjle > 0 < [wj| and
< S0 . < 3 and the sequence is finite:

1v3waJ] < k > [CJ_1| |CJ| q
m < |z|] . If we assume that there exists a string oy =
UV.0.X.= such that U, U.,) 3 9. v E B i) 3
GV 3;X59 € p(Zy) je P 5 V5 epvy) 5 Bye pluy) 5

X5 € p(xj) 5 and $J € p(¢j) (and this is trivially true for J = m) then
we may easily construct G Bl (vj,AJ,xj) ¢j € p(;j_l) . We still

j e p(uj) and Yy e p(wj) , and by definition

(vj,Aj,xj) ¢ p(A.) because |v w5 X | < k¥ implies |vjxj| < k
Moreover, GJ e £((v ,Xj)) = p(v )

have U

Xj € g((vj,ﬁ,xj)) = p(xj)

and mj € h((vj,Aj,wj))

%
This last fact holds since Ay 2 wj , [wj| <k, and B; e p(wy)

J J J
At each step we may identify C as

the triple (v,Aj,xj) and w as the remaining substring of o

J
to see that the rewriting o, = Ovwxy and Bl UCY required by
Property 3 1s indeed possible. Finally set UO = S and note that
0, 1s necessarily in h(S) because lo,l = lz,] = k and that

£(s8) = e = g(3) .
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Furthermore, every string 2z which can be obtained from

S via a finite number of f,g,h substitutions is in I .

If - |z] > k and a sequence S = Ogs®**s0, = z met the constraints

of Property 3 with f , g and h as defined above, then it is
easy to see that Property 2 1is also met m times. By establishing
that the trivial inverse p 1mage of each Uj is a sentential form

of the original grammar G , we show that 2z is necessarily in L
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3 21. Suppose that £ , I , S ,f , g and h are given as in 3,
defining a language L . Let G = (Z,l',P,S) where P 1s constructed

as follows:

P=U {A > Bay , A > BAY|B e f(A) , @ € h(A) , v e g(A)}
AeTu{sS} :
Now suppose 2z e L(G) and consider its derivation

. D eee o, = z . This sequence of sentential forms satisfles the

S =20
G
reqguirements of Property 3 on the sequence of o5 so that

z ¢ L. . On the other hand, if 2z ¢ L the sequence of ¢ (which

i
necessarily exists) describes a derivation of z in G . Hence
L(G) =L , so L 1is context free. B

Note that the grammar constructed immediately above may have

one e¢-production, because there is no restriction preventing e ¢ h(C)

for C eI . In particular, when ¢ ¢ L. then e ¢ £(S)h(S)g(S)

Corollary 1. (Pumping lemma) [2]. If L 1is context-free, then there

exist 1integers m and n such that when z e L , |z| > m then
z may be written 2z = uvwxy where |[vwx| <n , vx = e , and

g3 -
av wx 'y e L for all 1z D

Proof. Just as Ogden [6] proved this from Theorem 1, apply Property

k=m=n . N

firo
=
(=
&

Theorem 3 [7]. If L is context-free then the Parikh mapping of

=

L, g(L) , is semi-linear.
This result has been elegantly proved in a more general form [5],

but it is worthwhile noting that the classical proof (e.g.; [91)
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hinges precisely on T described in Property 3. That proof can be

abbreviated by a modification of the previous construction.

Applications.

Theorem 2 guarantees us a scheme for proving a language is not
context-free. The first example illustrates that power, using Prop-
erty 2 on a case for which Corollary 1 and Theorem 3 are useless.

The language L = {apchrlp # q#r#pl , suggested by a
referee, is not a context-free language, but it 1is
impossible to establish that fact using these techniques although
Theorem 1 does apply. It is important to realize that gsm mappings
and intersections with regular sets do not usefully transform
L1 . TIts structure is so simple that these transformations yileld
trivially context-free languages, or languages even more complex
than Ll ..

Theorem 4. Ll is not context-free, but its Parikh mapping is semi-
linear, and for all z e L, |z| > 3 may be rewritten as

z = uvwxy where |vwx| 3 , vx # ¢ and uviwxly e L, for all
120

Proof. The Parikh mapping of L, 1s a union of six linear sets

of triples, corre&ponding to the six ways of ordering three dis=-
tinct ihtegers. The linear set corresponding to the case in which
the integers (p,q,r) are in decreasing order 1is generated by
{(2,1,0) + 1(1,1,1) # 3(3,1,0) + k(1,0,0)|1,i,k = 0} . The other
five linear sets are generated by uniformly permuting the co-ordi-

nates of all vectors in this set. Each apchr € Ll is a member

of the linear set identified by the sorting of (p,q,r)
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The classicpumping criterion always applies to

ad[al Jind JEel _ L, when jlal + jlb] + jlel > 3 . Choose

{a,b,c} such that Jjlt]l] is largest, and then choose

t el
1l k=3 so-that k# jltl=Jisl foramll s eI . Sinee |z] = 3
it follows that k < J[t] . Let v = tk s W B g =Tty
and u and y be appropriate so that uvy =z . It follows
easily that |vwx| < 3 and uviwxiy e Ly for all 1 =20

Finally we must establish that Ll is not context-free.
Theorem 1 yields an easy contradiction to the assumption that it is

+ic0
2XpK k.ck+2kl

by considering with the
first k positions distinguished. Any factorization must pump a's,

or a's and b's,or a's and c¢'s. If there are precisely q a's 1in

vX thenl< g < k=2 and gq divides k! If b € vx then let

i =1 +(2k!/q) ; otherwise let i = 1 + (k!/q) . In both cases

% ;
S %tuviwxly ¢ Ll 5 yielding a contradiction. B
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Ogden's Lemma uses "distinguished positions" to isolate pumping
to a particular part of the sentence, avoiding effects other pumpings
which may be possible due to self-embedding chains in remote parts of
the derivation tree. Possible pumping affecting only one part of

k+k!ck+2k!

the sentence (the suffix b in the above proof) can be

ignored while the desired pumping can be studied by distinguishing
characters somewhere else (in the prefix ak above). A proof that
Ly is not context-free using Theorem 2 requires consideration of

the effects of two pumpings, which we shall select from three which

are certainly possible in deriving a sentence of length greater than

3k

Proof that Ll is not context-free using Property 2. Let G be an
unrestricted grammar (with I = {a,b,c}) possessing Property 2 for
the constant k . Suppose Property é were applied (in parallel)

to all sentences 2z in Ll of length longer'than k , and to all
sufficiently long sentential forms uncovered as a ccnsequence of
applying it. In that way all factorizations uvwxy of sufficiently
long but useful sentential forms in Ll could be identified. We

are interested in all of the possible candidates for vwyx 1in these
factorigations, which form a subset of (NuZu{e})k since |vwx| s k .
We are particularly interested in those factorizations with v or

X in a+ 4 b+ or c+ ; notlng that if v or Yy 1s in E+ then it
is necessarily in one of these three languages.

We can bound the numbef of terminal strings v , w , and X

derivable without subsequent self-embeddings from v , w , and
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X (respectively) as implied by applications of Property i in
identifying any factorization: ﬁvwx@ . Such derivations from
V., w, or x can only include rewritings of the form A 55

(for some A , @ ), since ones of the form A % VAR are excluded
and no other sort are implied by applying Property 5. Let n be

a common multiple of the lengths of all candidates for V,x and

kK k+n k+2n
ab &

vx and consider z = e L, &« 8”{G) .

1
The pumping of Property 2 applies at least thrice in some

derivation of =z because of its length, and we shall choose two
pumpings upon which to base a contradiction to the assumption that
"~ L; 1is context-free. Let us require that each vx for the three
applications be such that one contalins an a2, one a b, and one
a c¢ . (Since there are at least k of each this can be forced.)

Let us associate AS - vS 5 mS 4 Xs for s € I with the application

which satisfiles this constraint: s ¢ Vg Xg + It 1s possible that

the labelling is not unique: e.g. Aa = Ab, Vg T Vps @, = Wy,

Xqg = Xp is possible.

a
Let (r,s,t) stand for any permutation of the triple (a,b,c)-

in the following argument. It is impossible that both B plNE. . By

are derivable from Vo in the application pattern we identified for z.

]

If this were possible, pumping of Vriwrxrl would either introduce

multiple occurrences of A, or A, with r's derivable between (e.g.

1 g
PRy womsaBey woew B r case
Ve, O X, = Al gV, BT . W Ay 5 ) or in ca

- +
v or X, $ AS where either As . ORI - RS DR . At > ...At,,.s...

then that pumping would introduce a2 sequence of s's (or t's ) with

A (respectively AS ) interspersed. In all these events, since

t
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Ad > ...d... for d e I , we can derive a sentence not in
a¥p¥c¥* > Ly by pumping A, and reapply Property 2 derivations.
The argument holds regardless of permutation.

As a result, at least two of our three applications of
Property 2 are such that L% does not derive Ag and VX
does not derive AS for s #t both in I . We can even force the

following to be true by choosing thfee appropriate instances

of Property 2 which arise early in analyzing z ¢

[(vs e s7 and not ¥, : = s+) or
(not Vg e st ana Xg € s+) or v Xy ¢ s¥1 ana similarly for
t 1instead of s . Let p be the number of s's in L and
q be the number of t's in ViXy + By the definition of n

both p and q divide n

Now if s = a , pump Ag g’vsmsxs a total of 2n/p times:

A ; %) (2n/p+l)m il (2n/p+1)

T
. ” o Xy which has 2n more a's than

V_w

aWaVy - If s =Db pump n/p times adding n b's; if s = ¢

do not pump adding no new occurrences of c¢ . Similarly if t = a pump
Al %>vtﬁtxt 2n/q times; if t = b pump n/q times; if t = ¢ do not pump

Ac %'chcXc at all. Since AS and At appear independently of

each other in the derivation we have constructed,neither pumping

creates new occurrences of the other non-terminal and so the only

effect is to derive a new terminal string in the language of G
In any event no new occurrrences of ¢ are added to G ,

but either 2n a's or n b's are added. Then we have either

ak+£n k+n Ck+2n k . k+2n Ck+2n

b € Ll or a b e L which are both

1
contradictions. So Ll must not be context-free. O

The esoteric flavor of Property 3 1s particularly useful for

theorems like the following.
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Theorem 5. L, = {a'ba |m,n > 0} cannot be expressed as the

intersection of any finite number of context-free languages.

Proof. Suppose L, were expresslble by a finite number of con-
juncts, each of which i1s context-free and a subset of the regular
language a*ba* . Characterize each.of these hypothetical con-
Juncts by Property 3, let £ , g , and h Dbe the union of
all the corresponding finite substitutions, and let T ©Dbe the
union of their domains. Define r to be a common multiple of the
set of integers {|f(c)g(c)| for C e F} .. Let p and g

be two prime numbers : p,q > r . Now let =z = aPpaP? ¢ L2 S0

that 2z 1is in each conjunct language.
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Apply Property 3 to 2z with reépect to an arbitrary conjunct

language. It 1s necessary that the sequence of S = 00,...,Um = z

described in Property 3 have a largest n such that On = pvexy

0,07 =VC¥ , vef(c) , xegl) , and either b e h(v) with
. .

vy € S T b i) waEh v D Sy e e . The
"pumping" must sometime apply to the right of (the preimage under
h of) b Dbecause pg is so large. Applying the rewritings as

on 0, We see that each conjunct language has a subset

0n+l""
of the form

Pq+(i*l)t1

{aPba 1 = 0}

where t 1s a positive integer reflecting the length of

VX € Ranbe (The value of t # 0 will be
[£(C)g(C) | for that C .) Although t varies with different
languages, t must dilvide r . For varying choice of 1 we can

force apbapq+r&.L However p cannot evenly divide pg+ r ,

2

Yo} aPpaPd*r ¢ L, > yielding the desired contradiction. B

Corollary 2. L2 is not a member of the Boolean closure of the

deterministic context-free languages [4].
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Preofi,) IL L, were in that class then it could be expressed as
some Boolean combination of deterministic languages in conjunctive
normal form. Each conjunct would necessarily be context-free be-
cause the class of deterministic languages is closed on complemen-
tation, because each deterministic language is context-free, and

because context-free languages are closed on union. Theorem 5 does

the rest. B

Conclusions.

The examples of the last section demonstrate that Corollary 1
and Theorem 3 do not characterize context-free languages. However,
this weakness does not appear in Theorem 1 (which may indeed be
necessary and sufficient). Theorem 2 shows that the essence of
context-free languages is a pumping property of a finite nature
which may appear at different points in thé sentence. The pumping may

be characterized by the self-embedding chains of a grammar.

Alternatively, it may be expressed as a set of

finite substitutions on a finite domain, avoiding the terminology of
grammatical derivations. While Theorem 1 has thls flaveor, it is
clouded by the power of selecting distinguished characters.
Therefore, the universal strategy for proving that a language
is not context-free (when such is the case) is to assume it is
characterized by Property 2 or Property 3 and search for the

guaranteed contradiction.

Acknowledgment. The author is grateful for the comments of Jan

van Leeuwen,of Michael Harrison, and of the referees, particularly




o

References.

1

Aho, A.V., and Ullman, J.D. The Theory of Parsing Translation
and Compiling 1, Parsing, Prentice-Hall, Englewood Cliffs (1972).

Bar-Hillel, Y.; Perles, M.; and Shamir, E. On formal properties
of simple phrase structure grammars. Z. Phonetik. Sprachwiss.
Kommanikai. 14 (1961), 143-172. Also in Bar-Hillel, Y. Lan-
guage and Information, Addison-Wesley, Reading (1964).

Chomsky, N. On certain formal properties of grammars. Informa-
tion and Contrel 2, 2 (Jume, 1959), 137=167F.

Ginsburg, S., and Greibach, S. Deterministic context-free lan-
guages. Information and Control 9, 6 (December, 1966), 620-648.

Van Leeuwen, J. A generalization of Parikh's Theorem in formal

language theory. Proc. 2nd Colloquium on Automata, Languages and
Pro§ramming,63pringer Lecture Notes in Computer Science 114

]

Ogden, W. A helpful result for proving inherent ambiguity.
Math. Systems Theory 2, 3 (September, 1968), 191-194.

Parikh, R.J. On context-free languages. J. Assoc. Comput.
Mach. 13, 4 (October, 1966), 570-581.

Rabin, M.0., and Scott, D. Finite automata and their decision
problems. IBM J. Res. Develop. 3, 2 (April, 1959), 114-125.
Also in Moore, E.F. (Ed.) Sequential Machines, Addison-Wesley,
Reading (1964).

Salomaa, A. Formal Languages, Academic Press, New York (1973)%




. ..'ﬁ:.pma'x o
pad® sl 0.0  naniil king , V.4 ol

s (STEL) WTYLLLL nmm:ma cdLgil=na ! dieya wg_qyy bg
|

nlﬂmm Lemol #0 .38  wMmEdl Do (N ESLYeT (oY L LeiLiBeqeE 5
M&zmﬂg  CEARMETE snusoysla saswly efemln Yo
-04d | .1 (Leilti-ns8 i} osfA .STI-EES ((E4SE) BL . LesfnsmmoX

(ueeu palbaei ,ve!l anW-ongibh A .@MM

= magi_ LBLESNE Ty o aa.!.a‘mﬁaw Iarrel atatess of) | M | vesmadS "
JAULTEL (03T anal) € (S femsued Bas moll

sl e81l-irxefono e bnlaysdM B LA9EAULAD Dne .iér cRIuden it M
-«3“'!_--0"33 JRHRL  Tadnagad) B @ Sondpey bR olfENePal . wasoy

Lsarrol |n£ manosdl & du_!&u‘i % 'ramﬁauam‘ma & L iewussl neV ot
ns 335%& 3 ' ' % GL&EG ki L
R e

= ' 3 3
u:m:sm ettt ol wvm 29T Jfvew tmww M csbalr .3
Mofetes (800 | wedeetgsly £ 5 .

mopEngasl ssTI-gxedtes A0 1.4 diwsd LY
SBESOTE (HaRy wmm}.;; # (1 snoel

nolelsel whedd 6ok ESEmOTus o3 boltd
- ~ESL=REL tmu p{!‘wﬂ Q & g
valpoW-acntibba . ssnbdos gEana

& tJ-JD;FE Ed! UM ntiued

AETRL) NnoY wolt Jasend simebecd (BORENSL JSMON | (4 (csmolen v

[ 0 S



