
A Formalization of the Turing Test�

Phillip G. Bradford and Michael Wollowski

(812) 855-2136

Indiana University
Department of Computer Science

215 Lindley Hall
Bloomington, Indiana 47405

f bradford, wollowsk g@cs.indiana.edu

February 1994

Abstract

Alan Turing proposed an interactive test to replace the question \Can machines think?"

This test has become known as the Turing Test and its validity for determining intelligence or

thinking is still in question.

Struggling with the validity of long proofs, program correctness, computational complexity

and cryptography, theoreticians developed interactive proof systems. By formalizing the Turing

Test as an interactive proof system and by employing results from complexity theory, this paper

investigates the power and limitations of the Turing Test. In particular, if human intelligence

subsumes machine intelligence, and human intelligence is not simulatable by any bounded ma-

chine, then the Turing Test can distinguish humans and machines to within arbitrarily high

probability.

This paper makes no claim about the Turing Test's su�ciency to distinguish humans and

machines. Rather, through its formalization this paper gives several rami�cations involving the

acceptance or rejection of the Turing Test as su�cient for making any such distinction.

Keywords: Turing Test, Interactive Proofs, Complexity Theory

Running Head: A Formalization of the Turing Test

�The authors names are in alphabetical order. An extended abstract of this paper appeared in the Proceedings
of the 5th Midwest Arti�cial Intelligence and Cognitive Science Conference, T. E. Ahlswede Editor, 83-87, April
1993. This is Technical Report #399, Indiana University. Hardcopy is available or a postscript �le is obtainable via
internet: cs.indiana.edu:/usr/ftp/pub/techreports/TR399.ps.Z.

1



1 Introduction

Circumventing a discussion of what it means to \think," Alan Turing proposed what has become
the Turing Test (Turing, 1950). This test has a human, the interrogator, alternately converse with
another human and a computer, the agents. Starting without knowing which agent is the human
or which is the computer, the interrogator's task is to distinguish the human and the computer
through conversation by symbolic interaction. To facilitate this task the interrogator chooses the
topics of conversation and leads the conversation with both agents. If the interrogator cannot
distinguish the human and computer, then the computer has passed the test and some might even
say that it is \intelligent."

This paper does not intend to de�ne intelligence, rather it gives a more precise de�nition of the
Turing Test.

1.1 Motivation

The formalization of the Turing Test given in this paper is primarily of theoretical and philosoph-
ical interest. This formalization lies right at the foundations of mathematics, a place that has
recently seen the convergence of proofs, computability theory, and complexity theory, see for ex-
ample (Rawlins, 1992). In addition, knowing Alan Turing's theoretical work in computability, this
formalization constitutes an interesting twist for the Turing Test.

This paper attempts to naturally extend the Turing Test towards making distinctions between
humans and machines through their interactions. In doing so, we go from asking computability
questions about human intelligence to asking complexity theory questions about symbolic interac-
tions.

Problem solving ability is central to most assessments of intelligence. At the same time, com-
plexity theory has given well accepted characterizations of the relative hardness of problems. This
paper combines these two notions to examine the Turing Test, using recent results tying proofs,
problems and symbolic interaction together.

Non-rote testing generally gives probabilistic information. During an interactive examination,
weak or unusual answers can be challenged to expose inconsistencies. Generally, there is only time
to ask a small fraction of all applicable and reasonable questions. So, at best, such testing gives
probabilistic information.

1.2 Main Results of this Paper

Can we use the Turing Test to distinguish humans and machines? To address this question, we
will examine how interactive proofs quantify what theoretical and real machines can solve through
interaction. In order to do this we must, in some sense, characterize what humans can do through
symbolic interaction. This paper does not argue that machine are or are not \intelligent," rather
it gives an interpretation of both possibilities in the context of interactive proof systems.

We are assuming that human intelligence subsumes machine intelligence. That is not to say
all human functionality subsumes all machine functionality|for instance machines typically have
\better" arithmetic computation speed and accuracy than humans. But, we are assuming human
intelligence subsumes machine intelligence in the spirit of the Turing Test. The spirit of the Turing
Test dictates that machines should interact like humans to convince the interrogator they are
human. That is, the machine is doing its best to simulate human intelligence.

2



The main results of this paper are from theorems about interactive proof systems and the
complexity classes they characterize. In particular, we show that if human intelligence subsumes
machine intelligence but isn't simulatable by any bounded machine, then the Turing Test can
distinguish humans and machines to within arbitrarily high probability.

1.3 Previous Work

To our knowledge there have been no prior formalizations of the Turing Test. However, there is a
large literature on the philosophical implications of the Turing Test, for instance see (Searle, 1990;
Epstein, 1992; Johnson, Harnad and Shapiro, 1992). While in a very di�erent context complexity
theory has become prominent in the study of arti�cial intelligence, (Bylander, 1991).

1.4 The Structure of this Paper

This paper assumes basic familiarity with complexity theory as in (Garey and Johnson, 1979). Also,
throughout this paper we o�er the same caveats regarding the size of constants hidden in asymptotic
notation. That is, say the best we can do to solve some problem is to use an algorithm that requires
3n100 steps for any input of size n. Although we can \solve" this problem in polynomial time using
our algorithm, the problem is infeasible. Even for inputs of size �ve, that is n = 5, no modern day
computer run the above algorithm to completion in the next handful of centuries. Therefore, such
solutions are typically not considered in complexity theory (Garey and Johnson, 1979). We assume
this situation holds for problems in other complexity classes as well. That is, take a problem that is
\technically in" some complexity class, but is very costly relative to other problems in this class|in
this case we may choose not to consider such a problem.

Section 2 brie
y describes interactive proof systems and relevant complexity theory, character-
izing problems that may distinguish humans and machines through their symbolic and interactive
solution. Section 3 gives a model of the Turing Test using interactive proof systems and discusses
the formal systems this paper uses. Finally, section 4 presents some rami�cations of this paper's
model of the Turing Test.

2 Interactive Proof Systems

This section discusses some of the recent results tying together the notions of computation, proof
and interaction.

Interactive proofs are probabilistic proofs of validity that are done by repeatedly and interac-
tively checking consistency (Goldwasser, Micali, and Racko� 1989). An interactive proof system,
if used properly, allows an exponential increase in the probability that a statment is valid in a
polynomial number of interactions. In the rest of this paper all polynomials are in the size of the
problem instance or theorem statement given, see (Garey and Johnson, 1979; Goldwasser, Micali,
and Racko� 1989) for more information. An interactive proof consists of two machines: I, the in-
terrogator and A, the agent. Machine A makes a claim and attempts to convince I of the validity
of the claim with exponentially increasing probability. For example, a theorem � has an interactive
(probabilistic) proof if A can convince I that � is valid with probability 1� 1

2n
in n interactions.

I is convinced that � is valid if I could not �nd any inconsistencies in A's claim through their
interactions.

3



A problem � is in the class IP if, there exists an interactive proof system that proves � is valid
with exponentially increasing probability in a polynomial number of interactions. Intuitively, if I is
an arbitrarily bounded machine and A is a polynomially bounded machine that form an interactive
proof system, then in a polynomial number of interactions, the probability of the validity of a claim
approaches a limit of 1 exponentially fast.

Formally, an interactive proof system (Goldwasser, Micali, and Racko� 1989; Babai, 1988) is a
pair of computing machines (I;A) where I is an arbitrarily bounded machine and A is polynomially
bounded. Each of these machines has a one-way tape containing an in�nite random string of binary
bits. I's one-way random tape cannot be accessed by A and once I reads a bit from this tape it
can never reverse the read-write head and re-read it. The symmetric case holds for A's one-way
random tape. These \random tapes" represent unbiased coin tosses. In addition, each machine I
and A has one (in�nite) work tape and there are two communication tapes connecting I and A.
One communication tape goes from I to A and the other goes from A to I. These communication
tapes are for the interactions.

Next is an example of an interactive proof system for the Graph Isomorphism problem based
on (Goldreich, Micali and Wigderson, 1986). Here the agent, A, claims to have an algorithm for
determining whether or not any two graphs are isomorphic. The interrogator, I, �nds two graphs
and gives a copy of them to the agent, for example consider the two non-isomorphic graphs in �gure
1.

f

f
ff

@
@
@@

�
�

��

�
�
��

@
@

@@

f

f
ff

@
@
@@

�
�
��

�
�
��

@
@
@@

Figure 1: Two Non-Isomorphic Graphs

Let this interactive proof have n rounds of interactions. In each round, the interrogator ran-
domly selects one of two graphs and secretly permutes its vertices and edges to make the graph
unrecognizable to A unless the A can solve the Graph Isomorphism problem. Next I sends the
permuted graph to A. A's job is to determine which of the two graphs it just received. Using a
graph isomorphism algorithm, A can determine whether or not the permuted graph is isomorphic
to either the �rst or to the second graph. A could do this, for instance, if it had a polynomial
time algorithm that solves the graph isomorphism problem. It can be argued that we cannot guess
with probability of greater than 1=2 the correct answer without a graph isomorphism algorithm.
Further, there are problems that have been shown to have no good approximations without certain
complexity classes collapsing. Such problems are ideal for interactive proofs.

A communicates its result back to I. If A does not have an algorithm that solves the
Graph Isomorphism problem, then assume Amay guess the correct solution with probability 1=2. If
A is wrong, then I stops the interactive proof having determined that A does not have an algorithm
for determining graph isomorphism. However, if A is correct through n such interactions, then I

4



determines, with a probability of 1� 1

2n
, that the prover has a Graph Isomorphism algorithm.

An arbitrarily bounded machine (denoted 1-CM) may simply be thought to have \an edge"
over other bounded machines. We may view it as being able to generate extremely good heuristics,

or as knowing the solution to some famous problem (such as P
?
= NP). In fact, it has been shown

that many challenging problems have no \good" heuristics (Arora and Safra, 1992). In any event, it
does all of its \arbitrarily bounded computations" in polynomial time for convenience. One of the
�rst questions interactive proof systems addressed is: What classes of problems can an arbitrarily
bounded machine and a polynomially bounded machine interactively solve?

2.1 Interaction

What can two agents exchange in some number of purely symbolic interactions? To attempt to
answer this, we �rst agree that the exchanges between these agents must alternate and consist of
symbols from some prede�ned alphabet. Also, a bound on the number of exchanges should be
predetermined somehow.

De�nition 1 Let HC be all interpretations of all strings representing two way human interactions

using a �nite alphabet.

In interaction there may be many possible interpretations for any string. It is feasible that
human interpretations of the strings can be generated by non-formal means. But these symbolic

interactions are based on some formal system, because, the interaction uses only concrete formal
symbols in some number of exchanges. Therefore, for any interaction there is a �nite number of
strings representing all possible interactions. Whatever interpretations of these strings one chooses,
collectively they form a (large) formal system. Furthermore, if one string does not make sense or
is unclear it may be possible to clarify it through more interaction.

This paper allows the possibility that in a task like interpreting poetry there may be no formal
system in the human brain doing the interpretation. But during a Turing Test for the symbolically
written interpretation to be veri�ed by others there must be some formal system to communicate
that interpretation. For instance, verifying analogies is done by illustrating commonalities or sim-
ilarities. Also, stating an interpretation of the meaning of a line of poetry is done with symbolic
references. Naturally, there may be \grounding problems" to discuss here, but we go to say that it is
possible that the grounding of certain symbols and references can be done through other interactive
proofs.

The interrogator and the agents may not even be aware of any interpretation of the Turing Test
as an interactive proof. Hence, we don't claim there is any relation in the building of formal proofs
and \intelligence." But, the probabilistic nature of interactive proofs seem to model casual human
interaction quite well. For instance, in oral exams, debates, conversations, and discussions people
use the consistency of their statements try to establish validity of their position. Such human
interactions can be modeled by randomly generated questions in a particular domain.

2.2 Complexity and Interactive Proofs

Many problems have certi�cates for verifying their solution. A classical mathematical proof of
an open problem is a certi�cate that a particular problem has been \solved." Certi�cates act as
records showing that the claimed result has been achieved.

5



Certi�cates can also document that an algorithm has solved a particular instance of a problem.
It is taken for granted in complexity theory (Garey and Johnson, 1979) that given an algorithm
to solve a problem, this algorithm is known to correctly solve the problem at hand. That is, we
have a proof of correctness for this algorithm. For example, someone may want to prove that an
algorithm has found a shortest path in some given graph. Given the graph and an algorithm that
can (provably) solve the shortest path problem in polynomial time, a certi�cate can be created by
both of the steps in Figure 2.

� provide a proof of correctness for the algorithm

� provide a trace of the algorithm running over the given data

Figure 2: Acceptable Steps for Building Veri�cation Certi�cates

Since the algorithm runs in polynomial time we can verify that the algorithm can produce
the given trace in polynomial time. In addition, the proof of the algorithm's correctness will be of
constant size relative to the variable size of the input. Since the proof of correctness of the algorithm
does not vary with the input size of the algorithm. Therefore we can verify, in polynomial time,
whether or not this algorithm provided a shortest path for a given input.

The class of computable problems P is all decision problems � such that there exists a poly-
nomial time computing machine that given an instance � of polynomial size (in the number of
symbols input) produces the correct answer in polynomial time in the size of �. Therefore, if we
know that a problem � is in the class P , then there exists a polynomial time bounded computing
machine that solves �. In addition, given the appropriate algorithm we can create a certi�cate
of polynomial size for the solution of �. Generally problems in the class P are considered to be
\practical" for solution by computer (Garey and Johnson, 1979). Therefore, this paper takes all
computers as capable of only solving problems in P .

The class of computable problems NP is all decision problems � for which there exists a
non-deterministic polynomially bounded computing machine that solves a given instance of � of
polynomial size. Perhaps the greatest open question in theoretical computer science is \does NP
equal P ?"

P � NP because a non-deterministic computing machine can solve any problem in P in a
polynomial number of steps. All problems in NP have certi�cates of polynomial size which also
can be generated as in �gure 2. In some sense NP contains all theorems with proofs of polynomial
size in the number of symbols of their theorem's statements, given a speci�c type of formal system
(Hartmanis, et al., 1990). Following (Hartmanis, et al., 1990) we say that a theorem is in NP
if it has a certi�cate or proof of polynomial size and a non-deterministic machine can generate
the certi�cate or proof in polynomial time. From here on let the terms problem and theorem be
synonymous, in addition to solution and certi�cate.

In particular, to prove that a computing machine has solved a problem � in NP , the machine
can provide a certi�cate of polynomial size. If a problem � is in the class NP , then there exists a
non-deterministic computing machine that can solve � in polynomial time. There is a great variety

6



of popular problems in NP , see for example (Garey and Johnson, 1979; Johnson, 1990).
If a problem � is in PSpace, then there exists a deterministic or non-deterministic computing

machine that can solve � in polynomial space. This does not imply that � is solvable in polynomial
time.

In the worst case, some problems in PSpace, unlike those in NP , seem to require certi�cates
of exponential size. Worst case exponential size certi�cates are generated by a polynomial space
bounded machine since the hardest problems in PSpace seem to take exponential time. Therefore,
in the exponential number of steps an algorithm takes to solve such a problem only polynomial
space is used at any instance, but the total space used during the entire computation is exponential.
This means there are theorems in PSpace that we can state with n symbols whose proofs seem
to require exponential size in n. We can generate these proofs using only polynomial space. Some
of these proofs cannot be veri�ed by a human or machine, since just reading the symbols in such
a proof would take millenia. We say that a theorem is in PSpace if its certi�cate or proof is of
exponential size or smaller and its certi�cate or proof can be generated by a polynomially space
bounded computing machine.

NEXPTime is the class of problems solvable in exponential time using a non-deterministic
computing machine. This is the class of problems solvable by a non-deterministic exponentially
time bounded computing machine.

We say that a theorem is in NEXPTime if its certi�cate or proof is of exponential size or
smaller and its certi�cate or proof can be generated by a non-deterministic computing machine in
exponential time. Some of the theorems or problems in NEXPTime require proofs of exponential
size relative to their theorem statements. Examples of problems in NEXPTime can be found in
(Johnson, 1990).

The class PSpace seems to contain problems that require exponentially long proofs in the size of
a theorem's statement in a given formal system. On the other hand, the class NEXPTime contains
problems that de�nitely require exponentially long proofs in the size of a theorem's statement in a
given formal system. Just verifying a proof of exponential size is very costly. This is where recent
results about interactive proof systems come in. Such probabilistic proof checkers are useful for
cases where the entire proof can never be written down. With this in mind, we call a probabilistic
certi�cate where a polynomial number of interactions verify a statement to an exponentially high
probability a diploma.

Class of Problems Best Known Certi�cates in the Worst Case

P polynomial space certi�cate

NP polynomial space certi�cate

PSpace likely exponential space certi�cate

NEXPtime de�nite exponential space certi�cate

IP polynomial space diploma

MIP multi-prover polynomial space diploma

Figure 3: Certi�cates and Diplomas

Now some results of complexity theory are given.

7



Many people consider it likely that P 6= NP and it is conjectured that NP 6= PSpace. So we
have the open question,

NP
?
= PSpace:

Since all problems in NP are solvable with a polynomial amount of space the inclusion NP �
PSpace is straightforward, but the question

PSpace
?
= NEXPTime

persists. On the other hand it is known that

NP 6= NEXPTime:

Recently, it has been shown that all problems in NP are interactively provable using a diploma
of O(lgn) bits (Arora and Safra, 1992). An instance of a problem is veri�able in IP i� it is
computable in PSpace.

'
&
$
%

'

&

$

%

'

&

$

%

'

&

$

%

P

NP

PSpace

NEXPTime

Figure 4: Possible Complexity Hierarchy

Theorem 1 (Shamir, 1992) IP = PSpace

The class of problems that can be interactively proved using two provers and one veri�er is
MIP , where the two provers are arbitrarily bounded machines (1-CMs). Technically, these two
provers don't communicate with each other, since the veri�er \plays them o� each other."

For example, given two graphs G and H , say one prover claims to have a polynomial time
algorithm for producing up to a polynomial number subgraphs of G isomorphic to H . The judge
could interactively verify these subgraph isomorphisms independently with the other prover using
interactive proofs, provided this other prover could solve the graph isomorphism problem.

8



Theorem 2 (Babai, et al. 1990) MIP = NEXPTime

In summary,
P � NP � PSpace = IP � NEXPTime =MIP:

In particular note that it is currently possible that PSpace = NEXPTime, although NP 6=
NEXPTime. Figures 3 and 4 summarize some of the discussion so far.

A nice characteristic of these complexity classes is reducibility. In particular, if we can solve a
problem that is among the \hardest" in NP , then we can solve all problems in NP using roughly
the same work. This means if an agent can solve a problem that is among the hardest in NP , then
it may be best for the interrogator to try problems that are among the hardest in PSpace, etc.

Although random numbers are used in interactive proofs, we do not analyze any random com-
plexity classes. The complexity results outlined in this section are all worst case results. In addition,
the interrogator acts as a worst case adversary against the agents.

3 The Turing Test as an Interactive Proof System

This section models the Turing Test as an interactive proof system.
According to Babai, the class IP models \teacher-student" interactions (Babai, 1988). For

instance, when an apparently omnipotent instructor relates a theorem to disbelieving and possibly
perplexed students, the students ask questions about it in an apparently probabilistic manner and
each of their questions builds their con�dence in the validity of the Theorem. We argue that
this teacher-student interaction is not limited to math classes, since in general teachers build the
con�dence of their students through their \consistency." In the same way, we take the Turing Test
to be an interactive proof system. Now we formalize the Turing Test as an interactive proof system.

A Turing Test extends over a limited period of time and in some instances its duration is set
beforehand (Epstein, 1992; Turing, 1950). There are interactive proof systems that use only a
constant number of interactions (Cai, Condon and Lipton, 1991) to prove problems in PSpace.
But, it's conceivable to let a Turing Test go until the interrogator makes a judgment or gives up.
In addition, the case in which an interrogator has a set of prepared questions is subsumed by the
fact that the questions are asked at random.

P-CM

1-CM

Judge Questioner
1-CM

��
��
��
��
��

PPPPPPPPPP

Interrogator

Agent 2

Agent 1

Figure 5: The Turing Test as an Interactive Proof System

9



How can we formalize the fact that a Turing Test attempts to distinguish humans and machines?
As we have seen, interactive proofs assess the complexity of problems that can be interactively and
symbolically solved. A Turing Test is not formalized as a theorem of whether a machine could pass
a Turing Test, but it is formalized in terms of �gure 5.

First, call the proofs that a formalized Turing Test performs exams. Exams may consist of
solving games, puzzles, interpreting poetry, recall of historical facts, etc. Of course, this assumes
all of these domains have some formal system that characterizes them so they can be written down
and exchanged. Therefore, such problems can be veri�ed with either a certi�cate or a diploma.

After the interactive session, the interrogator must judge which agent is a computer and which
is human. This means the interrogator has two functions, that of interrogating and that of judging.
This is just like the interrogator in a Turing test. Since the class of problems in MIP requires the
two1-CMs (provers) not to be directly connected, we separate the function of judge and questioner.
Furthermore, the judge is between the questioner and agents, and the judge is a polynomial bounded
machine. The judge builds a certi�cate or diploma from the interactions that take place. Once the
exam is over, the judge has the diplomas or certi�cates made during the exam. Such a diploma or
certi�cate is the only determining factor for deciding which agent is human.

The questioner serves as the prover and the agents assume the role of veri�ers. This reversal of
roles is justi�ed next, see �gure 5.

The interrogator asks the agents questions in such a way as to make them build a diploma
verifying a theorem known to the interrogator. For example, take an interactive proof system of
the graph isomorphism problem. The judge might ask the agents to repeatedly and randomly
try to \outsmart" the questioner by playing a game illustrating that the questioner can solve the
graph isomorphism problem. If the questioner and the agents are computationally equivalent to
polynomially bounded computers, then the judge will not be able to distinguish the two. Of course,
the domain of such an exam does not have to be in mathematics, since problems from many �elds
have been shown to be among the hardest problems in the complexity classes of �gure 4. Again,
just because such problems are among the hardest problems in a certain complexity class does not
imply that they are the hardest in other ways.

Now, say a judge �rst tries to interactively generate a diploma for a problem in PSpace with
both agents. Assume the questioner subsumes the machine intelligence of an 1-CM in the spirit
of the Turing Test. In this case, take the human to simply be an 1-CM although it is feasible that
a machine that consults oracles could prove things outside of PSpace in a polynomial number of
interactions. But, the interrogator wants to distinguish the computer and human, therefore assume
the interrogator will only act as an 1-CM. This allows the judge to play the human agent and
the questioner o� each other to prove theorems to the that are in MIP . At the same time, the
questioner and the computer can at most (probabilistically) prove theorems in IP . Therefore, in
the situation just given, the Turing Test can distinguish humans and machines if IP 6=MIP, that
is PSpace 6= NEXPTime.

Of course, the human agent may not be aware of the interrogator's intentions or knowledge of
this formalization of the Turing Test. In this case, if human intelligence cannot be simulated by an
arbitrarily machine|that is in�nite machines or \stronger notions" are required for human intel-
ligence, then such an interactive proof may solve problems that an arbitrarily bounded computing
machine can't solve. Hence, the human-human interaction may solve problems outside of MIP .
Further the human-machine interaction may solve problems outside of IP . In this case it is not
clear that we can distinguish humans and machines with this formalization.

10



Let a polynomially bounded judge attempt to interactively generate a diploma for a problem
in NEXPTime with both agents, see �gure 5. Assuming the interrogator and one of the agents
has intelligence that subsumes that of an 1-CM and since one of the agents is a polynomially
bounded machine it is very unlikely that it will be able to help generate a diploma for the problem
in NEXPTime exposing it as the computer! In fact, using an interactive proof system one can
make it exponentially unlikely that a machine could pass as a human in this case. After the exam
is over the judge will have a diploma to document which agent passed the Turing Test.

4 The Power of the Turing Test

This section gives some rami�cations of taking the Turing Test to be an interactive proof system.
Suppose, human intelligence subsumes machine intelligence that can be generated by a non-

deterministic polynomially bounded computer, then an interrogator could choose theorems or prob-
lems among the hardest in NP but not likely to be in P . Next, the interrogator has both agents
interactively prove such a theorem or solve such a problem (Arora and Safra, 1992; Brassard and
Crepeau, 1986). In particular, there are problems in NP , which we think are not in P that are
unlikely to have \good approximations"; these problems are ideal for such interactive proofs (Arora
and Safra, 1992; Garey and Johnson, 1979; Johnson, 1990). In fact, we may just hand the agents
\hard" problems to solve and wait for the agents to give solutions. The agent that solves the
problem \wins" the contest in two interactions. For example, di�erent game puzzles or mystery
stories could be such \hard" problems.

We want to insure the interaction is not trivial, otherwise we may lose the 
avor of the Turing
Test. In addition, the Turing Test as an interactive proof system becomes most interesting when
applied to a variety of problems, and especially ones that have exponential certi�cates. If P = NP,
then we can choose problems in PSpace for a two interaction Turing Test. (A two interaction
Turing Test would be one where only two interactions are allowed between the interrogator and
each agent.) It is also possible that NP = PSpace, but in this case since NP 6= NEXPTime it
must be that NEXPTime 6= PSpace making the IP versusMIP Turing Test most desirable. In
particular, problems in PSpace would then have polynomially sized certi�cates, and we know some
problems in NEXPTime have exponential sized certi�cates. Therefore, interactively separating
the agents by IP andMIP as in �gure 6 would be ideal. If NEXPTime = PSpace, then the IP
versus MIP Turing Test may be of no use. But, since NEXPTime 6= NP we could interactively
distinguish the human and machine using problems in NEXPTime.

Polynomial bounded machines can't (non-probabilistically) prove the hardest theorems in
NEXPTime, therefore, they can't interactively prove the hardest theorems in NEXPTime. In
addition, we know that P 6= NEXPTime, so the hardest problems in NEXPTime are of inter-
est. The hardest problems in NEXPTime require exponential certi�cates in the worst case. This
means for large enough instances of such problems the entire certi�cate may never be interac-
tively exchanged in a Turing Test. So we would have to resort to generating diplomas for solving
such problems during the Turing Test. Therefore, if humans could interactively solve problems in
NEXPTime, then the Turing Test would distinguish humans and computers.
The results in this section assume the setup in �gure 6.

De�nition 2 Let PHC be the problems interactively solvable by humans using HC.

11



P-CM

1-CM

Judge Questioner
1-CM

��
��
��
��
��

PPPPPPPPPP

MIP = NEXPTime

IP = PSpace

Interrogator

Agent 2

Agent 1

Figure 6: An Interactive Proof System

PHC contains problems that are solvable by symbolic interactions given that the interpretations
at each end of the interactions are done by humans. The human interpretations of these symbolic
interactions may be driven by non-formal systems.

The only problems that PHC must contain for the results in this paper to hold are those with
interactive proofs.

Theorem 3 If the formalized Turing Test is not su�cient to distinguish humans and computers,

then PHC = PSpace or NEXPTime = PSpace or both.

A proof is elementary and comes from the two cases:

Case i: In the �rst case say PSpace 6= NEXPTime, then since MIP = NEXPTime,
PHC must be IP .

Case ii: On the other hand, if PSpace = NEXPTime, then we cannot distinguish IP
and MIP . Therefore this also gives PHC = PSpace = NEXPTime.

From this come the following corollaries, that are about two interactive 1-CMs: the ques-
tioner and one of the agents. These corollaries hold for machines stronger than arbitrarily bounded
machines provided the stronger machines can simulate the arbitrarily bounded machines in a rea-
sonable fashion.

Corollary 1 If we assume that the formalized Turing Test is su�cient for distinguishing humans

and computers and all problems solvable in PHC are interactively solvable by two 1-CMs, then

PSpace 6= NEXPTime.

A proof of this corollary follows from the fact that the Turing Test must be able to separate the
problems solvable by PHC from IP . Since this corollary assumes all problems solvable by PHC
can be solved by two interacting 1-CMs, it must be thatMIP = PHC. This means IP 6=MIP,
hence PSpace 6= NEXPtime.

Corollary 2 Assuming the formalized Turing Test is not su�cient for distinguishing humans and

computers and all problems in PHC can be solved interactively by two 1-CMs, then PSpace =
NEXPTime.

12



Assuming that computers can converse like intelligent human beings means that symbolic in-
teractive human behavior can be characterized by problems in P .

Alternatively, rejecting the claim that intelligent behavior can be generated by computers im-
plies problems encapsulating \intelligent behavior" are not in P . This endorses the Turing Test
as a valid means for distinguishing humans from computers. This does not imply that proving
theorems are among the hardest problems in the class PHC.

Assuming the Turing Test is a valid means of distinguishing humans and machines implies that
human and machine intelligence are comparable at least in terms of the complexity and interactive
proof theory. The Turing Test essentially boils down to the question of how complex it is to
computationally attain or simulate intelligent behavior. If simulating intelligent behavior turns out
to be more than a polynomially bound machine can handle, then humans and computers can be
distinguished using the Turing Test.

5 Conclusions and Further Directions

Recently, symbolic interaction has been formalized in a way that allows the Turing Test to be
modeled as an interactive proof system. By formalizing the Turing Test in such a way, then by
employing results from complexity theory, we investigate the power and limitations of the Turing
Test. This paper makes no claim about the Turing Test's su�ciency to distinguish humans and
machines and assumes human intelligence subsumes machine intelligence in the spirit of the Turing
Test. In particular, this paper makes several strong statements about assumptions of the su�ciency
or insu�ciency of the Turing Test for distinguishing humans and machines. In addition, this
formalization seems to lend some formal credence to the Turing Test.

We believe it would be interesting to quantify the complexity of interaction in additional classes
of problems to shed more light on the Turing Test.

In addition, more should be said about the consistency of humans in terms of the Turing Test
(Epstein, 1992). And for this reason \typing foibles" have been built into programs that take the
Turing Test (Epstein, 1992). In fact, according to Epstein, such foibles may have helped a program
win a recent variant of the Turing Test. This leads immediately to variations of interactive proof
systems.

6 Acknowledgments

We would like to thank the following people for fruitful comments on this paper: Angie Allen,
Kenneth Chiu, Michael Chui, Cornelia Davis, Ruth Eberle, Andy Hanson, Sushil Louis, John
MacCuish, Jennifer McDaniel, Larry Moss, Gregory J. E. Rawlins, Gregory E. Shannon, Peter
Shirley, Dirk Van Gucht, Perry Wagle and Beata Winnicka. In addition we would like to thank the
Mind AI and Cognition group at Indiana University as well as the participants of the Mid-West
Arti�cial Intelligence and Cognitive Science Conference for enlightening discussions.

References

Arora, A. and S. Safra, (1992) \Probabilistic Checking of Proofs; A New Characterization of NP ,"
Proceedings of the 33rd Annual IEEE Symposium on the Foundations of Computer Science,

13



2-13.

Babai, L. (1988) \Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Com-
plexity Classes," J. of Computer and System Sciences, Vol. 36, 254-276.

Babai, L., L. Fortnow, and C. Lund, (1990) \Non-Deterministic Exponential Time has Two-Prover
Interactive Proofs," Proceedings of the 31st Annual IEEE Symposium on the Foundations of
Computer Science, 16-25.

Brassard, G. and C. Crepeau, (1986) \Non-Transitive Transfer of Con�dence: A Perfect Zero-
Knowledge Interactive Protocol for SAT and Beyond," Proceedings of the 27th Annual IEEE
Symposium on the Foundations of Computer Science, 188-195.

Bylander, T. (1991) \Tractability and Arti�cial Intelligence," Journal of Experimental and Theo-

retical Arti�cial Intelligence, Vol. 3, 171-178.

Cai, J., A. Condon and R. Lipton, (1994) \PSPACE is Provable by Two Provers in One Round,"
Journal of Computer and Systems Sciences, Vol. 48, 183-193, 1994.

Dreyfus, H. (1992) What Computers Still Can't Do, MIT Press.

Editorial and Commentary, by Johnson, W. L., S. Harnad, and S. C. Shapiro (1992) in SIGART

Bulletin, Vol. 3 No. 4, 7-11.

Epstein, R. (1992) \Can Machines Think?," AI Magazine, Vol. 13, No. 2, 80-95.

Garey, M. R. and Johnson, D. S. (1979) Computers and Intractability, W. H. Freeman.

Goldreich O., S. Micali and A. Wigderson: \Proofs that Yield Nothing but their Validity and a

Methodology of Cryptographic Protocol Design," Proceedings of the 27th IEEE Foundations
of Computer Science Conference, 174-187, 1986.

Goldwasser, S., S. Micali, and C. Racko�, (1989) \The Knowledge Complexity of Interactive Proof
Systems," SIAM J. on Computing, Vol. 18, No. 1, 186-208.

Hartmanis, J., R. Chang, D. Ranjan, and P. Rohatgi, (1990) \On IP = PSPACE and Theorems with
Narrow Proofs," in The Structural Complexity Column, EACTS Bulletin, No. 41, 166-174.

Johnson, D. S. (1990) \A Catalog of Complexity Classes," Chapter 2 in Handbook of Theoretical

Computer Science, Vol. A, Algorithms and Complexity, V. Van Leeuwen|editor, Elsevier,
67-161.

Rawlins, Gregory J. E. (1992) Compared To What ? Computer Science Press/W. H. Freeman.

Searle, J. R. (1980) \Minds, Brains and Programs," Behavorial and Brain Sciences, Vol. 3, No. 3,
417-457.

Searle, J. R. (January 1990) \Is the Brain's Mind a Computer Program?" Scienti�c American,
Vol. 262, No. 1, 26-31.

Shamir, A. (1992) \IP = PSPACE," Journal of the ACM, Vol. 39, No. 4, 869-877.

Turing, A. M. (1950) \Computing Machinery and Intelligence," Mind, Vol. 59, No. 236, 433-460.

14


