
Maintaining Dynamic State: Deep, Shallow, and Parallel

Christopher T. Haynes

Indiana University

1 Richard M. Salter

Oberlin College

2

Abstract

In the presence of �rst-class continuations, shallow maintenance of dynamic bindings requires

more than the traditional stack-based techniques. This paper provides correctness criteria for

such dynamic environments, along with contrasting implementations. A store semantics pro-

vides the framework for our correctness criteria and presentation of deep- and shallow-binding

implementations. The latter implementation is a new state-space algorithm, which is proved

correct. A variation of the algorithm implements Scheme's dynamic-wind operation. Finally, a

technique for maintaining dynamic state called semi-shallow binding is presented. This com-

promise between deep- and shallow-binding appears suitable for parallel systems. Applications

include uid binding of lexical variables and logic programming with �rst-class continuations.

1 Introduction

Dynamic state-management is required in many situations. Usually dynamic contexts are associated

with control contexts, as with dynamic variables, \uid" assignment to lexical variables [3], and the

dynamic-wind operation [2]. Logic variable binding is an example of dynamic state-maintenance

that is not strictly associated with control (return with success does not undo bindings).

In this paper we address the problem of maintaining multiple dynamic contexts when their ex-

tent is not limited by a �rst-in-last-out discipline. Examples include OR-parallel logic programming

systems and systems with �rst-class continuations that capture their dynamic context. The latter

is implied by the combination of the call-with-current-continuation and dynamic-wind operations

in Scheme. To be speci�c, we focus on the problem of maintaining dynamic variable bindings in

the presence of �rst-class continuations, though our analysis applies with minor modi�cation to a

variety of other dynamic state-management problems.

We �rst present a store-semantics that provides a framework for dynamic-binding correctness

criteria. A simple deep-binding implementation is presented in this context. Shallow binding yields

more e�cient lookup, but in the presence of �rst-class continuations, stack-based techniques cannot

be used. State-spaces have traditionally been used to maintain shallow bindings when control is

abruptly transferred to prior contexts by the invocation of �rst-class continuations [1, 4]. A state-

space algorithm, simpler than those previously reported, is presented and proved correct in our

formal context. A generalization of the state-space algorithm that implements the dynamic-wind

operation of Scheme is also provided. Finally, we propose a semi-shallow binding technique that

represents a cross between the deep- and shallow-binding with promise for use in parallel systems.

Figure 1 presents a state semantics for a simple language with constants, variable references,

functions that dynamically bind their arguments, applications, and a call-with-current-continuation

1Computer Science Department, Lindley Hall, Bloomington IN 47401. e-mail: chaynes@cs.indiana.edu.
2Computer Science Program, Oberlin OH 44074. e-mail: rms@cs.oberlin.edu. Research supported by NSF Grant

CCR-9002132.

1



Syntactic domains:

c 2 Const; x; y 2 Id; e 2 Exp

e ::= c j x j dlambda (x) e j e1 e2 j cwcc e

Semantic domains:

b 2 Bas unspeci�ed constant values
l 2 Loc locations
s 2 State states appropriate for lookup and update

v 2 V alue = Bas+ (V alue! V Cont! LCont)
kv 2 V Cont = V alue! LCont

kl 2 LCont = Loc! State! Ans

Ans = V alue+ Loc+ State + (V alue� State) + : : :

Semantic equations:

B : Const ! Bas

E : Exp! V Cont! LCont

E [[c]]kv = kv(B[[c]])

E [[x]]kv = lookupx kv

E [[dlambda (x) e]]kv = kv(�vk
0

v : updatex (E [[e]]k
0

v) v)

E [[e1 e2]]kv = �l : E [[e1]](�fl
0 : E [[e2]](�v : fvkv)l)l

E [[cwcc e]]kv = �l : E [[e]](�f : f(�vk0vl
0 : kvvl)kv)l

lookup and update may be de�ned as in Figures 2 or 4, or as discussed in Section 5.

Figure 1: State semantics with dynamic binding

operator, cwcc, that captures the current continuation (control context) as a �rst-class functional

value. The lookup and update operations abstract the maintenance of dynamic environments.

Locations refer to dynamic environments maintained in the store. Since the current location is

distinct from the store, both �rst-class continuations (created in the cwcc equation by �vk0vl
0 : kvvl),

and the semantic continuation for argument evaluation in applications (�fl0 : E [[e2]](�v : fvkv)l) close

only over the current location, l, not the current store. This preserves the single-threadedness [8]

of the store, and reects e�cient implementation.

The procedure update takes an identi�er, x, and a location continuation and returns a value

continuation. The value continuation is invoked with a value, v, the current location, l, and the

current state, s. A new location is then created and passed to the location continuation along with

a new state that updates s in a manner that associates l with an environment that binds v to x.

The procedure lookup takes an identi�er, x, and a value continuation and returns a location

continuation. When the location continuation is passed the current location, l, and state, s, the

value continuation is �rst passed the binding of x in the environment associated with l in s. The

2



Domain:
s 2 State = Loc! (Id� V alue� Loc) + funboundg

Exported functions:

lookup : Id! V Cont! LCont

lookupx kv = �l : lookup1x kv l l wherec

lookup1x kv lo l =
�s : case sl of

hx0; v; l0i ! if x = x0 then kvvlos else lookup1x kv lo l
0 s

else ! kv unbound los

update : Id! LCont! V Cont

updatex kl = �vls : let l0 = new s in kll
0s[l0 7! hx; v; li]

Figure 2: Deep binding

current location is then passed on to the value continuation along with a state that may be either

s or a modi�cation of s that reects a change in the current location.

A correct implementation of lookup and update (the environment abstract data type) must

reect the customary rules of functional extension associated with environments. These rules are

formalized before Theorem 3.2.2 in section 3 as the environment-state invariant.

In the absence of the cwcc operation, all environment information may be maintained on a

stack, since the update and lookup operations then maintain a last-in-�rst-out discipline: the current

location either remains unchanged, is changed to correspond to a new location created by an update,

or reverts to the location that was current before the last update.

On the other hand, �rst-class continuations created by cwcc restore their creation-time environ-

ment when they are invoked. Thus when a �rst-class continuation is created su�cient information

must be maintained to allow restoration of the creation-time environment e. This may be at any

future time, including contexts in which the current environment has reverted to an environment

created prior to the creation of e and then been extended with alternate bindings of some of e's

variables. Since context changes can occur in an arbitrary fashion, a stack discipline no longer suf-

�ces to maintain the information necessary to restore e when the continuation is invoked. It must

be replaced by a tree structure in which old context information persists with inde�nite extent.

An implementation reecting the traditional deep-binding approach to maintaining a dynamic

binding environment is presented in Figure 2. Environments are represented as association lists,

which are space-e�cient because all extensions of a given environment share the same tail. More-

over, this structure makes deep binding a natural choice for implementing dynamic binding with

�rst-class continuations. Though extending a deep-bound environment or returning to a previ-

ous one are time-e�cient operations, deep-bound dynamic environment lookup is ine�cient. A

3



-

-

�
�
��7

�
�
��7

S
S
SSw - -

�
�
���

�
�
���

-
A
A
AAU -

y:4

y:2 x:1 y:0

x:5 x:3

y 0 in

y 2 out x in y in

x 5 out x 3 out

Current Focus

b)a)

Current Environment
x:1 y:4

Figure 3: Environment models: a) Linked list b) State Space

deep-bound environment is illustrated in Figure 3a. It is not di�cult to prove this implementation

satis�es the environment-state invariant.

When shallow binding is used the current value of each variable is stored in a location that is

permanently assigned to that variable. The contents of these locations are changed as necessary

to reect environment updates and returns to prior environments. Thus environment bindings are

maintained in a singly-threaded store, while a separate data structure records whatever information

is necessary to restore environment bindings when control returns to a prior environment. Again,

in the absence of cwcc a simple stack regimen can be used to implement singly-threaded, shallow-

bound environments. The requirements of �rst-class continuations, however, compel us to employ

a more general mechanism for environment maintenance, referred to as a state-space algorithm.

Section 2 presents an implementation of update and lookup using a state-space algorithm that

supports shallow binding. Section 3 proves the state-space algorithm correct. Section 4 presents

a variation on the state-space algorithm that implements the dynamic-wind function of Scheme.

Section 5 presents an alternate implementation of update and lookup that represents a compromise

between deep and shallow binding, and appears suitable for parallel implementations. Section 6

concludes with a discussion of related work and other applications of the dynamic state maintenance

techniques presented here, including logic programming.

2 A state-space algorithm

In the absence of the cwcc operation, shallow binding is easily implemented using a stack. When

an environment is extended at the point of a procedure call with a new value v for some identi�er

x, it su�ces to push the old value of x and the symbol x onto a stack. On procedure return the

stack is popped to restore the prior value of x as the current location reverts to the location that

was current before the environment extension.

When a �rst-class continuation is created with cwcc, however, the stack must be allowed to

branch into a tree, called a \state space." Each tree node represents a di�erent environment,

storing one variable and one binding for that variable. The node corresponding to the current

environment is called the focus . If a node q managing variable x is either the focus or its ancestor,

4



Domains:

l; f; p 2 Loc

m 2 Mode = fin; outg
n 2 Node = Mode� Id� V alue� Loc

e 2 Env = Id! V alue+ funboundg
t 2 Tree = Loc! Node+ funusedg
s 2 State = Env � Tree� Loc

Exported functions:

lookup : Id! V Cont! LCont

lookupx kv = �ls : let s0 = refocus l s in kv(es0x)ls0

update : Id! LCont! V Cont

updatex kl = �vls : let s0 = refocus l s

in let l0 = new s0

in kll
0hes0 [x 7! v]; ts0 [l0 7! hin; x; es0x; li]; l0i

Local functions:

refocus : Loc! State! State

refocus l s = if l = fs then s

else case tsl of

hout; x; v; pi! enter l (refocus p s)

hin; x; v; pi! refocus l (leave s)

enter : Loc! State! State

enter l s = let h ; x; v; pi= tsl in hes[x 7! v]; ts[l 7! hin; x; esx; pi]; li

leave : State! State

leave s = let h ; x; v; pi= tsfs in hes[x 7! v]; ts[fs 7! hout; x; esx; pi]; pi

Figure 4: Shallow-binding state-space algorithm

5



then q is in with respect to the current environment. In this case q stores a previous value for

x, which is restored if the focus shifts above q. Otherwise, we say that q is out , and q contains

the binding for x in q's associated environment. This must be restored should the focus shift back

within q. Figure 3b illustrates the state space that manages the shallow equivalent of Figure 3a.

When the current environment shifts to a prior environment, it is necessary to walk the path

from the node corresponding to the current environment to that corresponding to the prior one.

If a node is in with respect to the current environment and is out with respect to the prior one,

we say we are leaving the node; if it currently out and will become in, we are entering the node.

When either entering or leaving a node, the current and stored values are exchanged.

For our state-space algorithm, we de�ne a state s = hes; ts; fsi containing both the current

environment and the current system of alternate environments represented skeletally by a state

space. The environment of the state is modeled as the map es, taking identi�ers to values. The

state space is comprised of the map ts and the distinguished location fs. ts models a store taking

locations to nodes and is called the node tree of the state. A node n = hmn; xn; vn; pni consists of a

mode mn, with value in or out, a variable xn bound by the node, the bound variable's stored value

vn, and the location pn of the node's parent in the node tree. Location fs, the focus of the state,

references the current focus in the node tree.

Note on terminology: Traditionally the term \state space" refers to structures that

maintain a \space" consisting of a number of \states" representing distinct execution

environments. Thus a state space corresponds in our terminology to a node tree and

the states of a state space correspond to our environments. The phrase \state space"

corresponds well with the programmer's view, but not with the semantic use of the term

state as a domain of values that are singly-threaded.

The focus of a state indicates the node tree element corresponding to the environment of the

state. Each update operation extends the node tree from the current focus with a new node that

becomes the new focus. The mode of the current focus and each of its ancestors is in, while all

other nodes are out.

The fundamental state-space operation is refocusing : moving its focus to a given location. This

is accomplished by the refocus procedure of Figure 4. If the focus fs of the current state is the

same as the given location l, there is nothing to do, and the current state is returned. Otherwise, if

the node corresponding to the given location is not the current focus but is in, then the procedure

leave is �rst called to obtain a state in which the focus has been moved out of the current state to

its parent. The procedure refocus is then called again with the same location l and the new state.

If the node corresponding to the given location is out, then refocus is called �rst to obtain a state

in which the focus has been moved to the parent of the given location. The procedure enter is then

called to move the focus into the given location.

The update operation accepts an identi�er, a location continuation, a value, and the current

location and state. It �rst calls refocus to obtain a state whose focus is the current location. A new

6



location is then generated by calling the procedure new, and this location is passed to the location

continuation along with a new state in which the environment has been appropriately extended,

and an extended node tree with an added node corresponding to the new location.

The lookup operation accepts an identi�er, a value continuation, and the current location and

state. The focus is �rst moved to the current location, producing a new state. The value continu-

ation is then invoked with the value corresponding to the identi�er in the environment of the new

state, plus the current location and the new state.

3 Correctness of the state-space algorithm

The correctness of this model is presented in three steps. First we show that only a certain

subset of possible states can arise; we refer to these as constructible states. Next we show that for

constructible states the refocus algorithm always terminates, and that the set of in-nodes is precisely

the path from the focus to the root of the node tree. Finally, we show that when s is constructible,

refocus l s produces an environment that depends only on l, and that this environment is the one

created when l was allocated by update.

3.1 Constructibility

The update and refocus functions are well de�ned only for locations that have meaning in the given

state. Speci�cally, we say a location l is bound in state s if tsl 6= unused.

Assuming the initial environment is empty, the algorithm requires an initial state, �, containing

a single node with mode in and arbitrary contents in its other �elds:

� = hfg; ff� 7! hin; ; ; ig; f�i

De�nition 3.1.1 A constructible state sequence fs0; : : : ; sng is one in which s0 = � and, for

0 � i � n�1; si+1 is obtained from si by either a lookup or update operation. A state is constructible

if it is an element of some constructible state sequence.

In a constructible state, each bound location has been allocated by some invocation of update.

The node initially referenced by the location contains a bound variable and parent that remain

unchanged by subsequent refocusing. The states si in a constructible sequence contain structurally

compatible node trees, rooted at tsif�. The current node tree is extended by updates and retains

its structure during refocusing, although modes and stored values change.

De�nition 3.1.2 A state is mode-proper if the set of in-nodes is exactly the set of nodes along the

path from fs to f� in the node tree.

Lemma 3.1.1 If s is mode-proper and l refers to a node of ts, then

7



1. refocus l s terminates without error;

2. If s0 = refocus l s, then l = fs0 .

3. s0 = refocus l s is mode-proper.

Proof. To prove that refocus l s terminates, we show that the number of recursive calls to refocus

is equal to the length of the path in the node tree between l and fs. Since the algorithm terminates

when l = fs, it su�ces to show that with each recursive call the length of this path is reduced.

Consider �rst the case where l is out. Let p be the parent of l. Since s is mode-proper, l cannot be

an ancestor of fs, and so p lies on the path between l and fs. Therefore, the path length is reduced

by one in the recursive call refocus p s. Now suppose l is in. Then l must be an ancestor of fs, so

that fs cannot be f� and therefore has a parent. Since the recursive call is made on a state whose

focus is the parent of fs, the path is again reduced by one.

We use induction on the number of recursive calls to show that l = fs0 and s0 is mode-proper.

In the base case, if l = fs, then s0 = s. Now assume the induction assumption that l = fs0 and s0

is mode-proper whenever l and fs are n nodes apart. Suppose that l and fs are n+ 1 nodes apart.

If l is out (mts0 l = out), then by the induction assumption the recursive call refocus p s produces a

mode-proper state, sp, whose in-locations are on the path from the root to focus p. In s0, this path

is extended to the new focus l. Now suppose that l is in. To complete the proof we must show

that the state to which the recursive call is applied is mode-proper. But this is clear since its node

tree is identical to that of s except for having been refocused one node toward the root of the node

tree, with the mode of the node associated with the old focus changed to out. 2

That states remain mode-proper is a key invariant of the state-space algorithm. To reason about

lookup and update we introduce the pairing location continuation �l=�ls : hl; si and the pairing value

continuation �v=�vls : hl; si.

Lemma 3.1.2 Every constructible state is mode-proper.

Proof. If hl0; s0i = updatex �l v l s and s is mode-proper, then s0 is mode-proper and l0 = fs0 , since

update extends a refocused node tree at its focus with an in-node, which becomes the new focus.

Also, if hl0; s0i = lookupx �v l s, then s0 = refocus l s is mode-proper by part 3 of lemma 3.1.1. The

lemma follows by induction, given that � is mode-proper. 2

Finally, we require the following technical lemma:

Lemma 3.1.3 If s is a mode-proper state, then tsf� is in.

Proof. In refocus l s, leave is applied only when l is in. But if s is mode-proper, l must be an

ancestor of fs, so that fs 6= f�. 2

8



3.2 Proper States

We now consider the link between the node tree and environment. In a constructible state a

new location is added to the node tree by an update operation. We pay special attention to the

environment created by that update, since subsequent calls to refocus with that location must

re-create this environment.

Inspecting the algorithm for update, we see that if hl; si = updatex �l v l
0 s0, the environment es

is produced by extending with the binding x 7! v the environment es00 , where s00 = refocus l0 s0. We

call x the variable managed by l, denoted xl, es the environment managed by l, denoted el, es00 the

base environment for l, denoted ebl , v the new binding at l, denoted vnl , and ebl xl the old binding at

l, denoted vol .

This notation is well-de�ned, since each location is allocated by a unique update in a given

proper state sequence, and thus we have:

Lemma 3.2.1 If si and sj are elements of the same state space, and l is active in both, then xl,

el, ebl , v
n
l , and vol are the same in both si and sj, and el = ebl [xl 7! vnl ]: 2

We now de�ne the key property whose invariance under update and refocus will prove the

correctness of the state space model:

De�nition 3.2.1 A constructible state, s, is proper if

1. es = efs.

2. For each location l 6= f� such that n = tsl 6= unused,

(a) ebl = epn

(b) If l is in, then the stored value at l is vol

(c) If l is out, then the stored value at l is vnl

Thus in a proper state the environment is always the one managed by the focus, and the stored

values are either the new or old bindings, depending on whether the node is out or in, respectively.

To show that refocusing a proper state s produces a proper state, we �rst prove that this

property is preserved by leave s, and by enter l s whenever l is a child of fs.

Lemma 3.2.2 If s is proper, then leave s is proper whenever fs 6= f� and enter l s is proper whenever

fs = ptsl (the focus of s is the parent of l).

Proof. Neither enter nor leave change the base environment of any location, so condition (2a) of

De�nition 3.2.1 continues to hold. Suppose l = pfs , and let s0 = leave s, so that l is the focus of

s0. Now fs manages variable xfs , with old binding vofs and new binding vnfs . Since s is proper,

9



a. leave s

��
��
fs

in
vofs

efs = el[xfs 7! vnfs ]

�
��
��
��
l leave

-

��
��
fs

out
vnfs

�
��

l��
��

el = el[xfs 7! vnfs ][xfs 7! vofs ]

b. enter l s

��
��
l

out
vnl

efs

�
��
��
��
fs enter

-

��
��
l

in
vol

�
��

fs��
��

el = efs [xl 7! vnl ]

Figure 5: Dynamics of leave and enter.

es = efs = el[xfs 7! vnfs ], while since fs is in in s (it is the focus), the value stored at fs in s must

be vofs , which is the value of xfs in el. But since this is the value assigned by leave to xfs, we see

that es0 = es[xfs 7! vofs ] = el[xfs 7! vnfs ][xfs 7! vofs] = el (see Figure 5a), which gives condition (1).

Moreover, fs is out in s0 with stored value esxfs = vnfs, and this is the only node whose mode has

changed, which gives us conditions (2b) and (2c). Thus s0 is proper.

Now suppose fs = ptsl, and let s0 = enter l s, so that, again, l is the focus of s0. This time, l

manages xl and since l is out in s (it is a child of the focus) the value stored at l is vnl . Therefore

the state change in enter produces es0 = efs [xl 7! vnl ] = el (see Figure 5b), giving us condition (2).

Since l is in in s0 with stored value efs xl = vol , and this is the only node whose mode has changed,

we again get conditions (2b) and (2c). Thus s0 is again proper. 2

The invariance of proper-ness under refocusing may now be demonstrated:

Theorem 3.2.1 If s is proper, then refocus l s is proper.

Proof. This follows by induction on the length of the path between the old and new foci, using

Lemma 3.2.2, Part 2 of Lemma 3.1.1, Corollary 3.1.2 (to guarantee that leave is never applied to

the root of the node tree) and the fact that � is proper. 2

Finally, to show that every constructible state in proper, we must show that updating a proper

state produces a proper state. Using the state-returning location and value continuations �l = �ls : s

and �v = �vls : s we have:

Corollary 3.2.1 If s is proper, then s0 = updatex �l v l s and s00 = lookupx �v v l s are proper.

Proof. From Theorem 3.2.1 we know that eb
s0

f
= esf . The rest follows directly by inspection of the

state change described in the de�nitions of lookup and update. 2

Corollary 3.2.2 Every constructible state is proper. 2

10



Any state-based implementation of lookup and update must guarantee that in any state fol-

lowing the creation of an environment the customary rules of functional extension associated with

environments are satis�ed. The following environment state invariant formalizes this requirement.

If in a proper state sequence hl0; sii = update x �l v l si�1 for some i > 0 and �v =

�vls : v, then for any j � i,

� lookupx �v l
0 sj = v; and

� lookupy �v l
0 sj = lookupy �v l sj for y 6= x.

The following theorem then establishes the correctness of the state-space algorithm.

Theorem 3.2.2 The state-space algorithm of Figure 4 satis�es the environment state invariant.

Proof. The environments used by lookup kv l sj and lookup kv l
0 sj are, respectively, es0 and es00 ,

where s0 = refocus l sj and s00 = refocus l0 sj . Since sj is proper, so are s0 and s00, so that es00 = el0

and es0 = el = el0 [x 7! v] (since l0 is the parent of l) = es00 [x 7! v]. Since lookupy �v l sj yields es0y,

this is v if y = x, and es00y = lookupy �v l
0 sj if y 6= x. 2

4 Dynamic-wind

In a language with any form of programmer-manageable state, there may be a need to guarantee

that some operation, called a postlude, be performed whenever control leaves a dynamic context.

Control may leave either by normal control ow or through an escaping mechanism, such as a throw

to a Lisp catch tag, a C long-jump, an ML exception, or a Scheme continuation. Lisp systems often

provide an unwind-protect mechanism for this purpose [9].

With the introduction of �rst-class continuations, such as are provide by Scheme's call-with-

current-continuation procedure, there may also be a need to perform another operation, called a

prelude, whenever control enters a dynamic context either via normal control ow or via invocation

of a continuation that had previously been captured within the context.

To ful�ll both of these needs, Scheme supports a dynamic-wind procedure that generalizes

unwind-protect by allowing both a prelude and a postlude to be associated with the dynamic

context in which a given body is evaluated [2]. Its arguments are nullary procedures that are

invoked to perform the prelude, body, and postlude operations, respectively. Using dynamic-wind

it is straightforward to support dynamic binding of lexical variables, as with the uid-let form [3].

The dynamic-wind procedure may be de�ned in Scheme using a state space that is similar in

concept to that which supports the lookup and update operations of Section 2. The new complication

is that the state-space mechanism should be robust in spite of attempts to enter or leave prelude

or postlude computations via invocation of �rst-class continuations. Without some protection

mechanism, the state space and/or the user's program could be left in an inconsistent state. To

11



(define (make-node prelude postlude parent) (vector #f prelude postlude parent))
(define (is-out? node) (vector-ref node 0))
(define (set-node-is-out! node bool) (vector-set! node 0 bool))
(define (prelude node) (vector-ref node 1))
(define (postlude node) (vector-ref node 2))
(define (parent node) (vector-ref node 3))

(define (toggle-is-out! node)
(set-node-is-out! node (not (is-out? node))))

(define focus (make-node 'ignored 'ignored 'ignored))

(define (refocus new-focus)
(cond
((is-out? new-focus)
(refocus (parent new-focus))
(set! focus new-focus)
(toggle-is-out! focus)
((prelude focus)))
((not (eq? focus new-focus))
(set! focus (parent focus))
(toggle-is-out! focus)
((postlude focus))
(refocus new-focus))))

(define orig-call/cc call-with-current-continuation)

(define (call-with-current-continuation f)
(orig-call/cc
(lambda (k)
(f (let ((saved-focus focus))

(lambda (x)
(if (not (eq? saved-focus focus)) (refocus saved-focus))
(k x)))))))

(define (dynamic-wind prelude body postlude)
(prelude)
(let ((answer (proto-dynamic-wind prelude body postlude)))
(postlude)
answer))

(define (proto-dynamic-wind prelude body postlude)
(set! focus
(let* ((sealed #f) (seal! (lambda () (set! sealed #t))))
(make-node

(lambda () (if sealed (error) (proto-dynamic-wind error prelude seal!)))
(lambda () (proto-dynamic-wind error postlude seal!))
focus)))

(let ((answer (body)))
(set! focus (parent focus))
answer))

Figure 6: Dynamic-wind in Scheme

12



accommodate exception handling, transfer out of a prelude or postlude should be allowed|provided

that control never reenters the associated state-space node. See �gure 6 for an implementation of

dynamic-wind that implements this policy. An error is signalled (via the procedure error) in a

node's prelude if the node-speci�c variable sealed is set, which occurs if control leaves the node's

prelude or postlude prematurely. An error is also signaled if control enters a prelude or postlude

via a continuation.

5 Distributed semi-shallow binding

The state-space algorithm does not support concurrent instances of multiple, incompatible envi-

ronments. If state spaces were used in a concurrent system, each process would have to have its

own copy, since later state space actions at the parent would render the creation time environ-

ment inaccessible. In this section we sketch a distributed form of binding that might be termed

semi-shallow binding, since it represents a compromise between shallow and deep binding. It may

be implemented in the context of Figure 1 by appropriate de�nition of lookup and update, and its

correctness veri�ed using the environment state invariant of Section 3.

This approach maintains a separate context tree for each variable. Each context tree is a

projection of the global state space maintaining only the bindings a given variable and the path

information needed to connect these bindings. The current context is now represented by a context

path, instead of a state space pointer. Rather than using a location to extract from a single state

space an environment in which a variable binding may be found, we now use a variable to identify

the context tree from which a context path can extract the variable binding.

The context path is depicted as a numerical sequence, representing a path through a global

node tree. Context tree edges are labeled by corresponding context path values. Knowledge of the

out-degree of each node tree element is required so that each new context may be given a unique

numerical labeling. This may be obtained through a global context structure tree that is consulted

and extended with each call of update.

Context trees are typically sparse, frequently containing chains of nodes without values. Such

chains may be path compressed to a single edge labeled by the corresponding path. Pereira's virtual

copy arrays are another example of a tree structure dedicated to bindings of a single variable [6].

Our context trees di�er in that our trees may have compressed paths and values at interior nodes.

Figure 7 illustrates this approach, representing the same dynamic information as in Figure 3,

but restricted to the variable x. Each box contains a binding for x in the environment represented

by its node, while unboxed numbers annotate the path. The current context path is then h0; 0; 0i.

Performing lookup(x) we follow the path speci�ed by the context path as far as possible, locating

the node with a value box containing 1, the current binding of x. The operation update(x,y) causes

the entire context path to be traversed. Since the �nal 0-branch does not exist in the context tree,

we add a new branch labeled 0. Having reached the end of the current context path, we extend it

with another edge labeled 0 (since the current focus has out-degree 0), but immediately combine

13



s
s s
s

s
s s
sss

ss
s s

s s
s?

?

?@@R
@@R

?@@R
@@R?

?

-

@@R

@@R?

? ?

?@@R
@@R

-

0

0

a) lookup(x) = 1

2

b) update(x,7)

0
1

3

5

1

x:

<0,0,0>

Current context path:

0
1

3

5

1

x:

7

2

0

<0,0,0,0>

00

Current context path:

x:

1

5

3

1
0

2

0

<0,0,0> <0,0,0>

0

2

0
1

3

5

1

x:

Figure 7: Context path environments

this edge with the last one to form a compressed edge labeled 00. A new node with a box containing

7 is then attached to the new edge.

Semi-shallow binding has been used in the implementation of a graph-rewrite system for logic

programming [5]. Preliminary analysis indicates that semi-shallow binding may reasonably be

adapted to parallel computation systems without shared memory. Since context trees and the

context structure are monotonic (modi�ed only via extension), coherence problems are avoided.

Experimental study of this approach is ongoing.

6 Conclusion

We have addressed the problem of e�ciently implementing dynamic binding by presenting correct-

ness criteria and alternative implementations in the context of a singly-threaded store semantics.

These correctness criteria and implementation techniques also apply to other situations in which

dynamic state must be maintained e�ciently in the presence of �rst-class continuations. For exam-

ple, in implementing a variant of Prolog that supports �rst-class success and failure continuations

we have used the �rst state-space algorithm presented here to maintain two separate state spaces:

one maintaining logic variable bindings and the other providing dynamic protection against data-

base mutation [7]. We believe our second implementation technique, based on context paths, may

provide an attractive approach to the maintenance of multiple environments in highly-parallel logic

programming systems, though experience is needed to explore the system parameters within which

this may be the technique of choice.

Acknowledgement: The authors wish to thank Rhys Price Jones for his contribution to the

development of semi-shallow binding.

References

[1] H. G. Baker Jr. Shallow binding in Lisp 1.5. Comm. ACM, 21(7):565{569, July 1978.

14



[2] W. Clinger and J. Rees (editors). Revised4 report on the algorithmic language scheme. Lisp

Pointers, 4(3):1{55, 1991.

[3] R. K. Dybvig. The Scheme Programming Language. Prentice-Hall, 1987.

[4] C. Hanson and J. Lamping. Dynamic binding in Scheme. Unpublished manuscript, 1984.

[5] R. P. Jones and R. M. Salter. Implementing nondeterminism using graph reduction. Technical

report, Oberlin College, 1993.

[6] F. C. N. Pereira. A structure-sharing representation for uni�cation-based grammar formalism.

In Proc. of the 23rd Annual Meeting of the Assoc. for Comp. Linguistics, pages 137{144, 1985.

[7] R. Salter and C. T. Haynes. Continuation-based control operators for logic programming.

Technical Report 293, Indiana University, 1989.

[8] D. A. Schmidt. Detecting global variables in denotational de�nitions. ACM Transactions on

Programming Languages and Systems, 7(2):299{310, April 1985.

[9] G. L. Steele Jr. Common Lisp: The Language. Prentice-Hall, 1991.

15


