
CIMGS: An Incomplete Orthogonal Factorization

Preconditioner

Xiaoge Wang

Department of Computer Science

Indiana University - Bloomington

Kyle Gallivan

Department of Electrical and Computer Engineering

University of Illinois- Urbana

Randall Bramley

Department of Computer Science

Indiana University - Bloomington �

December 16, 1993

Abstract

A new preconditioner (called CIMGS) based on an incomplete orthogonal factor-
ization is derived, analyzed, and tested. Although designed for preconditioning least
squares problems, it is also applicable to more general symmetric positive de�nite
matrices. CIMGS is robust both theoretically and empirically, existing (in exact arith-
metic) for any full rank matrix. Numerically it is more robust than an incomplete
Cholesky factorization preconditioner, and the conjugate gradient iterative method
preconditioned with CIMGS compares favorably with using Cholesky factorization on
the normal equations. Theoretical results show that the CIMGS factorization has
better backward error properties than complete Cholesky factorization does, and for
systems whose normal equations are M{matrices, CIMGS induces a regular splitting,
better estimates the complete Cholesky factor Rc as the set of dropped positions gets
smaller, and lies between complete Cholesky factorization and incomplete Cholesky
factorization in its approximation properties. Those properties usually hold numeri-
cally, even when ATA is not an M{matrix. When the drop set satis�es a mild and
easily veri�ed (or enforced) property, the upper triangular factor CIMGS generates is
the same as the one incomplete Cholesky factorization does. This allows guaranteeing
the existence of IC factorization, based solely on the target sparsity pattern.

�Work supported by NSF grants CDA-9309746 and CCR-9120105

1

1 Introduction

This work is motivated by the linear least squares problem of �nding x 2 <n which minimizes
the value of

k b�Ax k2; (1)

where A 2 <m�n, m � n, is a large sparse matrix of full rank and b 2 <m is an arbitrary
vector. Such problems occur frequently in scienti�c and engineering applications such as
linear programming [5], augmented Lagrangian methods for CFD [12], and the natural factor
method in partial di�erential equations [9] [3].

Minimizing (1) by solving the normal equations ATAx = ATb is a common and often
e�cient approach, because ATA is symmetric and positive de�nite. There are many well
developed and reliable methods, both direct and iterative, for solving such systems. In this
paper, we present a new preconditioning method for solving the normal equations using
the conjugate gradient (CG) iterative method. This allows the solution of extremely large
least squares problems without explicitly forming the normal equations, which requires a
potentially large number of
oating point operations, and can introduce a loss of information
from the original matrix A.

A well{known drawback of this approach is that the condition number of the normal
equations is the square of the condition number of the original linear least squares problem.
Orthogonal factorization methods [8] avoid this problem, but they require more
oating
point operations and potentially can require O(mn) storage, which is unacceptable for sys-
tems with large m. Because the rate of convergence of the CG algorithm is related to the
condition number of the matrix that it is applied to, �nding an e�ective preconditioner is
crucial. Preconditioning methods that have been proposed and analyzed for the CG algo-
rithm include column scaling, SSOR [4], incomplete Cholesky factorization [11], polynomial
preconditioning [1, 2], and incomplete orthogonal factorization [14, 10, 18, 16].

When preconditioning a symmetric positive de�nite system Bx = f , the usual goal is to
increase the clustering of the eigenvalues around 1. When B = ATA and the preconditioner
is applied to A, a natural target is to make the preconditioned matrix ~A closer to orthog-
onal, because then ~AT ~A � I. This suggests using an incomplete orthogonal factorization:
A � QR. Existing incomplete orthogonal factorization preconditioners can be divided into
two classes: incomplete Gram-Schmidt, such as the methods presented in [14, 10, 16], and
incomplete Givens, such as the method in [18]. Incomplete Gram-Schmidt type methods are
in general robust because they can avoid numerical breakdown when A is full rank. Fur-
thermore, they are e�ective in accelerating the convergence of CG. The notable drawback
is that they are expensive in both
oating point operations and storage, because like full
Gram{Schmidt factorization they do not take advantage of sparsity. One way of reducing
computations is to use a numerical dropping technique to keep both the Q and R factors
sparse, as is done in ILQ [14] and the incomplete Givens method of [18]. The price these
methods pay for e�ciency is robustness, because dropping small entries can lead to zero
elements on the diagonal of R. Restart techniques have to be used for these methods to as-
sure robustness. This paper introduces a new preconditioner called compressed incomplete

2

Gram-Schmidt (CIMGS); as the name implies, CIMGS is based on an incomplete modi�ed
Gram{Schmidt (IMGS) factorization. CIMGS reduces the cost of computing an incomplete
orthogonal preconditioner by 'compressing' the information carried inA's column vectors into
dotproducts of those vectors, which can be used to compute the same factor as the column
vectors. In this way, the number of operations is reduced while preserving the precondi-
tioner's robustness and e�ectiveness for the CG algorithm. Furthermore, unlike incomplete
Cholesky (IC) factorization, in exact arithmetic the CIMGS factorization completes without
breakdown for any full rank matrix A.

The next section describes the new algorithm and analyzes its properties. We show that
CIMGS produces the same preconditioner (in exact arithmetic) as IMGS but requires many
fewer computations than IMGS does. We also prove that when ATA is an M{matrix, CIMGS
induces a regular splitting. The relationship between CIMGS and incomplete Cholesky
factorization is discussed in detail in Section 3. Numerical test results showing the the
e�ectiveness of 'compression' are presented, along with comparisons among CIMGS, IC
preconditioned CG, and direct methods. Conclusions and remarks are made based on those
results.

2 The CIMGS Algorithm and Its Properties

To motivate the CIMGS algorithm, we �rst describe incomplete Gram-Schmidt (IMGS)
factorization. Let Pn = f(i; j)ji 6= j; 1 � i; j � ng and assume that the matrix A 2 <m�n

has full column rank. Let P � Pn be a set of index pairs such that (i; j) 2 P implies that
1 � i < j � n.

The set P determines which elements of the target incomplete factor R will not be re-
tained in the approximate factorization, i.e., P is the set of drop positions. The IMGS factor-
ization algorithm can be easily derived from the modi�ed Gram{Schmidt factorization of A
by setting to zero during the factorization entries ofR indexed by P :

Algorithm [Q, R] = IMGS [A, P]
begin
for k = 1; 2; : : : ; n;

(1) rkk = k ak k2
(2) qk = ak=rkk

for j = k + 1; k + 2; : : : ; n

(3) rkj =

(
0 (k; j) 2 P
qTk aj (k; j) 62 P

(4) aj = aj � qkrkj
endfor

endfor
end

If step (3) is replaced by rkj = qTk aj, we get a complete modi�ed Gram{Schmidt factor-
ization. This factorization will always succeed in producing an upper triangular factor R
when A has full rank:

3

Theorem 1 If A 2 Rm�n, m � n, has full rank, then IMGS applied with a drop set P � Pn
completes and produces a factorization A = QR, where R is an upper triangular matrix with
positive diagonal elements and Q is a full rank matrix.

Proof: Let a
(j)
i denote the i-th column of A after j steps of IMGS. From the algorithm

we can see that qi = (a
(0)
i � q1r1i � ::: � qi�1ri�1;i)=rii, for i = 1; 2; :::; n. The algorithm

cannot complete if at some step k, rkk = k a
(k�1)
k k2 = 0. This means that we have

a
(k�1)
k = a

(0)
k �q1r1k� : : :�qk�1rk�1 k = 0 and so a(0)k is a linear combination of q1; q2; :::; qk�1.

Therefore, the set of vectors
n
q1; q2; q3; : : : ; qk�1; a

(0)
k

o
is linearly dependent. However, the

vectors q1; q2; q3; : : : ; qk�1 form a basis of span
n
a
(0)
1 ; a

(0)
2 ; a

(0)
3 ; : : : ; a

(0)
k�1

o
, and the set of vec-

tors
n
a
(0)
1 ; a

(0)
2 ; a

(0)
3 ; : : : ; a

(0)
k

o
is linearly independent because A has full rank. Therefore,n

q1; q2; q3; : : : ; qk�1; a
(0)
k

o
is independent, a contradiction. So if A has full rank, rkk 6= 0 for

k = 1; 2; : : : ; n and the factorization must exist. 2
More detailed studies of IMGS can be found in [16]. In general, IMGS is robust and

e�ective at reducing the number of CG iterations. Its main weakness is the much higher
cost of computing the preconditioner compared to other preconditioning methods.

The new algorithm CIMGS now described will produce the same preconditioner, while
greatly reducing the computation cost. The basic idea is to `compress' the information in
the column vectors of A into a dotproduct form without losing the information needed for
the computation of the factor R. To understand the meaning of this `compression', consider
the relation between modi�ed Gram{Schmidt factorization of A and complete Cholesky fac-
torization of ATA. In exact arithmetic, they both produce the same factor R. Modi�ed
Gram{Schmidt factorization works on A and \sees" only the column vectors. Cholesky fac-
torization works on ATA, the elements of which are dotproducts of the corresponding column
vectors. After each step of each of the factorization methods, the relationship is maintained
between the reduced matrices. Moreover, it is well{known that Cholesky factorization can
be much more e�cient than the modi�ed Gram{Schmidt algorithm. The new algorithm
CIMGS is designed to have the e�ciency of Cholesky factorization, while maintaining equal-
ity of the reduced matrix produced to the normal equations of the reduced matrix produced
by IMGS.

Algorithmically, let B = ATA. When A is a real matrix with full rank, B is symmetric
positive de�nite. Given a drop set P � Pn, CIMGS generates the upper triangular matrix
R 2 Rn�n as follows:

Algorithm [R]=CIMGS[B,P]
begin
for k = 1; 2; : : : ; n;

if bkk 6= 0 then
(1) bkk =

p
bkk

(2) rkk = bkk
for j = k + 1; k + 2; : : : ; n

(3) bkj = bkj=
p
bkk

4

(4) rkj =

(
0 (k; j) 2 P
bkj (k; j) 62 P

endfor
for j = k + 1; k + 2; : : : ; n

for i = k + 1; k + 2; : : : ; n
(5) bij = bij � bkibkj (k; j) 62 P or (k; i) 62 P

endfor
endfor

else
(6) quit (incomplete factorization can not complete)

endif
endfor
end

Note that the structure of CIMGS is similar to the rank{1 update form of Cholesky
factorization, with incompleteness introduced at step (5). Just as with Cholesky factoriza-
tion, a more e�cient version can be obtained by deferring the rank{1 updates until they are
needed, but the above formulation is more convenient for the following analysis. Note that
B is overwritten by intermediate computations, which generate the factor R. The algorithm
shows the target factor R being extracted from B at steps (2) and (4), but in practice R
need be stored in separately.

First we show that CIMGS applied to ATA produces the same triangular factor as IMGS
applied to A.

Theorem 2 Let A 2 Rm�n, m � n, rank(A) = n and B = ATA. If R = IMGS(A;P)
and ST = CIMGS(B;P), then R = ST .

Proof: We use induction on n. The n = 1 case is trivial. Supposing that the theorem is
true for k = n� 1, we now prove it for k = n. After one step of IMGS,

r11 =k a1 k2=
q
aT1 a1; r1j =

(
0 (1; j) 2 P
aT
1
aj

r11
(1; j) 62 P

2 � j � n

and columns 2 to n of the remaining rows of A are updated by

a
(1)
j = aj � r1j

r11
a1; 2 � j � n:

After one step of CIMGS the �rst row of ST is given by

s11 =
q
b11 =

q
aT1 a1; s1j =

(
0 (1; j) 2 P
b1j=

p
b11 (1; j) 62 P

2 � j � n

and columns 2 to n of the remaining rows of B have elements b(1)ij = bij�b1ib1j if (1; j) 62 P or
(1; i) 62 P , for 2 � i; j � n. Clearly r1j = s1j for all 1 � j � n. The computation of the rest

5

of R consists of applying IMGS to the matrix A(1) = fa(1)2 ; a
(1)
3 ; : : : ; a(1)n g. The computation

of the rest of ST consists of applying CIMGS to the matrix B(1) = (b
(1)
ij), 2 � i; j � n. Since

a
(1)
i

T

a
(1)
j =

(
aTi aj; (1; i) 2 P and (1; j) 2 P
aTi aj � r1ir1j; (1; i) 62 P or (1; j) 62 P

and

b
(1)
ij =

(
bij; (1; i) 2 P and (1; j) 2 P
bij � b1ib1j; (1; i) 62 P or (1; j) 62 P;

it can easily be seen that A(1)TA(1) = B(1). Using the induction hypothesis, the rest of
R computed by IMGS is equal to the rest of ST computed by CIMGS. By induction, the
theorem is true for any n. 2

Since CIMGS is equivalent to IMGS, Theorem 1 also implies that CIMGS exists when
ATA is positive de�nite. Since these results assume exact arithmetic, the natural next ques-
tion to ask is how CIMGS is a�ected by rounding errors, that is, how does the \compression"
technique a�ect the stability of IMGS? Earlier analysis has shown that IMGS is less likely
than modi�ed Gram-Schmidt to break down due to possible numerical rank de�ciency of
A [16]. The next theorem says that numerical rank de�ciency is less likely to occur for
CIMGS than it is for complete Cholesky factorization. That in turn implies that CIMGS
may breakdown earlier than IMGS as the condition of A worsens . This will be con�rmed
by numerical experiments presented in later.

Theorem 3 Let B be a symmetric positive de�nite matrix and � be the machine precision.
Let P be a given drop set of zero positions for the CIMGS algorithm. Let R be the triangular
factor produced by CIMGS using the set P , and let U be the matrix of dropped elements. If

�(B) � C1(n)�; (2)

where �(B) is the condition number of B, then there is an error matrix E such that

(R + U)T (R + U) = B + UTU + E

and
k E k2 � C2(n)� k B k2;

where C1(n) and C2(n) are constants that depend only on n.

Proof: Our proof of the theorem is again by induction on n. Let

B =

b11 b12
b12 B22

!
; R =

r11 rT12
0 R22

!
; U =

0 uT12
0 U22

!

be conformally partitioned. Denote

L = R+ U =

l11 lT12
0 L22

!
=

r11 rT12 + uT12
0 R22 + U22

!
:

6

Consider the computation of the �rst row of L. It is the same as the computation of �rst row
of Cholesky factor of B, except during the rank-1 update of the trailing submatrix. CIMGS
only updates those elements in position (i; j) such that at least one of (1; i) or (1; j) is not
in P , while Cholesky factorization updates elements in positions (i; j) where both (1; i) and
(1; j) are not in P .

Let B(2)
CIMGS and B

(2)
CHOL be the reduced matrices after one step of CIMGS and Cholesky

factorization, respectively. After one step of CIMGS, we have

l11 0
l12 I

!
1 0

0 B
(2)
CIMGS

!
l11 lT12
0 I

!
= B +

0 0
0 u12u

T
12

!
+ E

(1)
CIMGS :

where E
(1)
CIMGS denotes the error caused by �nite precision computations during the �rst step,

and B
(2)
CIMGS = B

(2)
CHOL + u12u

T
12. Note that in positions (i; j) with (1; i) 62 P or (1; j) 62 P ,

the updating is exactly the same as that in one step of Cholesky factorization, while at other
positions no updating occurs. Therefore, E

(1)
CIMGS and E

(1)
CHOL are equal in those positions

for which updating is performed. For the other positions, the elements of E(1)
CIMGS are equal

to 0. Using Wilkinson's estimates [17], we get

k E(1)
CIMGS k2� c1� k B k2 :

Since B
(2)
CIMGS equals the reduced matrix after applying one step of Cholesky factorization

to B + u12u
T
12 + E

(1)
CIMGS, again using Wilkinson's result gives

k B(2)
CIMGS k2 � k B22 k2 + k u12uT12 k2 +c1� k B k2

�k B22 k2 + k l12lT12 k2 +c1� k B k2 � c4 k B k2
where c4 is a constant depending on n.

From the computation of one step of CIMGS we can see that B
(2)
CIMGS is also positive

de�nite when condition 2 holds. Using the induction hypothesis,

B
(2)
CIMGS = L(2)TL(2) � U (2)TU (2) � E

(2)
CIMGS

and
k E(2)

CIMGS k2 � C2(n� 1)� k B(2)
CIMGS k2 � c5� k B k2;

where c5 is a constant depending on n. So we get

LTL� UTU � E2 � E1 = B;

where E1 = E
(1)
CIMGS , and E2 is E

(2)
CIMGS augmented by a null �rst row and column. It follows

that
k E k2 = k E1 + E2 k2 � k E1 k2 + k E2 k2 � c1� k B k2 +c5� k B k2 :

Letting C2(n) = c1 + c5 establishes the error bounds.

7

If the minimal eigenvalue of B+UTU is greater than the error, the factorization process
will not break down. That is, if

1

k (B + UTU)�1 k2 � C1(n) k B k2;

completing the proof. 2
Since UTU is symmetric positive semide�nite, the smallest eigenvalue of B + UTU is

greater than or equal to the smallest eigenvalue of B. So numerical breakdown is less likely
to happen for CIMGS factorization than it is for Cholesky factorization.

Since the goal of incomplete orthogonalization preconditioning is to approximate an or-
thogonal factorization, it is important to estimate the closeness of the CIMGS factor to the
factor obtained using complete Gram{Schmidt factorization. When ATA is an M-matrix,
we have the following result:

Theorem 4 Let A 2 Rm�n have full rank. If ATA is an M-matrix and Q 2 Rm�n, R 2 Rn�n

are the matrices that are produced by applying IMGS with a given P � Pn, then

QTQ = R�TATAR�1 = I � E

is a regular splitting with E � 0, all of the diagonal elements of E equal to 0, and �(E) < 1,
where �(E) is the spectral radius of E.

The proof can be found in [16].
If ATA is an M-matrix, Theorem 4 bounds the distance between Q and an orthogonal

matrix since it implies that �(QTQ) � 2. Unfortunately, it does not guarantee an improve-
ment in the condition number of QTQ compared to of ATA in general, since �min(ATA)
is not necessarily a lower bound on �min(Q

TQ). In practice, however, we have found that
one step of IMGS tends to behave like one step of MGS in that one of the eigenvalues is
brought closer to 1 and the remaining ones tend to stay in an interval whose lower and upper
bounds do not signi�cantly worsen. For MGS one of the eigenvalues is made exactly 1 and
the remaining ones are in an interval bounded by the minimum and maximum eigenvalues
of the normal equations of the original matrix.

A similar result in [11] shows that ATA = LLT � Ê is a regular splitting, where L is the
IC factor of ATA, Ê � 0, and �(Ê) < 1. It is straightforward to transform this result into
one similar to Theorem 4. Speci�cally, if L is used to precondition the least squares problem
then it can be shown that ~QT ~Q = L�1ATAL�T = I � ~E is a regular splitting satisfying
conditions on ~E identical to those on E of Theorem 4. However, as is shown in the next
section, CIMGS and IC do not necessarily produce the same triangular factor for a given
drop set P .

Certainly the choice of P will a�ect the quality of the preconditioner. Intuitively, the
more elements retained in the factor, the better CIMGS should approximate complete Gram{
Schmidt. For general matricesA, we have not been able to rigorously establish this heuristic,
but when ATA is an M-matrix, CIMGS has the following monotonicity property:

8

Theorem 5 Let B 2 Rn�n be a symmetric positive de�nite M-matrix, and let P1 � P2

be zero position sets. If R1 and R2 are the CIMGS factors produced by using P1 and P2

respectively, then R1 � R2.

The notation R1 � R2 is used to indicate componentwise inequality. The next Lemma is
needed for the proof of this Theorem.

Lemma 1 Let A 2 <n�n and B 2 <n�n be symmetric positive de�nite M-matrices where
A � B. If R and T are the upper triangular matrices from the CIMGS factorization of A
and B respectively with the same non-zero position set P , then R � T .

Proof: We prove the proposition by induction on n. Clearly the result holds for n = 1;
assume that it holds for matrices of order n � 1. Let

R =

r11 RT

12

0 R22

!
; T =

t11 T T

12

0 T22

!
;

A =

a11 AT

12

A12 A22

!
; and B =

b11 BT

12

B12 B22

!

be the corresponding partitioned matrices for a matrix of order n, so that R22, T22, A22 and
B22 are of order n � 1. After one step of CIMGS on A and B, we have 0 < r11 =

p
a11 �p

b11 = t11 and, since b1i � 0, we also have

r1i =

(
a1i=r11 � b1i=r11 � b1i=t11 = t1i (1; i) 62 P
0 = t1i (1; i) 2 P:

Let f and g be the vectors of dropped elements from the �rst step of CIMGS applied to
A and B, respectively. Then f � g � 0 and R12 � T12 � 0. R22 and T22 are the CIMGS
factors of A(2) = A22�R12f

T � fRT
12�R12R

T
12 and B(2) = B22� T12g

T � gT T
12� T12T

T
12, and

therefore

A(2) = A22 �R12f
T � fRT

12 �R12R
T
12

� B22 �R12f
T � fRT

12 �R12R
T
12

� B22 � T12f
T � fT T

12 � T12T
T
12

� B22 � T12g
T � gT T

12 � T12T
T
12

� B(2):

By the induction hypothesis, R22 � T22, and so R � T and the proposition is true for
matrices of any order n � 1. 2.

Proof of Theorem 5: By induction on n. For n = 1 the result holds trivially. Assume
that it is true for matrices of order n� 1. Let

B =

b11 bT

b B22

!
;

9

R1 =

r
(1)
11 R

(1)
12

R
(1)
22

!
; and R2 =

r
(2)
11 R

(2)
12

R
(2)
22

!

be partitioned so that B22, R
(1)
22 , and R

(2)
22 are of order n� 1. After one step of CIMGS with

P1 and P2, respectively, r
(1)
11 =

p
b11 = r

(2)
11 and since B1i � 0,

r
(1)
1i =

8>><
>>:

b1i=r
(1)
11 = b1i=r

(2)
11 = r

(2)
1i (1; i) 62 P1 and (1; i) 62 P2

b1i=r
(1)
11 � 0 = r

(2)
1i (1; i) 62 P1 and (1; i) 2 P2

0 = r
(2)
1i (1; i) 2 P1 and (1; i) 2 P2

i = 2; : : : ; n (3)

This implies R
(1)
12 � R

(2)
12 .

Let f = (f2; f3; : : : ; fn) and g = (g2; g3; : : : ; gn) be the vectors of elements dropped by
CIMGS with P1 and P2, respectively. Then

fi =

8>><
>>:

b1i=r
(1)
11 = b1i=r

(2)
11 = gi (1; i) 2 P1 and (1; i) 2 P2

0 � b1i=r
(2)
11 = gi (1; i) 62 P1 and (1; i) 2 P2

0 = gi (1; i) 62 P1 and (1; i) 62 P2

i = 2; : : : n: (4)

and so 0 � f � g. Also note that R(1)
12 + f = R

(2)
12 + g.

Now let B
(1)
22 and B

(2)
22 be the reduced matrices of order n � 1 produced by one step of

CIMGS with P1 and P2, respectively. It follows that

B
(1)
22 = B22 � (R

(1)
12 + f)T (R

(1)
12 + f) + fTf

� B22 � (R(1)
12 + f)T (R(1)

12 + f) + gTg

� B22 � (R(2)
12 + g)T (R(2)

12 + g) + gT g

= B
(2)
22 :

Let R(1)
22 be the CIMGS factor for B(1)

22 using P1, R
(2)
22 be the CIMGS factor for B(2)

22 using P2,

and T be the CIMGS factor for B(2)
22 using P1. By Lemma 1, R(1)

22 � T . By the induction

hypothesis T � R
(2)
22 . Together we have R1 � R2 and therefore the theorem is true for

matrices of order n. 2
Let Rc be the complete Cholesky factor of B. Rc is equal to the CIMGS factor produced

by using the pattern P c = ;. Clearly, we have P c � P1 � P2 and, by Theorem 5, Rc �
R1 � R2. If E1 = R1 � Rc and E2 = R2 � Rc, then we have E1 � E2. In this sense we
can say that R1 better approximates Rc. Informally, if fewer elements are dropped, i.e., if
a smaller drop set P is used, the resulting IMGS factor better approximates the Cholesky
factor componentwise.

3 Relations between CIMGS and IC

It is reasonable to ask how CIMGS compares to IC when they are both applied to ATA,
because the two algorithms have similar structure. In general, CIMGS generates a di�erent

10

factor from IC. CIMGS is more stable than IC in the sense that CIMGS will not break down
when A is full rank, while in practice IC break down frequently. Furthermore, there is a close
relationship between CIMGS and IC when certain conditions are imposed on the sparsity
pattern of the target factor.

Theorem 6 Suppose A 2 Rm�n, B = ATA, and the set P � Pn has the property that for
any 1 � i; j; k � n, with i < j and i < k, the condition (i; j) 2 P and (i; k) 62 P implies that
(j; k) 2 P . If R and U are the upper triangular matrices that arise from the CIMGS and IC
on B using the set P respectively, then R = U .

Two observations will make the following proof easier to understand.

Observation 1: Suppose A 2 Rn�n and B 2 Rn�n are symmetric positive
de�nite matrices for which IC completes using a drop set P � Pn. Let the
matrices U and T be the upper triangular factors that IC gives for A and B
respectively. If aij = bij for all (i; j) 62 P then T = U .

Observation 2: Let A 2 Rm�n and P � Pn. Let B = ATA, and suppose R(1)

and B(1) are the matrices that arise from one step of CIMGS on B using position

set P , so that B = R(1)TB(1)R(1). Suppose ~B(1) and U (1) are the matrices that

arise from one step of IC on B with the same P so that B = U (1)T ~B(1)U (1). Then
U (1) = R(1) and b

(1)
ij = ~b(1)ij for those 1 < i; j � n, such that either both (1; i) and

(1; j) are in P , or both (1; i) and (1; j) are not in P .

Observation 2 can be seen from the algorithms for CIMGS and IC, which di�er only in the
updating step. CIMGS updates the elements in position (i; j) where either (1; i) or (1; j) are
kept. In IC, only the elements in positions (i; j) where both (1; i) and (1; j) are kept. This
causes the two algorithms to di�er at positions (i; j) where one and only one of (1; i) and
(1; j) are kept at the �rst step. All the other elements are the same after one step of CIMGS
and IC. With these observations, we prove theorem 6.

Proof: By induction on n. When n = 2, it is trivial to show that the assertion is
true. Assume that for k < n the assertion is true. For k = n, one step of CIMGS gives

B = R(1)TB(1)R(1) with B(1) = (b(1)ij) and

R(1) =

0
BBB@

r11 r12 : : : r1n

0 I

1
CCCA :

The remaining steps of CIMGS can be viewed as applying CIMGS to the submatrix of B(1)

from rows and columns 2 to n, which is an (n � 1) � (n � 1) matrix. Let R2 denote the
resulting (n�1)� (n�1) triangular matrix. The overall CIMGS factor R then has the form

1 0
0 R2

!
R(1)

11

On the other hand, one step of IC gives B = U (1)T ~B(1)U (1), where ~B(1) = (~bij) and

U (1) =

0
BBB@

u11 u12 : : : u1n

0 I

1
CCCA :

The remaining steps of IC consist of applying IC to the submatrix of ~B(1) from rows and
columns 2 to n. Denote the resulting (n�1)� (n�1) triangular matrix by U2. The resulting

IC factor U is

1 0
0 U2

!
U (1).

By observation 2, R(1) = U (1) and b
(1)
ij = ~b

(1)
ij for those positions where either both (1; i)

and (1; j) are in P or both are not in P . We now show that R2 = U2. Compare the elements

of b
(1)
ij and ~b

(1)
ij where (i; j) 62 P . Note that only these elements a�ect the IC factor. If either

both (1; i) and (1; j) are in P or both (1; i) and (1; j) are not in P , we have b
(1)
ij = ~b(1)ij

from observation 2. In other words, b
(1)
ij 6= ~b

(1)
ij is possible only for positions (i; j) such that

either (1; i) 2 P and (1; j) 62 P or (1; i) 62 P and (1; j) 2 P . By hypothesis, in these cases

(i; j) 2 P . Therefore, b
(1)
ij 6= ~b

(1)
ij can only be true if (i; j) 2 P .

Let ~U2 be the IC factor of the submatrix of B(1) consisting of rows and columns 2 to n.
By observation 1, U2 = ~U2. Also, according to the induction hypothesis, ~U2 = R2. These
two conditions taken together imply U2 = R2 completing the k = n case. By induction, the
assertion is true for all n. 2

Theorem 6 establishes a connection between IC and CIMGS. From this connection we can
derive the following result regarding IC applied to an arbitrary symmetric positive de�nite
matrix. This result is important because it allows us to guarantee the existence of the
IC factor based only on the target nonzero pattern. Other modi�cations of IC have been
proposed that allow the factorization to avoid breakdown, but they generally consist of ad hoc
modi�cations of the elements as the factorization proceeds. This result allows, for example,
a priori assurance that IC can be applied to matrices from a �nite element mesh, based
solely on the geometry of the mesh.

Theorem 7 Let B 2 Rn�n be a symmetric positive de�nite matrix. If P � Pn has the
property that (i; j) 2 P and (i; k) 62 P implies (j; k) 2 P for all 1 � i � n, then the IC
factorization algorithm completes successfully.

Proof: Let B 2 Rn�n be a symmetric positive de�nite matrix. There exists a matrix
A 2 Rm�n, m � n with full rank such that B = ATA. According to Theorem 1, IMGS
applied to A completes successfully, yielding an upper triangular matrix R with positive
diagonal elements such that A = QR. By Theorem 6, the conditions on the set P assure
that IC applied to B = ATA generates the same upper triangular matrix as IMGS. So IC
completes successfully and generates an upper triangular matrix LT which is equal to R. 2

This result allows us, under certain restrictions, to view IC as a member of the class
of incomplete Gram{Schmidt factorizations. On the other hand, the property of the set P

12

described in the above theorem can be viewed as a condition that can guarantee the existence
of IC when the matrix is symmetric positive de�nite. Furthermore, it is easy to modify the
target sparsity pattern in order to satisfy the hypothesis of Theorem 7; see [16] for more
details.

In general, CIMGS gives a di�erent factor R from the one given by IC. If both methods
generate the factor successfully, which is better in accelerating CG convergence? Again, the
assumption that ATA is an M{matrix allows us to prove the relationship: the CIMGS factor
is closer than the IC factor to the complete Cholesky factor. To establish this result, two
lemmas are stated here without proof.

Lemma 2 . Let A;B 2 Rn�n be symmetric positive de�nite M-matrices with A � B. Then
R � T , where RTR = A and T TT = B are Cholesky factorizations.

Lemma 3 Let A;B 2 Rn�n be symmetric positive de�nite M-matrices, with A � B. Let P
be a non-zero position matrix for incomplete Cholesky factorization. Then R � T , where R
and T are the incomplete Cholesky factors of A and B, respectively, using the same P .

Theorem 8 Assume that A 2 Rm�n is such that B = ATA is a symmetric positive de�nite
M-matrix. Let RCHOL and RIC be the upper triangular matrices from Cholesky factorization
of B and incomplete Cholesky factorization of B with the pattern P , respectively. Let RIMGS

be the upper triangular matrix from IMGS on A with the same pattern P . The following
relation is satis�ed:

RCHOL � RIMGS � RIC ;

Furthermore, E1 � E2, where

E1 = RIMGS �RCHOL;

E2 = RIC �RCHOL:

Proof: Since IMGS on A generates the same upper triangular matrix R as CIMGS on
ATA, in the proof we use the CIMGS algorithm. The proof is carried out in two parts.

(1) We prove RCHOL � RIMGS by induction on the size of the problem. The inequality

is trivial for n = 1. Assume that it holds for n � 1. Partition B =

b11 b12
bT12 B22

!
and

P =

p11 p12
pT12 P22

!
, and let RCHOL =

r11 r12
0 R22

!
, RIMGS =

t11 t12
0 T22

!
be the factors

from Cholesky factorization and CIMGS factorization of ATA, respectively. Applying one
step of Cholesky factorization and CIMGS factorization to ATA, we get

r11 =
q
b11; r12 =

b12
r11

and

t11 =
q
b11; t12 =

b12
t11

!
jp12

:

13

It is easy to see that r11 = t11 and r12 � t12. Let g12 denote the dropped elements from the
�rst step of CIMGS, so that r12 = t12 + g12 and tT12g12 = 0.

R22 is the Cholesky factor of B(1) = B22 � rT12r12, and T22 is the CIMGS factor of
~B(1) = B22 � tT12g12 � gT12t12 � tT12t12. Again both B(1) and ~B(1) are M-matrices. It is not
di�cult to see that B(1) � ~B(1), because

B(1) = B22 � rT12r12

= B22 � tT12t12 � tT12g12 � gT12t12 � gT12g12

= ~B(1) � gT12g12

and gT12g12 � 0. Let LTL = ~B(1) be the Cholesky factorization of ~B(1). By Lemma 2,
R22 � L, and by the induction assumption, we have L � T22. So R22 � T22, which implies
RCHOL � RIMGS . By induction, this is true for any n.

(2) Next we prove RIMGS � RIC using a similar induction proof. It holds trivially for n =

1. Assume that it is true for n�1. Then for matrices of order n, letRIC =

l11 l12
0 L22

!
be the

incomplete Cholesky factor of ATA. Applying one step of incomplete Cholesky factorization
to ATA, we have l11 =

p
b11, and for components not in P , l12 =

�
b12
l11

�
. So l11 = t11 and

l12 = t12. Now L22 is the incomplete Cholesky factor of B̂(1) = B22 � lT12l12 � ~B(1), and B̂(1)

is also an M{matrix. Let L̂ be the incomplete Cholesky factor of B̂(1). By the induction
hypothesis, we have T22 � L̂. From Lemma 3, L̂ � L22, so T22 � L22. Together, these imply
T � L. By induction, the inequality holds for matrices of any order n � 1. 2

Now we know that when ATA is an M-matrix, CIMGS will be a better approximation
of the full Cholesky factorization than IC with the same sparsity pattern. Experiments on
general matrices also show that CG preconditioned by CIMGS takes fewer iterations than
that preconditioned by IC, when both successfully produce a preconditioner. These results
will be shown in Section 4

4 Numerical test

4.1 Test environment

The experiments in this section use test problems that include systems from applications
problems and from the rua and rra sets of the Harwell-Boeing collection. Characteristics
of the matrices, including the number of rows (m), the number of columns (n), the number
of non-zeros (nnz(A)), the number of the non-zeros in the normal equations (nnz(ATA)),
the density of the matrix and the density of the normal equations, are given in Table 1. The
density of a matrix B 2 <m�n, denoted dense(B), is the percentage ratio of actual non-zero
elements to the maximum possible, i.e., 100(nnz(B)=mn).

The collection includes 30 matrices, of which 10 are square. The sizes of the matrices
vary considerably both in terms of dimensions { 115 � m � 16640 and 82 � n � 3564 {
and number of non-zero elements { 421 � nnz(A) � 78298. The density of the matrices

14

ranges from less than 1% to slightly more than 7%. As expected, both the density and
non-zero element count increase signi�cantly for the normal equations associated with the
test matrices { density reaches the neighborhood of 40% for some matrices, and one problem
has almost 400,000 non-zero elements. Most are reasonably conditioned but there are a few
which are ill conditioned. The matrices are grouped according to the application source. The
�rst set, amoco1 to well1033, is from the rra portion of the Harwell-Boeing collection.
amoco1 is a seismic tomography problem, while belladit and belmedt are based on
information retrieval problems. The group from conev8 to strat8, is from computational

uid dynamics problems where for some algorithms they are used to compute orthogonal
projections. The �nal group of rectangular matrices, bnl1 to woodw, is from a collection of
linear programming problems available on netlib. We have also included a group of square
matrices from the rua set of the Harwell-Boeing collection, fs 760 1 to steam2.

For the set of problems, we generate a right-hand side vector consistent with a solution
vector whose components are all equal to 1. In this case, we can easily check the accuracy
of the method. We measure the following quantities for the accurancy of the method: k
x� x� k2, k Ax� b k2, kx�x�k2

kx�k2
and kAx�bk2

kbk2
.

The CIMGS and incomplete Cholesky factorizations used for comparison in the exper-
iments were implemented in standard Fortran. The packages SPARSPAK-A [6] used for
Cholesky factorization and SPARSPAK-B [7] are also in Fortran but bene�t from the more
careful consideration typical of a numerical software package. All tests were run on a single
processor of an Alliant FX/2800. In addition to the algebraic quantities mentioned above,

oating point operation counts and the cpu time were also collected in the experiments and
are used to assess the e�ciency of the various approaches.

A conjugate gradient iterative method, CGLS [13] is used in the experiments as the
basic iterative method to solve the least squares problems and, for square matrices, the
nonsymmetric linear systems. Of course, even though CGLS does not form the normal
equations explicitly, its convergence depends on their spectrum. We would, therefore, expect
CGLS to have di�culty converging for problems that are not well conditioned. Applying
CGLS to the test suite con�rms this expectation. Since the test problems are consistent we
can use k x � x� k2 = k x� k2� 10�6 as the condition that determines acceptable accuracy.
Unfortunately, this proved to be a very di�cult condition for CGLS to ful�ll. Only 6 of the
30 test problems produced the desired accuracy within n iterations. After 2n iterations, a
total of 9 matrices satisfy the requirement. Finally, after 2m only 2 more are added for a
total of 11 out of 30 matrices. If the accuracy condition is altered to constrain the residual
by requiring k b � Ax k2� 10�6 or k b � Ax k2 = k b k2� 10�6, the situation improves
somewhat. After n iterations, 10 matrices have satis�ed the requirement. An additional 5
matrices have acceptable errors after 2n steps and after 2m iterations a total of 16 matrices
out of 30 are solved satisfactorily. Therefore, some form of preconditioning is required for
CGLS to be a viable solution technique for these test problems.

15

name m n nnz(A) nnz(ATA) dense(A) dense(ATA)
amoco1 1436 330 35210 27686 7.43 25.42
belladit 374 82 1343 2395 4.38 35.60
bellmedt 5831 1033 52012 372255 0.86 34.89
illc1850 1850 713 10608 5633 0.80 1.11
well1850 1850 713 10608 5633 0.80 1.11
well1033 1033 321 5765 2469 1.74 2.40

conev8 3362 484 15852 5135 0.97 2.19
dunes8 5414 771 25430 6998 0.61 1.18
strat8 16640 2205 78298 21757 0.21 0.45

bnl1 1576 632 9152 28005 0.92 7.01
��f800 854 525 6235 10625 1.39 3.85
gen 1500 780 3276 5816 0.28 0.96
nzfri 3521 624 15903 8406 0.72 2.16
pilot4 1000 411 5145 6899 1.25 4.08
scsd6 1350 148 5666 2248 2.84 10.26
seba 1028 516 4874 52432 0.92 19.69
shell 1775 537 4900 2748 0.51 0.95
ship12s 2869 1042 8284 6388 0.28 0.59
standata 1075 360 3038 1833 0.79 1.41
woodw 8405 1099 37478 21525 0.41 1.78

fs 760 1 760 760 5976 13957 1.03 2.42
fs 760 3 760 760 5976 13957 1.03 2.42
gre 115 115 115 421 692 3.18 5.22
hwatt 2 1856 1856 11550 27445 0.34 0.80
mc fe 765 765 24382 73254 4.17 12.52
orsreg 1 2205 2205 14133 24203 0.29 0.50
pde 9511 961 961 4681 6420 0.51 0.70
pores 2 1224 1224 9613 12723 0.64 0.85
saylr4 3564 3564 22316 38793 0.18 0.31
steam2 600 600 13760 20237 3.82 5.62

Table 1: Characteristics of test matrices

16

4.2 Implementation of CIMGS and its performance

As with Cholesky factorization, by reorganizing the computations we can get di�erent ver-
sions of CIMGS. The version given earlier can be viewed as a rank-1 update approach. The
experiments use a delayed update version. On the ith step, we form the ith row of ATA, store
it in B, then perform all the CIMGS modi�cations for that row before going on to the next
row. During this computation we may need to store elements in a row that are in the drop
set, but are needed for the modi�cations required for later rows. This organization facilitates
the use of a very simple dynamic data structure to hold the row as it evolves from ATA, the
original B, to the �nal form of B. The �ll{in elements are computed using a simple pattern
union computation for each sparse row triad performed.

The implemented version of CIMGS is:
Algorithm [R]=CIMGS[B,P]
begin
for i = 1; 2; : : : ; n;

for k = 1; 2; : : : ; i� 1;

(1) B(i; i : n) =

(
B(i; i : n) � rkiB(k; i : n) (k; j) 62 P
B(i; i : n) � bkiR(k; i : n) (k; j) 2 P

endfor
if bii > 0 then

(2) bii =
p
bii

(3) B(i; i : n) = B(i; i : n)=bii
for j = i; i+ 1; : : : ; n

(4) rij =

(
0 (k; j) 2 P
bij (k; j) 62 P

endfor
else

(5) quit (incomplete factorization can not complete)
endif

endfor
end

In the algorithm description, there is no speci�cation for the selection of P except for
the exclusion of diagonal elements. Ways of selecting P can be divided into two classes:
dynamic and static. By dynamic we mean that P is unknown until the completion of the
factorization. For example, using a drop tolerance to select retained elements is a dynamic
method. Assume that A is normalized so that the diagonal elements of ATA are equal 1
and all the o� diagonal elements are less than or equal to 1. Note that the computation of
CIMGS will not make the elements greater than 1. So we can safely choose the tolerance
� between 0 and 1. When the magnitude of a computed element is smaller than �, this
element is dropped, or we say this position is selected into P . By static we mean that P
is determined before the numerical computation starts. For example, P can be selected so
that the target factor will have the same sparsity pattern as the normal equations, the way
incomplete Cholesky factorization usually does.

17

By experiment we found that the 'compression' technique is e�ective in reducing the
computational cost of computing the preconditioner. CIMGS produces the preconditioner
much more e�ciently than IMGS for a given pattern selection strategy. Table 2 shows the
number of test matrices in various ranges of speedup, where speedup is de�ned as the ratio
of operation counts of CIMGS over IMGS for dynamic pattern selection. Speedups de�ned
as the ratio of execution times follow similar pro�les. The data clearly shows substantial
improvement in the production of the preconditioner { a factor of over 2000 in one case. In
addition, the quality of the preconditioners produced by CIMGS are the same as for IMGS,
with the exception of one problem for which CIMGS fails to produce the preconditioner R,
and two problems for which CIMGS is unexpectedly superior. The fact that there is one
problem that CIMGS can not produce the factor R while IMGS does con�rms the analysis
presented earlier showing that CIMGS is more likely than IMGS to breakdown due to the
numerical de�ciency.

speedup 1-30 30-60 60-100 100-200 200-500 500-1000 >1500
matrices 6 5 2 9 4 1 2

Table 2: Number of matrices in selected ranges of the ratio of IMGS operation to CIMGS
operation count for the preconditioner phase with dynamic pattern selection

Figure 1 demonstrates the reduction in total operations count (for performing the fac-
torization and applying the iterative method) by plotting the ratio of operation counts for
IMGS over those of CIMGS for the 30 test cases. In all cases this ratio is no smaller than
one.

As with IMGS and ICGS the performance of CIMGS with dynamic dropping is sensitive
to the choice of �. For example, when � = 0:02 we �nd that for bellmedt most of the time
CIMGS takes to solve the problem is in the factorization phase. We can then increase the
size of � to reduce the cost of factorization and to improve the overall performance. Figure 2
shows the e�ects of varying � for this problem. On the other hand, for problem saylr4, the
preconditioning quality of R is not good enough and the iterative phase takes an excessive
amount of time. Reducing � allows the iterative method to solve the problem, and improves
performance as shown in Figure 3. The optimal value of � is unknown in general. This is
a potential di�culty of CIMGS, which it shares with other drop tolerance methods such as
ILUT preconditioning [15]. In general, the more ill conditioned problems are, the smaller �
may need to be. In any case, this
exibility of pattern selection may allow us to �nd a better
preconditioner after a more careful selection process.

4.3 Comparison of CIMGS with IC

Previously we showed that when ATA is an M{matrix, RCIMGS better approximates RCHOL

than RIC does, so we expect that RCIMGS will perform better than RIC as a preconditioner.

18

0 10 20 30
10

0

10
1

10
2

matrices

IM
GS

/CI
MG

S

static

0 10 20 30
10

0

10
1

10
2

10
3

matrices

IM
GS

/CI
MG

S

dynamic

Figure 1: Ratio of total operation counts: IMGS to CIMGS (static and dynamic)

What if the normal equations are not an M-matrix? Since we do not yet have analytic
results to answer this question, we next seek to experimentally determine which is better by
numerical testing.

In general, IC is much more likely to fail than CIMGS. This is the primary advantage of
incomplete orthogonal factorization preconditioning methods over IC preconditioning. It is
known that IC fails so often that it is not practical to use it without modi�cation for general
problem solving. For problems for which IC exists without modi�cation, we now compare
the performance of IC with CIMGS.

When the pattern is chosen to be that of the normal equations, the number of iterations
of CGLS preconditioned by CIMGS and IC respectively are shown in Table 3. In the table,
the space shown is the number of
oating point numbers for the factorization. Operations
are counted in millions of
oating point operations in the factorization phase. The operation
count is the same in each iteration for both IC and CIMGS preconditioner because they
produce an R with the same structure. So the iteration number can be used to evaluate the
number of operations for the iterative phase.

This table shows that in general, with the drop set P from the complement of the set of
positions of non-zero elements of normal equations. the factors R generated by these methods
perform similarly as preconditioners. IC is likely to take one or two more iterations than the
others. Although the di�erence is small, it seems to agree with the theoretical analysis for
the case when ATA is an M-matrix. This does not provide a �rm basis to conjecture that the
theoretical results can be extended to more general problems, because the testing is limited.
We do not yet know if this comparison will change as the non-zero pattern is varied or how
it changes as, e.g., the angles between the columns of A changes. We also do not know how
large the di�erence between the IC and CIMGS preconditioners can become. Here we only

19

0 0.2 0.4 0.6
0

2

4

6

8
x 10

4

(a)

n
n
z(

R
)

0 0.2 0.4 0.6
10

20

30

40

50

60

(b)

th
e
 n

u
m

b
e
r

o
f
ite

ra
tio

n
s

0 0.2 0.4 0.6
0

10

20

30

40

50

(c)

T
im

e
 (

se
co

n
d
)

0 0.2 0.4 0.6
0

20

40

60

80

100

(d)

F
lo

p
s

(m
ill

io
n
)

Solid line: Total time or
ops.
Dash line: CIMGS factorization time or
ops.
Dot line: CGLS iteration time or
ops.

Figure 2: E�ect of � on the cost of CIMGS factorization bellmedt

see a small di�erence; more testing is needed to answer these question.
As mentioned in the previous section, there are methods that can modify the pattern

so that IC will exist. For problems for which IC needs some pattern modi�cation to avoid
numerical breakdown, the preconditioner R produced by IC using a modi�ed pattern is the
same as the R produced by CIMGS using the same pattern. The performance of the IC
preconditioner will be the same (or very close) as that of the CIMGS preconditioner.

From the table we can also see that the di�erences in the cost of computing these fac-
torizations are quite signi�cant and in general IC is much cheaper than CIMGS. So in those
cases where both CIMGS and IC successfully complete use the same static pattern, the cost
of the factorization and therefore the cost of solving the system heavily favors IC. CIMGS
does have a signi�cant advantage over IC and other preconditioners { CIMGS is the only
robust preconditioner that does not have to rely on elaborate restart mechanisms to achieve

20

10
-6

10
-4

10
-2

10
0

0

1

2

3
x 10

5

(a)

n
n

z
(R

)

10
-6

10
-4

10
-2

10
0

0

1000

2000

3000

(b)

th
e

 n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

10
-6

10
-4

10
-2

10
0

0

100

200

300

(c)

T
im

e
 (

s
e

c
o

n
d

)

10
-6

10
-4

10
-2

10
0

0

200

400

(d)

F
lo

p
s
 (

m
ill

io
n

)

Solid line: Total time or
ops.
Dash line: CIMGS factorization time or
ops.
Dot line: CGLS iteration time or
ops.

Figure 3: E�ect of � on the cost of the iterative phase of CIMGS for saylr4

robustness when the factorization fails to exist. This enables CIMGS to use its adjustability
to improve the overall solution process e�ciency by using a smaller and more problem de-
pendent non-zero set to generate its preconditioner, possibly o�seting the added cost of its
factorization compared to IC and similar methods.

This can be seen from the data in Figure 4. For the 12 problems where IC exists and
allowed convergence, the pattern selection was adjusted for CIMGS1. The CIMGS version is
either comparable to, or appreciably better than, the IC version, indicating that with careful
adjustment the CIMGS preconditioner can be competitive with or superior to the standard
and usually e�cient IC preconditioner.

Note that in the implementation of IC, we only keep the positions that the elements will

1A description of the adjustments is given in the discussion of the comparison to the normal equations.

21

Name Iterations Space Operations
cimgs IC cimgs ic cimgs ic

belladit 14 15 3401 2395 0.17 0.08
bellmedt 16 17 533070 372255 324.30 142.32
dunes8 20 21 119523 6998 1.89 0.06
conev8 1 1 20591 5135 0.38 0.05
strat8 89 91 9558 21757 1.61 0.18
fs 760 1 4 4 232165 13957 8.70 0.02
gre 115 34 35 5749 692 0.07
steam2 7 7 113548 20237 7.32 0.53
nzfri 57 57 189907 8406 7.52 0.06
scsd6 21 21 11026 2248 0.32 0.03
shell 23 22 95739 2748 0.87 0.01
woodw 34 35 156426 21525 6.61 0.29

Table 3: Comparison of CIMGS and IC.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

matrices

flo
ps

(IC
)/f

lo
ps

(C
IM

G
S)

Figure 4: Ratio of total operations for CGLS/IC to total operations for CGLS/CIMGS with
adjusted pattern selection

22

be saved and only do the computations that involve the elements that in those positions.
Obviously we need not compute for positions that are in P , because we know those positions
will not e�ect the values of the �nal factor R. The situation is more complicated for CIMGS,
where we not only need to compute the elements not in the drop set P , but also need to
compute some of the elements in P because they carry intermediate information that will
eventually a�ect the value of R. On the other hand, it is not necessary to compute all the
elements in P because some of them will not a�ect the value of R. Computing them will
involve `compute{then{drop', which is a waste of time and space. A detailed discussion of an
algorithm that identi�es these unnecessary computations by symbolic analysis can be found
in [16]. The data we show here includes such unnecessary computations, but it should be
kept in mind that performance may be improved further given an e�cient symbolic analysis
algorithm that identi�es and eliminates unnecessary computations.

4.4 Comparison of CIMGS with direct methods

Is the CIMGS preconditioner e�ective enough to compete with direct methods? We also con-
ducted experiments comparing CIMGS preconditioned CG method with two direct methods:
the QR factorization of SPARSPAK-B, and SPARSPAK-A applied to the normal equations.

From the experiments we found that SPARSPAK-B is able to solve all the problems
except mc fe and steam2, for which k Ax�b k2� 10�6 could not be reached because k b k2
is too large, 3:955 � 1013 for mc fe and 5:266 � 1010 for steam2. The relative residuals
for the solution of these two problems are small, however. Comparing with other methods
tested we �nd that SPARSPAK-B is the most robust method. There are some problems for
which CIMGS breaks down during the factorization when using certain drop sets P , and so
a pattern adjustment may be needed. Comparing the number of
oating point operations
and the time used by the methods, SPARSPAK-B need more
oating point operations than
the other methods. CGLS preconditioned by CIMGS is more e�cient by this measure.

The normal equations method implemented using SPARSPAK-A is much more e�cient
than the QR in SPARSPAK-B but is less robust. Table 4 shows the number of problems
for which SPARSPAK-A fails to generate the Cholesky factor using various reorderings, and
the number of problems for which SPARSPAK-A with the corresponding orderings provides
the most e�cient solution.

Method Reverse Cuthill-McKee Re�ned Quotient Tree Minimum Degree
Failure 6 5 6
Best 9 1 15

Table 4: Performance of SPARSPAK-A

Compared with CGLS preconditioned by CIMGS, the normal equations method is less
robust in the sense that it fails on more problems than the CGLS/CIMGS combination.

23

Furthermore, there is almost no space for improvement in the direct method. For CGLS
preconditioned by CIMGS, there is great
exibility in pattern and ordering selection so that
if CIMGS with a pattern fails to compute a factor R, we can change to another pattern.

So with a careful selection of the sparsity pattern, CGLS preconditioned by CIMGS can
be as e�cient as the normal equations method. For example, consider the following two
sets of performance tests. The �rst set, in Figure 6, shows the ratio of
ops when using
SPARSPAK-A with reverse Cuthill{McKee (RCM) ordering to the
ops when using CGLS
with CIMGS preconditioning. The second set, in Figure 5, shows the ratio of times. The
results were from having 50% of the problems use either the static pattern of the normal
equations, or a dynamic pattern with � = 0:02, whichever is better, and the remaining 50%
of the problems use dynamic pattern selection with no more than 3 re�nements of �.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

matrix number

CI
M

GS
/S

PK
-A

time

Figure 5: Comparison of times for SPARSPAK-A and CGLS preconditioned by CIMGS

From Figure 6 we see that for some problems, such as bellmedt, illc1850,well1850
and well1033, the iterative method works much more e�ciently than the normal equations
method. For other problems such as strat8 and prose 2, the normal equations method
works better.

The results in Figure 5 di�er from those comparing the number of operations. In terms of
time, there are more problems for which the normal equations method is better than CGLS
preconditioned by CIMGS. This inconsistency is due in part to the di�erence in optimization
levels a�orded the two codes. The implementation of CIMGS is not optimized compared to
SPARSPAK, and some implementation details of CIMGS can be bettered. For example, our
symbolic analysis and data structure allocation can be improved by properly adapting the
fast symbolic Cholesky factorization result. This will is a goal of future research.

In summary, compared with the QR method, a robust direct method of solving linear
least squares problems, we conclude that for most test problems, using CGLS with CIMGS

24

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

matrix number

CI
M

GS
/S

PK
-A

flops

Figure 6: Comparison of operations for SPARSPAK-A and CGLS preconditioned by CIMGS

is much more e�cient. On the other hand, the normal equations method, on the problems
succeeds in solving, is more e�cient. However, if we are free to use the adjustability of the
CIMGS preconditioner, we �nd that CGLS with CIMGS preconditioning can be as e�cient
as the normal equations method.

5 Conclusion

This paper introduces a new preconditioning algorithm CIMGS. A detailed study of the
theoretical and numerical properties of CIMGS shows that it is robust both theoretically and
empirically, existing (in exact arithmetic) for any full rank matrix. Numerically it is more
robust than an incomplete Cholesky factorization preconditioner, and CG preconditioned
with CIMGS compares favorably with using Cholesky factorization on the normal equations.
This suggests that with CIMGS preconditioning, CG can be a viable method for practical
use for least squares problems.

Additional theory shows that CIMGS is equivalent to IMGS, the factorization has bet-
ter backward error properties than complete Cholesky factorization does, and for systems
whose normal equations are M{matrices, CIMGS induces a regular splitting, better esti-
mates the complete Cholesky factor Rc as the drop set P gets smaller, and lies between
complete Cholesky factorization and incomplete Cholesky factorization in its approximation
properties. Those properties usually seem to numerically hold, even when ATA is not an
M{matrix. When the drop set satis�es a mild and easily veri�ed (or enforced) property,
the upper triangular factor CIMGS generates is the same as the one incomplete Cholesky
factorization does. This allows guaranteeing the existence of IC factorization, based solely

25

on the target sparsity pattern.
There are several issues left for further research. First, we need to have a more e�cient

algorithm to identify unnecessary computations used in the current implementation for static
sparsity patterns. This should bring down the computation cost further, and we are currently
working on this issue.

Second, new reordering algorithms need to be found to reduce the intermediate data
storage and computations. Existing reorderings generally target minimizing �ll{in during
complete factorization, or minimizing bandwidth of the matrix. Possibly by adapting them
we can develop a new heuristic more suitable for improving the performance of CIMGS, by
minimizing the intermediate computations.

Selecting an optimal target sparsity pattern, i.e., the drop set P , could be crucial to the
success of CIMGS. We need to have a fast way of selecting the pattern, but even if this is
not practical, for problems where the same pattern can be used over and over, it may still
be worthwhile to search for a near optimal pattern.

Parallel processing is an important issue which has not been discussed here. Although
CIMGS has a structure similar to Cholesky factorization, which is not as rich in parallelism as
Gram{Schmidt type factorization, we can still exploit parallelism in the algorithm by utilizing
a block bordered diagonal matrix structure. Because of the great
exibility of sparsity pattern
selection allowed in CIMGS, it is feasible to combine sparsity pattern selection strategies with
matrix ordering techniques to get better performance of the parallel processing.

The preconditioning method proposed here is applied to CG type iterative methods. How
will they perform when combined with other type of iterative methods, for example, row
projection methods, GMRES or Lanczos-based methods? Of particular interest is adapting
the preconditioner to the particular iterative method. We are presently investigating the
relationship of near-orthogonality of the coe�cient matrix of a system of linear equations to
the convergence behavior of a collection of iterative methods and the implications for the
use of CIMGS as a preconditioner.

Another potential research area is to extend the relation of CIMGS with Cholesky and
incomplete Cholesky to unsymmetric matrices. It will be interesting and useful if there is a
algorithmwhich has a similar relation with LU factorization and incomplete LU factorization,
and avoids the problem of numerical breakdown.

References

[1] S. Ashby, Polynomial Preconditioning for Conjugate Gradient Methods, PhD thesis,
University of Illinois Urbana-Champaign, 1987. Also available as Tech. Rep. 1355,
Department of Computer Science, University of Illinois { Urbana.

[2] , Minimax polynomial preconditioning for Hermitian linear systems, SIAM J. Mat.
Anal. Appl., 12 (1991), pp. 766{789.

26

[3] M. W. Berry and R. J. Plemmons, Algorithms and experiments for structural
mechanics on high-performance architectrues, Computer Methods in Applied Mechanics
and Engineering, 64 (1987), pp. 487{507.

[4] A. Bj�orck, SSOR preconditioning methods for sparse least squares problems, in Pro-
ceedings of the Computer Science and Statistics: 12-th Annual Symposium on the
Interface, J. F. Gentleman, ed., University of Waterloo, Waterloo, Ontario, Canada,
May 1979, pp. 21{25.

[5] I. Chio, C. L. Monma, and D. Shanno, Further development of a primal-dual
interior point method, ORSA Journal on Computing, 2 (1990), pp. 304{311.

[6] E. Chu, A. George, J. Liu, and E. Ng, SPARSPAK: Waterloo sparse matrix
package, user's guide for SPARSPAK-A, Tech. Rep. CS-84-36, Department of Computer
Science, University of Waterloo, 1984.

[7] A. George and E. Ng, SPARSPAK: Waterloo sparse matrix package, user's guide
for SPARSPAK-B, Tech. Rep. CS-84-37, Department of Computer Science, University
of Waterloo, 1984.

[8] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins, 2nd ed.,
1989.

[9] M. T. Heath, R. J. Plemmons, and R. C. Ward, Sparse orthogonal schemes for
structural optimization using the force method, SIAM Journal of Scienti�c and Statistical
Computing, 5 (1984), pp. 514{532.

[10] A. Jennings and M. A. Ajiz, Incomplete methods for solving ATAx = b, SIAM
Journal of Scienti�c and Statistical Computing, 5 (1984), pp. 978{987.

[11] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for
linear systems of which the coe�cient matrix is a symmetric M-matrix, Mathematics of
Computation, 31 (1977), pp. 148{162.

[12] M.Fortin and R. Glowinski, Augmented Lagrangian methods: applications to the
numerical solution of boundary-value problems, North-Holland, 1983.

[13] C. Paige and M. Saunders, Solution of sparse inde�nite systems of equations and
least squares problems, Tech. Rep. STAN-CS-73-399, Stanford University, 1973.

[14] Y. Saad, Preconditioning techniques for nonsymmetric and inde�nite linear systems,
Journal of Computational and Applied Mathematics, 24 (1988), pp. 89{105.

[15] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computations, tech. rep., Center
for Supercomputing Research and Development, University of Illinois, Urbana, Illinois,
1990.

27

[16] X. Wang, Incomplete factorization preconditioning for linear least squares problems,
PhD thesis, University of Illinois Urbana-Champaign, 1993. Also available as Technical
Report # UIUCDCS-R-93-1834, Department of Computer Science, University of Illinois
at Urbana { Champaign.

[17] J. H. Wilkinson, A priori error analysis of algebraic processes, in Proc. International
Congress of Mathematicians, 1968, pp. 119{129.

[18] Z. Zlatev and H.B.Nielson, Solving large and sparse linear least squares problems
by conjugate gradient algorithm, Computers and Mathematics with Applications, 15
(1988), pp. 185{202.

28

