
indiana university

computer science department

technical report no. 392

An Introduction to Behavior Tables

Kamlesh Rath, M. Esen Tuna, and Steven D. Johnson

december 1993

An Introduction to Behavior Tables
�

Kamlesh Rath, M. Esen Tuna, Steven D. Johnson

Indiana University Computer Science Department

Bloomington, Indiana.

Abstract

In this paper, we introduce behavior tables, an extension of register transfer tables, as a basis

for system representation for reasoning about control, datapath, protocol, and data abstraction

facets of system synthesis. The novelty in our approach is that it uni�es di�erent aspects of

system synthesis and alleviates the need to change bases to reason about di�erent facets of

a design. Behavior tables can model indirection in system speci�cation, by allowing names

of registers and states to be treated as values. Behavior tables provide an environment for

transformational design to derive a formally \correct" implementation from a speci�cation. The

emphasis of our work is on design correctness rather than design automation. Herein, we develop

implementation relations over di�erent facets of behavior tables. A set of transformations on the

di�erent facets of behavior tables, that preserve the implementation relations on the facets, are

presented. Behavior tables and the transformations presented in this paper are based on a �nite

state machine model. Starting from a speci�cation with symbolic data values, transformations

are used by the designer to direct the design towards an implementation of interacting behavior

tables with boolean data representation and appropriate control and datapath abstractions.

To illustrate the use of behavior tables and some of the transformations, we use a behavior

table description of the FM9001 processor. The resulting boolean level behavior tables can be

synthesized using sequential logic synthesis tools.

�Research reported herein was supported, in part, by NSF: The National Science Foundation, under grants num-

bered MIP 89-21842 and MIP 92-08745.

1

1 Introduction

Register transfer level descriptions have been used extensively for datapath speci�cation and design.

With the advent of hardware description languages to model system behavior, register transfer level

descriptions have been reduced to an intermediate form in the datapath synthesis. State machines,

functional languages and petri-nets have been used to model control descriptions. In this paper, we

propose a design representation called behavior tables to model the behavior of a system. Behavior

tables are based on a �nite-state machine model, and can represent control and datapath facets

of a system, in addition to protocol and data abstraction facets. The feature that distinguishes

behavior tables from other system representations and hardware description languages is that, they

can model indirection in system description. We present a set of transformations on di�erent facets

of behavior tables which can be used to derive a suitable implementation from a speci�cation.

Derivation is a formalization of synthesis, with more emphasis on correctness than on automation.

A speci�cation can have many implementations and a particular derivation chooses one. The

transformations add information to the (accumulating) implementation.

Most design automation systems restrict the use of transformations/algorithms to certain phases

of the synthesis path, with di�erent design representations at each step. The separation of control

and datapath in the synthesis path and the use of di�erent modeling environments make it di�cult

for a designer to guide the search in the design space. System level transformations that change

both control and datapath are performed before their separation, and structural transformations

are performed after their separation. In our methodology, transformations on all facets of a design

can be reected in behavior tables. This enables a designer to transform di�erent facets of a design

without having to change design representations.

Along with a global view of a design, views of di�erent facets of a design can also be abstracted

from a behavior table. From our experience, a table form is a useful visual output for a designer to

help navigate the design space. A high-level functional speci�cation of a system is used to construct

the behavior table speci�cation. A sequence of transformations on the di�erent facets of the design

are used to construct a set of interacting boolean level behavior tables which can be realized using

sequential logic synthesis tools (e.g. [1]).

Many design automation systems use directed acyclic graph (DAG) based structures for design

representation. Flamel [2] uses a DAG based representation to model data-ow and control-ow.

Transformations are de�ned on the DAGs for scheduling and allocation. The System Architect's

Workbench [3] also uses a DAG based internal representation called Value Trace. Behavioral and

structural transformations are de�ned on the value trace representation. The ADAM synthesis

system [4] also uses data ow graphs for datapath synthesis. Graph based internal representations

2

are suited for either control-ow or data-ow representation. Representing these and other facets

in a single graph form is usually done by annotating the control-ow graph with data-ow and

other information, as in HOP [5].

Petri-net based internal representations are also suited for control-ow representation but are

not useful for data-ow representation. In the CAMAD [6] system, a petri-net model is used for

control representation and a graph representation is used for datapath representation. Semantics

preserving structural transformations are used on the petri-net and graph representations to realize

a circuit.

Patel [7] proposes a hierarchical system of graph representations to describe concurrency,

control-ow and data-ow aspects of a system. This representation addresses the problem of stor-

age optimization for synthesis algorithms, but as Patel acknowledges \one of the �rst problems

: : : is the detailed representation of the datapath". The data abstraction aspects of a design are

not addressed e�ectively by this representation. Also, a hierarchical representation indexed only

by behavior is not well suited for structural transformations that deal with all data ow through

particular functional units. Behavior tables are indexed both by behavior and structure, and are

suited for both behavioral and structural transformations.

System-level synthesis in the System Architect's Workbench is accomplished by behavioral

transformations [8]. Walker and Thomas show transformations on the controller and selector.

Transformations to partition a design into processes are also shown. The processes created using

their method have a very simple interaction scheme to transfer data values and control signals using

message passing. Their approach can not synthesize components using complex protocols for data

transfers and synchronization.

SpecPart [9] partitions algorithm/process grained computations from the SpecChart behavioral

speci�cations. Default protocols are used for interaction between components. The CHOP system-

level design partitioner [10] uses task graphs to specify the protocol between every partition. Special

purpose hardware units called data-transfer modules are used on both sides of each interaction.

Although this method allows for complex protocols and use of o�-the-shelf components, the interface

has to be designed manually and may be expensive in terms of area and performance because of

the special purpose modules.

In our approach, parts of a system at the algorithm/process level or operation level of granu-

larity can be abstracted and the protocol between the components can be incorporated into the

components without using any special-purpose modules. We use Interface Speci�cation Language

(ISL) to specify the protocol between components of a system. Components of a system can be

independently synthesized. Alternatively, they can be mapped to o�-the-shelf components, such

as dynamic RAMs and oating-point units by specifying the interface from timing diagrams. The

3

designer uses transformations to ensure that the implementation is \correct by construction".

Indirection in system description is modeled by allowing names of registers and states to be

treated as values in the system. This can signi�cantly reduce the size of the control algorithm

that is represented. The ability to change levels of data abstraction is a unique feature of behavior

tables. A system can be speci�ed at the symbolic level and later transformed into a boolean system

by assigning types to entries in the tables.

The research reported here grew out of our existing design derivation system, which is based

on �rst order functional algebra [11, 12]. As an example of the use of transformations on behavior

tables, we sketch parts of the derivation of a boolean level behavior table implementation of Hunt's

FM9001 processor.

2 Behavior Tables

Behavior tables are an extension of register transfer tables that can model the control, datapath,

protocol, and data abstraction facets of a design. The datapath refers to the functional units and

the interconnections between them. The control facet describes the conditions and state that select

the functions performed by the datapath. The protocol facet of a design describes the interaction

of a system with its environment. The data abstraction facet refers to the representation of data

values at symbolic and boolean levels.

Behavior tables are based on a �nite state machine model. Each row in a behavior table

represents a transition in the machine described by the table. The columns are divided into two

sections, the decision section and the action section. The decision section represents the state and

conditions that must hold for the transition to be executed. The action section represents the data

ow through the functional units and ports and the next state.

The decision columns consist of truth values for internal conditions (predicates), external con-

ditions (control inputs) and the present state. Each column has a type associated with it. A type

can be generic (symbolic values) or speci�c (e.g. 32-bit boolean). All values in each column must

have the same type as the column. The action section in a transition is executed if the decision

corresponding to the row is true. A decision is true if the present state, predicates and control

inputs equal the values in the corresponding columns in the row. Behavior tables are deterministic,

i.e. only one row in the table has a true decision at any instant in time. Transitions from any state

to a particular state due to conditions such as reset or interrupts can also be modeled by a don't

care value in the present state column. The action columns consist of values in registers, input and

output ports, and the next state for the system. Values can also be functions on symbolic values,

registers, and input ports.

4

2.1 Finite State Machine Model

A behavior table is a representation for a �nite state machine that models system behavior. A

machine is de�ned as M = hT; s; n; P; R;C;S; Î;@I; Vi, where T is a non-empty set of transitions,

s is the present state, n is the next state, P is the set of ports, R is a set of internal registers and

combinational signals, C is the set of internal predicates, S is a set of states (# denotes all states

in the machine), Î is a set of references that includes functions over register names and data input

names, @I is a set of dereferences, and V is the domain of values including the don't care value #.

The set of ports (P = CI [CO [DI [DO) is a union of the sets of control inputs, control outputs,

data inputs, and data outputs. We adopt a convention that references to registers and inputs in Î

are written as r̂, and dereferences in @I are written as @r.

A transition is de�ned as a function of the form t = if [satis�es(td; ~d)] then ta, where the

assignment function td : C [CI 7! V and td : fsg 7! S. An assignment function td is satis�ed with

respect to the current conditions ~d if (8ci 2 fsg [C [CI : td(ci) = ~di _ td(ci) = #) is true.

The action section of each transition is de�ned by the assignment function, ta : R[DO[CO 7!

V [S [I and ta : fng 7! (V [S) � f#g. Each transition in the machine denotes a row in the

behavior table. This model can be used to denote transitions from a set of states to a particular

state or from a state to one of several states based on register contents. A transition is written as

s1
t
! s2, if t(s) = s1 and t(n) = s2.

De�nition 2.1: t+ denotes a �nite sequence of transitions, t0; t1; : : : ; tk, such that for all 0 < i <

k; ti(n) = ti+1(s). The sequence of transitions de�nes the function, t
+(x) = tk(tk�1(: : : (t0(x)) : : :)).

The set of transitions in t+ is denoted by ft+g.

Our model enables us to de�ne transitions to states based on register or port values. Interrupts

and continuations can be modeled as transitions in behavior tables. Indirection allows us to control

data ow based on register contents without \controller" intervention.

The care set for a transition denotes the set of registers, ports, predicates, inputs and state that

do not have don't care values according to the assignment function t. caret = fp j t(p) 6= #g. For

a sequence of transitions, the care set is de�ned as caret+ = fp j t 2 ft+g : 9t(p) 6= #g.

We de�ne an evaluation function E, which evaluates a machine with respect to streams of input

sequences for each control and data input and generates streams of values for registers, control

and data outputs, and the next state of the machine. The evaluation of a machine with streams of

don't care values for all inputs is denoted by the function E#. The don't care values are propagated

through the evaluation. This can help identify which parts of a machine are independent of external

inputs.

Behavior tables do not subsume any clocking/timing discipline, and can be used to model

5

synchronous and asynchronous designs. A clocking discipline must be chosen to derive an imple-

mentation. In this paper we will develop transformations based on a global synchronous clock.

2.2 Behavior Speci�cation Language

(de�ne MACHINE

(lambda ((ci1 ci2 : : : cim) (di1 di2 : : : din))

(letrec

((s0 (lambda ((r1 r2 : : : rj) (co1 co2 : : : cok) (do1 do2 : : : dol)) Exp0))
...

(sq (lambda ((r1 r2 : : : rj) (co1 co2 : : : cok) (do1 do2 : : : dol)) Expq)))

(s init r1init r2init : : : rj init co1init co2init : : : cokinit do1init do2init : : : dolinit))))

Figure 1: Behavior Speci�cation Language

Figure 1 shows the speci�cation language for the behavior of a machine. It is a subset of the

Scheme programming language, which can be translated into a behavior table. The speci�cation is

a set of mutually recursive function de�nitions. Each function de�nition is a conditional expression

representing the possible transitions from the present state of the system. The initial power-on/reset

state and register and output values are denoted by the last line of the speci�cation. An expression

is one of the following forms:

(S v1 v2 : : :)

(if pred Exp1 Exp2)

(case pred (id1 Exp1) (id2 Exp2) : : :)

(let ((id v) : : :) Exp)

The expression (S v1 v2 : : :) denotes parallel assignments of the values in the expression to

registers and outputs, and transfer of control to the state denoted by the value S. if and case

expressions denote conditional statements. pred denotes the conditions in the expression, a boolean

function over internal predicates and control inputs. let expressions are used to assign values to

combinational signals.

3 Control and Datapath Facets

The functional units (arithmetic/logic units, registers, switches) in a system and the interconnec-

tions between them are called the datapath of a system. The control determines the state, external

and internal conditions that select the actions performed by the datapath. Control of a system

6

consists of the state, external control inputs, and internal predicates in the system. The datapath of

a system consists of interconnections between the internal registers/memory, combinational signals,

data input ports, data output ports, and the control output ports. We will refer to the decision

section of the behavior table as the control facet and the action section as the datapath facet. The

present state and next state are considered part of all facets of behavioral tables. Indirection blurs

the distinction between control and datapath facets in behavior tables, by providing a decision

mechanism in the datapath. Each row in the decision section of the behavioral table represents a

satis�able set of conditions. If the current conditions satisfy decisions in a row, then the actions in

corresponding row are executed. Each column in the action section of a behavior table represents

the values assigned to a functional unit in di�erent transitions.

3.1 Implementation

The implementation relation between control and datapath facets of machines is determined by

the present state, the internal predicates, external control inputs, and actions performed on the

datapath in sequences of transitions. To de�ne the implementation relation we must �rst de�ne the

inclusion relation over control decisions and datapath actions. The inclusion relation on decisions

tests if all conditions tested in one sequence of transitions are tested in the other. In case of

datapath actions, all non don't care values at the end of one sequence of actions must have an

equivalent value at the end of the other sequence of actions.

De�nition 3.2: The inclusion relation between control decisions and datapath actions is de�ned

as :

t+1 � t+2
def
= 8p 2 care

t
+
2
: 8td2 2 ft

+
d2
g : 9 td1 2 ft

+
d1
g : td1(p) � td2(p)

^ t+a1(p) � t+a2(p)

The equivalence of two values can be tested by textual comparison, for simple expressions. In

general, this involves veri�cation of equivalence of logical and arithmetic expressions [13], and is

therefore a heuristic task. This relation applies only to internal predicates, registers and com-

binational signals. External input or output columns should not be transformed based on this

relation.

The binary relation simulates is a maximal relation over states, S � S1 � S2, where S1; S2 are

sets of states.

De�nition 3.3: A relation over states is a simulation relation if s1 s2 implies :

8s2
t
+
2
! s02 : 9s1

t
+
1
! s01 : t

+
2 � t+1 ^ s01 s02

7

If s01 62 S1 or s
0
2 62 S2, then the side condition s01 s02 is generated. Such a condition can be veri�ed

for a particular stream of inputs by dynamic evaluation. It may be possible to statically evaluate

s01 and s
0
2 if the next state is independent of inputs, i.e. E# yields a stream of non don't care terms

for next state.

De�nition 3.4: The control and datapath facets of a machine M1 is de�ned to be an implemen-

tation of the control and datapath of machine M2 (M1 vM2) i�,

8s2 2 S2 : 9s1 2 S1 : s1 s2

where S1; S2 are the sets of states in M1;M2 respectively. Verifying the implementation for two

arbitrary machines can be computationally expensive. We will use transformations that preserve

the implementation relation to avoid having to verify it.

3.2 Transformations

In this section we de�ne transformations on the control and datapath facets of a behavior table that

preserve the implementation relation. Indirection transformations can be used to move parts of the

system between control and datapath. The transformations on the datapath have been adapted

for use on behavior tables from the algebra on purely functional datapath descriptions reported in

[14, 12].

Column Insertion/Deletion/Renaming : A column denoting a new functional unit can be added

to a behavior table with any value for any transition. A column can be deleted if all values in the

column are don't cares. A column can be renamed and all references to the column in the rest of

the table must be replaced by the new name.

Column Merging/Function Identi�cation : Two columns can be merged if for each transition in

the behavior table, one of the columns has a don't care value (conict-free - de�ned in section 5)

or both have the same value. A new combinational output column identifying a function in the

behavior table is inserted in the datapath. All references to merged columns or identi�ed function

in the rest of the table are then replaced by references to the new column.

Generalization : All the values in a column can be normalized as functions with the same num-

ber of arguments by padding functions with fewer arguments with don't care arguments. This

transformation is used before factorization.

Factorization : This transformation is used to encapsulate a set of functions all with the same

number of arguments or a functional unit by generating columns for communicating values to and

from a functional unit that can perform all the encapsulated functions. An instruction column with

a value corresponding to each encapsulated function is also generated for the new functional unit.

8

Folding/Unfolding : A sequence of transitions can be folded into a single transition, if all transitions

out of each intermediate state in the sequence of transitions have a target state within the scope of

the folding. A folded transition must include the sequence of transitions it replaces. A transition in

a speci�cation can be unfolded into a sequence of transitions which satis�es the inclusion relation.

Only transitions with don't care values on ports that connect across behavior tables can be folded

or unfolded.

3.3 Indirection

Indirection involves changing behavior of a system based on register values. Essentially, a portion

of the control is modeled as part of the datapath. A bounded indirect reference in the datapath

can be transformed into a set of transitions, each with a decision for a possible reference. Figure 2

shows the transformations on state and value indirection.

@r

r ...

State Indirection Value Indirection

s1 ms
ks

1r =? s

kr =? s

mr =? s

1r =? i

jr =? i

nr =? i

Figure 2: Indirect Transformations

De�nition 3.5: A transition with an indirect value reference and a set of transitions without the

indirect reference are equivalent if:

t1
I
� T2

def
= ta1(c) 2 @I) 8i 2 Î : 9t2 2 T2 : td2(ta1) = i

^ t1(c) 62 @I) 8t2 2 T2 : t1(c) � t2(c)

Similarly, a transition with state indirection is equivalent to a set of transitions without state

indirection if:

t1
S
� T2

def
= t1(n) 62 S) 8q 2 S : 9t2 2 T2 : t2(n) = q

^ 8t2 2 T2 : c 6= n) t1(c) � t2(c)

4 Protocol Facet

The protocol facet describes the interaction of a machine with its environment using the in-

put/output ports. Communication between machines is modeled as values over connected ports.

9

Other forms of communication, such as using bu�ers, must be modeled explicitly.

Interaction A ::= C : D j A;A where C ::= c1=v1; ::; cn=vn

j compute Ao j await Ai D ::= d1=v1; ::; dn=vn

j Ao until Ai j Ai before Ao cj 2 CI [CO; dk 2 DI [DO

vj ; vk 2 V

Expression E ::= ;A j E;A j E E j E�

De�nition M ::= Process (CI;CO;DI;DO)
4
= E

Figure 3: ISL Syntax

Interface speci�cation language (ISL) provides a front-end for speci�cation of the protocol facet

of a behavior table. We briey sketch this language here - more details can be found in [15].

ISL can not be used to specify the internal behavior of a system as internal register transfers

and internal conditions. A de�nition in ISL is used to construct a machine that describes the

control synchronization and data transfer protocol with its environment. The machine model for

the protocol speci�cation is same as the one described in Section 2.1, with designated start and �nal

states. The complement of the protocol speci�es the environment machine. Our idea of complement

is similar to Dill's idea of an environment of a trace structure [16].

The goal of the transformations on the protocol facet is to decompose a behavior table into

interacting behavior tables using the speci�ed protocol de�nition. We can specify the protocol of

a component and incorporate an implementation of an interaction path of its complement into the

other component. Internal state changes in a machine are not speci�ed in this language to allow for

partial speci�cations of decomposed components. In case of o�-the-shelf components, the protocol

de�nition can be written from their timing diagrams.

The protocol speci�cation of a machine has two components, data interaction and control

interaction. Data interactions occur over input/output data ports and control interactions occur

over input/output control ports. The protocol is de�ned over input and output control ports (CI,

CO), input and output data ports (DI, DO), and data values (V). We use an extension of the

language presented in [15], that allows for symbolic values on control and data ports.

The syntax description of ISL is given in Figure 3. An interaction consists of a set of values on

data ports guarded by certain truth values on control ports. Input interactions Ai denote a set of

control inputs guarding data interactions. Similarly output interactions Ao denote a set of control

outputs guarding data interactions.

10

4.1 Complement

The environment of a machine can be constructed using the complement operation. The com-

plement machine can be viewed as the protocol speci�cation of decomposed components in the

environment. The machine constructed by a protocol de�nition is embedded as a \stub" into one

side of the protocol interface, and an implementation of an interaction path of its complement is

emdedded as the \stub" on the other side of the protocol interface.

For every output(input) port in a machine, a new input(output) port is created in its com-

plement using a \rename" function to generate port names. The internal registers and internal

predicates in a machine do not play any role in the complement operation. A machine has the

same set of states as its complement. In every transition, the complement machine has the same

value on the corresponding renamed ports.

The set of transitions in the complement are:

T = fs1
t
! s2 j s1

t
! s2 2 T and t = Rename(t)g

where Rename(t)(p0) = t(p) if p0 = rename(p).

4.2 Path Implementation

The complement of the protocol facet of a behavior table describes its environment. Each path

from the start state to the �nal state in the complement machine represents a valid sequence of

interactions to complete a protocol. A machine can interact with any implementation of any path

of its complement machine.

To de�ne the path implementation relation we must �rst de�ne the inclusion relation over

protocol interactions. An interaction t1 includes an interaction t2 if all the ports which have non

don't care values in t2 also have equivalent values in t1.

De�nition 4.6:

t1
ptl

� t2
def
= 8p 2 caret2 : t1(p) � t2(p)

The binary relation path simulates is a maximal relation over states, Sp � S1 � S2, where S1; S2

are the sets of states in the two machines. s1 p s2 implies that there are possible interactions from

s1 and s2, such that the interaction from s1 includes the interaction from s2, and they lead to states

which satisfy the same relation. It also implies that, if s2 is a wait state for a control input, then

s1 must also be a wait state for the control input, or s1 must lead to a wait state for the control

input.

De�nition 4.7: A relation over states is a path simulation relation if s1 p s2 implies :

11

1. 9s1
t1! s01; s2

t2! s02 : t1
ptl

� t2 ^ s01 p s
0
2

2: 9s2
t21! s2; s2

t22! s02 : s2 6= s02 ^ caret22 \ CI 6= �)

(9s1
t12! s01 : s1 6= s01 ^ t12

ptl

� t22 ^ s01 p s
0

2) ^

((9s1
t11! s1 ^ t11

ptl

� t21) _

(9s1
t13! sk ^ t13

ptl

� t21 ^ sk p s2))

De�nition 4.8: A machine M1 path implements machine M2 (M1 vp M2) if :

1. The start state of M1 path simulates the start state of M2.

2. The �nal state of M1 path simulates the �nal state of M2.

Intuitively, a machine can interact with any path implementation of its complement.

4.3 Sequential Decomposition

In this section we introduce the sequential decomposition transformation on the protocol facet of

behavior tables. Sequential decomposition is a generalization of the factorization transformation

on the datapath facet [14] to include protocols in factoring procedures from a system. This trans-

formation is used to extract parts of a system at the operation, algorithm, or procedure level of

granularity into a co-process, with non-trivial control synchronization and data transfer protocols.

Sequential decomposition is di�erent from classical FSM decomposition (e.g. [17]), which assumes

tightly-coupled sub-machines that can share state and input information.

A group of functions in a behavior table can be abstracted to a behavior table that performs the

function. The protocol for communication with the abstract component is speci�ed in ISL. A path

implementation of the complement of the protocol facet of the abstract component is embedded

into the original behavior table. Embedding is done by merging the start state and �nal states

of the path implementation into the source and target states of the transition that contained the

abstracted function. The other operations in the replaced transition are scheduled in the earliest

possible transition in the embedded path implementation, such that the data dependencies in the

original behavior table are preserved. A set of connections between ports in the machines are also

generated by this transformation.

5 Data Abstraction Facet

The Data Abstraction facet of the behavior table describes the representation of values in the

system as symbols or values represented in other domains (e.g. boolean). The organization of the

12

behavior tables helps in visualizing data abstraction in a design. Transformations on the values in

the behavior table can be used to \correctly" map the values to a di�erent domain. A type is de�ned

as a domain for representation of values of a speci�ed width. Changes in data abstraction are made

on columns of behavior tables by specifying the types for the columns. The name of a column

and all values in the column are changed to a vector in the new type. Values that are outputs of

functions over other registers and input ports must also be of the same type as the column. Data

representation changes on input/output ports produce side-conditions for corresponding changes

on all ports that are connected together on other machines in the system.

Changing the level of data abstraction of a machine M = hT; s; n; P; R;C; S; Î;@I; Vi creates

a new machine M 0 = hT 0; ~s; ~n; P 0; R0; C 0; S0; V 0i. We de�ne the representation function, that maps

columns in M to a partition of columns in M 0. R : fsg [fng [P [R [C � type 7! f~sg [f~ng [

[P 0] [[R0] [[C0]. We also de�ne a function that maps values in one data type to vectors of values

in another: V : V [S [Î� type 7! V 0� [S0� [Î0�.

For the data representation changes to be valid, the representation function R must be onto. It

must also be one-to-one or it must be conict-free. We will assume that R is onto, and we de�ne

the conict-free condition. If after data abstraction changes, two or more columns are mapped on

to the same column, then they must be conict-free.

De�nition 5.9: A data representation function R is conict-free i� :

8p0 2 P 0 [R0 [C0 : 9p1; p2 2 P [R [C : p0 2 R(p1) \R(p2)) 8t 2 T : t(p1) = # _ t(p2) = #

The above conditions are su�cient to state that R is valid and can be used to transform the

machine M . The conditions for validity of the data representation function have been adapted

from our previous work on abstract data types [18].

5.1 Transformations

In this section we de�ne the represents relation on the data abstraction facets of machines and the

transformations to change levels of data abstraction. A type must be chosen for each column in the

behavior table. A machine represents another (M 0 vR M) if each column in M is changed using

R;V and a type, to a vector of columns in M 0.

De�nition 5.10: The represents relation over machines is de�ned as :

8p 2 fsg [fng [P [R [C : R(p; type) = ~p) 8t 2 T : 9t0 2 T 0 : t0(~p) � V(t(p); type)

Transformations on the data abstraction facet of behavior tables involve speci�cation of a data

representation function R and a function V that maps symbolic values in the behavior table to values

13

present (nlist-p (a-imm-p (reg-dir-p (pre-dec-p (post-inc-p (reg-dir-p (pre-dec-p (post-inc-p (store

state oracle) ins) (mode-a (mode-a (mode-a (mode-b (mode-b (mode-b -resultp

ins)) ins)) ins)) ins)) ins)) ins))

0 intr 1 # # # # # # # #

1 intr 0 # # # # # # # #

2 fetch # # # # # # # # #

3 op-a # 1 0 0 0 # # # #

4 op-a # 0 1 0 0 # # # #

5 op-a # 0 0 1 0 # # # #

6 op-a # 0 0 0 1 # # # #

7 op-a # 0 0 0 0 # # # #

8 op-b # # # # # 1 0 0 #

9 op-b # # # # # 0 1 0 #

10 op-b # # # # # 0 0 1 #

11 op-b # # # # # 0 0 0 #

12 alu-op # # # # # 1 # # 1

13 alu-op # # # # # 0 # # 1

14 alu-op # # # # # # # # 0

Table 1: Behavior Table Speci�cation - Decision Section

in some type. Each column in a behavior table is transformed using R to a vector of columns. The

values in the transformed column are coerced to new values in the type using V . Changing the

level of data abstraction of functions involves coercing the function to the new type. Changing the

data representation of the present and next state columns is analogous to state assignment.

In case of boolean types with di�erent widths, the coercion functions can be as simple as

extracting or padding bits on values. For functions, such as \+", de�ned over symbols, the new

representation would be a de�ned over bit vectors. It should be kept in mind while specifying the

data representation and coercion functions that some values (or set of values) may be impossible

to represent in certain types. Ports in a behavior table that are connected in a net with ports in

other behavior tables must have the same type. Changing the level of data abstraction of a port

generates side-conditions for all ports in the net.

6 Example - Deriving an FM9001 Implementation

The FM9001 [19] is a 32-bit microprocessor, the third generation processor description de�ned by

Hunt and mechanically veri�ed at the gate level using the Nqthm theorem prover. Bose has derived

an Actel FPGA implementation of the FM9001 using our digital design derivation tool [20], which

is adept at handling datapath oriented designs with monolithic control. Here, we give a sketch some

of the transformations on a behavior table speci�cation of the FM9001. We start from a functional

high-level speci�cation with indirection, for a compact speci�cation, with the goal of deriving a

boolean behavior table implementation, interacting with a memory sub-system.

14

next regs ags mem pc ins opa opb b-addr oracle

-state

0 intr regs ags mem # # # # # oracle

1 fetch regs ags mem (car # # # # (cdr

oracle) oracle)

2 op-a (ur regs ags mem pc (read # # # oracle

pc (inc (@pc))) (@pc)

mem)

3 op-b regs ags mem pc ins (extend # # oracle

(a-imm

ins) 32)

4 op-b regs ags mem pc ins (@(rn-a ins)) # # oracle

5 op-b (ur regs ags mem pc ins (read (dec # # oracle

(rn-a ins) (dec (@(rn-a

(@ (rn-a ins)))) ins))) mem)

6 op-b (ur regs ags mem pc ins (read (inc # # oracle

(rn-a ins) (inc (@(rn-a

(@ (rn-a ins)))) ins))) mem)

7 op-b regs ags mem pc ins (read (@(rn-a # # oracle

ins)) mem)

8 alu-op regs ags mem pc ins opa (@(rn-b ins)) # oracle

9 alu-op (ur regs ags mem pc ins opa (read (dec (dec oracle

(rn-b ins) (dec (@(rn-b @(rn-b

(@(rn-b ins)))) ins))) mem) ins))

10 alu-op (ur regs ags mem pc ins opa (read (inc (@(rn-b oracle

(rn-b ins) (inc (@(rn-b ins))

(@ (rn-b ins)))) ins))) mem)

11 alu-op regs ags mem pc ins opa (read (@(rn-b (@(rn-b oracle

ins)) mem) ins))

12 intr (ur regs (uf ags mem pc ins opa opb b-addr oracle

(rn-b ins) ins opa opb)

(do-op : : :))

13 intr regs (uf ags (write b-addr pc ins opa opb b-addr oracle

ins opa opb) mem (do-op ags

opa opb ins))

14 intr regs (uf ags mem pc ins opa opb b-addr oracle

ins opa opb)

Table 2: Behavior Table Speci�cation - Action Section

15

6.1 Control and Datapath Transformations

We start with a behavior table with �ve states, �fteen transitions, ten internal predicates and ten

functional objects. The decision section of the table is shown in Table 1. The �rst transformation

we perform is to generalize the functions (mode-a ins) and (mode-b ins) to (mode op ins) in the

decision section, by adding a register op in the action section with the value a, when the next state

is op-a, and b when the next state is op-b. We can now merge both the predicate columns with

name (reg-direct-p (mode op ins)), because they are conict-free. Similarly, we can merge both the

(pre-dec-p : : :) columns and both the (post-inc : : :) columns. These transformations reduce the

decision columns from ten to seven. We can also generalize the functions (rn-a ins) and (rn-b ins)

in the action section, to a function (rn op ins) using the op register.

opa opb

#@(rn op ins)

opa

opa opb

@(rn op ins)

opa

@(rn op ins)

opa opb

@(rn op ins) @(rn op ins)

opb

##

opa opb

@(rn op ins)

opb

4

8,9,
10,11

Figure 4: Datapath Transformations

Figure 4 shows the next sequence of transformations on data-ow diagrams for registers opa

and opb after transition 4. The �rst transformation copies the values from the column opa to opb

over the don't care values for transitions 4, 5, 6, and 7. We then change the values in column opa

for transitions 8, 9, 10 and 11, from opa to opb. This is a valid transformation because the values

in opa and opb are always the same in the state op-b, the source state for transitions 8, 9, 10 and

11. With this transformation it becomes apparent that the values in opa in the state op-b are not

used in any transition out of the state, and are overwritten in every outgoing transition from that

state. These \dead" values are replaced by don't cares in transitions 3, 4, 5, and 6, preserving the

implementation relation over all sequences of transitions from state op-a to alu-op.

2
4 8

op−a op−b alu−op

2

4

8 alu−opop−ab 2 op−ab
f

f =
op−ab

f =
alu−op

op =? a

op =? b

4,8

Figure 5: Control Transformations

The next set of transformations are illustrated in Figure 5. We merge the states op-a and op-b

into a single state op-ab, and use the value in op (derived earlier) to decide on which transition to

take. We then merge the transitions 4 and 8, which di�er only in the next-state column. A register

future-state (f in Figure 5) is added, which precomputes the next state in all transitions leading

16

to the source state of transition 4, and gets the value alu-op in transitions 4 and 8. The next-state

values for transitions 4 and 8 are then replaced by register future-state for state indirection. Now,

these two transitions are exactly the same, and can be merged. Similarly, transitions 5 and 9, 6

and 10, and 7 and 11 can also be merged resulting in reduction of one state and four transitions.

As we have seen here, control and datapath transformations go hand in hand. This reinforces

our main thesis that, a design representation which uni�es di�erent facets of a system in a single

formal model can be used to address unexplored aspects of system design. We will not elaborate

on the other transformations on the control and datapath facets due to space constraints.

6.2 Protocol Transformations

We will now derive an implementation of the processor, by sequential decomposition of the memory

object. Decomposition of the memory is based on the protocol speci�cation of a memory sub-

system, written below in ISL syntax:

Mem(strobe;RW;ADDR; dtack;DIN;DOUT)
4
=

[; strobe=T;RW=T : ADDR=Vaddr until dtack : DIN=Vread

; strobe=T;RW=F : ADDR=Vaddr;DOUT=Vwrite until dtack]
�

The state diagram for the memory is shown in Figure 6. The complement of Mem, Mem is the

description of its environment. Read and Write memory operations in the processor correspond to

a path in Mem. These path implementations of Mem are embedded into the processor description

in place of the transitions with read and write operations (Figure 7). This assures us that the

processor can interact properly with the memory.

dtack:
DIN/V read

dtack

addr

strobe/T,RW/T:
ADDR/V

addr

strobe/T,RW/T:
ADDR/V

,Vaddr
DOUT/Vwrite

strobe/T,RW/F:
ADDR/

,Vaddr
DOUT/Vwrite

strobe/T,RW/F:
ADDR/

Figure 6: Memory Sub-system Protocol Speci�cation

The column mem in Table 2 is replaced by the ports in Mem as columns in the behavior table.

The control input dtack is added as a column in the decision section. All read operations in the

table are replaced by the port DIN, with appropriate values on ADDR and strobe in the embedded

sequence of transitions. Similarly, write operations are replaced by appropriate values on ADDR,

17

merge

merge

dtack:
DIN/V read

(read mem ...)

merge

merge

dtack

(write mem
 b−addr ...)

addr

strobe/T,RW/T:
ADDR/V ,Vaddr

DOUT/Vwrite

strobe/T,RW/F:
ADDR/

,Vaddr
DOUT/Vwrite

strobe/T,RW/F:
ADDR/addr

strobe/T,RW/T:
ADDR/V

Figure 7: Embedding Path Implementations for Read and Write

strobe and DOUT in the embedded sequence of transitions. Other operations in the replaced

transitions are scheduled in the embedded sequence of transitions such that the implementation

relation on the control and datapath are preserved.

Our methodology is powerful enough to derive the memory controller for a DRAM memory

system, with a protocol speci�cation from DRAM timing diagrams, (reported in [21]).

6.3 Data Abstraction Transformations

Data abstraction is an important part of the design process, because it enables the designer to

reason at the abstract symbolic level before assigning representations to functional units and values

in a system. Consider the change of representation for the column ins from symbolic to 32-bit

boolean. The transformation is shown in Figure 8.

ins

#

#

DIN

ins

.

.

.

ins

)

ins31 ins30 : : : ins1 ins0

: : : #

: : : #

DIN31 DIN30 : : : DIN1 DIN0

ins31 ins30 : : : ins1 ins0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ins31 ins30 : : : ins1 ins0

Figure 8: Data Abstraction Transformation

The only non don't care values in the column in Table 2, are ins and (read (@pc) mem). Let us

assume that the read has been factored to the memory sub-system using protocol transformations,

and replaced by DIN. Changing the representation of ins, will introduce a coercion on DIN from

symbolic to 32-bit boolean. This in turn will generate a side-condition that the port DIN in Mem,

which is connected to DIN, is also of type 32-bit boolean.

The other columns in the behavior table can similarly be changed to boolean values using the

data representation function R, and the value mapping function V . The present, next, and future

state columns are represented as boolean values after state assignment, which is also a part of V .

18

7 Conclusion

In this paper, we presented behavior tables as a model for system representation. We described a

transformational design environment based on behavior tables, that can be used to derive a correct

implementation from a speci�cation. The signi�cance of our work is to enable a system designer to

specify a system at a high-level of abstraction, and provide a design environment that can be used

to transform the speci�cation into an implementation at a lower level of abstraction. We bring

together di�erent aspects of system design in a uni�ed reasoning framework. Transformations on

control and datapath facets, and protocol and data abstraction facets of behavior tables, lend the

foundation for a system design tool. Behavior tables also provide a useful visual interface to the

designer to look at di�erent facets of a design.

The research reported here is work-in-progress. A design environment based on behavior tables

is being implemented using Motif widgets in X-windows, Scheme and C. Heuristic optimizations

can be built on top of the transformations described here for automation of the design process.

In this paper, we introduced indirection in hardware description. We have used indirection

to reference functional units within a behavior table. This can be extended to include references

to components, ports, and nets outside a behavior table. We would like to explore other uses of

indirection, especially for hardware-software co-design problems.

19

References

[1] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. Sangiovanni-
Vincentelli, \Sequential circuit design using synthesis and optimization," in Proceedings of
International Conference on Computer Design, pp. 328{333, IEEE, Oct. 1992.

[2] H. Trickey, \Flamel: A high-level hardware compiler," in Transactions on Computer-Aided
Design 1987, pp. 259{269, IEEE, Mar. 1987.

[3] D. E. Thomas, E. M. Dirkes, R. A. Walker, J. V. Rajan, J. A. Nestor, and R. L. Blackburn,
\The system architect's workbench," in Proceedings of the 25th ACM/IEEE Design Automa-
tion Conference, pp. 337{343, 1988.

[4] R. Jain, K. K�u�c�uk�cakar, M. J. Mlinar, and A. C. Parker, \Experience with the ADAM synthesis
system," in Proceedings of the 26th ACM/IEEE Design Automation Conference, pp. 56{61,
June 1989.

[5] G. C. Gopalakrishnan, R. M. Fujimoto, V. Akella, and N. S. Mani, \HOP: A process model
for synchronous hardware; semantics and experiments in process composition," Integration,
the VLSI journal, vol. 8, pp. 209{247, 1989.

[6] Z. Peng, A Formal Methodology for Automated Synthesis of VLSI Systems. PhD thesis,
Link�oping University, Sweden, 1987.

[7] M. R. K. Patel, \A design representation for high level synthesis," in Proceedings of EDAC,
pp. 374{379, 1990.

[8] R. A. Walker and D. E. Thomas, \Behavioral transformation for algorithmic level IC design,"
IEEE Transactions on Computer-Aided Design, vol. 8, no. 10, pp. 1115{1128, 1989.

[9] F. Vahid and D. D. Gajski, \Speci�cation partitioning for system design," in Proceedings of
the 29th ACM/IEEE Design Automation Conference, pp. 219{224, 1992.

[10] K. K�u�c�uk�cakar and A. C. Parker, \CHOP: A constraint-driven system-level partitioner," in
Proceedings of the 28th ACM/IEEE Design Automation Conference, pp. 514{519, 1991.

[11] S. D. Johnson, Synthesis of Digital Designs from Recursion Equations. Cambridge: MIT Press,
1984. ACM Distinguished Dissertation 1984.

[12] B. Bose, \DDD - A Transformation system for Digital Design Derivation," Tech. Rep. 331,
Department of Computer Science, Indiana University, May 1991.

[13] S. Devadas and K. Keutzer, \An Automata-Theoretic Approach to Behavioral Equivalence," in
Proceedings of the International Conference on Computer-Aided Design, pp. 30{33, November
1990.

[14] S. D. Johnson, \Manipulating logical organization with system factorizations," in Hardware
Speci�cation, Veri�cation and Synthesis: Mathematical Aspects (Leeser and Brown, eds.),
vol. 408 of LNCS, pp. 260{281, Springer, July 1989. Proceedings of Mathematical Sciences
Institute Workshop, Cornell University, 1989.

20

[15] K. Rath and S. D. Johnson, \Toward a basis for protocol speci�cation and process decom-
position," in Proceedings of IFIP Conference on Hardware Description Languages and their
Applications (D. Agnew, L. Claesen, and R. Camposano, eds.), pp. 157{174, Elsevier, Apr.
1993. Also published as Technical Report No. 375, Dept. of Computer Science, Indiana Uni-
versity.

[16] D. L. Dill, Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent Circuits.
MIT Press, 1988.

[17] S. Devadas and A. R. Newton, \Decomposition and factorization of sequential �nite state
machines," Transactions on Computer-Aided Design 1989, vol. 8, pp. 1206{1217, Nov. 1989.

[18] Z. Zhu and S. D. Johnson, \An algebraic framework for data abstraction in hardware de-
scription," in Proceedings of The Oxford Workshop on Designing Correct Circuits (Jones and
Sheeran, eds.), Springer, 1990.

[19] W. A. Hunt, \A formal HDL and its use in the FM9001 veri�cation," in Mechanized Reasoning
in Hardware Design (C. Hoare and M. Gordon, eds.), Prentice-Hall, 1992.

[20] B. Bose and S. D. Johnson, \DDD-FM9001: Derivation of a veri�ed microprocessor. an exer-
cise in integrating veri�cation with formal derivation," in Proceedings of IFIP Conference on
Correct Hardware Design and Veri�cation Methods, Springer, 1993.

[21] K. Rath, B. Bose, and S. D. Johnson, \Derivation of a DRAM memory interface by sequential
decomposition," in Proceedings of the International Conference on Computer Design, pp. 438{
441, IEEE, Oct. 1993.

21

