
indiana university

computer science department

technical report no. 385

Derivation of a DRAM Memory Interface by Sequential

Decomposition
Kamlesh Rath, Bhaskar Bose, and Steven D. Johnson

june 1993

To appear in the proceedings of the 1993 IEEE International Conference on Computer Design (ICCD '93),
Cambridge, Massachusetts, October, 1993.

Derivation of a DRAM Memory Interface by Sequential

Decomposition �

Kamlesh Rathy, Bhaskar Bose, and Steven D. Johnson

Computer Science Department

Indiana University

Bloomington, IN 47405

Abstract

Design and synthesis of DRAM based memory sys-
tems has been a di�cult task in high-level system syn-
thesis because of the relatively complex protocols in-
volved. In this paper, we illustrate a method for top-
down design of a DRAM memory interface using a
transformational approach. Sequential decomposition
of the DRAM memory interface entails extraction of a
DRAM memory object from a system description that
incorporates the read/write protocol and accounts for
refresh cycles. We apply sequential decomposition to a
non-trivial example, a formally derived realization of
the Nqthm FM9001 microprocessor speci�cation [1],
called DDD-FM9001 [2].

1 Introduction

Derivation is a formalization of synthesis with more
emphasis on \correct construction" than on design au-
tomation. Our tools are a set of transformations that
are used to engineer an implementation from a spec-
i�cation, with each transformation accumulating in-
formation about the implementation. In a functional
framework, a transformation called system factoriza-
tion [3] was used earlier to extract functional com-
ponents with naive interaction schemes. As a gener-
alization of system factorization, we have developed
sequential decomposition based on a �nite state ma-
chine model to decompose a system description into
interacting sequential machines [4]. A description of
the interaction of a component with its environment
is a parameter in the decomposition.

�Research reported herein was supported, in part, by NSF,

under grants numbered MIP 89-21842 and MIP 92-08745 and

by NASA, under grant number NGT-50861. To appear in Pro-

ceedings of ICCD '93, IEEE.
yEmail: rathk@cs.indiana.edu

A realization of the Nqthm FM9001 [1] speci�ca-
tion, called DDD-FM9001 [2], was derived using the
DDD [5] system. The derivation involved using sys-
tem factorization to decompose the memory compo-
nent. Factorization imposed restrictions on the design
limiting the memory to a static RAM realization. We
now look at this example in the context of sequential
decomposition to realize a DRAM memory.

1.1 Related Research

Several researchers have looked at the issues in-
volved in system synthesis. Borriello uses timing dia-
grams to specify the interface of a circuit and synthe-
sis tools to generate the interface automatically [6].
While Boriello develops these external interface spec-
i�cations as a means to guide synthesis, our goal is
to use them to guide design decomposition. Yajnik
and Ciesielski [7] perform top-down machine decom-
position by partitioning outputs and states in state
graphs with the objective of performance and area op-
timization of synthesized PLA circuits. Speci�cation
at di�erent levels of abstraction and partitioning of
control and data ow graphs for synthesis have been
considered by Kuehlmann and Bergamaschi [8] to ob-
tain smaller layouts. Our approach is to enable de-
signers to decomposemachines into logically and func-
tionally distinct components. We do not use heuris-
tics to partition a design based on layout constraints.
Wolf et.al use a �nite state machine model to specify
a network of communicating machines and have con-
trol manipulation transformations to search the design
space [9]. Drusinsky and Harel have used state-charts
for bottom-uphierarchical speci�cation [10] by embed-
ding simpler state machines at a lower level of spec-
i�cation into states at a higher level of speci�cation.
The tree of state machines is then synthesized into a
network of PLAs.

In related formal methods research, Kurshan [11]
veri�es reactive systems by stepwise reduction and re-
�nement using L-automata with language and process
homomorphism. Davie [12] has used constraints on
the target architecture and the context of a design in
CIRCAL to reduce the complexity of veri�cation. As
an alternative to bottom-up veri�cation techniques,
our approach facilitates top-down design by factoring
sequential components from designs using transforma-
tions.

1.2 DDD-FM9001

The DDD-FM9001 is a general purpose micropro-
cessor realized in FPGAs, mechanically derived from
Hunt's Nqthm FM9001 speci�cation [1]. The FM9001
is a 32-bit microprocessor mechanically veri�ed in
the Nqthm theorem prover and implemented in LSI
Logic's gate array technology. Details of the deriva-
tion of the DDD-FM9001 are reported in [2].

This paper shows the steps involved in the decom-
position of a DRAM memory sub-system from the
DDD-FM9001 system description. Starting with spec-
i�cations for DRAM and DDD-FM9001, we will derive
the system organization shown in Figure 1.

DDD−FM9001 DRAM
Memory

Timer

 DRAM
Manager

Figure 1: System Organization

2 Preliminaries

We use Interface Speci�cation Language (ISL) [4]
to specify the interaction of a machine with its envi-
ronment. All communication is modeled as values over
connected ports. ISL is based on �nite state machine
semantics, details of which are discussed in [4]. The
complementation operation on machines is briey dis-
cussed. We discuss the notion of path implementation
and show its use in the derivation exercise.

A machine is de�ned as M = hS; T; r; f; P; Vi,
where S is the set of states, T is a non-empty set
of transitions, r is the reset/start state, f is the �nal
state, P is the set of ports, and V is a domain of val-
ues. The set of ports (P = CI [CO [DI [DO) is a
union of the sets of control inputs, control outputs,
data inputs, and data outputs.

A transition is de�ned from a source state to a tar-
get state, s1

L
! s2, where L is a label. L = Lc + Ld,

where the assignment functions are Lc : CI [CO 7!
f0; 1;#g and Ld : DI[DO 7! V . The don't care value
is denoted as # . The care set for a label denotes
the set of ports that do not have don't care values
according to the label L. careL = fp j L(p) 6= #g.

2.1 Complement

The environment of a machine can be constructed
using the complement operation. For every out-
put(input) port in a machine, a input(output) port
is created in its complement. The complement ma-
chine retains the sets of values, states, reset, and �nal
states. For every transition, the complement machine
has the same value on the corresponding ports. The
set of transitions in the complement are:

T = fs1
L
! s2 j s1

L
! s2 2 T and L = Rename(L)g

where Rename(L)(p0) = L(p) if p0 = rename(p).

2.2 Path Implementation

Each path from the reset state to the �nal state in
the complementmachine represents a valid sequence of
interactions to complete a protocol. A machine can in-
teract with an implementation of any interaction path
of its complement machine. Sequential decomposition
of a component from a system is accomplished by in-
corporating the appropriate path implementation of
the complement of the component into the description
of the rest of the system.

De�nition 2.1: The inclusion relation over transition
labels is de�ned as:
L1 � L2 () 8p 2 careL1

: L1(p) = L2(p)

De�nition 2.2: A maximal relation over states (S �
S1�S2) is a path simulation relation if s1 ps2 implies:

1. 9s1
L1! s01; s2

L2! s02 : L1 � L2 ^ s01 p s
0

2

2. 8s1
L1! s01 : (careL1

\CI1) 6= �)

9s2
L2! s02 ^ L1 � L2 ^ s01 p s

0

2

3: 9s1
L11! s1; s1

L12! s01 : s1 6= s01 ^ (careL12
\CI1) 6= �

) (9s2
L22! s02 : s2 6= s02 ^ L12 � L22 ^ s01 p s

0

2)

^ ((9s2
L21! s2 : L11 � L21) _

(9s2
L23! sk : L11 � L23 ^ s1 p sk))

De�nition 2.3: A machine M1 is path implemented
by machine M2 (M1 vp M2) if, r1 p r2 ^ f1 p f2,
where r1; r2 are the start states, and f1; f2 are the �nal
states of M1;M2.

3 DRAM Speci�cation

Simpli�ed timing diagrams of the read and CAS-
before-RAS refresh cycles adapted from the data-
sheets of the 256K-bit DRAM, TI-TMS4256, [13] are
shown in Figures 2 and 3. The write cycle is similar
to the read cycle.

Row Col

Data

RAS

CAS

ADDR

DATA
OUT

RD/WT

t0 t1 t2

Hi−Z

Figure 2: Read cycle timing diagram

RAS

CAS

t4t3

Figure 3: Refresh cycle timing diagram

t1[ta(C)] � 50ns t3[tw(RH)] � 90ns
t0 + t1[ta(R)] � 100ns t4[tw(RL)] � 100ns
t2[tdis(CH)] � 30ns

The formulae above show the setup and hold timing
constraints for normal read, write and CAS-before-
RAS refresh cycles, and are used to manually choose
the system clock speed. All the above constraints can
be satis�ed by choosing a clock interval greater than
100ns (clock speed < 10MHz) and letting t0; t1; t2; t3;
and t4 correspond to a clock interval.

DRAM(ras; cas; addr; dout;din; rw)
4
=

((; await cas;not(ras); cas; ras; not(cas); not(ras))

(; await ras;not(cas) : addr=Vrow; cas; ras;

rw : addr=Vcol; not(cas); not(ras); rw : dout=Vread;)

(; await ras;not(cas) : addr=Vrow; cas; ras;not(rw) :

addr=Vcol; not(cas);not(ras); not(rw) : din=Vwrite;))
�

The ISL speci�cation of the DRAM (shown above)
is formulated from its timing diagrams and the cho-
sen clock speed. ras, cas, rw are the control input
ports. dout, and din, addr are the data output and
input ports.

The state machine denoted by the DRAM speci-
�cation is shown in Figure 4. The read, write and
refresh cycles are represented as three paths from the
reset state to the �nal state. The environment of the
DRAM (DRAM), constructed using the complement
operation, will be transformed into a path implemen-
tation that can interact with the DDD-FM9001 and a
refresh timer.

 cas,
not(ras)

cas,
ras

not(cas),
not(ras)

not(cas),not(ras),
not(rw):din/v write

ras,not(cas):
 addr/V row

col

cas,ras,rw:
 addr/V

not(cas),not(ras),rw:
 dout/V read

ras,not(cas):
 addr/V row

col

cas,ras,not(rw):
 addr/V

Figure 4: DRAM state diagram

4 Refresh Timer Derivation

The DRAM speci�cation lacks the information that
a refresh cycle must be performed within 4ms of the
previous refresh cycle. For a clock speed of 10Mhz,
allowing a read/write cycle time of 400ns and refresh
cycle time of 300ns, we use a 3.3ms timer to start
the refresh cycle. The timer is set at the end of each
refresh cycle and holds the done signal until it is set

again. The timer can be speci�ed in ISL as :

Timer(set; done)
4
= (; done until set)�

done

set

done

1
2

 cas,
not(ras)

cas,
ras

done,
cas,
ras

done,cas,
 not(ras)

not(cas),
not(ras)

set,
not(cas),
not(ras)

Timer Path Implementation of
 DRAM Refresh Cycle

DRAM Refresh
 Cycle

Figure 5: Transformation of Timer

The next step in the derivation is to transform the
complement of Timer (Timer) into a path implemen-
tation of Timer and DRAM (refresh cycle). The wait

transition labeled done (marked 1 in Figure 5) is un-
rolled into a state and a transition with the same label.
The state marked 2 in Figure 5 is transformed into
a wait state. The labels in corresponding transitions
of the two path implementations are then uni�ed.

5 Derivation of Read and Write Cycles

In the next step of the derivation, the read and
write operations on the abstract memory in DDD-
FM9001 are decomposed into a sequential component
using the ISL speci�cations given below. The com-
plements of the Read and Write descriptions are then
transformed into a path implementation of DRAM.

Read(dtack; strobe;RW;ADDR;DOUT)
4
=

[; strobe;RW : ADDR=Vaddr until dtack : DIN=Vread]

Write(dtack; strobe;RW;ADDR;DIN)
4
= [; strobe;

not(RW) : ADDR=Vaddr;DOUT=Vwrite until dtack]

(absMEM mem0
 read−mem ...
 (vdec tmp) tmp)

DDD−FM9001 fragment
 with read operation

Read Interface
 Specification

strobe,RW:
ADDR/Vaddr

strobe,RW:
ADDR/Vaddr

dtack:
DIN/V read

Figure 6: DDD-FM9001 Read Interface

As shown in Figure 6, we incorporate the interface
for Read into a lower level descripton of the DDD-
FM9001 by replacing each transition containing the
read-mem operation with Read. The ports in Read are
added to the DDD-FM9001 description. Similarly, the
write-mem operations in DDD-FM9001 are replaced by
instances of Write.

Read

3

strobe,RW:
ADDR/Vaddr

strobe,RW:
ADDR/Vaddr

dtack:
DIN/V read

dtack:
DIN/V read

not(cas),not(ras),rw:
strobe,RW,

ADDR/ ,
dout/V read

Vaddr

strobe,RW,
ras,cas,rw:
ADDR/V ,

)addr/col(V addr

addr

strobe,RW,
ras,not(cas):
ADDR/V
addr/row(V)addr

,addr

strobe,RW:
ADDR/Vaddr

4

DRAM read cycle

ras,not(cas):
addr/V row

ras,cas,rw:
addr/V col

read

not(ras),
not(cas),
rw:
dout/V

Path Implementation
of DRAM read cycle

Figure 7: Transformation of Read

Figure 7 shows the transformation of Read to a path
implementation of DRAM (read cycle). The wait loop

in the state marked 3 in Figure 7 is unrolled twice.

The state marked 4 in Figure 7 is transformed into
a wait state. The labels of the resulting state diagram
are then uni�ed. Similarly, Write is transformed to a
path implementation of DRAM (write cycle), all ac-
complished by a predetermined set of available trans-
formations.

6 Conclusion

In this paper we have described the steps involved
in the derivation of a DRAM memory sub-system us-
ing sequential decomposition. The DRAM manager
is derived by transformation of the complements of
the interface speci�cations of the DRAM memory, the
refresh timer, and the DDD-FM9001, into a path im-
plementation of each component. Each component in
the system can then be synthesized with the assurance
that it can interact with the rest of the system.

References

[1] W. A. Hunt, \A formal HDL and its use in the
FM9001 veri�cation," in Mechanized Reasoning in

Hardware Design, Prentice-Hall, 1992.

[2] B. Bose and S. D. Johnson, \DDD-FM9001: Deriva-
tion of a veri�ed microprocessor: An exercise in in-
tegrating veri�cation with formal derivation," in Pro-

ceedings of CHARME '93, Springer, LNCS 683.

[3] S. D. Johnson, \Manipulating logical organization
with system factorizations," in Hardware Speci�ca-

tion, Veri�cation and Synthesis: Mathematical As-

pects, pp. 260{281, Springer, July 1989. LNCS 408.

[4] K. Rath and S. D. Johnson, \Toward a basis for proto-
col speci�cation and process decomposition," in Pro-

ceedings of CHDL '93, Elsevier.

[5] S. D. Johnson and B. Bose, \A system for mechanized
digital design derivation," in Proceedings of ACM In-

ternational Workshop on Formal Methods in VLSI

Design, January 1991.

[6] G. Borriello, \Speci�cation and synthesis of interface
logic," High-Level VLSI Synthesis, 1991.

[7] M. K. Yajnik and M. J. Ciesielski, \Finite state ma-
chine decomposition using multi-way partitioning," in
Proceedings of ICCD '92, pp. 320{323, IEEE.

[8] A. Kuehlmann and R. A. Bergamaschi, \High-level
state machine speci�cation and synthesis," in Proceed-
ings of ICCD '92, pp. 536{539, IEEE.

[9] W. Wolf, A. Takach, and T.-C. Lee, \Architec-
tural optimization methods for control-dominated
machines," High-Level VLSI Synthesis, 1991.

[10] D. Drusinsky and D. Harel, \Using statecharts for
hardware description and synthesis," Transactions on
CAD, vol. 8, pp. 798{807, July 1989.

[11] R. P. Kurshan, \Analysis of discrete event simula-
tion," in Stepwise Re�nement of Distributed Systems

pp. 414{453, Springer, July 1989. LNCS 430.

[12] B. S. Davie, A Formal, Hierarchical Design and Vali-

dation Methodology for VLSI. PhD thesis, University
of Edinburgh, 1988.

[13] Texas Instruments, MOS Memory Data Book, 1989.

