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The use of Venn diagrams as a pictorial aid in re-
presenting Boolean functions 1s well known. For n vari-
ables, 2f regions are pictured, each of which can assume
one of two possible wvalues. Such representations aid in
the simplification or identification of Boolean functions,
as do Karnaugh maps and other kinds of pictorial aids which
are in current use.

Attempts to modify these 2-valued Venn diagrams are
generally based upon approaches which either (1) change the
number of values which can be assumed in each region, or
(2) change the number of regions themselves. Decisive Venn
diagrams fall into this latter class, where the number of
regions can be changed but only 2 values can be assuméd in
each region. These diagrams are referred to as decisive,
after a similar usage by N. Rescher for truth tables[p. 61,14].

Consider first the usual Venn diagram for the single
variable p, as shown in Figure 1. Here [Up pictures the
interior of the disk and ~p pictures the exterior of the
disk. The unary operator [0 is an interior operator which is
made explicit here in order to lay groundwork for what fol-
lows---in the Boolean case shown in Figure 1 or 2, the
operator'n becomes the identity operator. The unary operator
~ denotes the operation of pseudo-complementation which in
the Boolean case becomes the operation of complementation.

The usual Venn diagram for the two variables p,q 1s
shown in Figure 2.

The first Venn diagram in Figure 1 shows a bipartite

division into two regions Op, ~p, and suggests for consideration

1
22" =y possible disjunctions of these. The second Venn diagram
in Figure 2 shows the consequent division into U4 regions,

denoted by the U4 conjunctions Op&~q, Op&Og, ~p&dq, ~p&~q.



=
This suggests for consideration 22 =16 possible disjunc-

tions ofthese 4 conjunctives. Consideration of these full
16 possibilities by Post and Wittgenstein in this century
was preceeded by a long history of work in which fewer than
16 possibilities were considered. We are about to explore _
the corresponding situation for the general case of decisive
Venn diagrams, with emphasis on the case when the diagram
contains 3 regions.

Consider the decisive Venn diagram for the single
variable p with 3 regions, as shown in Figure 3. Here the
annule marked ~(~p v [Op) pictures a region which is
neither in the interior or exterior of the disk. This allows
for a middle term between the terms ~p, [Op to give a law
of included middle[4,6]:

“~p Moleg oy gl » Hp.

A simplifying case occurs with the 3-valued case, where there
is exactly one extra value p=e for which ~(~p v (Op) evalu-
ates to t(true), as there is exactly one value p=f(false)
for which ~p evaluates to t, and one value p=t for which Up
evaluates to £. The presence of additional extra values
el, e2, ... does not alter this interpretation, as the above
law of included middle still holds (further dtails for such
systems may be found in [2,8,9,13]).

The resulting decisive Venn diagram for two variables
p,q is now obtained in similar fashion, and is shown in
Figure 4. Since there are 3 terms in the above law of in-
cluded middle, these now generate 32=9 conjunctions---namely,
~p&~q, ~p&[~(~qv 0q)], ~p&Oq, [~(~pv Op)l&~q,
[~(~p v Op)Jl&[~(~q v Oq)], [~(~p v Op)l&Og, Op&~q,
Op&[~(~q v Uq)], Op&lg. These are shown in Figure U4, and
it is seen that the number of possible disjuntions of these

. . . 2
9 conjunctives 1is 23 =E15,

There is an immediate and striking contrast between
the 16 possible disjunctions which may be generated from
Figure 2 and the 512 possible disjunctions which may be
generated from Figure 4. The difference between these

numbers is very large. On one hand, the number of additional



possible disjunctions from Tigure 4, U96, is so large as
to discourage further investigation---recall that the work
by Post and Wittgenstein on the full 16 possible disjunc-
tions of Figure 2 did not occur until about 1920. On the
other hand, consideration of only 16 possibilites when there
may be as many as 496 other possibilities to be taken into
account, may have serious consequences 1in certain critical
situations, or when these additional possibilities have
ramifications which can not afford to be neglected.

This has been observed elsewhere[10], and will be illus-
trated by example later in this paper.

Before proceeding to examples, it is appropriate to
note the generalization of the above to multiple regions
and to multiple wvalues.

"First, a generalization to n regions may be obtained
by picturing n-2 concentric and disjoint annules, using a
similar approach. For the case n=3 above, only one annule
is pictured, as in Figure 4; for the case n=U4, this annule
i1s subdivided into two contiguous concentric annules;
for the case n=5, into three contiguous concentric annules, etec.
The number of possible disjunctions for 2 variables p,q
n2 However, for a single variable

2 -
p, the region ~(~p v Op) still represents the disjunction

in this general case 1is

of all the internal concentric annules, and there are still
512 disjunctions generated from Figure 4 using the single
annule ~(~p v 0Op) as representative of a disjunction of all
these concentric annules, doing likewise for the variable q.
Second, it follows from remarks in [1,3] that any func-
tion in the n-wiwdcase may be pictured with n-1 copiles of these
decisive Venn diagrams. Hence, these diagrams are sufficient
to characterize n-valued functions. To illustrate, in the
3-valued case where the values are white, gray, black, a
3-valued function would be pictured using 2 diagrams of the
kind shown in Figure 4. One of these might be called the
diagram for gray, the other might be called the diagram for

black. In each of these two decisive diagrams, regions
would assume only the 2 values white or black. The value for

any particular region, such as [Op&~q for example, would be



given by a rule of predomination as follows: 1f the copy

of Up&~g assumes the value black in the diagram for black,

then the ¥%alue for the region [Ip&~g is black; otherwise, if
the copy of [p&~q assumes the value black in the diagram for

gray, then the value for the region [p&~q 1s gray; otherwise,
the value for the region [p&~qg is white. To continue this
illustraion, consider the pair of diagrams shown in Figure 5
for the 3-valued implication in the internal system of
Bochvar[p. 30,14]. The diagram for black at the right clearly

shows that this implication assumes the value black exactly
in those regions as would be expected for the normal case
of classical 2-valued implication; the diagram for gray at

the left shows equally clearly that this implication assumes

the value gray everywhere within the annules; the value

white 1s assumed only in the region 0Op&~q, which also cor-
responds with the normal case of classical 2-valued implication.

The interest of this paper in 3-valued decisive Venn
diagrams stems from the above. The examples which follow
are chosen accordingly. Generalizations may be made as
indicated above, by making subdivisions of the annule or
taking multiple copies of the decisive Venn diagram as the
case requires.

A specific illustrative example is afforded by the
3-valued function of 2 variables called decisive implication[5].
The decisive truth table for this function p-oq using the
3 values £, e, £ is given in Figure 6. For properties of
3-valued decisive implication, see[7,8]. To picture this
function using the diagram of Figure 4, it is only necessary
to picture those 6 regions as black which correspond to
those 6 conjunctives which assume the value £ in the table
of Figure 6. The remaining 3 regions correspond to the
other 3 conjunctives which take on the value f. The result is
shown in Figure 7. Since the truth table of Figure 6
is decisive, there is no need for a diagram for gray, and the

picture of Figure 7 suffices.
This last example extends easily to general case of
n-valued decisive implication. Truth tables for this general

case are indicated on page 47 of [14], with corresponding
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algebraic expressions given by equation (16) of [L4](see
also [5]).

The main example of this paper is devoted to a prac-
tical situation where there are concretgassignments for p,
q which are both realistic and typical for this situation.
The following situation is taken from the military domain,
but might as well have been drawn from other domains {eugi s
economics) .

For this example, consider a man-computer-radar system
which is assumed to be of the long-range type, but may
be either a shipboard or land-based system. It is further
assumed that some portion of the radar scanning is under
control of the computer, and that the computer participates
further in the process of automatic targetdetection and
initializing of target tracks. Information about results
of these processes are forwarded to other systems or dis-
plays, and computer or display operators are responsible
for the forwarding of this information, as the situation
requires, to supervisors or higher executives in the chain-
of-command for further processing and/or decision-making.

This example uses Figure U with the following assign-
ments for p=P and g=Q. For P: A track is initialized with-

in radar range for a missile flying at supersonic speed;

for Q: A track is initialized within radar range for a

flight formation flying at subsonic speed which has a size

greater that 50 aircraft.

To simplify this example, first consider the situation
at the computer outputs. The status of P and Q in this
example is invariably computed by some kind of sequential
process in order to determine whether P or Q actually holds.
The status of P and Q can not be determined until these
sequential processes are completed. An easy illustration
is provided by consideration of the moving-density-gate
process. In this process, consecutlive interrogations are
made of the inputs for confirmation or denial of target
presence. If the size of the gate is denoted by g, the
number of consecutive interrogations, and if d dnotes the

total number of confirmations within these g consecutive



interrogations, then targ&'presence is confirmed when the
density d/g becomes sufficiently high. Thus for g=19, say,

if target presence is confirmed with a density of 12/19

or higher, then whenever there are 12 or more confirmations
within any consecutive 19 interrogations, the target presence
is confirmed. Target presence is denied in this example

as long as d=0, so that for values of d in the range

1sd<11l the target presence is neither confirmed nor denied.

Applying this to P as assigned above: ~P has the value
t for d=0; ~(~P v 0OP) has the value t for 1l<d<ll; [P has
the value t for 12<d<19. A similar statement may be made
for Q. Further processing may be required for P in order to
determine initial track data including a supersonic velocity
check; likewise'further processing may be required for
Q in order to determine formation size and a subsonic velocity
check.

This example has been constructed for this P and this
Q to show the criticality of determining the value assumed
in the region [OP&0Q. While the confirmation of a single
high speed aircraft flying toward the radar system , or the
confirmation of a large formation of low speed aircraft fly-
ing toward the radar system, might each individually be an
accident of a mistake, it is much less likely that the
occurrence of both of these simultaneously should be so
construed. It may be seen also that the 512 possible dis-
junctions of Figure 4 now take on specific meanings with-
out ambiguity. For instance, ~0OP has the value t for
0<d<11, ~~P has the value t for 12d<19, and ~P v 0P has
the value t for d=0 or 12s<d<l19. This latter occurs when
sequential processing is completed.

A crucial point in this example concerns the time
during which ~(~P v ~P) has the value t. This time may be
either a fraction of a second or a number of seconds, de-
pending whether target presence can be determined within
a single scan of the target or with a number of scans of
the térget. The number of interrogations is of course pro-
portional to the number of scans of the target by the radar.



A feature of this example has been a restriction of
consideration to the computer outputs alone, and consequent
rigorous interpretation of ~P, ~(~P v OP), OP, with similar
treatment for ~§, ~( ~Q v OQ), 0Q. Moving beyond these
computer outputs lends geater force to these observations
but also greater uncertainty. Once there are further channels
of communication beyond the computer outputs, and e pecially
through human channels such as the display operator-to-
supervisor-to-executive chain-of-command, the time during
which ~(~P v 0OP) has the value t may increase not only
drastically, but in any number of unknown or unexpected ways.
To cite just a few of these instances:

@ The display-operator drowse€s because of display fatigue.

e The display-operator, supervisor, or executive takes

inappropriate action when 0OP&0Q assumes the value t©
because of surprise or disbelief.

® The supervisor or executive cannot be contacted or

is absent without a back-up.

@ There is an undetected component or circuit failure

within the computer-display system.

This author has not prepared a computer listing for
the 512 disjunctions generated from Figure 4, as has been
done by hand for the 16 disjunctions generated from Figure 2.
There appears to be no difficulty in doing so, and even some
point, if it helps to improve the overall efficiency of our
present systems, be they military, economic, etc.

Among other areas of application, brief mention is made
here of an experimental situation involving the fields of
linguistics and logic, as described in [10]. Work in this
area for the 2-valued case has been done by Inhelder and
Piaget[11]. A detailed discussion for the 1l6-disjunctions
generated from Figure 2 may be found in [12], with specific
application in [p. 102-104,1}]. The discussion in [10] extends
this beyond the 2-valued case, retaining the same experimental
situation in which youngsters describe verbally their
reasoning concerning laboratory experiments, but making .
connections of such verbal statements with different dis-

junctions from the decisive Venn diagram of Figure 4.



It has not been generally recognized that decisive
Venn diagrams are sufficient to characterize multiple-
valued functions. The use of these diagrams is straight-

forward, and without undue complexities.
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Figure 1-Venn diagram,
one variable p

~p Op&~q Op&0Oq ~p&Qq

- Figure 2-Venn diagram, two vari-
Figure 3-Decisive Venn diagram, one ables p, g

variable p, included middle term

P
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et vup 1&Uia
[(~(~p vOp )1&0q

[~(~p vOp )1&[~(~q vOq )]

Figure 4-Decisive Venn diagram, two variables p,q, included middle terms
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Figure 6-Table, 3-valued
decisive implication

Figure T7-Decisive Venn diagram, 3-valued decisive implication
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