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Abstract

The ability ro physically realize a colony of insect-like
robors presents numerous problems to robotics researchers.
A hexapod robot controlled by a computational sensor is
proposed as a solution te some of these problems. Stiquito
is a small nitinol-propelled robot. It is controlled by a
computational sensor implemented with 1.ukasiewicz logic
arrays (LLA4s). The computational sensor includes an
electronic retina, an implicit controller, and a gait generator.
Measured and sinmulated results illustrate the unifving effect
of Lukasiewicz logic on the design of the robotic sysien.
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1: Introduction

1.1: The complex insect

Research in robotics has advanced recently by lowering its
expectations. Problems in path-planning, modelling, and
image understanding were the focus of robotics research
from 1960 to 1986. These problems are difficult in any
domain, and have yet to be solved satisfactorily.

In 1986 Brooks proposed studying simpler robotic systems
controlled by behavior-oriented rather than function-oriented
networks. This approach is known as a subsumption
architecture [1]. Aftila and Genghis, two robots controlled
by a subsumption architecture, resemble insects yet are
capable of learning complex behaviors such as walking [2].
The concept of subsumption architecture has been extended
to model the complete behavior of a cockroach-like robot
[3], and to the study of insect-like robot colonies [4]. But
implementing a single insect-like robot is still difficult, and
robot colonies are even more so. To understand why, let's
consider the biological competition: the ant.

Ants are sophisticated creatures. They have eyes that
implement lenses and filters using binary optics; they
communicate both by touch and chemically using
pheromones; they are strong for their size (capable by
analogy of climbing and descending Mount Everest five
times a day while carrying their own weight) [5]; and they
have multiple degrees of freedom in each leg, antenna, and
the mandibles. By contrast insect-like robots are clumsy
and ponderous. Their optics range from simple photocells

to television cameras; they cannot communicate using touch
or chemicals; they are fragile and weak for their size; and
they have only a few degrees of freedom in each leg or arm.

A single ant colony may contain up to 10,000 adults
ranging in size from 3mm to 25mm in length. A colony
has many castes specialized for specific tasks, yet capable of
acting in concert to perform complex actions (bridging,
wars, agriculture). Colonies of up to 20 robots have been
implemented with "adults" approximately 500mm in length
that cost $2000 each. Of the robot colonies physically
realized to date none have castes designed for specific tasks,
and concerted action is simple (such as flocking behavior).
The weight-to-power ratio of small self-contained robots
limits the functionality of their control and locomotion
systems, which even then are difficult to construct.

The use of continuous-valued logic to implement a simpl_e
subsumption architecture for the small robot, Stiquito, is
proposed as a step toward the solution of these problems.

1.2: Stiquito: Lukasiewicz' insect

Stiquito is an insect-like hexapod robot propelled by nitinol
actuator wires [6]. It is small (60mm long x 70mm wide x
25mm high), lightweight (10 gm), and inexpensive ($10).
Stiquito is capable of carrying up to 200 grams while
walking at a speed of 3 to 10 centimeters per minute over
slightly textured surfaces. Its payload typically consists of
sensors, control and drive electronics, and a 9-volt cell. The
robot walks when heat-activated nitinol actuator wires
attached to the legs contract. The heat is generated by
passing an electric current through the nitinol wire. The
legs can be actuated individually or in groups to yield tripod,
pacing, and other gaits.

Figure 1. Stiquito and an ant (both x1)
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1.3: Robotics and continuous-valued logic

It is a paradox of robotics research that inherently imprecise
and inaccurate biological systems arc often implemented
with digital systems far more precise and accurate than the
original.

Digital implementations of hierarchical systems are flexible
and easily programmable. However they weigh too much
and consume too much power to be used to control an
autonomous Stiquito. These systems are also unnecessarily
complex. The programmability of digital microprocessors
is useful during prototyping, but unnecessary in the final
implementation; programmability can be emulated during
design by simulation of the system. Conversion of analog
sensor inputs to a digital representation and back to analog
control outputs adds additional complexity that is not needed
by an imprecise insect-like robot.

Consequently, a fully analog system was chosen to obtain
lightweight, low-power, and simple sensors, controllers, and
actuators, avoiding the paradox. {.ukasiewicz logic arrays
are used throughout the system. The continuous-valued
1ukasiewicz logic provides a unified framework for the
design of Stiquito's sensors, controllers, and locomotion.

1.4: Lukasiewicz logic arrays

Lukasiewicz logic is a multiple-valued logic with a
denumerably infinite number of truth values [7]. Real
circuits are described by subsets of the logic that have a
finite number of continuously-varying truth values. No
circuitry is required to quantize the logical values in the
circuit. The limit to the number of values that can be
encoded on a wire occurs when values cannot be
distinguished because of noise [8].

Lukasiewicz implication is defined by the valuation function
vioe D B) = min( 1, 1-a+p ). Negated implication has a
valuation function defined as v(ot P B) = max( 0, a-f ).
The term implication is used to refer to both functions.

Lukasiewicz logic arrays (ELAs) are arrays of continuous-
valued analog circuits for fukasiewicz implication () and
negated implication (P) circuits (Figure 2).
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Negated implication yields the simplest circuit. It is
composed of a current source, a current sink, a three-wire
summing junction, and a diode-connected MOSFET. The
output is accurate to within 1% of the full scale and precise
to within six to eight bits [9,10].

The dual logical and algebraic semantics of LLAS allows

them to perform symbolic and numeric computations, a
property essential to the applications described in this paper.

Figure 2.

2: Sensors: the LLA retina

2.1: Retina design

A prototype LA retina uses negated implication in a
continuous-valued directed-edge sensor. This is a primitive
vision function [11]. Four photocells are grouped in a
cluster. Because negated implication is equivalent to a
positive-only derivative, edges are detected in the NS, EW,
SN, and WE directions across the cluster (Figure 3).
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Figure 3.  L£LA retina four-pixel cluster

While the £1LA retina could be implemented with npn and
pnp phototransistors and diodes [12], our prototype uses npn
phototransistors, MOSFET current mirrors, and diode-
connected MOSFETs. It is still smaller and faster than
Mead's retina [13] because the MOSFETs require less area
than bipolar components (Figure 4).
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Figure 4.  Four-pixel cluster schematic

2.2: Prototype retina EYE-1

An ELA retina prototype EYE-1 consisting of npn
photocells and two edge detector strips was fabricated and
tested to evaluate the design. Each photocell was laid out in
a row consisting of other cells, each with the same size and
shape. Two square photocells (bipolar transistors) were used,
one 0.025mm high x 0.025mm wide, and the other
0.006mm high x 0.006mm wide (Figure 5).
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Figure 5. F.LA retina prototype EYE-1

The edge-detecting capability of the prototype was
characterized by projecting an edge onto one of the
photocells, then measuring the edge voltages computed by a
circuit whose inputs came from all photocells in the row.
The selected photocell's response was thus measured relative
to the output of the other cells in its row.

An 8mm movie projector lens focused light onto the
exposed window of the chip. o project a sharp edge a strip
of wire was attached to the front of the light source so that
its shadow could be swept across the chip surface. A simple
amplification circuit was constructed with a voltage output.
A photocell was darkened by the edge, then the edge was
adjusted to obtain the maximum output value possible from
that cell. The output of all photocells was recorded, then the
edge moved to the next cell.

The outputs were most distinct when the smallest cells were
tested (Figure 6). This is probably because the edge was
slightly wider than the width of the photocell. Since the
large cells are much closer together there was probably some
overlap which reduced the edge detection. The smaller cells
have about 10 times more space between them and were less
prone to this overlapping phenomenon.

The retina is also fault-tolerant. It will continue to operate
if a MOSFET fails in one of the sensor clusters, or if
several clusters fail entirely. The output of prototype retina
EYE-1 indicated that variations in the photocells due to
fabrication affected their sensitivity, but did not prevent the
devices from functioning.

Measurement of the prototype retina EYE-1 indicates that
its mimimum response time is limited by the response of
the photocells rather than the negated implications.
Photocells respond to edges in 20 ms, allowing all edges in
an image to be identified in 20 ms. A 100-cluster retina
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Figure 6.  Output voltages from retina prototype

could detect up to 5000 edge-crossings per second in a
dynamically changing image. This is four orders of
magnitude fewer than MOSFET negated implications can
handle [12], suggesting a direction for improvement.

The retina has some disadvantages. It is difficult to extract
the results of the computation because the number of output
pins is limited. If the data desired consists of a complete
pixel map of edges, then each bit must be multiplexed to
the output pins.

Another solution, used in the design of the controller, is to
compact the results by merging computation with the
sensor array. This type of device is known as a
computational sensor. In this case, the edge data is
compacted by computing the leg control signals, and
outputting them instcad.

2.3: Retina simulation

The ELA retina was simulated using a spreadsheet program.
Sensor clusters are arrayed to form a 10 x 10 retina (Figure
7b). Each cluster was implemented with eight spreadsheet
cells, four for each photocell in the cluster and four to
compute the edges detected by negated implication. A graph
of the input photocells reconstructed the image (Figure 7a),
with a second graph used to visualize the edges (Figure 7c).
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Figure 7.  Simulation of 11.A retina

The difference in pitch between horizontal/vertical clusters
and diagonal clusters results in a stronger response {0
horizontal and vertical edges (Figure 7c). The retina also
generates noise by detecting weak edges (such as the patch
on the wall in Figure 7a).
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3: Control: a simple ELA subsumption
architecture

A simple subsumption architecture for navigating a maze
was implemented by breaking the necessary behavior into
simple tasks. The tasks included walking in a straight line,
tumning left, turning right, and avoiding the maze wall. Even
these few tasks are sufficient to generate simple emergent
behavior, such as escaping from comners and backtracking.
The controller for this subsumption architecture is implicit.
It is implemented by partitioning the sensor clusters into
regions that correspond to the tasks in the subsumption
architecture (Figure 8).
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(a) Retina (b) Implicit control

{c) Controller

Figure 8.  Subsumption architecture controller
Summing the edge signals in a given region results in an
“output signal for a specific task. The outputs are used to
modify the robot's gait. Different tasks are activated as
edges in the visual field move from region to region on the
retina. A random left or right turn, a right turn, a left turn,
and walking in a straight line compete for control of the
robot based on the strength of each region's output. The
random turn prevenis the robot from getting stuck in corners
and at walls. The robot's motion produces feedback that
affects its behavior.

A simulation of Stiquito navigating a maze using a similar
controller was developed for the Silicon Graphics Reality
Engine [14]. Images from the simulation were digitized and
transferred to the retina simulation. The sequence shows a
robot moving through a maze (Figure 9a 1-5). As the
image of the wall changes (Figure 9b 1-5) the edges move
through regions in the controller (Figure 9c 1-5) to generate

the tasks of the subsumption architecture (Table 1).
Table 1. Controller signals and path vectors

5

Random| Left [Straight| Right
Turn | Turn Turn

0.0 00| 21.0 1.0

0.0 5.0 3.6 52

10.0 0.5 4.4 0.0

2.0 1.0 4.4 4.0

1.0 4.0 4.9 5.0

i |W| b ]| —

(c) Output

(a) Robot in maze (b) Image

Figure 9.  Maze navigation simulation

4: Locomotion: the LLA gait generator

4.1: Individual leg chaotic controller

1.ukasiewicz logic can be used to specify chaotic systems
[15]. By assigning truth values to components of a
dynamical system Zukasiewicz logic can describe and
control the behavior of the system. The ELA gait generator
is constructed out of six identical chaotic controllers, one for
each leg. The operation of a chaotic controller is defined by
four functions controlling the trajectory of the foot:
Backward(), Forward(), Raise(), and Lower(). The x- and y-
motions are expressed as difference equations (Figure 10).

x>y, Backward(x,)

Kpp] = Xp + A%y ’{Ale xysy; Forward(x;)
x(>y; Raise(x) }
=y, + A A
Yie1 =¥ T BY 141 { Y+l I x; sy, Lower(x;)

Figure 10.

The difference equations are mapped to 1.ukasiewicz logic
arrays, and correspond to self-referential sentences of
1ukasiewicz logic. Although the four functions may be
interpreted as fuzzy functions, using fuzzy linguistic
modifiers to define them did not work. Rule sets that

Self-referential sentences
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combined functions such as leg very far back and leg
somewhat raised ended up producing "stiff" leg trajectories
with abrupt changes. When a smooth hand-drawn path was
quantized, and the four resulting rules applied, a much
improved trajectory resulted. The rules are shown
graphically, scaled to the range -0.3 to 0.3 (Figure 11).
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Figure 11. Leg motion rules

The rules do more than define a single trajectory. Because
the rules define relative changes in the x and y axes, they
apply throughout the space of truth values to define a state
space containing a family of limit cycles. The limit cycles
define multiple trajectories for the robot's foot in the state
space (Figure 12).

(F.T)
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Figure 12. Limit cycles in the state space

A trajectory is stable if not perturbed (Figure 13a). Small
perturbations, due for example to shot noise in the LLLA
circuit, will cause the trajectory to "jitter" (Figure 13b).

Perturbations above a threshold = %T, such as a variable

control signal applied as an input, will lead to increasingly
chaotic behavior as trajectories alternate (Figure 13c).

Because the rules are evaluated algebraically, their effect
extends outside the space of truth values if min and max arc
omitted from the valuation functions of logical connectives.
This was done in spreadsheet simulations of the chaotic
controller and the gait generator to view unclipped
trajectories.

Loe = s - 1ot

/ | ¢

;f

(c)n > threshold

(a) Stable (b) 1 < threshold

Figure 13. Limit cycles perturbed by noise 1

4.2: The gait generator

The gait generator for Stiquito is constructed from six
chaotic controllers, one for each leg. The leg controllers are
implemented with negated implication and packed into the
unused space of the EILA retina. The computational sensor
merges the ELA retina and the gait generator, and fits onto a

MOSIS Tiny Chip (Figure 14).

|

(b) Gait generators (c¢) Computational
Sensor

(a) Sensors &
controller

ELA subsumption architecture implemented as
a computational sensor

Because Stiquitos built to date have only one or two degrees
of freedom per leg instead of four, two or three of the
outputs of each chaotic controller can either be ignored or
wire-summed to combine control in the x and y axes. Even
so, the gait generator will produce a wide variety of gaits.
Because the trajectories do not switch synchronously, out-
of-phase oscillations in the unsynchronized trajectories
produce many variations of the full tripod gait (Figure 15a).

Gaits that approximate single leg movement arise when a
weak oscillation in five legs is coupled to a strong
oscillation in a single leg. This is similar to the weak
motion of the left legs shown in Figure 15b. Such a gait
can be generated spontaneously by applying a strong
perturbation to all legs until the trajectories are out-of-phase
and degenerate. This is akin to many gait generators [16].

Turning gaits result when several legs on one side have
strong oscillations, while legs on the opposite side have
weak oscillations (Figure 15¢). A turning gait is obtained
immediately by forcing the legs on one side into out-of-
phase and degenerate trajectories.

Figure 14.
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Figure 15. Gaits

5: Summary

1 ukasiewicz logic unifies the design of sensors, control, and
locomotion for a small, simple robot. The simplifications
that result solve problems of weight, power, and complexity
in the design of insect-like robots. The next step is to
fabricate the computational sensor described here on a
MOSIS Tiny Chip, and use it to control Stiguito.
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