
indiana university

computer science department

technical report no. 375

Toward a Basis for Protocol Speci�cation

and Process Decomposition
Kamlesh Rath and Steven D. Johnson

june 1993

To appear in the proceedings of the 1993 IFIP Conference on Hardware Description
Languages and their Applications (CHDL '93), Ottawa, Canada, April, 1993, Elsevier.

Toward a Basis for Protocol Speci�cation and Process

Decomposition y

Kamlesh Rath� and Steven D. Johnson

Computer Science Dept., Indiana University, Bloomington, Indiana, USA.
�Email: rathk@cs.indiana.edu

Abstract

In a formalism of top-down design, we consider the decomposition of behavioral speci-
�cations into interacting sequential components. The higher level of description speci�es
the operations to be performed in a major computation step. The goal is to incorporate
a given interface speci�cation in a lower-level speci�cation that accounts for interactions
with and among sequential components. This construction generalizes the earlier for-
malism of system factorization [14] to include interface protocols. It expands on the
objectives of high-level synthesis by considering control-synchronization loops in schedul-
ing. This paper presents a speci�cation language for sequential process interaction and
develops an interpretation based on �nite-state-machines. Operations of minimization,
composition and complementation are de�ned; the last of these being the key to top-down
decomposition. A small example is used to illustrate the ideas.

Keyword Codes: B.4.3; B.4.4; F.3.1
Keywords: Input/Output and Data Communications, Interconnections (subsystems);
Performance Analysis and Design Aids; Specifying and Verifying and Reasoning about
Programs

1. Introduction

Design derivation is a branch of formal veri�cation that deals with \correct by con-
struction" reasoning. [12, 14, 15, 13]. A system of equivalence preserving transformations
are used to derive an implementation from a speci�cation. We can view such a derivation
as a formal proof reecting a top-down reasoning style. In this respect it should not be
viewed as an alternative for deductive (i.e., conventional theorem-prover based) veri�ca-
tion but as an alternate mode of reasoning in design [16, 26]. We can also view derivation
as a formalization of synthesis, but as a formalization it is more centrally concerned with
correctness in reasoning than with automated design.
A speci�cation can have many implementations and a particular derivation chooses one.

yThis research was supported in part by the National Science Foundation under grants numbered MIP

8921842 and MIP 9208745.

Hence, the transformations themselves add information to the (accumulating) implemen-
tation. If we interpret terms structurally, then rewriting

ab+ ac =) a(b+ c)

selects an implementation with two operations rather than three. We have used the same
kind of algebra at a higher level to deal with data abstraction in structural descriptions. A
general transformation called system factorization [14] is applied to encapsulate abstract
values and operations as simple sequential processes.
These transformations are strong enough to replace abstract memory values in a design,

with black-box SRAMs, for example [14], but they need to be further generalized to replace
memories with DRAMs. Such a transformation would have to incorporate the read/write
protocol and account for refresh cycles. Another example of the problem is described in
[16], where the derivation of a microprocessor implementation required moving a naive
functional model of memory to a process model with inde�nite wait states.
We think that this is also one of the key problems in raising synthesis to the system

level. In a related discussion of interface speci�cation, Boriello points out that, \the
interface component has received limited attention even though it is crucial to integrating
the circuit into an environment that will put it to use" [1]. However, while Boriello
develops external interface speci�cations as a means to guide synthesis, our goal is to use
them to guide design decomposition. Both sides of the protocol are involved in factoring
nontrivial sequential components.
Most formal treatments of sequential decomposition are bottom-up in the sense that

they are oriented toward post-design veri�cation. This would include most of the recent
research in �nite-state machine veri�cation [3]; extensions of FSM models (e.g. [25, 24])
and Petri net theories (e.g. [2]); and model-theoretic work involving process formalisms
(e.g. [20, 9]). It is typical that an area of veri�cation research would have this orientation,
and also that the top-down view would be better represented in synthesis research. In
addition to Boriello's work (cited above), approaches to scheduling by Ku, Micheli [17]
and Nestor et.al [22] have considered protocol-like constraints. Dill et.al have used a B�uchi
automata based model to verify safety and liveness properties using language containment
[7]. McMillan and Dill have also modelled timing constraints as min/max constraints
and used a generalized branch and bound algorithm to verify the timing speci�cation of
connected components [19]. Drusinsky and Harel have used state-charts for hierarchical
description for hardware and synthesis of component machines [8]. Holzmann formulated
search heuristics to reduce the search space and time for validation of communication
protocols [10]. Kurshan uses L-automata with language and process homomorphism [18]
to verify reactive systems by stepwise reduction and re�nement. He uses a bottom-
up model with registers and controllers as processes at the lowest level and constructs
complex systems by composing them.
Davie [4] takes a top-down approach to design using veri�cation between speci�cation

and implementation steps in CIRCAL [21]. Design partitioning is done by description of
components and composing them for veri�cation with respect to the speci�cation. Con-
textual constraints, restrictions imposed by a device on its environment, are introduced to
write partial speci�cations of a component's environment. The constraints are also used
to restrict the target architecture to reduce the complexity of veri�cation [5]. A CIRCAL

2

based transformation to partition a design is mentioned. The designer speci�es a com-
ponent and an algorithm is used to generate the speci�cation of the other component(s)
in the design. Davie suggests that this transformation is of \limited usefulness" due to
restrictions on it in their formalism. This is similar to our transformational approach
in which the complement operation constructs the environment in a �nite state machine
based formalism. Our complement operation has no restrictions and is central to our
decomposition exercise.
This paper presents a language for protocol speci�cation that can be used to describe

the interaction of a process with its environment, orthogonal to its functional behavior.
Finite state machines are used as the semantic model for the language. Minimization,
composition and complementation operations, and implementation and equivalence rela-
tions are de�ned on the machines.
A factorial machine is used as an example to illustrate our approach to process decom-

position. We start with a state machine description of the factorial machine (Figure 6).
A multiplication procedure in the factorial machine is factored out of the description and
a sequential multiplier (Figure 2) is used. An implementation of the complement of the
multiplier machine is incorporated into the factorial machine. The multipler machine
and the new factorial machine form the decomposed components of the original factorial
machine, which can then be synthesized independently.
State space explosion is often a problem in bottom-up veri�cation methods using �nite

state machine models. This occurs in the construction of the product machine. Our top-
down approach avoids state space explosion using decomposition. We promote the use of
top-down design as an alternative to the bottom-up techniques which require the designer
to model a system as a network of processes with prede�ned interactions. We start from
an initial abstract description of the system and add the interactions between components
to the description in decomposition steps. Also, our composition algorithm only creates
reachable states and transitions starting inductively from the start state, thereby avoiding
state space explosion.

2. A Language for Protocol Speci�cation

The word \protocol" has been used in many contexts by di�erent authors. In this
paper, \protocol" refers to the synchronous interaction of a process with its environment.
The protocol speci�cation of a process has two components, data interaction and control
interaction. Data interactions occur over input/output data ports and control interactions
occur over input/output control ports.
The language described here can be used to specify the input/output behavior of a

sequential machine in its environment. The temporal ordering of input/output actions on
the control and data ports is speci�ed with reference to a synchronization signal that is
used by the machine and its environment.
We begin with an informal discussion of the syntax and give a semantics in sections 3,

and 4.

3

2.1. Syntax

The syntax of the language for interface speci�cation is de�ned over the following sets:
Input control ports (CI), Output control ports (CO), Input data ports (DI), Output data
ports (DO) and Data values (V). As a convention, output ports have an \overline", which
is not to be confused with boolean negation. The control ports are of type Boolean and
can range over values TRUE (1), FALSE (0), Don't Care (#). The data ports can range
over a set of values (V) which includes the value Don't Care (#).
An informal discussion about actions and expressions in the interface language is given

below. We begin with actions that occur in a single step.

1. A data action of the form x=v denotes the data port x and its associated value v.
A control action p means the control port p has a value TRUE associated with it,
and a control action not(q) denotes a control port q with a value FALSE associated
with it.

2. Multiple control actions (p; q; :::; r) and multiple data actions (x=v1; y=v2; :::; z=v3)
can occur simultaneously.

3. Atomic actions are of the form (x : y), where x is a set of control actions and y
is a set of data actions. Control actions can occur as guards for data actions. An
input action consists of a set of input control actions together with any set of data
actions. Similarly an output action consists of data and output control actions.

4. The actions described above occur in a single step. The following actions span one
or more steps.

(a) (compute y) means output action y is performed after some steps.

(b) (await y) means a wait loop for input action y.

(c) (x before y), means that the input action x occurs in one or more consecutive
steps before the output action y is performed.

(d) (x until y), means output action x is performed until input action y occurs.

5. Compound actions of the form (A;A) can be formed by combining actions described
in 3, 4 above. This can be used to specify independent input and output actions in
the same step.

6. The expression (e1; e2) means that the set of actions e1 is followed by the set of
actions e2. The unary operator (;) in the expression (; e) is used to denote the
initial state of the machine.

7. The expression (e)� means the �nite repetition of the sequence of actions e.

8. The expression (e1 e2) means the choice of actions e1 or e2.

The precedence of the operators in descending order is :

= ; : f before await until compute g ;

4

Action A ::= C : D j A;A where

j compute Ao j await Ai C = c1; ::; cm
j Ao until Ai j Ai before Ao cj 2 fc;not(c) j c 2 CI [COg

D = d1=v1; ::; dn=vn
dk 2 DI [DO; vk 2 V

Expression E ::= ;A j E;A j E E j E�

De�nition M ::= Process (CI;CO;DI;DO)
4
= E

Figure 1. BNF-style syntax description

The BNF-style syntax description of the language is given in Figure 1. A process is
parameterized on the port names occurring in the expression in its de�nition. Input and
output actions are denoted by Ai and Ao respectively.

2.1.1. Example

A multiplier machine with timing diagram as shown in Figure 2a can be expressed as
the de�nition mult (Figure 2b) and as a state machine (Figure 2c). This machine holds
the control output done until the control input start occurs along with the value x on
input data port p. The value y occurs on input data port p in the next state. After an
indeterminate but �nite number of steps the control output done is asserted with value
x � y on the data output port o. This sequence of events repeats inde�nitely until the
machine is turned o� or reset.
The semantics of the interface speci�cation language is described in terms of state

diagrams which are based on a �nite-state machine model discussed in the next section.
Further discussion about the interpretation of the language and a method to construct
�nite state machines from interface speci�cations are presented in Section 4.

3. Finite State Machine Model

A machine is a sextuple M = hS; T; s; f; P; Vi, where S is the set of states, T is a non-
empty set of transitions, s is the start state, f is the �nal state, P is the set of ports,
and V is the domain of values. The set of ports is a union of the sets of control inputs,
control outputs, data inputs, and data outputs (P = CI [CO [DI [DO).

3.1. States

The start state represents the state of the machine after a reset. There are no visible
storage elements (registers) in this model. There are two kinds of states, transit states
and wait states.

5

START

DONE

O

P X Y

X*Y

(a)

mult (start; done; p; o)
4
=
[; done until start : p=x ; p=y ; compute done : o=(x � y)]�

(b)

done

done

p/y

start:p/x

done :o/(x*y)

(c)

Figure 2. Three depictions of a multiplier interface

6

De�nition 3.1: A state is called a transit state if there are no transitions from the state
to itself. A machine can stay in a transit state for only one step.

De�nition 3.2: A state is called a wait state if there is at least one transition from
the state to itself. The machine takes a transition out of the state based on external
conditions (control inputs) or internal conditions (control outputs).

3.2. Transitions

In this model transitions are de�ned as: s1
L
! s2, where s1 is the source state, s2 is the

target state, and L is a label. A label L is the sum of assignment functions Lc and Ld,
where Lc : CI [CO 7! f0; 1;#g and Ld : DI [DO 7! V . The set careL = fp j L(p) 6= #g
denotes the set of ports that do not have don't care values according to the assignment
function L.

3.3. State Diagrams

A state diagram is a graphical representation of a �nite state machine with nodes
representing states and edges representing transitions. The di�erent types of states are
represented using di�erent node symbols : Transit -�, andWait - �. A state of unknown
type is represented as�. Transitions are represented as labeled edges in the state diagram.
The start state is indicated as an incoming edge without any source state. The state
diagram for the multiplier machine is shown in Figure 2 c.

3.4. Synchronization

In a synchronous system, we use three synchronization primitives, lock-step, 1-way, and
2-way, to model communication between a machine and its environment.

Lock-step: The machine and its environment are synchronized. No waiting is involved,
and there is no need for control synchronization.

1-way: One of the machines (component or its environment) is computing while the other
is waiting. This may take an indeterminate but �nite number of steps. The machine that
is computing needs control outputs to synchronize, and the machine that is waiting needs
control inputs to synchronize. Interactions of the form compute Ao and await Ai are
used to specify 1-way synchronization.

2-way: Both the machines (component and its environment) are computing and both
have to �nish to synchronize. One of them sends a sequence of signals to the other until
it receives an acknowledgment signal. Both machines need at least one control input
and at least one control output to synchronize. Interactions of the form Ao until Ai and
Ai before Ao are used to specify 2-way synchronization.

4. Interpretation

The interpretation of an expression in the interface speci�cation language is the state
diagram it constructs. The state diagram represents a machine that takes a transition on
every step. The construction of the state diagram is described below.

7

v v-A L

compute Ao

ol

await Ai
il

Ao until Ai

ol il

ol

Ai before Ao

olil

il

Figure 3. Action semantics

4.1. Actions

An atomic action of the form A = fc1; ::; cm : d1=v1; ::; dn=vng denotes a state diagram
with a transition from one transit state to another transit state with the label L such that

L (p) = 1 if p 2 A ^ p 2 (CI [CO)
0 if not(p) 2 A ^ p 2 (CI [CO)
v if p=v 2 A ^ p 2 (DI [DO)
otherwise

This transition is taken if
Vm
i=1 ci 2 careL = TRUE. The data port dj has the corresponding

value vj.
Let lo be the label for Ao, li be the label for Ai. Let Ao = fco1; ::; com : do1=v1; ::; don=vng

and Ai = fci1; ::; cim : di1=v1; ::; din=vng. The interpretation of atomic and multi-step
actions is shown in Figure 3.
The interpretation of compound actions of the form A1; A2 is shown in Figure 4. If one

of the actions denotes a state diagram with a transition from a transit state to another and
the other a multi-step action, then A1; A2 denotes a compound action with the label of
A1 combined with the label on each transition of A2. If both A1 and A2 denote multi-step
actions and T1 and T2 are the state diagrams of A1 and A2 without the �nal transitions
(l1 and l2), the state diagram for A1; A2 can be constructed by adding the transition with
label l1; l2 to the product T1�T2 as shown in Figure 4. A label of the form l1; l2 is denoted
as the sum of the assignment functions.

8

l1 l 2, l 2l1 ,

l 2l1
l1

l 2l1 ,

l1

,

, l 2

l 2

l 3

l1

l 2l1 ,

l 2l1 ,

l 3l1 ,

l1T1

l 2T2

, T2
l 2l1 ,T1 X

Figure 4. Interpretation of Compound Actions

Unlabeled transitions represent hidden actions. All the primitive forms described in
Figure 3 construct a graph with a start and a �nal state. The start state does not have
any incoming transitions from any other state. The �nal state does not have any outgoing
transitions to any other state. All the primitive forms construct state diagrams that have
a transit �nal state.

4.2. Expressions

A merge operation is de�ned on states and is used in constructing state diagrams from
expressions. States have incoming and outgoing transitions, and can be of the same type
or of di�erent types.

Case 1: If both states are of the same type, then this operation creates a single new state
of the same type in place of both. All incoming and outgoing transitions of both
states are assigned to this state.

merge

1l 2l

3l l 4

1l
2l

3l

l 4

9

Case 2: If one state is transit and the other wait, then for each outgoing transition from
the wait state, a transition with the same label and same target state is added with
the transit state as the source. Since there is always a transition from the wait state
to itself, a transition is created from the transit state to the wait state.

merge

1l

2l

3l

2l

2l
1l

1l

3l

An expression in the language begins with \;". This unary operator denotes the start
state. In the state diagram this is represented by an unlabeled incoming transition with
the start state as the target state and no source state.

Repetition: The state diagram for the expression (E�) can be constructed from the state
diagram for E by merging its start and �nal states.

E E*

*

Follow: The binary operator (;) in the expression (E;A) concatenates the state diagram
constructed by E with the diagram constructed by A. This construction is performed by
merging the start state of the second state diagram with the �nal state of the �rst state
diagram.

Choice: The state diagram for the expression (E1 E2) can be constructed from the state
diagrams for E1 and E2 by merging both the start states to form the new start state and
both the �nal states for the new �nal state.

5. Relations and Operations on Machines

This section presents some operations on machines. The minimization operation results
in a minimal machine by removing the redundant transitions and collapsing equivalent
states. The hiding operation is used to internalize ports in a machine and the restriction
operation is used to restrict access of certain ports. The composition operation constructs
a product machine with reachable states and transitions for a given set of port connections.
The complement operation is used to create the environment machine.

5.1. Minimization

A machine can be minimized by going through iterations of collapsing equivalent states
and removing redundant transitions until no states or transitions can be removed. The
minimization algorithm for �nite state automata described in [11] can be used here.

10

Two states are equivalent if all the transitions from one state have the same label and
equivalent target as the transitions from the other state. Both the equivalent states are
removed and a new state is created with all the transitions associated with both the states.
The new state is of type wait if either of the equivalent states is of type wait, otherwise
it is of type transit.
Two transitions are equivalent if they have the same source and target states and

equivalent labels. Only one of the equivalent transitions is kept in the machine, the other
is removed.

5.2. Hiding and Restriction

The hiding operation can be used to hide certain ports in a machine. This operation
is used to internalize ports. A list of ports to be hidden Ph = CIh [COh [DIh [DOh

and a machine M = hS; T; s; f; P; Vi, where P = CI [CO [DI [DO, must be provided.
Hide (M;Ph) is a machine with the ports (CI�CIh)[(CO�COh)[(DI�DIh)[(DO�DOh).
All control ports and data ports that are hidden are removed from the transition label,
the transitions themselves are not removed. The new transition labels in Hide (M;Ph)
are L0(p) = L(p) if p 2 (DI�DIh) [(DO�DOh) [(CI�CIh) [(CO� COh), otherwise
L0d(p) is unde�ned.
A machine is restricted by eliminating transitions based on restricted control ports.

The transitions with label L where (careL \ (CIh[COh) 6= �) are removed from the set of
transitions, otherwise L0c(p) = Lc(p) if p 2 (CI�CIh)[(CO�COh). The restricted data
ports are removed from the transition labels, the transitions themselves are not removed.
The new transition labels in Restrict (M;Ph) are L

0
d(p) = Ld(p) if p 2 (DI�DIh)[(DO�

DOh).

5.3. Composition

The composition operation on machines with respect to a particular connection of their
ports is used to construct a product machine that behaves as the constituent machines ex-
ecuting synchronously. The connection of the ports of two machines is formally described
below.
Given machines M1 = hS1; T1; s1; f1; P1; V1i and M2 = hS2; T2; s2; f2; P2; V2i with ports

P1 = CI1 [CO1 [DI1 [DO1 and P2 = CI2 [CO2 [DI2 [DO2, we de�ne the binary re-
lation N on P1 [P2, as follows:

De�nition 5.3: p1Np2 i� p1; p2 are either both control or both data ports and p1; p2 are
connected (equipotential).

N is an equivalence relation. Each equivalence class of N is called a net. Connecting
input ports together creates an input net. All other combinations of port connections
create output nets.

De�nition 5.4: Given machines M1 = hS1; T1; s1; f1; P1; V1i, M2 = hS2; T2; s2; f2; P2; V2i
and net-list N between P1 and P2, the composed machine (M1 kM2)N = hS; T; s; f; P; V i
where P = CI [CO [DI [DO.
Each equivalence class N of N forms a port in the composed machine. It is represented
as [p] where p 2 N .

CI = fN j N contains no control output portsg
CO = fN j N contains at least one control output portg

11

DI = fN j N contains no data output portsg
DO = fN j N contains at least one data output portg

The set of states S and transitions T are constructed by the following induction schema:

1. The start state of the composed machine s = hs1; s2i.

2. The transition hq; ri
L
! hq0; r0i 2 T and hq0; r0i 2 S if:

i. q
L1! q0 2 T1 and r

L2! r0 2 T2

ii. hq; ri 2 S

iii. 9:j1:j2 : : : jk such that

a) careL1 [careL2 �
[

i=1 to k

[pj i]

b) 8p; p0 2 [pj i] : L12(p) = L12(p0) _ L12(p) = # _ L12(p0) = #
where L12(p) = L1(p) if p 2 P1

L2(p) if p 2 P2

where L([p]) = L12(p) if p 2 careL1 [careL2 , # otherwise

3. The state hq; ri is of type transit if either q or r are of type transit, otherwise it is
of type wait.

If hf1; f2i 62 S then (M1 kM2)N is considered unsafe.

The construction of the composed machine above is similar to the \lock-step cartesian
product" in HOP[9].

done

done

p/y

start:p/x

done:o/(x*y)

Figure 5. Complement of Multiplier Machine

12

5.4. Complementation

The complement of a machineM de�nes its environment machineM . The complement
of a machine can also be constructed from its state diagram. This is done by changing all
input ports to output ports and vice versa.

De�nition 5.5: Given a machine M = hS; T; s; f; P; Vi where P = CI [CO [DI [DO,
the complement machine M = hS; T; s; f; P; Vi where P = frename(p) j p 2 Pg, and
rename is a function that generates a new input(output) port name for an output(input)
port. The set of transitions

T = fs1
L
! s2 j s1

L
! s2 2 T and L = Rename(L)g

where Rename(L)(p0) = L(p) if p0 = rename(p).

The state diagram of the complement of the multiplier machine is shown in Figure 5.

5.5. Implementation and Equivalence

A machineM1 is implemented by (v) machine M2 if every state in M1 is simulated by
some state in M2, and the start state of M1 is simulated by the start state of M2.
A one-to-one mapping of the ports in M1 and M2 is the basis for the inclusion relation

over transition labels. Let p1 and p2 be ports in M1 and M2 respectively. A map of the
form p1 7! p2 means p1 corresponds to p2 and the values on these ports can be compared.

De�nition 5.6: The inclusion relation over transition labels with respect to a port map
is de�ned as:

L1 � L2 () 8p1 2 careL1 : p2 2 careL2: p1 7! p2 ^ L1(p1) = L2(p2)

The binary relation \simulated by" (<) is a maximal relation over states, S � S1�S2,
where S1; S2 are the sets of states in M1;M2.

De�nition 5.7: A relation over states is a simulation relation if s1<s2 implies:

8s1
L1! s01 : 9s2

L2! s02 : (L1 � L2) ^ (s01<s
0
2)

Let r1; r2 be the start states of M1;M2.

De�nition 5.8: The relation M1 implementated by M2 (M1 vM2) holds i�:

1. r1<r2

2. 8s1 2 S1 : 9s2 2 S2 : s1<s2

Two machines are equivalent if each machine is implemented by the other.

De�nition 5.9: The equivalence relation on machines is de�ned as

M1 �M2
def
= (M1 vM2) and (M2 vM1)

13

5.5.1. Path Implementation

Each path from the start state to the �nal state in the complement machine represents
a valid sequence of interactions to complete a protocol. A machine can interact with
an implementation of any interaction path of its complement machine. Decomposition
of a component from a system is accomplished by incorporating the appropriate path
implementation of the complement of the component into the description of the rest of
the system.
Path implementation of a process implements one of many protocols of the process.

It is a weaker relation than implementation which implements all protocols in a process.
In case of a component process with di�erent protocols for di�erent operations, only
one of which is used by its environment in a procedure, the path implementation of the
complement of the component, that performs the required procedure, is incorporated into
the environment.
To de�ne the path implementation relation we must �rst de�ne the relation path sim-

ulates over states. The binary relation path simulates is a maximal relation over states,
Sp � S1�S2, where S1; S2 are the sets of states in the two machines. s1 p s2 implies that
there are possible transitions from s1 and s2, such that the transition from s1 is included
by the transition from s2, and they lead to states which satisfy the same relation. Also,
for all transitions with active control inputs from s1, there is a corresponding transition
from s2, which includes the transition from s1, and these transitions lead to states which
satisfy the same relation. It also implies that, if s1 is a wait state for a control input, then
s2 must also be a wait state for the same control input, or s2 must lead to a wait state
for the same control input.

De�nition 5.10: A relation over states is a path simulation relation if s1 p s2 implies :

1. 9s1
L1! s01; s2

L2! s02 : L1 � L2 ^ s01 p s
0
2

2. 8s1
L1! s01 : (careL1 \ CI1) 6= �) 9s2

L2! s02 ^ L1 � L2 ^ s01<ps
0
2

3: 9s1
L11
�! s1; s1

L12
�! s01 : s1 6= s01 ^ (careL12 \ CI1) 6= �)

(9s2
L22
�! s02 : s2 6= s02 ^ L12 � L22 ^ s01 p s

0
2) ^

((9s2
L21
�! s2 : L11 � L21) _ (9s2

L23
�! sk : L11 � L23 ^ s1 p sk))

De�nition 5.11: A machine M1 path implements machine M2 (M1 vp M2) if :

1. The start state of M1 is path simulated by the start state of M2.

2. The �nal state of M1 is path simulated by the �nal state of M2.

6. An Example of Process Decomposition

Given a speci�cation of a sequential process, one would like to decompose the process
in two or more sub-processes. A procedure F in the speci�cation can be instantiated as
a subprocess PF . The goal here is to incorporate the complementary process PF as an
interaction \stub" into the original process.

14

u = u − 1
v = u * v

[u=0] [u=0]

u = in
v = 1

out = v

Figure 6. Factorial Machine State Diagram

Consider the example of a factorial machine fac (Figure 6). This speci�cation shows the
internal facet of fac, e.g. internal registers u; v, and internal conditions [u = 0]; [u 6= 0].
To abstract the procedure v = u � v and use the multiplier machine in Figure 2, the

factorial machine should incorporate an implementation of the complement machine mult
(Figure 5). The assumption here is that mult performs multiplication. The following
steps are involved in modifying fac:

1. Add all the control and data ports in mult, (done ; start ; p ; o) to fac.

2. Replace the state transition containing v = u � v with an implementation of mult,
by merging the start state with the source state of the transition and the �nal state
with the target state of the transition (Figure 7).

3. The previous step does not take into account the other procedure u = u� 1 in the
replaced transition in the original fac. This procedure is scheduled in the earliest
possible transition that does not go from a state to itself, such that the register
value dependencies in the original fac are preserved. For simple expressions this is
done by textual comparison. In general this involves veri�cation of equivalence of
logical and arithmetic expressions, and is a heuristic task [6].

Let û, v̂ be the values in registers u, v before the procedures u = u� 1 and v = u � v in
the original fac. The values in the registers after the procedures in the original fac and
by scheduling u = u � 1 with t1 and t2 in the modi�ed fac (Figure 7) are shown in the
table below. t2 is the earliest transition where the procedure u = u � 1 gives the same
values as the original fac.

Register Values after Procedures
u v

Original û � 1 û � v̂
u = u� 1 with t1 û � 1 (û � 1) � v̂
u = u� 1 with t2 û � 1 û � v̂

The modi�ed fac can be turned into a state diagram with only the interface speci�cation
by hiding all the names in the original fac except the ones added in step 1 above, and
minimizing the resulting state diagram. The modi�ed fac and mult are subprocesses that
together implement the original fac.

15

done

done

done: o/ u*v

p/v

start : p/u

v = o

u = u − 1

[u=0]

[u=0]

u = in
v = 1

out = v

[u=0]

t1

t2

Figure 7. Factorial Machine with Multiplier Factored

7. Observations and Conclusion

In this paper we described a language for interface speci�cation and a �nite state ma-
chine based semantic model. This language can be used to describe the interaction among
components in a synchronous hardware system. A de�nition in this language describes
the input/output behavior of a machine. A set of operations and relations are de�ned
on machines. The complement operation is used to construct the environment of a ma-
chine. Decomposition is done by factoring an internal procedure to a sequential machine
that performs the procedure. An implementation of the complement of this machine is
incorporated in the original machine. Successive decomposition steps result in an imple-
mentation of a network of machines that implement the high-level speci�cation. We have
used process decomposition to derive a DRAMmemory sub-system for an implementation
of the FM9001 microprocessor [23].
The language described here needs to be extended to allow symbolic values on control

ports. The syntax is restricted in order to maintain a simple semantics. There is no
mechanism to quantify time in the language. Our approach can provide a framework
for both top-down and bottom-up reasoning by integrating with a veri�cation system.
Liveness and safety issues in system design will also be explored within our framework.
The language, the FSM model, and the operations presented here will be automated and
integrated with our design derivation system.

8. Acknowledgements

We are grateful to Venkatesh Choppella for his many helpful suggestions in revising
this paper.

16

REFERENCES

1. G. Borriello. Speci�cation and synthesis of interface logic. High-Level VLSI Synthesis,
pages 153{176, 1991.

2. Tam Anh Chu. Synthesis of self timed VLSI circuits from graph theoritic speci�ca-
tions. In Intl. Workshop on Petri Nets and Performance Models, August 1987.

3. Ed Clarke, D. Dill, J. Burch, K. L. McMillan, and L. J. Hwang. Symbolic model
checking: 10**20 states and beyond. In International Workshop on Formal Methods
in VLSI Design. ACM-SIGDA, January 1991.

4. Bruce S. Davie. A Formal, Hierarchical Design and Validation Methodology for VLSI.
PhD thesis, University of Edinburgh, 1988.

5. Bruce S. Davie and George J. Milne. Contextual constraints for design and veri�ca-
tion. In Birtwistle and Subramanyam, editors, VLSI Speci�cation, Veri�cation and
Synthesis, pages 257{265. Kluwer, 1988.

6. S. Devadas and K. Keutzer. An Automata-Theoretic Approach to Behavioral Equiv-
alence. In Proceedings of the International Conference on Computer-Aided Design,
pages 30{33, November 1990.

7. David L. Dill, Alan J. Hu, and Howard Wong-Toi. Checking for language inclusion
using simulation preorders. In Larsen and Skou, editors, Proceedings of Computer
Aided Veri�cation, pages 255{265. Springer, July 1991. LNCS 575.

8. Doron Drusinsky and David Harel. Using statecharts for hardware description and
synthesis. Transactions on CAD, 8(7):798{807, July 1989.

9. Ganesh C. Gopalakrishnan, Richard M. Fujimoto, Venkatesh Akella, and Narayana S.
Mani. HOP: A process model for synchronous hardware; semantics and experiments
in process composition. Integration, the VLSI journal, 8:209{247, 1989.

10. Gerard J. Holzmann. Tracing protocols. In Yemini, editor, Current Advances in
Distributed Computing and Communications, pages 189{207. Computer Science Press
Inc, 1987.

11. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison Wesley, 1979.

12. Steven D. Johnson. Applicative programming and digital design. In Proceedings
of 11th Annual SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 218{227, 1984.

13. Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. MIT
Press, Cambridge, 1984. ACM Distinguished Dissertation 1984.

14. Steven D. Johnson. Manipulating logical organization with system factorizations. In
Leeser and Brown, editors, Hardware Speci�cation, Veri�cation and Synthesis: Math-
ematical Aspects, volume 408 of LNCS, pages 260{281. Springer, July 1989. Proceed-
ings of Mathematical Sciences Institute Workshop, Cornell University, 1989.

15. Steven D. Johnson and Bhaskar Bose. A system for mechanized digital design deriva-
tion. In Subramanyam, editor, Proceedings of ACM International Workshop on For-
mal Methods in VLSI Design, January 1991.

16. Steven D. Johnson, R.M. Wehrmeister, and B. Bose. On the interplay of synthesis
and veri�cation: Experiments with the FM8501 processor description. In Claesen,
editor, Applied Formal Methods for Correct VLSI Design, pages 385{404. Elsevier,

17

1989. IMEC 1989.
17. David Ku and Giovanni De Micheli. Relative scheduling under timing constraints. In

Proceedings of ACM/IEEE Design Automation Conference, June 1990.
18. R. P. Kurshan. Analysis of discrete event simulation. In Bakker, Roever, and Rozen-

berg, editors, Stepwise Re�nement of Distributed Systems, pages 414{453. Springer-
Verlag, July 1989. LNCS 430.

19. Kenneth L. McMillan and David L. Dill. Algorithms for interface timing veri�cation.
In Proceedings of IEEE International Conference on Computer Design, pages 48{51.
IEEE Computer Society, November 1992.

20. George J. Milne. CIRCAL: A calculus for circuit description. Integration, 1:121{160,
1983.

21. George J. Milne. Design for veri�ability. In Leeser and Brown, editors, Hardware
Speci�cation, Veri�cation and Synthesis: Mathematical Aspects, pages 1{13. Springer,
July 1989. LNCS 408.

22. J. A. Nestor and D. Thomas. Behavioral synthesis with interfaces. In Proceedings of
ICCAD, November 1986.

23. Kamlesh Rath, Bhaskar Bose, and Steven D. Johnson. Derivation of a DRAMmemory
interface by sequential decomposition. to appear in ICCD, 1993.

24. Andr�es R. Takach and Wayne Wolf. Behavior FSMs for high-level synthesis and
veri�cation. Technical Report CE-W91-13, Dept. of Electrical Engineering, Princeton
University, July 1991.

25. Wayne Wolf, Andr�es Takach, and Tien-Chien Lee. Architectural optimization meth-
ods for control-dominated machines. High-Level VLSI Synthesis, pages 231{254, 1991.

26. Zheng Zhu and Steven D. Johnson. An example of digital design transformation in
an algebraic framework. In Subramanyam, editor, Proceedings of ACM International
Workshop on Formal Methods in VLSI Design, January 1991.

18

