
Universal Queries for Relational Query Languages

Lawrence V. Saxton

Department of Computer Science

University of Regina

Regina, SK S4S 0A2, Canada

e-mail: saxton@cs.uregina.ca

Dirk Van Gucht and Munish Gandhi

Computer Science Department

Indiana University

Bloomington Indiana 47405

email: vgucht,gandhim@cs.indiana.edu

1

Proposed running head: Universal queries

Lawrence V. Saxton

Department of Computer Science

University of Regina

Regina, SK S4S 0A2, Canada

e-mail: saxton@cs.uregina.ca

2

1 Introduction

The theoretical study of query languages began with Codd's introduction of the relational

algebra and calculus for
at relational databases (Codd72). It was however quickly real-

ized and formally established that many natural queries could not be formulated in these

languages (Aho79). These limitations of �rst-order query languages led to the addition

of limited forms of recursion into query languages. Examples of such query languages

are the �xpoint queries (Aho79, Chandra82, Immerman86, Vardi82) logic programming

query languages (Abiteboul-Vianu88, Abiteboul-Vianu90, Bancilhon86, Chandra85, Ull-

man88), and query languages with simple programming constructs (Abiteboul-Vianu90,

Aho79, Chandra80, Chandra82). Parallel to these e�orts was the introduction of language-

independent characteristics for query languages. Notable among these are the by now

accepted requirements for query languages to be 1) generic (or symmetry preserving), 2)

domain preserving (or safe) and 3) typed. Furthermore, e�ciency considerations led to the

formal study of time and space complexity of such languages (Abiteboul-Vianu88,Abiteboul-

Vianu90,Chandra82,Immerman86,Vardi82).

The requirements of more complex database applications sparked the research into data

models and query languages with higher-order objects (Abiteboul et.al.89, Abiteboul-Kanellakis90,

Gyssens88, Hull88, Hull89, Jaeschke82, Roth88, Thomas85). It was shown that most of the

at relational query languages could be naturally extended to these more complex data ob-

jects. Furthermore, many of the properties established for the
at query languages remained

valid in this context. There were however some fundamental di�erences. Two notable re-

sults are 1) whereas
at relational query languages can be organized with respect to their

expressive power into a strict lattice, in the world of complex objects this lattice partially

collapses (Abiteboul-Beeri88, Gyssens88) and 2) without special restrictions, the time and

space complexity of these languages can increase dramatically (Hull88, Hull89, Kuper88).

A less explicitly stated, but nevertheless fruitful and insightful research direction consisted

of the study of query language features resembling those of general purpose programming

languages. The best-known results of this kind came from the observation that many query

languages often already have either implicitly or explicitly programming constructs such as

variables, assignment statements, if-then statements, compound-statements, and sometimes

while-statements (Abiteboul-Vianu88, Abiteboul-Vianu90, Aho79, Chandra80, Chandra82,

Gyssens88, VandenBussche93). The most extensive and recent example occurs in (Vanden-

3

Bussche93) where the re
ection construct is added to relational algebra. Probably, lesser-

known results came from the observation that many query languages shared with general

programming languages the property that their queries could be transformed into equivalent

queries in a certain normal form. For example, it was shown by Immerman (Immerman86)

(see also (Leivant89)) that a �xpoint query can be rewritten into an equivalent �xpoint

query in which the least �xpoint constructor appears only once1. These results are of course

analogous to Kleene-Normal Form of (partial) recursive functions (Kleene52).

In view of these results, it appears natural to continue the investigation into the simi-

larities of query languages and general purpose programming languages. In this paper we

take up this issue by looking at one of the most powerful aspect of programming languages,

namely their ability to interpret other languages. Speci�cally we ask whether query lan-

guages can be interpreted by queries of other query languages? To show this possibility, we

introduce the concept of universal queries; we will say that a query is a universal query for

a query language L1 if it can emulate the e�ect of an arbitrary query of L1. These results

will of course be more interesting if we can show that such queries belong to query languages

of limited expressiveness, since it is well-known that Turing-complete languages have a uni-

versal property directly. The main results of this paper will be an a�rmative answer to the

above question. We will �rst show how a (relational) database instance and a (relational)

query in L1 can be encoded as an unique database instance. This encoding is reminiscent

of the approach of Ross, (Ross92), who proposed a model and an algebra where relations

can contain relation names. Using these encodings we will show the existence of a universal

query u1 for the
at relational algebra, and a universal query u2 for the while-loop queries

with typed
at relation variables. The query u1 will be shown to be a for-loop query with

typed nested relation variables of set-height two (which is therefore also equivalent to a pow-

erset algebra and a nested calculus query of set-height two (Abiteboul-Beeri88, Gyssens88,

Hull88). The query u2 will be shown to be a while-loop query with typed nested relation

variables of set-height two. By a result in (Gyssens88) this query can also be written as an

(extended) powerset algebra query of set-height two. We will further discuss the existence

of universal queries for
at relational algebra queries which use up to k attributes, and for

while-loop queries with typed nested relation variables of set-height at most h � 0.

We believe that the existence of universal queries o�ers yet another technique in the

1Similar result are known for datalog (Chandra80) the while-loop queries with typed
at relation variables

(Abiteboul-Vianu88) and the while-loop queries with typed nested relation variables (Gyssens91)

4

measurement of the relative expressiveness of query languages.

The paper is organized as follows. In Section 2 we give the de�nition of nested relations

and databases. In Section 3 we describe the various query languages we will deal with in

this paper. In Section 4, we will show the existence of the universal queries u1 and u2. In

Section 5 we discuss the existence of universal queries for other query languages.

2 Basic De�nitions

Since nested relations are more general than
at relations, we will state our de�nitions in

terms of nested relations. Our de�nitions are based on (Beeri90, Gyssens88).

2.1 Nested Relations

Assume an in�nitely enumerable set U of elementary attributes. Attributes are either el-

ementary or composite, where a composite attribute is a set of elementary or composite

attributes.

De�nition 1 The set of all attributes U is the smallest set containing U such that every

�nite subset X of U , in which no elementary attribute appears more than once, is in U .

Elements of U are called elementary ; those of U � U are called composite (or relation-

valued). We denote elementary attributes by A;B;C; : : :, composite attributes byX; Y; Z; : : :,

and general attributes, also called types, by T1; T2; : : :. A relation scheme
 is a composite

attribute, i.e. an element of U � U . The structural complexity of types is measured by the

depth of set constructs in their de�nition. The set-height of a type T , denoted sh(T), is

de�ned as 0 for T 2 U , and 1 +maxfsh(X) : X 2 Tg for T 2 U .

Next we de�ne simultaneously the notions of value, tuple and instance. Assume an

in�nitely enumerable set V of elementary values.

De�nition 2 The set V of all values, the set IX of all instances over X 2 U�U , the set TX

of all tuples over X 2 U � U , and the set I of all instances are the smallest sets satisfying:

5

� V = V [I;

� I =
S
X2U�U IX ;

� IX consists of all �nite subsets of TX ;

� TX consists of all mappings t from X into V, called tuples, such that t(A) 2 V for all

A 2 X \ U and t(Y) 2 IY for all Y 2 X � U .

De�nition 3 A (nested) relation is a pair (
; !) where
 2 U �U and ! 2 I
.
 is called

the scheme of the relation and ! is called the instance of the relation. The set of all relations

with scheme
 will be denoted by R
, and the set of all relations will be denoted by R.

Assume an in�nitely enumerable set N of relation names. A (nested) database scheme

is a sequence � = [R1 :
1; : : : ; Rn :
n], where Ri 2 N , and
i is a relation scheme. A

(nested) database instance over � is a sequence � = [R1 : !1; : : : ; Rn : !n], where !i 2 I
i
.

The set of databases instances over � is denoted I�. A (nested) database is a pair (�; �),

where � 2 D�. The set of all databases over � will be denoted by D�. The set of all

databases will be denoted by D.

The traditional (non-nested) relational model consists of the restriction of relation schemes

to sets of elementary attributes. In the sequel, we will call the traditional relational model

the
at relational model, and refer to the above de�ned concepts in its context with the

adjective
at.

2.2 Queries

The active domain of a tuple t (relation instance !, database instance �), denoted adom(t)

(adom(!), adom(�)), is the set of elementary values appearing in t (!, �).

De�nition 4 A query from a database scheme �in to a database scheme �out, denoted

q : �in ! �out
2, is a (partial) mapping from D�in

to D�out
, such that for some �nite set

C � V the following holds:

2In the case where �out consists of a single component [Rout :
out], we will also talk about a query from

a database scheme �in to a relation scheme
out.

6

� q is domain preserving w.r.t C: 8� 2 I�in
, adom(q(�)) � adom(�) [C;

� q is C-generic: for each permutation � over V (extended in the natural way to I and

V), such that � is the identity on C and q � � = � � q.

Two query languages L1, L2 are equivalent , if each query expressible in L1 is expressible

in L2 and vice versa.

3 Relational query languages

We will consider several relational query languages. In particular, for relational databases

we will consider the
at relational algebra, the
at relational calculus (Codd72). and the

while-loop and for-loop queries with typed
at relation variables (Chandra80). For nested

relational databases we will consider the powerset algebra, the nested calculus, the while-loop

and for-loop queries with typed nested relation variables.

3.1 Algebraic query languages

Algebraic query languages for (nested) relations are obtained by extending the
at relation

algebra operators to deal with (nested) relations, and adding the restructuring operators

unnest and powerset.

De�nition 5 � The classical relational operators of union ([), di�erence (�), cartesian

product (�) and projection (�). Cartesian product is applicable only to relations whose

schemes are built from disjoint sets of elementary attributes. Required renaming of

attributes is performed by the rename operator. If (
; !) is a relation and T an attribute

in
 then the renaming of T by T 0 in (
; !) is denoted �T!T 0(
; !).

� Selection of tuples from a relation (
; !) is de�ned relative to a predicate 	 on tuples

as �	(
; !) = (
; ft : t 2 ! ^ 	(t) = trueg). We consider the following predicates:

Elementary attribute equality, A = B, for A, B 2
\U ; Elementary attribute-constant

equality, A = a, for A 2
 \ U and a 2 V ; Composite attribute equality, X = Y , for

compatible attributes X, Y 2
�U ; Composite attribute-constant equality, X = x, for

X 2
� U and x 2 IX.

7

� Let X 2
 � U . The unnesting �X(
; !) equals (

0; !0) where
0 = (
 � fXg) [X

and !0 = ft 2 T
0j9t0 2 ! : t restricted to
� fXg equals t0 restricted to
� fXg and

t restricted to X is an element of t0(X)g.

� Let 2! denote the set of all subsets of !. The powerset �(
; !) equals (f
g; 2!).

To avoid extensive use of brackets, we assume the following precedence on these operators:

� unary operators;

� cartesian product;

� set operators.

The powerset algebra P is de�ned by expressions built from typed relation variables and

constant relations using the operators above. The
at relational algebra is the subset of P

built with
at relation variables and
at relation constants not using powerset.

3.2 A calculus for nested relations

The calculus uses typed variables ranging over tuples. The terms are constants, variables,

and expressions of the form x:Z, where x is a tuple variable and Z 2 U . The atomic formulas

are (well-typed) expressions of the form t1 = t2, t1 2 t2, or R(t1) where t1, t2 are terms and

R is a typed relation name. Formulas are built using connectives and quanti�ers in the usual

manner. A calculus query from a database schema � = [R1 :
1; : : : ; Rn :
n] to a relation

scheme
 (see footnote 1) is an expression fyj�g where � is built from the relation names

R1; : : : ; Rn in �, has only y as a free tuple variable, and y has the type
.

Clearly, a calculus query de�nes a generic mapping with domain D�. However, this

mapping need not be domain preserving. We therefore also consider the notion of domain

preserving calculus queries, and we will call the nested calculus the set of domain preserving

calculus queries. A fundamental result in the theory of nested relation query languages is:

Theorem 1 (Abiteboul-Beeri88) The powerset algebra and the nested calculus are equiva-

lent.

8

<query> ! <constant>�<statement>� <�nal-statement>

<constant> ! <typed-relation-name>\ "(<constant-relation> j

<typed-relation-name>)\;"

<statement> ! <statement-number> (<assignment-statement> j

<if-statement> j <loop-statement> j <compound-statement>)

<assignment-statement> ! <typed-relation-variable>\ "<subquery>\;"

<if-statement> ! \if"<boolean-expression>\then<statement>

<loop-statement> ! <while-statement> j <for-loop>

<while-statement> ! \while"<boolean-expression><statement>

<for-loop> ! \for"\j" <typed-relation-variable>\j"<statement>

<compound-statement> ! \f"<statement>�\g"

<sub-query> ! <powerset-algebra-query> j <nested-calculus-query>

<boolean-expression> ! <typed-relation-variable><comparison-operator>

(<typed-relation-constant> j <typed-relation-variable>)

<comparison-operator> ! \="j\6="j\�"

<�nal-statement> ! \Result" \ " <sub-query>\."

Figure 1: The syntax for the while-loop query language

3.3 Query languages with programming constructs

To add expressiveness to the
at relational algebra and calculus, several extensions to these

query languages have been introduced (for an excellent survey, see (Chandra88)). In particu-

lar, Chandra and Harel introduced a (typed) query language which incorporate the standard

features of an imperative programming language (Chandra80), i.e. typed relation variables

and constants, (correctly typed) assignment statements, if-then statements, loop statements,

and compound statements3. Similar extensions for nested relational query languages were

introduced in (Gyssens88). The precise syntax for these queries is shown in Figure 3.3.

The set of queries satisfying the syntax of Figure 3.3 will be called the while-loop query

language. The subset of queries in which no while-statement occurs will be called the for-

loop query language. Since while-loop queries in general de�ne partial functions, we also

consider the subset of total while-loop queries.

3Chandra and Harel also introduced an untyped version of this language. This untyped language is

considerably more expressive than the corresponding typed one. In fact, in (Chandra80) it is shown that

the untyped language can express all computable
at relational queries!

9

As an example, assume that � = [R : fA;Bg] is a (
at) relational database scheme.

Then the following (total) while-loop query computes the transitive closure of R.

1 Empty ;;

2 New R;

3 TC R;

4 while New 6= Empty

5 f

6 TC TC [�A0
!A�A0;B(�B0=A(�A!A0�B!B0TC �R));

7 New TC �New;

g

8 Result TC.

This particular while-loop query can also be written as a for-loop query.

1 TC R;

2 for jRj

3 TC TC [�A0
!A�A0;B(�B0=A(�A!A0�B!B0TC �R));

4 Result TC.

The following result relates the various nested relational query languages.

Theorem 2 (Gyssens88) The powerset algebra (and therefore, by Theorem 1, also the nested

calculus), the total while-loop query language and the for-loop query language are equivalent4.

To take into account that while-loop queries are in general only partial functions, the

powerset algebra is extended with an operator which when applied to the empty set yields

an unde�ned result. With this extension, the following result holds.

Theorem 3 (Gyssens88) The extended powerset algebra and the while-loop query language

are equivalent.

4It should be noted that a similar result does not hold for
at relational query languages (Chandra88).

10

4 Universal queries

One of the main properties of general purpose programming languages is their ability to

interpret other programming languages. This observation of course dates back to Turing's

proof about the existence of Universal Turing Machines (Turing37). Another closely related

result to this is the existence of universal (partial) recursive functions. More precisely, if e

is an encoding for the (partial) recursive functions then there exists a n + 1-ary function

un+1 such that for each n-ary function f , and each set of n natural numbers m1; : : : ; mn, one

has that un+1(e(f); m1; : : : ; mn) = f(m1; : : : ; mn), where e(f) denotes the natural number

corresponding to the encoding of f (see e.g. (Hennie77,Kleene52)).

Clearly, we can't expect such strong properties for the query languages we introduced in

the previous section. In fact, to show such strong properties, we would need query languages

that can express all computable queries (Abiteboul88,Chandra80). We will however show

that even in the context of these much weaker languages, there is the notion of interpreting

a query language by a query in another query language. To show this, we will prove the

existence of universal queries for various query languages. What makes our result interesting

is that that these universal queries themselves belong to query languages much weaker than

the class of all computable queries. We begin with the de�nition of encodings and universal

queries.

De�nition 6 Let L1, L2 be query languages. A query u(L1;L2) in L2 is a universal query for

L1, or, u(L1;L2) interprets L1, if there exist database schemes �db, �q, a database encoding

mapping de and a query encoding mapping qe with:

� de a computable one-to-one mapping from the set of databases for queries in L1 to the

set of databases over �db, i.e. de : DL1 ! D�db;

� qe a computable mapping from the set of queries in L1 to the set of databases over �q,

i.e. qe : L1 ! D�q ;

� the input scheme of u(L1;L2) is the combination of �q and �db, denoted by [query :

�q; inputdb : �db], and its output scheme is �db,

such that for each query q : �in ! �out in L1 and each database d 2 D�in
the following

equation holds:

de�1(u(L1;L2)([query : qe(q); inputdb : de(d)])) = q(d)

11

with de�1 a partial computable mapping from D�db to DL1 such that de�1 is the inverse of

de on the range of de and unde�ned everywhere else.

Thus, the query u(L1;L2) when presented with input the encoding of the query q and the

encoding of the database d yields as result (when decoded by de�1) the result of applying

the query q directly to d; i.e. u(L1;L2) is an interpreter for the language L1.

It ought to be stressed that neither de nor qe are themselves queries of either L1 or L2.

Also note that since de is a one-to-one mapping, its inverse, de�1, is well-de�ned and is also

a one-to-one mapping.

4.1 A universal query for the
at relational algebra

In this section we will prove that there exists a universal for-loop query with nested relation

variables (and therefore, by Theorem 2, also a powerset algebra and a nested calculus query)

for the
at relational algebra5. More precisely, we will specify a
at database encoding fde,

a
at relational algebra query encoding faqe, and a for-loop query u(FRA;forLQ) such that for

each
at relational algebra query faq and each (input)
at database fd, we have that

fde�1(u(FRA;forLQ)([query : faqe(faq); inputdb : fde(fd)])) = faq(fd)

In other words we will prove the following theorem.

Theorem 4 The
at relational algebra can be interpreted by a for-loop query with nested

relation variables (and therefore by Theorem 2 also by a total while-loop query, a powerset

algebra query and a the nested calculus query). Furthermore, this query is of set-height two.

We will begin with the
at database encoding fde. The best way to illustrate this

encoding is to consider an example. Let �1 = [R1 : fA;Bg; R2 : fB;C;Dg; R2 : fA;Eg] be

a
at relational database scheme and let �1 = [R1 : r1; R2 : r2; R : r3] be the
at relational

database shown in Figure 4.1. Notice that r3 is empty. The encoding of this database,

fde(�1; �1), is shown in Figure 4.1. As can be seen, the encoding of a
at database is of a

single nested relation with scheme fRelationName; fAttribute; V aluegg. For each tuple in

the
at database there is a corresponding tuple in this nested relation. We will therefore

from now on refer to the composite attribute fAttribute; V alueg as the Tuple attribute.

12

r1 A B r2 B C D r3 A E

0 0 0 5 0

1 1 1 2 1

0 1

Figure 2: The
at relational database �1 (r3 is empty)

Relation-name f Attribute Value g

R1 A 0

B 0

R1 A 1

B 1

R1 A 0

B 1

R2 B 0

C 5

D 0

R2 B 1

C 2

D 1

Figure 3: The encoding fde(�1; �1)

13

1 C1

B0 C D

0 1 0

1 2 0

;

2 S1 �B!B0(R2);

3 S2 R1 � S1;

4 S3 �B=B0(S2);

5 S4 �B0;C(S3);

6 S5 �B!B0(R2);

7 S6 S4 [S5;

Result S6 � C1.

Figure 4: A loop-less query equivalent to query q1

Next, we consider the
at relational algebra query encoding faqe. To simplify matters,

given a
at relational algebra query, we will �rst transform this query into an equivalent

loop-less for-loop query. Consider the following relational algebra query q1.

(�B0;C(�B=B0(R1 � �B!B0(R2))) [�B!B0(R2)) �

B' C D

0 1 0

1 2 0

The query shown in Figure 4.1 is an equivalent (loop-less) for-loop query. Notice how there

is a one-to-one correspondence between the operators in the relational algebra query and the

assignment statements in the (loop-less) for-loop query.

The encoding of this (loop-less) for-loop query, i.e. faqe(q1), is shown in Figure 4.1. It is

built from two nested relations: the �rst nested relation, denoted aqe(q1), corresponds to the

actual query. The second nested relation, denoted qce(q1) is the encoding of the constant

relations occurring in q1
6.

Ross (Ross92) developed a model and an algebra for storing relation names directly into

a relation. His � operator, suitably generalized and extended to allow attribute names, could

5In Section 4.2 we will strengthen this result.
6The encoding technique for the constants is identical to the encoding technique for
at databases.

14

PSN SN R TypeR Opr UOpd LOpd Ropd Pars LP RP

1 2 S1 fB0; C;Dg � R2 na na ; B B'

2 3 S2 fA;B;B0; C;Dg � na R1 S1 ; na na

3 4 S3 fA;B;B0; C;Dg � S2 na na ; B B'

4 5 S4 fB0; C;Dg � S3 na na fB',Cg na na

5 6 S5 fB0; C;Dg � R2 na na ; B B'

6 7 S6 fB0; C;Dg [na S4 S1 ; na na

7 8 Result fB0; C;Dg � na S6 C1 ; na na

The encoding aqe of the query q1

Relation-name f Attribute Value g

C1 B0 0

C 1

D 0

C1 B0 1

C 2

D 0
The encoding qce of the constant appearing in q1

Figure 5: The encoding faqe of the query q1

15

be used to provide an encoding for the database instance, similar to our encoding. He shows

that adding his operator to relational algebra would not drastically increase the expressive

power of the language. However, the encoding of the query which follows and the decoding

function are not available in his language.

The encoding of the query, i.e. aqe(q1), consists of a nested relation with scheme fPrevious-

Statement-Number (PSN), Statement-Number (SN), Relation-Name (R), Type-of-R (TypeR),

Operator (Opr), Unary-Operand (UOpd), Left-Operand (LOpd), Right-Operand (ROpd),

fProjection-Attributeg (fPattg, abbreviated Patts), Left-Parameter (LP), Right-Parameter

(RP)g. Each tuple in aqe(q1) corresponds to an assignment statement, say astat , q1. PSN

denotes the statement number of the statement preceding astat . SN denotes the statement

number of astat . R is the relation variable name to which the result of astat is assigned.

TypeR denotes the type of the relation variable name R. Opr denotes the single operator

involved in astat . If Opr is a unary operator, UOpd gives the relation name of its operand

(otherwise, UOpd is set to \na"; we assume w.l.o.g. that \na" is a distinguished value in V).

If Opr is a binary operator, LOpd (ROpd) gives its left (right) operand (otherwise, LOpd

(ROpd) is set to \na"). If Opr is the projection operator, Patts is the set of attributes

over which the projection is applied (otherwise Patts is set to ;). If Opr is the renaming

(selection7) operator, LPar (RPar) gives the attribute name of its left (right) parameter

(otherwise LPar (Rpar) is set to \na").

The relation eqa(q1) has two important properties:

1. It is possible to retrieve from it the tuple corresponding to the top statement of the

query q1. This is because this tuple in aqe(q1) is the only one with its particular PSN

value. In fact the following query retrieves the top statement in aqe(q1).

ftj qe(q1)(t) ^ : 9 t
0(qe(q1)(t

0) ^ t0:SN = t:PSN)g

2. There exists an implicit order among its tuples corresponding to the order that exists

among the statements in the query q1. This order is implied by the matches that exists

between PSN and SN values of the tuples in aqe(q1).

7We will make the simplifying assumption that the boolean expression involved in the selection is of the

form A = B where A and B are attribute names. It can easily be shown that this is not a restriction of the

expressive power of the
at relational algebra.

16

We are now ready to specify the universal for-loop query u(FRA;forLQ) such that for each

at relational algebra query faq and each (input)
at relational database fd, we have that

fde�1(u(FRA;forLQ)([query : faqe(faq); inputdb : fde(fd)])) = faq(fd)

The query u(FRA;forLQ) takes as input a nested database with scheme [query : F latQuery;

inputdb : Inputdb]. Inputdb is simply the scheme of fde(fd). F latQuery is a scheme

with two composite attributes: the �rst, denoted by AQE, corresponds to the scheme of

aqe(faq), the second, denoted byQCE, corresponds to the scheme of qce(faq). The encoding

faqe(faq) is then the nested relation over scheme F latQuery = fAQE;QCEg and contains

the single tuple (AQE : aqe(faq); QCE : qce(faq)).

The query u(FRA;forLQ) itself is essentially a single loop which at each iteration selects

the current top statement in aqe(faq), applies this statement to appropriate intermediate

results and adds its result to the intermediate results. This loop ends when all statements

in aqe(faq) have been selected and applied. In Figure 4.1, we show the appropriate initial-

izations and the main loop of u(FRA;forLQ).

The code for TOP-STATEMENT(Query) is

ftj Query(t) ^ : 9 t0 (Query(t0) ^ t0:SN = t:PSN)g

Note that this query, when applied to a valid query encoding results in a singleton set

containing a statement (tuple).

We now specify the statements to implement APPLY(Statement,IRs). Essentially, these

statements form a case statement controlled by the value of the operator (speci�ed by the

Opr attribute) in Statement.

17

Initialize the set of intermediate results (IRs) with Inputdb

1 IRs Inputdb;

Initialize the variable Query to the encoding

of the input query stored in F latQuery

2 Query �QE�QE(F latQuery);

Add the constants occurring in the input query constants to IRs

2 IRs IRs [�QCE�QCE(F latQuery);

Enter the main loop of u(FRA;forLQ) and execute each statement (tuple)

in Query

4 for jQueryj

5 f

Retrieve the top statement of Query

6 Statement TOP-STATEMENT(Query);

Remove the top statement of Query

7 Query Query � Statement;

Apply Statement to IRs; the result will be assigned to Temp

8 APPLY(Statement,IRs);

Add Temp to IRs

9 IRs IRs [Temp;

g

Select the result of applying faq to fd

9 Result �RelationName=Result(IRs).

Figure 6: The main loop of u(FRA;forLQ)

18

8.1 Temp ;;

Select the operator in Statement

8.2 Operator �Opr(Statement);

Consider the various cases for Operator

8.3 if Operator = f�g then RENAME(Statement; IRs);

8.4 if Operator = f�g then PROJECT(Statement; IRs);

8.5 if Operator = f�g then SELECT(Statement; IRs);

8.6 if Operator = f[g then UNION(Statement; IRs);

8.7 if Operator = f�g then DIFFERENCE(Statement; IRs);

8.8 if Operator = f�g then PRODUCT(Statement; IRs);

The statement corresponding to RENAME(Statement; IRs) is:

8.2.1 Temp f t j 9 s (Statement(s) ^ t:RelationName = s:R^

9 i (IRs(i) ^ i:RelationName = s:Uopd ^

8 j ((9 k (k 2 i:Tuple ^ k:Attribute 6= s:LP ^ j = k)) _

(9 k (k 2 i:Tuple ^ k:Attribute = s:LP ^

j:Attribute = s:RP ^ j:V alue = k:V alue))

()

j 2 t:Tuple)))g

The statement corresponding to PROJECT(Statement; IRs) is:

8.3.1 Temp f t j 9 s (Statement(s) ^ t:RelationName = s:R^

9 i (IRs(i) ^ i:RelationName = s:Uopd ^

8 j ((9 k (k 2 i:Tuple ^ k = j ^ k:Attribute 2 s:Patts

()

j 2 t:Tuple)))g

The statement corresponding to SELECT(Statement; IRs) is:

8.4.1 Temp f t j 9 s (Statement(s) ^ t:RelationName = s:R^

9 i (IRs(i) ^ i:RelationName = s:Uopd ^

9 j1 9 j2

(j1 2 i:Tuple ^ j2 2 i:Tuple ^

j1:Attribute = s:LP ^ j2:Attribute = s:RP ^

j1:V alue = j2:V alue) ^

t:Tuple = i:Tuple))g

19

The statement corresponding to UNION(Statement; IRs) is:

8.5.1 Temp f t j 9 s (Statement(s) ^ t:RelationName = s:R ^ (

9 i1 (IRs(i1) ^ i1:R = s:LOpd ^ t:Tuple = i1:Tuple) _

9 i2 (IRs(i2) ^ i2:R = s:ROpd ^ t:Tuple = i2:Tuple)))g

The statement corresponding to DIFFERENCE(Statement; IRs) is:

8.5.1 Temp f t j 9 s (Statement(s) ^ t:RelationName = s:R ^ (

9 i1 (IRs(i1) ^ i1:R = s:LOpd ^ t:Tuple = i1:Tuple) ^

:(9 i2 (IRs(i2) ^ i2:R = s:ROpd ^ t:Tuple = i2:Tuple))))g

The statement corresponding to PRODUCT(Statement; IRs) is:

8.6.1 Temp f t j 9 s (Statement(s) ^ t:RelationName = s:R^

(9 i1 9 i2 (IRs(i1) ^ IRs(i2) ^

i1:RelationName = s:LOpd ^ i2:RelationName = s:ROpd ^

8 j (j 2 t:Tuple()

j 2 i1:Tuple _ j 2 i2:Tuple))))g

This completes the description of the universal query u(FRA;forLQ) and therefore also the

proof of Theorem 4.

4.2 A universal query for the
at while-loop queries

It turns out that Theorem 6 can be substantially strengthened. In this section we will

shown that there exists a universal nested while-loop query (and therefore also an (extended)

powerset algebra query) for the
at while-loop queries.

To show this result, we will make the syntactic restriction that the
at while-loop queries

to be interpreted are in a certain normal form. This normal form requires that there is at

most one loop statement in the
at while-loop query under consideration.8 This syntactic

restriction does not decrease the expressive power since the following results holds.

8This normal form is closely related to the Kleene normal form of (partial) recursive functions which

states that in its formulation a single application of the minimization operator su�ces (Kleene52).

20

Theorem 5 (Abiteboul-Vianu88) The set of
at while-loop queries and the set of
at while-

loop queries containing at most one loop-statement are equivalent.9

More precisely, we will specify a
at database encoding fde, a
at while-loop query

encoding fwqe, and a while-loop query u(FWLQ;WLQ) such that for each
at while-loop query

fwq and each (input)
at relational database fd, we have that

fde�1(u(FWLQ;WLQ)([query : fwqe(fwq); inputdb : fde(fd)])) = fwq(fd)

In other words we will prove the following theorem.

Theorem 6 The set of
at while-loop queries can be interpreted by a (nested) while-loop

query (and therefore by Theorem 3 also by an extended powerset algebra query). Further-

more, this query is of set-height two.

To prove this theorem we can keep the encoding for
at databases fde introduced in

Section 4.1. However, we will need adjustments to the encoding faqe. Assume that fwq is

a
at while-loop query with at most one while-loop statement. The new encoding for fwq,

denoted fqwe(fwq), is built from three nested relations. The �rst nested relation, denoted

qwe(fwq), will correspond to the body of the complete query. The second nested relation,

denoted we(fwq), will correspond to the single while-loop statement10 in fwq. (The scheme

for these two nested relation is identical to the scheme for the corresponding construction

in Section 4.1.) The third nested relation, denoted cwe(fwq), will encode the constants in

fwq.

To illustrate the encoding fwq, reconsider the query to compute the transitive closure

of a binary (
at) relation introduced in Section 3.3. The encoding of this query is shown in

Figure 4.2, provided we make two simple changes to the original query11

1. The statements 2, 3 and 8 in the program, i.e.

9It turns out that there are variants of this theorem for datalog (Chandra82), the least �xed point queries

(Immerman86,Leivant89) and the nested while-loop queries (Gyssens91).
10We will make the additional assumption that the boolean expression controlling this while-loop is of the

form R1�R2 (with � either =, 6=, or �)where R1 and R2 are composite attribute names, but not constants.

It can be shown that this is not a limiting assumption and it will make the encoding problem slightly more

straightforward.
11These changes are merely technical and are done to make the encoding simpler.

21

2 New R;

3 TC R;

8 Result TC;

are replaced by the following three statements:

2 New R [R;

3 TC R [R;

8 Result TC [TC;

So now each statement involves a single (although redundant) operation.

2. The statement 6, i.e.

6 TC TC [�A0
!A�A0;B(�B0=A(�A!A0�B!B0TC �R));

is replaced by the following assignment statements:

6.1 S1 �A!A0(TC);

6.2 S2 �B!B0(S1);

6.3 S3 S2 �R;

6.4 S4 �B0=A(S3);

6.5 S5 �A0;B(S4);

6.6 TC �A0
!A;

We are now ready to specify the while-loop query u(FWLQ;WFQ) such that for each
at

while-loop query fwq and each (input)
at relational database fd, we have that

fde�1(u()([query : fwqe(fwq); inputdb : fde(fd)])) = fwq(fd)

The query u(FWLQ;WLQ) takes as input a database with scheme [query : F latWhileQuery;

inputdb : Inputdb]. Inputdb is simply the scheme of fde(fd). F latWhileQuery is a scheme

with three composite attributes: the �rst corresponds to the scheme of wqe(fwq) and is

denoted by WQE, the second corresponds to the scheme of we(fwq) and is denoted by

WE, and the third corresponds to the scheme of cwe(fwq) and is denoted by CWE. The

encoding fwqe(fwq) is then the nested relation over F latWhileQuery and contains the

single tuple (WQE : wqe(fwq);WE : we(fwq); CWE : ce(fwq)).

22

PSN SN R TypeR Opr UOpd LOpd Ropd Pars LP RP

1 2 New fA;Bg [na R R ; na na

2 3 TC fA;Bg [na R R ; na na

3 4 na ; while 6= Temp Empty ; na na

4 8 Result fA;Bg [na TC TC ; na na
The encoding of the main body of the
at while-loop query

PSN SN R TypeR Opr UOpd LOpd Ropd Pars LP RP

5 6.1 S1 fA0; Bg � TC na na ; A A0

6.1 6.2 S2 fA0; B0g � S1 na na ; B B0

6.2 6.3 S3 fA0; B0; A; Bg � na S2 R ; na na

6.3 6.4 S4 fA0; B0; A; Bg � S3 na na ; B0 A

6.4 6.5 S5 fA0; Bg � S4 na na fA0; Bg na na

6.5 6.6 TC fA;Bg � S5 na na ; A0 A

6.6 7 New fA;Bg � TC New na ; na na
The encoding of the main body of the
at while-loop query

Figure 7: The encoding of a
at while loop query

23

The query u(FWLQ;WLQ) contains a main while-loop which at each iteration selects the

current top statement in wqe(fwq), applies it to the appropriate intermediate results and

adds its result to the intermediate results. This loop ends when all statements in wqe(fwq)

have been selected. The query u(FWLQ;WLQ) di�ers from that for u(FRA;forLQ) in essentially

two ways

1. The main loop of the query u(FWLQ;WLQ) becomes a while loop rather than a for loop,

i.e. the code for the main loop changes from the for loop of u(FRA;forLQ):

Enter the main loop of u(FRA;forLQ) and execute each

statement (tuple) in Query

4 for jQueryj

5 f : : :

g

into the while loop:

Enter the main loop of u(FWLQ;WLQ) and execute each

statement (tuple) in Query

4 while Query 6= ;

5 f : : :

g

i.e. the query u(FWLQ;WLQ) needs the ability to interpret a while-loop statement which

might, depending on the given input query, potentially loop forever.

We are now ready to describe the query u(FWLQ;WLQ) in detail. Reconsider the query

u(FRA;forLQ) in Section 4.1. Replace the statement

Initialize the variable Query to the encoding

of the input query stored in F latQuery

3 Query �QE�QE(F latQuery);

by the following statements

Initialize the variable Query to the encoding

of the input query stored in F latWhileQuery

3.1 Query �WQE�WQE(F latWhileQuery);

Initialize the variable WhileStat to the encoding

of the input query stored in F latWhileQuery

3.1 WhileStat �WE�WE(F latWhileQuery);

24

Secondly, add to the APPLY(Statement; IR) the case

8.9 if Operator = f while g then WHILE-STATEMENT(Statement; IR);

The query corresponding to the WHILE-STATEMENT (Statement; IR) is

25

Keep a temporary copy of WhileStat

8.8.1 TempWhileStat WhileStat;

Decode the boolean expression controlling

the while-loop statement

8.8.2 CompOpr �UOpd(Statement);

8.8.3 LeftOperandName �LOpd(Statement);

8.8.4 RightOperandName �ROpd(Statement);

Introduce a ``boolean'' variable BooleanConditionSatisfied

to control whether an iteration of the while statement

should be executed

8.8.5 BooleanConditionSatisfied ffalseg;

Depending on the value of CompOpr, LeftOperandName

RightOperandName, and IRs, we need to check if

the body of while-loop should be should be executed

8.8.6 if CompOpr = f=g then

CHECK-CONDITION-=(LeftOperandName;RightOperandName; IRs);

8.8.7 if CompOpr = f6=g then

CHECK-CONDITION-6=(LeftOperandName;RightOperandName; IRs);

8.8.8 if CompOpr = f�g then

CHECK-CONDITION-�(LeftOperandName;RightOperandName; IRs);

Apply the body of the while-loop if a CHECK-CONDITION

set BooleanConditionSatisfied equal to ftrueg

8.8.9 if BooleanConditionSatisfied = ftrueg then

8.8.10 f

8.8.10.1 Apply the for loop statement of query u(FRA;forLQ) but

with variable WhileStat instead of Query

Restore the WhileStat variable

8.8.10.2 WhileStat TempWhileStat;

Execute the while-loop statement again

8.8.10.3 Query WhileQuery [Statement;

g

The query corresponding to CHECK-CONDITION-=(LeftOperandName;RightOperandName; IRs) is

26

8.8.6.1 LOperand �Tuple(LeftOperandName ./ IRs);

8.8.6.2 LOperand �Tuple(RightOperandName ./ IRs);

8.8.6.3 if LOperand = ROperand then

BooleanConditionSatisfied ftrueg

The cases for CHECK-CONDITION-6=(LeftOperandName;RightOperandName; IRs) and CHECK-CONDITION-

�(LeftOperandName;RightOperandName; IRs) are similar.

This completes the proof of Theorem 6.

5 Additional results

Although we will not prove this, one can also show that for a �xed k � 2, there is a universal

query for
at typed while-loop queries which use up to k attributes, although the arity of

the encoding relations is greater than k. What is interesting is that this universal query

can be shown to be a
at while-loop query. Furthermore, it can be shown that there exists

a universal query for the nested while-loop queries with typed nested relation variables of

set-height three. Not surprisingly, this query has set-height three. We also conjecture that

for a �xed h � 2 there exists a nested while loop query of set-height h + 1 for the set of

nested while-loop queries of set-height h. In our given encoding, the encoding relation is a

ternary nested relation with set height 2. It is still an open question whether there is a way

to build a �xed arity encoding for the universal query which is also of set height 1 (that is,

at), although this is conjectured to be false. The above conjectures remind one of the work

of (Meyer67), where they exhibited a hierarchy of program expressiveness depending on the

depth of nesting.

27

References

Abiteboul, S. and Beeri, C. (1988), On the power of languages for the manipulation of

complex objects. Technical report, INRIA, 1988.

Abiteboul, S., Beeri, C., Gyssens, M., and Van Gucht, D. (1989), An introduction to the

completeness of languages for complex objects and nested relations. In S. Abiteboul and H.J.

Schek, editors, Nested Relations and Complex Objects, LNCS 361, pages 117{138. Springer-

Verlag, 1989.

Abiteboul, S. and Kanellakis, P. (1990), Database theory column: Query languages for

complex object databases. SIGACT News, 76:9{18, 1990.

Abiteboul, S. and Vianu, V. (1988), Datalog extensions for database queries and updates.

Technical Report INRIA-900, INRIA, 1988.

Abiteboul, S. and Vianu, V. (1990), Procedural and declarative database update languages.

JCSS, 41:181{229, 1990.

Aho, A.V. and Ullman, J.D. (1979), Universality of data retrieval languages. In Proc. of 6th

ACM Symposium on Principles of Programming Languages, pages 110{117, 1979.

Bancilhon, F. and Ramakrishnan, R. (1986), An amateur's introduction to recursive query-

processing strategies. In Proceedings of ACM-SIGMOD '86 International Conference on

Management of Data, Washington, D.C., pages 16{52, 1986.

Beeri, C. and Kornatzky, Y. (1990), The many faces of query monotonicity. In Proc. of

Advances in Database Technology-EDBT '90, pages 120{135, 1990.

Chandra, A. (1988), Theory of database queries. In Proceedings of the Seventh ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Austin, pages

1{9, 1988.

Chandra, A. and Harel, D. (1980), Computable queries for relational data bases. JCSS,

21:156{178, 1980.

Chandra, A. and Harel, D. (1982), Structure and complexity of relational queries. JCSS,

25:99{128, 1982.

Chandra, A. and Harel, D. (1985), Horn clause queries and generalizations. J. of Logic

28

Programming, 1:1{15, 1985.

Codd, E.F. (1972) Relational completeness of database sublanguages. In R. Rustin, editor,

Database Systems. Prentice-Hall, Englewood Cli�s, 1972.

Gyssens, M. and Van Gucht, D. (1991), A Comparison between Algebraic Query Languages

for Flat and Nested Databases, Theoretical Computer Science, 87 (1991), pp. 263{286.

Gyssens, M. and Van Gucht, D. (1988), The powerset algebra as a result of adding pro-

gramming constructs to the nested relation algebra. In Proceedings of ACM-SIGMOD 1988

Annual Conference, Chicago, pages 225{232, 1988.

Hennie, F. (1977), Introduction to computability. Addison-Wesley, Reading, Mass., 1977.

Hull, R. and Su, J. (1988), On the expressive power of database queries with intermediate

types. In Proc. of 7th ACM Symposium on Principles of Database Systems, pages 39{51,

1988.

Hull, R. and Su, J. (1989), Untyped sets, invention, and computable queries. In Proc. of

8th ACM Symposium on Principles of Database Systems, pages 347{360, 1989.

Immerman, N. (1986), Relational queries computable in polynomial time. Inform. and

Comp, 68:86{104, 1986.

Jaeschke, G.H. and Schek, H.J. (1982), Remarks on the algebra of non �rst normal form

relations. In Proceedings of the First ACM Symposium on Principles of Database Systems,

pages 124{138, 1982.

Kleene, S.C. (1952). Introduction to metamathematics. Amsterdam (North-Holland Pub.

Co.), 1952.

Kuper, G.M. and Vardi, M.Y. (1984), A new approach to database logic. In Proceedings of

3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 86{96,

1984.

Kuper, G.M. and Vardi, M.Y. (1988), On the complexity of queries in the logical data model.

In Proc. of the 2nd International Conference on Database Theory, pages 267{280, 1988.

Leivant, D. (1989), Inductive de�nitions over �nite structures. Technical Report CMU-CS-

89-153, CMU, 1989.

29

Meyer, A.R. and Ritchie, D.M. (1967), The complexity of loop programs. In Proc. of 22nd

National Conference, ACM, pages 465{469, 1967.

Roth, M.A., Korth, H.F. and Silberschatz, A. (1988), Extended algebra and calculus for

nested relational databases. ACM Transactions on Database Systems, 13(4):389{419, 1988.

Ross, K. (1992), Relations with relation names as arguments: algebra and calculus. In Pro-

ceedings of the 11th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, pages 346{353, 1992.

Thomas, S.J. and Fischer, P.C. (1985), Nested relational structures. In P. C. Kanellakis,

editor, Advances in Computing Research, Volume 3: The Theory of Databases, pages 269{

307. JAI Press, 1985.

Turing, A.M. (1937), On computable numbers, with an application to the Entscheidungsprob-

lem. Proc. London Math. Soc., 42:230{265, 1937.

Ullman, J.D. (1988), Principles of Database and Knowledge-Base Systems, volume 1. Com-

puter Science Press, Rockville, MD, 1988.

Vardi, M.Y. (1982) Complexity and relational query languages. In Proc. of 14th ACM

Symposium on Theory of Computing, pages 137{146, 1982.

Van den Bussche, J., Van Gucht, D. and Vossen, G. (1993), Re
ective programming in the

relational algebra. In Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, 1993.

30

