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Abstract

This paper presents a cognitive framework for describing behaviors
involved in program composition, comprehension, debugging, modifi-
cation and the acquisition of new programming concepts, skills and
knowledge. An information processing model is presented which in-
cludes a long-term store of semantic and syntactic knowledge, and
a working memory in which problem solutions are constructed. New

experimental evidence 1s presented to support the model.
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1. Introduction

Recent research in programming and programming languages has
begun to focus more heavily on human factors and to separate out the
human-centered issues from the machine-centered issues. This natural
decomposition enables us to study programmer behavior without con-
cern for implementation issues such as parsing ease, execution speed,
storage economy, available character sets, etc.

Stimulated by Weinberg's insightful text, The Psychology of

Computer Programming (1971), and the improvements promoted by struc-

tured programming advocates, researchers have begun to deal with
the cognitive processes of programmers. Thils research has been in
the form of controlled experiments, protocol analyses and case studies
on individuals or groups (Sime, Green and Guest, 1973; Miller, '1973;
Reisner, Boyce, and Chamberlin, 1975; Shneiderman, 1975a, 1975b;
Thomas and Gould, 1975; Weissman, 1973, 1974; Young, 1974; and Gan-
non and Horning, 1975). The tasks studied have included program
composition, comprehension, debugging, mocdification and the learning
of new programming skills. A wide range of subjects, from non-pro-
grammers to a professional programmers, have been tested, mostly
on short or medium length programs, but occasionally on longer, more
complex programs.

Other material on programmer behavior is contained in the publi-
cations of the ACM Special Interest on Computer Personnel Research.
Interesting personal reflections have recently appeared in books

by Joel Aron, The Program Development Process Part I (1974), and

Fredrick Brooks, Jr., The Mythical Man (1975).

A final area of importance is programming education. Research

in this topic is covered by the ACM Special Interest Group on Computer
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Science Education which publishes the proceedings of an annual con-
ference. Educational psychologists have recently begun to probe the
acquisition of programming skills (Mayer, 1975; and Kreitzberg and
Swanson, 1974) and provide a new and valuable viewpoint.

Unfortunately this work is fragmented; nowhere is there a unified
approach or theory to account for the results that are beginning
to appear. Fach paper focuses on a particular problem, issue, task
or aspect of the programming process without producing a broader
model which explains the wide range of programmer behavior. A unified
cognitive model of the programmer would guide us in future experiments
and suggest new programming techniques while accounting for observed
behavior. Such a model becomes necessary as we move into an era
of more widespread computer literacy in which an increasingly diverse
population interacts with computers. The intuitions and experience
of expert programmers and programming language designers are no
longer appropriate for developing facilities to be used by novices
with varied backgrounds.

In Section 2 we present our model of programmer behavior. In
Section 3 the experiments which led to thils model are presented
and future experiments are proposeéd. In Section 4 is a summary

with conclusions.
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2. A Cognitive Theory of Programming Behavior

Any theory of programmer behavior must be able to account for
five basic programming tasks:
- composition: writing a program

comprehension: understanding a given problem

debugging: finding errors in a given program

modification: altering a given program to fit a new task

- learning: acquiring new programming skills and knowledge
In addition, a cognitive theory must be able to describe these tasks

in terms of

the cognitive structures that programmer possesses or

comes to possess in his memory, and

the congitive processes involved in using this knowledge

or in adding to it.

Recent developments in the information processing approach (Greeno,
1974) to the psychology of learning, memory and problem solving
have suggested a framework for discussing the components of memory
involved in programming tasks (see Figure 1). Information from
the outside world, to which the programmer pays attention, such
as descriptions of the to-be-programmed problem, enters the cogni-

tive system into short-term memory, a memory store with a relatively

limited capacity (Miller, 1956, suggests about seven chunks) and
which performs 1little analysis on the input information. The pro-

grammer's permanent knowledge is stored in long-term memory, with

unlimited capacity for organized information. The component labeled

working memory (Feigenbaum, 1974) represents a store that is more

permanent than short-term but less permanent than long-term memory ,

and in which information from short-term and long-term memory may
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be integrated and built into new structures. During problem solving
(e.g., generation of program) new information from short-term memory
and existing relevant concepts from long-term memory are integrated
in working memory and the result is used to generate a solution,

or in the case of learning, is stored in long-term memory for future
use. Two main questions posed by the mocdel summarized in Figure 1

are, what kind of knowledge (or cognitive structures) are available

to the programmer in long-term memory, and what kind of processes

(or cognitive processes) does the programmer use in building a prob-

lem solution in working memory.

Input from

perception
Short-term o Working
memory g memory
[ |

Long-term memory
(Semantic and
Syntactic Knowledge)

Figure 1: Components of Memory in Problem Solving



B

2.1 Cognitive Structures are Multi-Leveled

The experienced programmer has developed a complex multi-leveled
body of knowledge---stored in long-term memory---about programming
concepts and techniques. Part of that knowledge---we will refer to

as semantic knowledge---has to do with general concepts important

for programming but which are independent of any specific program-
ming language. Semantic knowledge may range from low-level notions
of what an assignment statement does, what a subscripted array is,
what data tybes are; to intermediate notions such as interchanging
the contents of two registers, summing up the contents of an array,

a strategy for finding the larger of two values; to higher level
strategies such as binary searching, recursion by stack manipulation,
sorting and merging methods. A still higher level of semantic
knowledge is required to develop general approaches to problems

in such areas as statistical analysis of numerical data, stylistic
analysis for textual da£a or transaction handling for an airline
reservation system. All of this semantic knowlédge is abstracted
through experience and instruction in dealing with programming prob-
lems but it is stored as general, meaningful sets of information

that is more or less independent of the syntactic knowledge of par-
ticular programming languages or facilities such as operating systems

languages, utilities, subroutine packages. Syntactic knowledge is

a second kind of information stored in long-term memory; it is more
precise, detailed and arbitrary (hence more easily forgotten) than
semantic knowledge which is generalizable over many different syn-
tactic representations. Syntactic knowledge involves details con-
cerning the format of iteration, conditional or assignment state-

ments, valid character sets or the names of library functions. It



is, apparently, easier for humans to learn a new syntactic repre-
sentation for an existing semantic construct than to acquire a com-
pletely new semantic structure. This is reflected in the observa-
tion that it is generally difficult to learn the first programming
language, like FORTRAN, PL/1, COBOL, BASIC, PASCAL, etc., but rela-
tively easy to learn a second one of these languages. Learning a
first language requires development of both semantic concepts and
specific syntactic knowledge, while learning a second language
involves learning a new syntax, assuming the same semantic struc-
tures are remained. Learning a second language with radically dif-
ferent semantics (i.e., underlying basic concepts) such as LISP or
MICROPLANNER may be as hard or harder than learning a first language.
The distinction between semantic and syntactic knowledge in the

programmers' long-term memories is summarized in Figure 2.

High Level
Concepts
COBOL
FJRTRAN
PL/L
LISP
Low Level "
Details
Semantic Syntactic
Knowledge Knowledge

Figure 2: Long-Term Memory
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The semantic knowledge is acquired largely through intellectually
demanding meaningful learning including problem solving and exposi-
tory instruction which encourages the learner to "anchor" or "assimi-
late" new concepts within existing semantic knowledge or "ideational
structure" (Ausubel, 1968). Syntactic knowledge is stored by rote,
and is not well integrated within existing systems of semantic know-
ledge. The acquisition of new syntactic information may interfere
with previously learned syntactic knowledge since it may involve

adding rather than integrating new information. This kind of con-

fusion is familiar to programmers who dévelop skills in several
languages and find that they interchange syntactic constructs among
them. For example, PASCAL students, with previous training in FORTRAN,
find assignment statements simple but often err while coding by omit-
ting the colon in the assignment operator and the semi-colon to
separate statements.

Qur discussion of the two kinds of knowledge structures involved
in computer programming shares some of the characteristics of similar
distinctions in mathematics learning. For example, the gestalt
psychologists distinguished between "structural understanding" and
"rote memory" (Wertheimer, 1959), between meaningful apprehension
of relations" and "senseless drill and arbitrary associations" (Katona,
1940), between knowledge which fostered "productive reasoning" and
"reproductive reasoning" (Maier, 1933; Wertheimer, 1959). The flavor
of the distinction is indicated by an example cited by Wertheimer
(1959) suggesting two kinds of knowledge about how to find the area
of a parallelogram---knowledge of the memorized formula A = h x b
and structural understanding of the fact that a parallelogram may be

converted into a rectangle by cutting off a triangle from one end



and placing it on the other. Similarly, Brownell (1935) distin-
guished between "rote" knowledge of arithmetic acquired through
membrizing arihhmetic facts (e.g., 2 + 2 = 4) and "meaningful"
knowledge such as relating these facts to number theory by working
wiﬁh Physical bundles of sticks. More fecently, Polya (1968) has
distinguished between "know how" and "know what", Greeno (1974) has
made a distinction between "algorithmic" and "propositional" know-
ledge used 1n problem solving, and Ausubel (1968) distinguished
between "rote" and "meaningful" learning outcomes. Although these
distinction are vague and not fully understood, they do seem to re-
flect a baéic distinction, such as our concept of syntactic and
semantic knowledge, that is relevant for computer programming. In
his parody of the "new math", Tom Lehrer made a distinction between
"getting the right answer" and "understanding what you are doing"
(with new math emphasizing the latter). In both mathematics and
computer science, however, it seems clear that a compromise is needed
between syntactic knowledge and knowledge which provides direction
for creating strategies of solution, that is, semantic knowledge.
The area of foreign language seems, also, related to computer
science. However, programming learning is different from language
léarning, such as an English-speaker learning French, German, or
Spanish, since many of the same underlying concepts (semantics)
are involved in these languages and instruction focuses mainly on
syntax (e.g., vocabulary memorization, conjugations, formating).
To the extent that new languages involve new concepts (such as the
subjective tense) or are not "standard" European languages (e.g.,

Chinese) emphasis on both semantics and syntax is required.
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2.2 Cognitive Processes are Multi-Leveled and Funneled

To complete the model we must examine the processes involved
in problem solving tasks, such as program composition. The mathe-
matician, George Polya (1966) suggested that problem solving involves
four stages:

1. Understanding the problem, in which the solver defines what
is given (initial state) and what is the goal (goal state).

2. Devising a plan, in which a general strategy of solution
is discovered.

3. Carrying out the plan, in which the plan is translated into
a specific course of action.

4, Checking the result, in which the solution 1s tested to make
sure it works.

When a problem is presented to a programmer, we assume it enters

the cognitive system and arrives in "working memory" by way of short-
term memory, and that in working memory the problem 1is analyzed

and fepresented in terms of the "given state" and "goal state"
(Wickelgren, 1974). Similarly, general information from the pro-
grammer's long-term memory (both syntactic and semantic) is called
and transferred to working memory for further analysis. These two
steps---transferring, to working memory, a description of the prob-
lem from short-term memory and general knowledge from long-term
memory---constitute the first step in program composition.

The second step, devising a general plan for writing the program,
follows a pattern described by Wirth (19?1) as step-wise refinement.
At first the problem solution is conceived of in general terms such
as general programming strategies and other relevant knowledge such
as graph theory, business transaction processing, orbital mechanics,

chess playing, etc. We will refer to the programmer's general plan
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as "internal semantics", and suggest that this internal representa-
tion progresses from a very general, to a more specific plan, to

a specific generation of code focussing on minute details. This
"funneling" view: of problem solving from the general to the specific
was first popularized by the gestalt psychologist Carl Duncker (1945)
based on asking subjects to solve complex problem "aloud". General
approaches occurred first, followed by "functional solutions" (i.e.,
more specific plans), followed by specific solutions.

A top-down implementation of the internal semantics for a problem
would demand that the highest (most general) levels be set first,
followed by more detailed analysis. This process, sug-
gested by Polya and Wicklgren as "working backwards" or "reformu-
lating the goal" (from the general goal to the specifics) is one tech-
nique used by humans in prdblem solving. A bottom-up implementation
would permit low-level code to be generated first, in an attempt
to build up to the goal. This process, refered to as "working for-
ward" or "reformulating the givens" where the "givens" includes the
permissible statements of the language, is another problem solving
technique. Apparently, some types of problems are better solved
by one or the other, or both of these techniques.

Structured programming, and particularly the idea of modulari-
zation, is another technique to aid in the development of the inter-
nal semantics (Dahl, Dijkstra and Hoare, 1973; Mills, 1974; and Parnas,
1972). Polya and Wickelgren refer to this technique as making "sub-
goals".

Each of these techniques leads to a funneling of the internal
semantics from very general to a specific plan. Then code may be
written, and the program run, as a test. These steps are summarized

in Figure 3.
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Problem short term Internal Semantics Program
— - £
Statement memory High
Low

;]

High

Low

Knowledge

Figure 3: Program Composition Process

This model of program composition represents what we have all
known: that once the internal semantics have been worked out in the
mind of the programmer, the construction of a program is a relatively
straightforward task. The program may be composed easily in any
programming language which the programmer is familiar with and which
permits similar semantic constructs. An experienced programmer
fluent in multiple languages will find it approximately equally
easy to implement a table look-up algorithm in assembly language,
FORTRAN, PL/I or COBOL.

The program comprehension task is a critical one since it is a
subtask of debugging, modification and learning. The programmer

is given a program and is asked to study it. We conjecture that
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the programmer, with the aid of his/her syntactic knowledge of the
language,constructs a multi-leveled internal semantic structure
to represent the program. At the highest level the programmer should
develop an understanding of what the program does: for example,
this program sorts an input tape containing fixed length records,
prints a word frequency dictionary or parses an arithmetic expres-—
sion. This high level comprehension may be accomplished even if low
level detalls are not fully understood. At lower semantic levels,
the programmer may recognize familiar sequences of statements or
algorithms. Similarly, the programmer may comprehend low level
details without recognizing the overall pattern of operation. The
central contention is.that programmers develop an internal semantic
structure to represent the syntax of the program, but that they
do not memorize or comprehend the program in a line-by-line form
based on the syntax.

The encodlng process by which programmers convert the program
to internal semantics is based on the "chunking" process first des-
cribed by George Miller in his classic paper, "The Magical Number
Seven Plus or Minus Two" (Miller, 1956). Instead of absorbing the
program on a character-by-character basis, programmers recognize
the function of groups of statements and then piece together these
chunks to form ever larger chunks until the entire program is compre-
hended. This chunking process is most effective in a structured pro-
gramming environment where the absence of arbitrary GOTOs means that
the function of a set of statements can be determined from 1ocal.
information only. Forward or backward jumps would inhibit chunking
since if would be difficult to form separate chunks without changing

attention to various parts of the program.
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Once the internal semantic structure of a program is developed
by a programmer, this knowledge is resistant to forgetting and acces-
sible to a variety of transformations. Programmers could convert
the program to another programming language or develop new data
representations or explain it to others with relative ease. Figure

4 represents the comprehension process.

Program > short term = Internal Semantics
memory High
Low

High

Low

Knowledge

Figure 4: Program Comprehension Process: the
formation of internal semantics for a given
program

Debugging is a more complex task since 1t is an attempt to locate

an error in the composition task. We exclude syntactic bugs which
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are recognizable by a compiler since these bugs are a result of a
trivial error in the preparation of a program or of erroneous syn-
tactic knowledge which can be resolved by feferenoe to programming
manuals. We are left with two further types of bugs: those that
result from an incorrect transformation from the internal seman-
ties to the program statements and those that result from an incor-
rect transformation from the problem solution to the internal seman—
tics.

Errors that result from erroneous conversion from the internal
semantics to the program statements are detectable from debugging
output which differs from the expected output. These errors can be
caused by lmproper understanding of the function of certain syntac-
tic constructs in the programming language or simply by mistakes
in the coding of a program. In any case, sufficient debugging
output will help to locate these errors and resolve them.

Errors that result from erronecus conversion from the problem
solution to the internal semantics may require a complete re-evalua-
tion of the programming strategy. Examples include failure to deal
with out-of-range data values, inability to deal with special cases
such as the average of a single value, failure to clear critical
locations before use or attempts to merge unsorted lists.

In the modification task the first step is the development of
internal semantics representing the current program. The statement
of the modification must be reflected in an alteration to the internal
semantics followed by an alteration of the programming statements.
The modification task requires skills gained in composltion, compre-

hension, and debugging.
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Finally, we examine the learning task, the acquisition of new
programming knowledge. We start with the training of non-programmers

in their much debated "first course in computing" (SIGCSE Proceedings).

The classic approach focused on teaching the syntactic details of a
language and used manufacturer distributed language reference manuals
as a text. Much attention was paild to exhaustive discussions of

the details of each syntactic structure with minimal time spent on
motivational material or problem solving. Tests focused on the
validity or invalidity of certain statements and the ability to
determine what output was produced by a tricky program fragment which
exploited one of the minute details concerning a particular statement.

By contrast the problem solving approach suggested that high
level language independent problem solving was the goal of the course
and that the actual coding of problems was a trivial detail not
worth the expense of valuable thinking time. Tests in these courses
required students to cleverly decompose problems and produce insightful
solutions to highly abstract and unrealistic problems.

Of course, both of these descriptions are caricatures of the
reality but they point up the differences in approaches. The classic
approach concentrated on the development of syntactic knowledge and
produced "coders" while the problem solving approach contentrated
on the development of semantic knowledge and produced high-level
solvers who were unsuited to a production environment. Neither
of these approaches is incorrect, they merely have different goals.

A reasonable middle ground, the development of syntactic and semantic
knowledge in parallel, is pursued by most educators.

Education for advanced programmers also has the syntactic-semantic

dichotomy. Courses in the design of algorithms focus on semantic
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knowledge and attempt to isolate syntactic details in separate dis-
cussions or omit them completely. Courses which teach second or
third programming languages can concentrate on the syntactic equi-
valents of already understood semantics. This makes it unwieldy to
teach non-programmers and programmers a new language in the same
course. Learning a language which has radically different semantic
structures is possibly more difficult for an experienced programmer
than a non-programmer. The proactive inhibition created by previous
semantic knowledge can interfere with the acquisition of a new lan-
guage. Learning a new language which has similar semantic structures,
such as FORTRAN and BASIC, is relatively easy since most of the seman-
tic knowledge can be applied directly.

In summary, we conjecture that the semantic knowledge and syntac-
tic knowledge are independent but that there is a close relationship
between them. The multi-level structure of semantic knowledge,
acquired largely through meaningful learning, is replicated in the
multi-level approach to the development of internal semantics for
a particular problem. The syntactic knowledge acquired, largely
'by rote learning, is compartmentalized by language. The semantic
knowledge is essential for problem analysis while syntactic knowledge
is useful during the coding or implementation phase.

Machine related details such as range of integer values or execu-
tion speed of certain instructions and compiler specific information
such as experience with diagnostic messages is more closely tied to
the language specific syntactic information. This information is
highly detalled, learned by repeated experience and easily subject

to forgetting.
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3. New Experimental Evidence

The evidence for this model was acquired through a series of
experiments conducted during the past year. OQur original motiva-
tion in pursuing controlled psychological experiments in programming
was to assess programming language features, develop standards for
stylistic considerations (such as meaningful variable names and
commenting) and to validate the design techniques that have been
so vigorously debated (top-down design, modularity and flowcharting)
[see Shneiderman,1975a] for a discussion with references; Weissman,
1973, 1974; Gannon and Horning, 1975; Miller, 1973; and Shneiderman,
1975b1.

As a result of our experiments and other research we have formu-
lated the model presented in the last section and now have a hypo-
thesis on which to organize future experiments. We hope thiat future
work will not only refine our notion of programmer behavior but lead
to improved languages, proper stylistic standards, practical design
methcdclogies, new debugging technigques, programmer aptitude tests,
programmer ability measures, metrics for problem and program complexity
and improved teaching techniques.

Our first two experiments, carried out by Mao-Hsian Ho, were
simple and had modest goals. In one we sought to compare the compre-
hensibility of arithmetic and logical IF statements in short FORTRAN
programs. Our subjects were first term programming students who had
been taught both forms and advanced programmers who were expected
to be familiar with both forms. The novices did better with the
logical IF statements, as measured by multiple choice and fill-in-
the-blanks type questions but the advanced programmers did equally

well with both forms. We felt that the novices were struggling
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with the greater syntactic complexity of the arithmetic IF but

that the advanced subjects coﬁld easily convert the syntax of the
arithmetic IF into the internal semantic form. The advanced stu-
dents apparently thought about the program on a more general level
than novices. This was confirmed by discussions with the subjects
and agrees with reports from other sources. The syntactic form

of the logical IF seems to be close to the internal semantic form
that most programmers perceive. Recent texts support this conten-
tion and sometimes have blatant attacks on the use of the arithmetic
IF (McCracken, 1974). Still, older programmers who were first
faught the arithmetic IF stick to it and find that théy can easily
switch from their internal semantic form to the syntactic represen-
tation with an arithmetic IF. An experiment with longer more complex
programs would be useful to determine if the easy conversion breaks
down in more difficult situations.

Our second experiment, carried out by Mao-Hsian Ho, was a memo-
rization task. Two short programs, about 20 FORTRAN statements,
were keypunched and the first program was listed on a printer. The
second program was shuffled and listed. Subjects ranging from non-
programmers to experienced professionals were asked to memorize the
two listings, one at a time, and to write back what they could remem-
ber. The non-programmers did approximately equally poorly on both
listings while the professionals performed poorly on the shuffled
program but excelled in recalling the proper executable program.
Programmers ﬁith greater experience tended to perform better on the
proper executable program. Our interpretation was that the advanced
programmers attempted to convert specific code into a more general

internal semantic representation during program comprehension, while
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novices focused more on specific code. Advanced subjects constructed
a multi-leveled internal semantic structure to represent the proper
executable program, but could not perform this process on the shuffled
program; and novices lacked the semantic knowledge to perform this
process. This was confirmed by reports from the advanced subjects
who indicated that they could describe the function of the entire
program and that they remembered by realizing that a segment of

the program tested a value and then incremented a pair of locations
to accumulate sums and counts. Further support for our internal
semantics model was gained by studying the written forms. Advanced
subjects would recreate semantically equivalent programs which had
syntactic variations such as interchanged order of statements, con-
sistent replacement of format numbers, consistent replacement of
statement labels and consistent replacement of variable names.
Recall errors of advanced programmers tended to retain the meaning
of the program but not the syntax, a finding consistant with human
memory for English ﬁrose (Bransford and Franks, 1974; Sachs, 1968).
It was these facts which first led us to propose that subjects were
not really memorizing the program but were constructing internal
semantics to represent the program's function. When asked to recall
the program they applied their knowledge of FORTRAN syntax and con-
verted their internal semantics back into a FORTRAN program.

Two other experiments, carried out by Ken Yasukawa and Don
McKay, sought to mearure the effect of commenting and mnemonic vari-
able names on program comprehension in short, twenty to fifty FORTRAN
statement, programs. The subjects were first-and second-year computer
science students. The programs using comments (28 subjects received

noncommented version, 31 the commented) and the programs using mean-
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ingful variable names (29 subjects received mnemonic form, 26

the non-mnemonic ) were statistically significantly easier to com-
prehend as measured by multiple choice questions. This experiment
confirms common practice but gives no insight into what kind of
comments or mnemonic names are helpful and which are not. Further
experiments to develop proper standards would be useful.

Our interpretation in terms of the model are that the mnemonic
names simplified the conversion from the program syntax to the inter-
nal semantic structure of the program. Non-meaningful variable names
place an extra burden on the programmer to encode the meaning of the
variable and add complexity to the conversion process. The internal
semantics relate to the meaning and use of a variable, not to the
particular variable name, but a meaningful variable name which con-
veys the function of the variable, simplifies the programmer's task.
The comments serve a somewhat different function. Again, the com-
ments are not stored in the internal semantic structure, but they
facilitate the conversion by describing the function of a statement
or group of statements. This notion conforms to programming prac-
tice which urges functional descriptive comments not low-level com-
ments which reiterate the operation of a particular statement.

For example a bad comment for the statement I =TI + 1 would be

"ADD ONE TO THE VARIABLE I". Useful comments are those which facili-
tate the construction of the internal semantics by describing the
meaning of a group of operations such as "SEARCH FOR THE LARGEST
VALUE IN THE TABLE".

In a debugging task which followed the commenting experiment,

12 out of 28 subjects located a bug in a commented program while only

10 out of 30 subjects located the same bug in an uncommented version
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of the bug. Although this result was not statistically significant,
it favored the commented form. Comments should facilitate the con-
struction of an internal semantic structure to describe what the
program is supposed to do. The expected internal semantic struc-
ture can then be compared to the actual program.

The next area of study for our experiments was modular program
design, investigated by Robert Kinicki and Mary Ramsey. The sub-
Jects were assembly language students in two groups: those learning
the Texas Instrument 980A machine (TI980A) and those learning the
COMPASS assembly language for the Control Data 6600 computer.  The
thirty TI980A students were divided into three groups of ten ;ubjects
which received the same program written in different forms;

1. modular - each module has an explicit function (10-line main
program and 3 subroutines: 13, 13 and 22 lines)

2. non-modular - unseparated sequential code (54 lines)

3. random modular - a program broken into subroutines without
clear function (8-line main program, 4 subroutines: 10, 17, 8 and
19 lines).

All of the subjects took a comprehension test which produced the
following average scores (100 was a perfect score):

Modular 89.5

Non-modular 77.3

Random modular 67.9
An analysis of variance indicated group differences significant
at the .08 level. This expected result confirmed the popular state-
ments about the utility of modular programming but underlines the

importance of the proper selection of modules.
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Poor decompositions can make a program more difficult to compre-
hend. A closer informal examination of the data showed that some
of the best students in the class were assigned to the random modular
group and they were capable of achieving high scores inspite of the
difficulty of the program. Excellent programmers can perform sur-
prisingly well even in adverse conditions.

The results with the COMPASS students on the modularity experi-
ment were less clear cut. The three test forms of the COMPASS pro-
gram were distributed to the 39 subjects in three groups of 13 each.
The averages on the comprehension test were:

Modular 47.8

Non-modular 60.8

Random modular 57.8
The generally poorer scores and lack of significant differences a
among the groups were attributed to the differences in teaching tech-
niques and the added complexity of subroutines in COMPASS. Apparently
the instructor in this course had not emphasized subroutines and had
not required subroutines in homework problems. As a result, sub-
Jects suffered from the added complexity of subroutine invocation
and argument passing.

This experiment reinforces our belief that modular program con-
struction can be more difficult unless programmers have had adequate
training, but that modularity is helpful for program comprehension
when used by experienced programmers. Programmers who have not
developed the syntactic and semantic knowledge to support modular
programming have an extremely difficult time in developing the proper
internal semantic structure for program comprehsnion. Experienced

programmers who understand modular programming can make good use
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of this technique in developing the internal semantic structure
necessary for program comprehension. Modular program design faci-
litates the chunking process, allowing the programmer to concentrate
on a small portion of the program and encode that portion into higher
level concepts. The random modular program is just a sequence of
statements which perform no obvious ccherent function and cannot

be encoded into a higher level chunk.

A more recent series of experiments carried out by Peter Heller
and Don McKay were designed to test the utility of detailed flow-
charts in program composition, comprehension, debugging and modi-
fication. Although flowcharts have long been a staple of the pro-
gramming practice and education, there are now an increasing number
of critiecs. One of the strongest attacks was by Brooks (1975) who
wrote that "the flow chart is a most thoroughly ovérsold piece of
documentation...the detailed blow-by-blow flow chart, however, is
an obsolete nuisance." Our experiment were conducted both with
Indiana University students---whose training did not emphasize the
use of flowcharts--and with Purdue students--whose training did
emphasize the use of flowcharts. For comprehension and debugging
tasks, there was no overall difference in performance between stu-
dents given micro-flowcharts, macro-flowcharts and no flowcharts.
ﬁowever, a closer analysis revealed an interaction in which Indiana
students performed worse with flowcharts as compared with no flowcharts
but the Purdue students performance was better with flowcharts as
compared with no aids. In a modification task, using a longer pro-
gram, a similar pattern was found for the second of two problems.

These results indicate that flowcharts may be an aid in some

situations and may be a hindrance in others. Apparently, flowcharts
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‘may serve either as an aid in the translation process from syntax

to semantics (as the Purdue students hinted) or the flowchart may
serve merely as an alternative syntactic representation of the pro-
gram and as such may actually interfer with the creation of the in-
ternal semantic structure (as our Indiana students hinted). The
resolution of the "flowchart question" seems to depend not on flow- .
charts per se, but on the larger question of what types of supplemen-

tary representation help programmers build the internal semantics.
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4. Summary

We have attempted to present a cognitive model of programmer
behavior which was developed in response to controlled psychological
experiments. This cognitive model separates the syntactic knowledge
from semantic knowledge and emphasizes the internal representation
created by the programmer in the programming tasks of composition,
comprehension, debugging, modification and learning.

Our future experiments will more directly focus on the verifi-
cation of our model. In particular we are interested in trying
to study the components of the internal semantic model and the
chunking process across a range of subject experience. It is impor-
tant to find out what chunks are used by different programmers with
different amounts of experience in different languages. Results
in this kind of research would be significant for programming lan-
guage designers and for educators.

In the future, we look to a clarification of the semantic struc-
tures and of the chunking process used for various tasks. Such an
understanding would lead to improved programming languages whose
syntactic structure more closely reflected the semantic structures
and thereby eased the programming process. Machine efficiency issues
must be temporarily ignored while programming is studied from a
purely human factors viewpoint. Then we can discuss efficient imple-
mentations of what programmers consider convenient semantic structures.

Simplifying the programming process and making it easier for
a wider range of people to use computers is the ultimate aim of this
research direction. Computer scientists should welcome the contri-
butions of and cooperation with cognitive psychologists. Inter-

action between two groups will benefit both disciplines.
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