
Infer: A Statically-typed Dialect of Scheme

Preliminary Tutorial and Documentation

Version 0.1

| Limited distribution draft |

Christopher T. Haynes1

Computer Science Department
Lindley Hall

Indiana University
Bloomington, IN 47405 USA

chaynes@cs.indiana.edu
[812]855-3376

March 3, 1993

1This work was supported in part by NSF Grants CCR 87-02117 and DCR 85-21497.

Copywrite c
 1992 by Christopher T. Haynes.

Contents

1 Introduction

Infer is a statically typed language designed
to be accessible to Scheme programmers. It is
suitable for implementation on top of Scheme,
thereby providing compatibility with Scheme
programming environments. Since Infer sup-
ports many features of the ML type system,
plus a number of others, Infer may also be an
attractive alternative to other languages sup-
porting ML-style polymorphism. Finally, the
Infer implementation, written in Infer, is well
suited as a test bed for experimentation with
a wide range of modern type systems.
The reader is assumed to be familiar with

Scheme [?, ?, ?] and basic type system con-
cepts [?]. Some familiarity with ML [?] would
be helpful.
Infer's design owes most to ML and Scheme,

but draws on other published work and in-
cludes original elements. The treatment of
polymorphic assignment is due to Tofte [?].
The typing of continuations is that of Duba,
Harper, and MacQueen [?]. The record type
inference technique is due to R�emy and Wand
[?, ?, ?]. The error reporting mechanism is
inspired by Wand [?].
It is hoped that the language features doc-

umented here will prove relatively stable, but
Infer's design is not complete. The greatest
omission at present is support for object ori-
ented programming and/or modules. Features
described in the implementation section are
most likely to change.
Section 2 provides a tutorial introduction to

Infer by way of examples. Section 3 de�nes
the syntax of Infer and informally describes
its static semantics (type system) and dynamic
semantics (run time behavior). Section 4 con-
tains notes on the current implementations,
with a list of know bugs.

At present the bug list includes failure to
implement some of the features described in
this document. Reports of further bugs, as
well as design suggestions, are welcome.

2 Tutorial

This section provides an overview of Infer and
its current implementation via an annotated
transcript of an interactive session. Each seg-
ment of the trascript introduces one or more
new feature. You are encouraged to note what
is new in each segment before reading the
desription that follows. In some cases the idea
will be clear from the example, so the descrip-
tion may be read quickly for con�rmation. In
other cases you cannot be expected to fully un-
derstand what is going on from the example,
but it provides a concrete context in which to
understand the description that follows. More
formal documentation of each feature is found
in sections 3 and 4.

2.1 Some basics

We begin with some features of Infer, includ-
ing some features of the user interface. This
includes error messages and a form that allows
the type of any expression to be declared.

|- (+ 1 2)

: num

3

The expression, declaration, or directive fol-
lowing the |- prompt is entered by the user.
In response to an expression, the type of the
expression is displayed following a colon and
then the value of the expression is printed.

|- newline

: (proc () unit)

|- (newline)

|-

1

Whenever an expression yields an unspeci�ed
value in Scheme, Infer assigns it type unit.
Procedures, such as newline, that are invoked
only for side-e�ect return a value of type unit.
If the value of an expression is unprintable, as
when it is a procedure or the value of type
unit, it is not printed at top-level. If the type
of an expression is unit, the type is not printed
either.

|- (if (lambda (x) x) 1 2)

TYPE ERROR IN EXPRESSION:

(if (lambda (x) x) 1 2)

CONFLICTING TYPES:

bool

AND

(proc ('823) '823)

Most type errors are detected when Infer de-
duces that two types should be the same, but
they are not. In such cases the two o�end-
ing types are displayed, along with the expres-
sion that was being checked at the time the
error was detected and sometimes additional
information. Non-generic type variables, such
as '823, are represented as quoted numbers.
(Generic type variables are discussed in sec-
tion ??.)

|- (lambda (x) x)

: (proc ('a) 'a)

Generic type variables (see section ??) are
represented by quoted identi�ers.

|- (the (proc (num) num)

(lambda (n) (+ 1 n)))

: (proc (num) num)

|- (not (the bool 4))

TYPE ERROR IN EXPRESSION:

(the bool 4)

CONFLICTING TYPES:

bool

AND

num

A the expression both asserts the type of an
expression and returns its value. This may
be useful as documentation (the correctness of
which is veri�ed), or as an aid in locating type
errors.

|- (the (proc (num) (proc (num) num))

(lambda (x)

(lambda (y)

(+ x y))))

: (proc* (num num) num)

The type of a unary procedure that returns
a unary procedure is always printed using the
type constructor proc*. This makes the types
of curried procedures more compact. The
proc* type constructor can also be used in the
type component of a the expression, but this
is not required since proc* types are equiva-
lent to their expanded forms for type checking
purposes.

2.2 De�nitions

Declarations are provided for values, types,
and syntactic extensions. We look �rst at
value declarations, or de�nitions.

|- (define fact

(lambda (n)

(if (zero? n)

1

(* n (fact (- n 1))))))

fact : (proc (num) num)

In response to a declaration, an indication of
the addition to the top-level type environment
is provided. For a de�nition, the name of the
de�ned binding and its type are displayed. Al-
most all of the standard Scheme procedures
are provided by Infer, usually with the ex-
pected type.

|- (define even

(lambda (n)

2

(if (zero? n)

#t

(odd (- n 1)))))

even : (proc (num) bool)

WARNING: FORWARD REFERENCE: odd

|- (define (odd n)

(if (zero? n)

#f

(even (- n 1))))

odd : (proc (num) bool)

|- (even 3)

: bool

#f

Top-level mutual recursion is supported by
allowing forward references. Since what ap-
pears to be a forward reference may be a mis-
pelled variable name, a warning message is
normally printed. (See section ??.) Infer sup-
ports Scheme's lambda-eliminating shorthand
for de�nitions, as in the de�nition of odd.

|- (define id 1)

id : num

|- (define id 0)

id : num

|- (define id (lambda (x) x))

CONFLICTING TYPES:

num

AND

(proc ('780) '780)

DEDUCED FROM EXPRESSIONS:

(define id 1)

AND

(define id (lambda (x) x))

Rede�nition is allowed only when the type of
the new value is the same as the type of the
old value (or more general, see section ??).
When a type con
ict is detected, the ex-

pression being checked at the time is always
printed as a possible culprit. It may well
be, however, that the problem lies elsewhere.
Thus Infer prints the types of all expressions
that were used in deducing any part of the

types that are in con
ict. In the above exam-
ple, the expression (define id 1) was used
in deducing the type num, while the expres-
sion (define id (lambda (x) x)) was used
in deducing the type (proc ('780) '780).

|- #(init)

|- id

: '781

ERROR: VARIABLE NOT DEFINED: id

|- (define id (lambda (x) x))

id : (proc ('a) 'a)

Directives, of the form #(: : :), may be issued
immediately following the top-level prompt or
at the outermost level of an Infer source �le.
The init directive restores the type environ-
ment to its initial state (or to the state of the
most recent de�nition of init-point, see sec-
tion ??). In this example the init directive
removes id from the environment, so it may
be rede�ned.

2.3 Tuples and records

An ampersand (&) introduces both tuple ex-
pressions and tuple types, while a dollar sign
($) introduces both record expressions and
types. The elements of both tuples and records
are selected using a percent sign (%) form.

|- (define a-tuple

(& #t #\a 5 (current-input-port)

"string" 'symbol))

a-tuple : (& bool char num port str sym)

The tuple created in this example contains an
element of each primitive type.

|- (define a-record

($ (a 3) (b 'c)))

a-record : ($ (a num) (b sym))

|- (% b a-record)

: sym

c

3

|- (% 1 a-tuple)

: char

#\a

Records and tuples may both contain elements
of di�ering type. Record elements are selected
via a �eld name and tuple elements are se-
lected via a zero-based index.

|- (& '(a b c) '#(1 2 3))

: (& (list sym) (vec num))

(& (a b c) #(1 2 3))

|- '(x 5)

TYPE ERROR IN EXPRESSION:

'(x 5)

CONFLICTING TYPES:

num

AND

sym

Lists and vectors may be quoted as in Scheme,
but all elements of a list or vector must be of
the same type. We will often �nd it conve-
nient to use tuples as above to represent in
a compact transcript the result of typing and
evaluating several expressions.

2.4 Type abbreviations

Type abbreviations, or abbrev types, are in-
dicated by the => punctuation within a type
declaration.

|- (abbrevtype rtype

($ (left num) (right char)))

Datatype: rtype

|- (define get-left3

(lambda (r)

(% left (the rtype r))))

get-left : (proc (rtype) num)

Type abbreviations are useful when big type
expressions must be repeated or when it is
helpful to name type expressions. When ab-
breviated types are printed, they may or may
not appear in their abbreviated form.

|- (abbrevtype inf-num-list

($ (head num)

(tail inf-num-list)))

ERROR: CIRCULAR TYPE: inf-num-list

Recursive type abbreviations are not allowed.

2.5 Data types

Union types are called data types (as in ML).
They always have associated names. The
datum, list, and option datatypes are pro-
vided (see sections ?? and ??). All others
must be introduced by a datatype declara-
tion. This declaration automatically intro-
duces a set of procedures that are used to cre-
ate, recognize, and extract information from
each variant of the data type. A form of case
expression makes it convenient to dispatch on
the variants of a data type. Variants come in
three kinds, each of which has an associated
form of case clause.

|- (type switch on off)

Datatype: switch

Enumerated values: on off

|- (define (toggle switch)

(if (off? switch) on off))

toggle : (proc (switch) switch)

|- (on? (toggle on))

: bool

#f

A data type named switch is declared with
two enumerated variants (known as \nullary
constructors" or \constants" in ML), named
on and off. Enumerated variants contain no
information other than the identity of the vari-
ant, so each is associated with a unique value.
For each enumerated variant, a constant is de-
�ned that is named after the variant and equal
to its value.
As illustrated by the procedure toggle,

type names do not con
ict with variable

4

names. It may be regarded as helpful, or con-
fusing, to use the same name for both a vari-
able and a type.
Each variant of a data type is recognized by

a predicate de�ned by the type declaration.
Variant predicates, such as on? and off?, are
named by appending a question mark to the
variant name.

|- (datatype num-tree

(leaf num)

(node ($ (left num-tree)

(right num-tree))))

Datatype: num-tree

Constructors: leaf node

|- (define nt

(node ($ (left (leaf 3))

(right (leaf 4)))))

nt : num-tree

|- (leaf% (% left (node% nt)))

: num

3

Num-tree is declared to be a data type with
two variants, leaf and node, providing a rep-
resentation for binary trees of numbers. A
leaf contains a number, while a node contains
two subtrees in the left and right �elds of a
record. Since they contain information, these
are referred to as value variants. Each is asso-
ciated with a constructor that bears its name.
Constructors, such as leaf and node, are pro-
cedures that return a new value, of their as-
sociated data type, that contains information
they are passed. Associated with each con-
structor is a projection procedures that takes
a constructed variant and returns its con-
tents. Projection procedures, such as leaf%

and node%, are named by appending a percent
sign to their associated constructor name.

|- #(init)

|- (abbrevtype nt-rec

($ (left num-tree)

(right num-tree))

Type abbreviation: nt-rec

WARNING: FORWARD TYPE REFERENCE:

num-tree

|- (datatype num-tree

(leaf num)

(node nt-rec))

Datatype: num-tree

Constructors: leaf node

This declaration of the num-tree type is equiv-
alent to the previous one, but uses the type ab-
breviation nt-rec. Forward references to as-
yet-unde�ned types are allowed, but warning
messages are normally issued, as with forward
references to values. This allows mutually re-
cursive type de�nitions, as in this example. At
least one type in each chain of mutually recur-
sive types must be a data type. The initializa-
tion directive was used in this example because
it is impossible to redeclare a type unless the
new declaration is identical to the existing one.

|- (define node1

(lambda (nt1 nt2)

(node ($ (left nt1)

(right nt2)))))

node1 : (proc (num-tree num-tree)

num-tree)

|- (define node->left

(lambda (nt)

(% left (node% nt))))

node->left : (proc (num-tree)

num-tree)

|- (define node->right

(lambda (nt)

(% right (node% nt))))

node->right : (proc (num-tree)

num-tree)

|- (leaf% (node->left

(node1 (leaf 5) (leaf 8))))

: num

5

These procedures make it easier to create and
manipulate number trees.

5

|- #(init)

|- (datatype num-tree

(leaf num)

(node $ (left num-tree)

(right num-tree)))

Datatype: num-tree

Constructors: leaf node

|- (leaf% (node->right

(node (leaf 5)

(leaf 6))))

: num

6

In this declaration of num-tree the node vari-
ant name is followed directly by a dollar sign.
This record variant is equivalent to the cor-
responding value variant of the last declara-
tion, except that the constructor node now is
equivalent to node1 (as de�ned above), and
the procedures node->left and node->right

(as above) are de�ned automatically by the
type declaration.
Thus a record variant contains a record, but

since in its syntax \the record type parenthe-
sis are omitted," Infer generates a construc-
tor procedure that takes the record �elds and
builds the record and also provides for each
�eld a procedure that projects to the variant
and then selects the �eld.

|- (define sum-tree

(lambda (nt)

(case nt

(leaf n n)

(node (left right)

(+ (sum-tree left)

(sum-tree right))))))

sum-tree : (proc (num-tree) num)

|- (sum-tree (node (leaf 3)

(leaf 4)))

: num

7

The case formmay be used to dispatch on the
variants of a data type. Each data type case

clause starts with the variant name. If this
name is followed by a single variable name, as
in the leaf clause, the variable is bound to the
contents of the variant in a lexical context that
includes the rest of the clause. If the contents
of the variant is a record, the name may be
followed by a list containing the names of some
or all of the record �elds. The contents of the
�elds are bound to variables of the same name
in the lexical context of the rest of the clause.

|- (datatype switch on off standby)

Datatype: switch

Enumerated values: on off

|- (define (toggle sw)

(case sw

(on () off)

(off () on)

(standby () standby)))

toggle : (proc (switch) switch)

In a case clause for an enumerated variant,
the variant name is followed by an empty list,
(). This is appropriate, since an enumerated
variant contains no information other than the
identity of the variant.

|- (define (switch-off? sw)

(case sw

(on () #f)

(else #t)))

switch-off? : (proc (switch) bool)

|- (switch-off? standby)

: bool

#t

|- (define (say-if-on sw)

(case sw

(on () (write "It's on!"))))

say-if-on : (proc (switch) unit)

|- (say-if-on on)

It's on!

If the clauses of a data type case statement
do not handle all variants of the data type, an
else clause may be used. If not all variants are

6

handled and there is no else clause, then each
clause must return a value of type unit. In
very simple uses, as in these two examples, an
if statement using a variant predicate may be
preferable to a case statement.

|- (define (yes-char? char)

(case char

((#\y #\Y) #t)

(else #f)))

yes-char? : (proc (char) bool)

The case form may also be used as in Scheme,
with each clause beginning with a list of char-
acter, number, or boolean values.

2.6 Local declarations

The local declaration introduces a set of
declarations that are local to another set of
declarations. This is analogous to let and
letrec, which introduce a sequence of de�-
nitions whose scope are local to their body.
The local declaration may be used to obtain
a limited form of type abstraction.

|- (local

((datatype (bag 'a)

(bag (list 'a))))

(define add-to-bag

(lambda (x b)

(bag (cons x (bag% b)))))

(define in-bag?

(lambda (x b)

(member? x (bag% b))))

(define empty-bag (bag '())))

add-to-bag : (proc ('a (bag 'a))

(bag 'a))

in-bag? : (proc ('a (bag 'a)) bool)

emtpy-bag : (bag 'a)

|- (bag% empty-bag)

ERROR: VARIABLE NOT DEFINED: bag%

The procedures associated with the local type
bag are visible only to the de�nitions enclosed
in the local declaration.

|- (local ()

(define (even n)

(if (zero? n)

#t

(odd (- n 1))))

(define (odd n)

(if (zero? n)

#f

(even (- n 1)))))

even : (proc (num) bool)

odd : (proc (num) bool)

The local form may also be used to obtain
top-level mutual recursion of value (or type)
declarations without messages warning of for-
ward references.

2.7 Datums

The datum type is a primitive data type that
allows structured data to be conveniently read
and written, as in Scheme. Datums may also
be introduced in a program as literals using a
backquote (`) or the datum form.

|- read

: (proc () datum)

|- (display `"Hello World!")

Hello World!

The procedure read returns a value of type
datum and the procedures display and write

print elements of type datum.

|- (& `#t `symbol `"string" `#\a)

: (& datum datum datum datum)

(& `#t `symbol `"string" `#\a)

|- (& `() `(a list) `#(a vector))

: (& datum datum datum)

(& `() `(a list) `#(a vector))

Any Scheme datum may be represented as an
Infer datum. In fact, an Infer implementation
based on Scheme should represent an Infer da-
tum directly as the corresponding Scheme da-
tum. Datums are preceded by a backquote
when printed at top-level.

7

|- (& (sym 'a) (bool #f) (num 3)

(char #\x) empty)

: (& datum datum datum datum datum)

(& `a `#f `3 `#\x '())

|- (str? "x")

: bool

#t

|- (vec% `#(1))

: (vec num)

#(1)

The datum type is a data type with a variant
for each of the primitive types that have literal
representations.

|- (pair? `(a 3))

: bool

#t

|- (left `(a 3))

: datum

`a

|- (eq? right pair->right)

: bool

#t

Non-empty lists, when represented as datums,
are members of the pair variant. The proce-
dures left and right provide easy access to
the left and right (car and cdr) elements of
pairs.

|- '(($ (a ,(& 1)) (b `c)) . ,@()))

: (list ($ (a (& num)) (b datum)))))

(($ (a (& 1)) (b `c)))

The notation for record, tuple, and datum lit-
erals is active within quoted literals, as well
as unquote (,) and unquote-splicing (,@) no-
tation.

|- (left `'3)

: datum

`quote

|- (sym% (left `'3))

: sym

quote

|- (sym% (left `(& 1)))

: sym

&

|- (num% `,`3)

: num

3

The unquote and unquote-splicing notation is
active within backquoted literals, but record,
tuple, and quoted literal notation is not active
within backquoted literals.

|- (& (datum 3)

(datum (cons 'x '()))

(datum +))

: (& datum datum datum)

(& `3 `(x) `??)

|- (datum ($ (a 2)

(b (datum (& 1 #f)))))

: datum

`($ (a 2) (b `(& 1 #f)))

The datum form may be used to convert any
value into a corresponding datum. To char-
acterize this correspondence, a bit of techni-
cal machinery is required. Unprintable val-
ues are represented by ??; they include pro-
cedures, continuations, ports, and, as we shall
see in section ??, in some cases enumerated
values and constructed values. We indicate
the printed representation of d by �d; thus if d
were passed to the write procedure, �d would
be output. If we let v be the value of an ex-
pression e in the current environment, and v

contains no unprintable values, then the ex-
pression (datum e) returns a datum d such
that evaluation of (quote �d) in the same en-
vironment would yield v.

|- (datum on)

: datum

`,on

|- (datum (node (leaf 3)

(leaf (+ 2 3)))))

8

: datum

`,(node (leaf 3) (leaf 5))

Recall that by previous type declarations on

is an enumerated value of the switch type
and node and leaf are constructors of the
num-tree type. The representation of data
type values as datums using unquote (,) is
consistent with the correspondence between
values and their datum representation stated
above. For example, the expressions on and
(quote ,on) have the same values.

|- on

: switch

,on

|- (write (datum on))

,on

The top-level read-eval-print loop uses the
datum form to obtain the external represen-
tation of an expression before printing it.

2.8 Polymorphism

Values that have more than one type are
said to be polymorphic or generic. Infer's
treatment of polymorphism is based on the
Hindley-Milner type system, as used in ML.
The elements of this style of polymorphismare
presented here. A working facility with poly-
morphism is likely, however, to require fur-
ther study|perhaps using an ML text (such
as [?]).

|- ((lambda (x) x) #t)

: bool

#t

|- ((lambda (x) x) 3)

: num

3

In the �rst application the identity function
(lambda (x) x) is used as if it had type

(proc (bool) bool)

while in the second it is \used at" type

(proc (num) num)

In general, the identity function may be re-
garded as having an in�nite number of types
of the form (lambda (t) t), where t is any
type.

|- (lambda (x) x)

: (proc ('a) 'a)

The range of types that polymorphic values
may assume are expressed by type schemes

that contain generic type variables, which are
named 'a, 'b, 'c, : : :, read \alpha," \beta,"
\gamma," : : :.

|- '()

: (list 'a)

()

The empty list is also polymorphic.

|- cons

: (proc ('a (list 'a)) (list 'a))

|- (& (cons 'a '()) (cons 1 '()))

: (& (list sym) (list num))

(& (a) (1))

Many of Infer's primitive procedures, such as
cons, are polymorphic.

|- (define get-left

(lambda (r)

(% left r)))

: (proc (($ (left 'a) ? 'b)) 'a)

|- (get-left ($ (left 1) (right 2)))

: num

1

The get-left procedure takes any record that
has an r �eld and returns the contents of that
�eld. The type variable `b following the ques-
tion mark at the end of a record type indicates
that the record may contain additional �elds.

9

|- (define compose

(lambda (f g)

(lambda (x)

(f (g x)))))

compose : (proc ((proc ('a ? 'b) 'c)

(proc ('d ? 'e) 'a))

(proc ('d) 'c))

|- (compose sqrt (lambda (n) (+ n 1)))

: (proc (num) num)

|- (compose not zero?)

: (proc (num) bool)

The type of the compose procedure contains
�ve generic type variables. In the �rst use of
compose, 'a, 'c, and 'd all assume the type
num, while in the second use 'a and 'c assume
the types bool, while 'd assumes the type int.
A type variable may appear following a

question mark at the end of the list of param-
eter types of a proc type, as do 'b and 'e

in the example above. This indicates that the
procedure could perhaps take more or fewer
arguments than indicated in the proc type.

|- (define polyadic

(lambda (a b

&opt (c a) (d (= c 3))

&rest z)

(& a b c d z)))

: (proc (num 'a &opt num bool &rest 'b)

(& num 'a num bool (list 'b)))

|- (polyadic 1 2)

: (& num num num bool (list 'a))

(& 1 2 1 #f '())

|- (polyadic 1 2 5)

: (& num num num bool (list 'a))

(& 1 2 5 #f '())

|- (polyadic #t #f 5 #t 8 9 10)

: (& bool bool num bool (list num))

(& #t #f 5 #t (8 9 10))

Procedures may have both optional and rest

arguments. Optional arguments are declared
with expressions that provide default values.
For a call to supply an optional argument or

rest arguments, all preceding optional argu-
ments must be supplied. These expressions
are evaluated in an environment that includes
the preceding arguments. If a procedure ac-
cepts rest arguments, all arguments following
those associated with optional arguments are
collected in a list that is bound to the rest for-
mal parameter (z in this example). Since they
form a list, all rest arguments must be of the
same type.
In the type of the �rst call of polyadic

above, the empty list associated with the rest
argument has type (list 'a), while in the
type of polyadic the rest argument is associ-
ated with the type variable 'c. This illustrates
that the scope of generic type variable names
is restricted to the type in which they are con-
tained.

|- (define fadder

(lambda (f)

(+ (f 2) (f 6 3))))

: (proc ((proc (num &opt num ? 'a)

num))

num)

|- (define optadder

(lambda (&opt (i 1) (j 1) (k 1))

(+ i j k)))

: (proc (&opt num num num) num)

|- +

: (proc (&rest num) num)

|- (& (fadder optadder) (fadder +))

: (& num num)

(& 14 11)

Since f is invoked with both one and two argu-
ments, we can infer that its second argument
must be optional. It may, however, be a pro-
cedure whose �rst argument is also optional,
or a procedure that has additional optional ar-
guments, or even a procedure such as + that
takes any number of arguments.

|- (let ((f (lambda (x) x)))

(& (f 1) (f #f)))

10

: (& num bool)

(& 1 #f)

|- ((lambda (f) (& (f 1) (f #f)))

(lambda (x) x))

TYPE ERROR IN EXPRESSION:

(f #f)

CONFLICTING TYPES:

num

AND

bool

IN TYPES:

(proc (num) '843)

AND

(proc (bool) '843)

DEDUCED FROM EXPRESSIONS:

(f 1)

Polymorphic values that are bound using let,
letrec, and define may be used polymor-
phically, but lambda bound variables may not
be used polymorphically. This restriction is
fundamental to the Hindley-Milner type disci-
pline. It allows types to be inferred automati-
cally.

|- id

: (proc ('a) 'a)

|- (define id

(lambda (x)

(+ (- x 1) 1)))

CONFLICTING TYPES:

'a

AND

num

IN TYPES:

(proc ('a) 'a)

AND

(proc (num) num)

DEDUCED FROM EXPRESSIONS:

(define id (lambda (x) x))

AND

(+ x (- x 1))

(define id

(lambda (x)

(+ x (- x 1))))

A value introduced by a de�nition may not be
rede�ned to have a less general type.

|- #(init)

|- (define id

(lambda (x)

(+ (- x 1) 1)))

id : (proc (num) num)

|- (define id (lambda (x) x))

|- id

: (proc (num) num)

It is possible to rede�ne a value to have a more
general type, but the more general type is not
recorded in the type environment.

|- (define f (lambda (x) (g x x)))

WARNING: FORWARD REFERENCE: g

: (proc ('11) '12)

|- g

: (proc ('11 '11) '12)

ERROR: VARIABLE NOT DEFINED: g

|- (define g (lambda (a b) 3))

: (proc ('a 'a) num)

|- f

: (proc ('a) num)

|- (f 'anything)

: num

3

Unresolved forward references are treated as if
they are lambda-bound (hence not polymor-
phic). When they are subsequently de�ned,
they are treated as if they were letrec-bound,
as are all de�nitions. Hence, after a forward
reference is resolved its type becomes polymor-
phic. Furthermore, if any types in the type en-
vironment have free occurrences of type vari-
ables that occurred in the type of the resolved
reference before it was closed (such as the type
of f in the last example), they are re-closed.
Their types may now be more generic, since
some of their type variables may no longer oc-
cur free in the types of lambda-bound vari-
ables.

11

2.9 Polymorphic assignment

If a value or binding is mutable (assignable),
it is sometimes necessary to restrict its poly-
morphism. This is done using imperative type
variables, which are indicated by a backquote
(`). Non-imperative type variables, indicated
by a quote ('), are said to be applicative. A
record label or a variable binding occurrence
may be followed by a bang (!), which is re-
quired in case the record �eld or variable bind-
ing is mutable.

|- box

: (proc (`a) (box `a))

|- (define boxed-id (box id))

boxed-id : (box (proc (`2) `2))

The contents of a mutable location, such as
a box, is always typed without using applica-
tive type variables. To this end procedures
and forms that create mutable locations al-
ways type those locations with imperative type
variables, as in the type of box. Furthermore,
when an imperative type variable is uni�ed
with a type, all the type variables in that
type become imperative. This happened in
the above example when the applicative type
variable in an instance of the type of id was
uni�ed with the imperative type variable in
the type of box, so that the type of boxed-id
contains an imperative type variable, `2.
Th type variable `2 is not generic, since the

expression (box id) is expansive. Variable
references and lambda expressions are non-

expansive, and all other expressions are ex-
pansive. When the type of a declaration ex-
pression in a let or letrec expression or a
de�nition is closed (made generic), its imper-
ative type variables cannot become generic if
the expression is expansive.

|- (define make-boxed-id

(lambda ()

(box id)))

make-boxed-id

: (proc () (box (proc (`a) `a)))

In this example, the lambda expression is non-
expansive, so the imperative type variable be-
comes generic.

|- (define v '#(,(lambda (x) x)))

v : (vec (proc (`5) `5))

|- (vector-set! v 0 (lambda (n) 3))

|- v

: (vec (proc (num) num))

#(??)

|- (define r ($ (x ! '()))

r : ($ (x ! (list 'a)))

|- (%-set! x r '(4))

|- (% a r)

(4)

|- (let ((x ! (lambda (x) x))) x)

(proc (`4) `4)

|- (let ((lst ! '()))

(set! lst '(a b))

lst)

: (list sym)

(a b)

Besides boxes, the other kinds of mutable loca-
tions supported by Infer are vectors and, when
they are introduced with a bang, record �elds
and variable bindings. As with boxes, the con-
tents of these locations are always typed with
imperative type variables. Since vectors are
mutable, those parts of a quoted literal that
contain a vector are copied each time the quote
expression is evaluated.

|- (define x ! (lambda (x) x))

x ! (proc (`5) `5)

|- (set! x (lambda (n) (+ n 1)))

|- x

! (proc (num) num)

A bang is used instead of a colon when indicat-
ing the addition of a mutable binding to the
top-level environment or the type of a top-level

12

expression that only refers to a mutable top-
level binding. A mutable binding with a type
that is not fully instantiated may be assigned
a value with a less general type. A binding
may only be assigned if it is mutable, though
rede�nition may be used to change the value
of any de�ned binding, provided the type of
the new value is at least as general as the type
of the old value.

2.10 Continuations

Continuations are typed as procedures, but
since they are lambda-bound, they are not
polymorphic.

|- (call-with-current-continuation

(lambda (k)

(+ 7 (if #t (k 2) (k 3)))))

: num

2

In this example the continuation k is in-
voked via simple applications. Since the ap-
plication (k 2) is invoked, the value 2 is re-
turned as the result of the entire expression.
The call-with-current-continuation pro-
cedure is also bound to call/cc.

|- (call/cc

(lambda (k)

(if (k 1) (k 2) 3)))

TYPE ERROR IN EXPRESSION:

(if (k 1) (k 2) 3)

CONFLICTING TYPES:

bool

AND

num

DEDUCED FROM EXPRESSIONS:

(k 2)

(if (k 1) (k 2) 3)

(k 1)

Here k must have type (proc (num) t), for
some type t. but t cannot be both num and
bool.

|- throw

: (proc ((proc ('a) 'b) 'a)

|- (call/cc

(lambda (k)

(if (throw k 1) (throw k 2) 3)))

: num

1

The procedure throw may be used to invoke
continuations, in any context.

|- (let

((f (call/cc

(lambda (k)

(lambda (x)

(throw k

(lambda (y) x)))))))

(f 1)

(f #t))

TYPE ERROR IN EXPRESSION:

(f #t)

CONFLICTING TYPES:

bool

AND

num

IN TYPES:

(proc (num) unit)

AND

(proc (bool) unit)

...

|- call/cc

: (proc ((proc ((proc (`a) 'b)) `a))

`a)

The second call to the procedure f fails to
type check because f is not polymorphic. This
is turn is due to it's argument being asso-
ciated with an imperative type variable, ob-
tained via an instantiation of `a in the type of
call-with-current-continuation. We see
from this example that if continuations were
instead typed with an applicative type vari-
able, 'a, the type system would be unsound.

13

2.11 Directives

Directives, all of the form #(: : :), may only
be used at top-level (after the |- prompt, or
outermost in an Infer source �le). We have
already used the init directive, but there are
several more.

|- (define r2 ($ (a ! 3))

r2 : ($ (a ! num))

|- #(undo r2)

|- r2

ERROR: VARIABLE NOT DEFINED: r2

|- (define r2 3)

r2 : num

The undo directive removes all top-level envi-
ronment entries added since the de�nition of
the indicated value. In this context rede�ni-
tions are ignored. Thus if the indicated value
has been rede�ned, all entries since its �rst
de�nition are removed, and the e�ects of re-
de�nitions of other variables are not undone.
This directive may be used if a variable has
been de�ned with a value of the wrong type,
but earlier declarations are to be retained.
The variable init-point is de�ned at the

end of Infer's standard preamble (see section
preamble) and the init directive is equivalent
to #(undo init-point) followed by (define

init-point unit). The e�ect of the init di-
rective may be limited further by removing the
preamble's de�nition of init-point, making
some de�nitions of your own, and then de�n-
ing init-point.

|- (define rproc (lambda () r))

: (proc () num)

|- #(forget r)

|- (define r #t)

r : bool

|- (rproc)

3

The forget directive removes the top-level en-
vironment entry of an indicated de�nition, but

not other entries. A new de�nition, of any
type, may then be made for the same variable.
Procedures that refer to a variable binding are
una�ected if that binding is removed from the
top-level environment via a directive.

|- (define lst ! '())

lst ! (list `10)

|- (datatype color blue green)

Datatype: color

Enumerated values: blue green

|- (set! lst (list blue))

|- #(undo-type color)

|- (datatype color blue green yellow)

Datatype: color

Enumerated values: blue green yellow

|- (& blue (car lst))

: (& color color:1)

(& ,blue ??)

The undo-type directive removes all top-level
environment entries back to the point at which
the indicated type was declared. After a type
has been removed, values of the type may
still exist, as in the list of the above exam-
ple. When the type of such a value is printed,
it's name has a number appended to it fol-
lowing a colon. This avoids confusion with
other types of the same name. Enumerated
and constructed values of removed types be-
come unprintable. Undoing a de�nition does
not undo imperative type variable bindings
that resulted from elaboration of the de�nition
(such as the binding of `10 in this example).
The directive #(forget-type tyname) is

provided to remove a single type declaration.
The directives #(forget-syntax keyword)

and #(undo-syntax keyword) may be used
similarly to remove an individual syntactic ex-
tension (see section ??) or a given syntactic
extension along with all declarations following
its declaration.

|- (define f0

(lambda ()

14

(f1 (f2))))

WARNING: FORWARD REFERENCES: f1 f2

f0 : (proc () '11)

|- #(forwards)

f1 : (proc ('12) '11)

f2 : (proc () '12)

|- (define f1

(lambda (n)

(+ 1 n)))

f1 : (proc (num) num)

|- #(forwards)

f2 : (proc () num)

The forwards directive may be used to obtain
a list of the forward references that are cur-
rently unresolved forward references and their
types, as far as can be deduced from existing
usage.

|- #(undo f1)

|- #(forwards)

f1 : (proc ('12) '11)

f2 : (proc () '12)

|- (define f1 (lambda (b) (if b 2 3)))

f1 : (proc (bool) num)

|- (define f2 (lambda () #t))

f2 : (proc () bool)

|- #(forget f1)

|- #(forwards)

|- f1

: 'a

ERROR: VARIABLE NOT DEFINED: f1

|- (f0)

: num

2

De�nitions that resolve forward references
may be undone or forgotten. If they are un-
done, it is as if they had never happened
(except for possible bindings of non-generic
type variables occurring free in the top-level
type environment and assignments to mutable
bindings or data structures in the undone en-
vironment). Forgotten de�nitions may still be

indirectly accessible through remaining bind-
ings or data structures. This is why f1 has
type 'a at the end of this example.

2.12 Syntactic extensions

Infer incorporates the high-level syntactic ex-
tension mechanism of Hieb, Dybvig, and
Bruggeman [?, ?], allowing users to de�ne new
forms of directives, declarations, and expres-
sions via pattern directed syntactic transfor-
mations. This mechanism is not yet standard
and is subject to change.

|- (define-syntax begin0

(lambda (x)

(syntax-case x ()

((begin0 exp0 exp1 ...)

(syntax

(let ((val exp0))

exp1 ...

val))))))

Syntax: begin0

|- (begin0 1 2)

TYPE ERROR IN EXPRESSION:

(begin 2 val)

CONFLICTING TYPES:

unit

AND

num

New syntactic forms are expanded before type
checking.

2.13 Parser generation

The seq and alt syntactic extensions and
inj-pp and datum-pp procedures de�ned in
the standard preamble of Infer's implementa-
tion provide a convenient mechanism for de�n-
ing well-typed procedures that parse concrete
syntax of type datum to abstract syntax spec-
i�ed by a user-de�ned data type.
For each syntactic category of the grammar

to be parsed, a parse procedure, or parse-proc,

15

Figure 1: Syntax for parser generator

parse-proc �! prim-parse-proc

j (alt parse-proc+)

j (seq parse-proc [* j +])
j (seq (con var�) f seq-element� parse-proc f* j +g

j seq-element� &rest parse-proc

j seq-element+ g)

seq-element �! parse-proc j (quote id)

is de�ned. If the abstract syntax of a syntactic
category is of type pt (parse tree), the type of
the corresponding parse procedure is

(proc (datum

(proc (pt) pt)

(proc () pt))

pt)

The second and third arguments are success
and failure continuations, respectively.

A primitive parse procedure, or prim-parse-

proc, can be any Infer procedure of the above
type. Parse procedures for syntactic categories
that are de�ned via BNF production rules are
conveniently de�ned using the seq and alt

forms de�ned in the standard preamble of In-
fer's implementation. The syntax for using
these forms is de�ned in �gure ??. � and +

indicate \zero or more" and \one or more,"
respectively.

The alt form recognizes alternative syn-
tactic choices, backtracking if necessary. The
seq form recognizes sequences of syntactic ele-
ments represented as a list of data. The quote
form matches a given identi�er. The nth un-
quoted element of a seq form is associated
with the nth var of a seq form, and the num-
ber of unquoted elements must equal the num-
ber of vars. A type error results if they are not
equal. A * (+) indicates that a list of parse

trees obtained by repeating the following ele-
ment to the end of the list zero (resp. one) or
more times is to be bound to the associated
var .
The inj-pp and datum-pp procedures are

used to construct parse procedures that per-
form simple injection and datum recognition
operations, respectively. See section ?? for
their de�nitions.
To illustrate, we present a parser for a sim-

ple language whose expressions can be parsed
as datums. The grammar includes lambda ex-
pressions with a �xed number of arguments,
applications, variables and let expressions.
See �gure ?? for the BNF syntax.
The abstract syntax types are declared as

follows:

(datatype exp

(var var)

(app $ (rator exp)

(rands (list exp)))

(abst $ (formals (list var))

(body (list exp)))

(let^ $ (binds (list bind))

(body (list exp))))

(abbrevtype var sym)

(datatype bind

(bind $ (var var) (value exp)))

16

Figure 2: Syntax of a sample language

hexpi �! hvari
j (hexpi hexpi�)
j (lambda (hvari�) hexpi+)
j (let (hbindi�) hexpi�)

hbindi �! (hvari hexpi)

The parse procedure for variables checks
that the variable is a symbol, but not lambda
or let.

(define var-pp

(datum-pp

(lambda (d)

(case d

(sym s

(not (or (eq? s 'lambda)

(eq? s 'let))))

(else #f)))

sym%))

The parse procedure for expression may now
be concisely de�ned as follows:

(define exp-pp

(alt

(inj-pp var-pp var)

(seq (abst formals body)

'lambda

(seq var-pp *)

exp-pp +)

(seq (let^ binds body)

'let

(seq (seq (bind var exp)

var-pp

exp-pp)

*)

exp-pp +))

(seq (app rator rands)

exp-pp exp-pp *))

3 Syntax and Semantics

In this section type information is given only
when it would not be understood based on a
basic knowledge of polymorphic type systems.
The notation used in this section is summa-
rized in �gure ??. Meta-variables are indi-
cated by italics.

3.1 Lexical conventions

Infer adopts the lexical conventions of Scheme.
Thus, for example, identi�ers are case-
insensitive and comments begin with a semi-
colon and extend to the end of the line.

3.2 Syntactic classes

See �gures ?? and ?? for the context free
syntax of Infer's core.

3.3 Declarations

Declarations may appear at top-level or in-
ternally at the begining of a body , in the
manner of Scheme's internal de�nitions. As
in Scheme, a sequence of internal de�nitions
(without other kinds of declarations interven-
ing) is equivalent to a single letrec. The
scope of each top-level declaration includes all
following declarations.

3.3.1 Type abbreviations

(abbrevtype paramty ty)

Declares tyname �: : of paramty to be
an abbreviation for ty parameterized by
tyvar , �: : of paramty . That is, whenever
(tyname ty1 �: :) appears as a type, it is
equivalent to a reference to ty with each refer-
ence to tyvar , �: : replaced by ty1, �: :. In er-
ror messages, abbreviation types may appear

17

Figure 3: Notation

: : : ellipsis, as in standard mathematical notation
�: : zero or more of the preceding, used as ... in extend-syntax

+: : similar to *.., but indicates one or more of the preceding
�!, j standard BNF production and alternation
[], f g extended BNF optional and grouping brackets

var : ty var has type ty in the top-level type environment
� syntactic equivalence

in expanded form. tyvar , �: : may not be re-
peated.

3.3.2 Data types

(datatype paramty conbind �: :)

Declares tyname of paramty to be a datatype
with variants named after the con, +: : of
conbind . The tyvar , �: : of a paramty,
which may not be repeated, parameterize
the binding of tyname . That is, whenever
(tyname ty1 �: :) appears as a type, it is
equivalent to a reference to the datatype with
each reference to tyvar , �: : replaced by ty1,
�: :. A tyvar occurring in a conbind must also
appear in the tyvar list of its type declaration.
The con, �: : of conbin, �: : may not be re-

peated. The order of conbind clauses is not
signi�cant. Predicates named \con?," +: : are
de�ned that may be applied to any value of
type tyname and return true only for values of
the associated variant.
A conbind clause may be of one of three

forms, corresponding to three forms of vari-
ants.

1. For each clause of the form that consists
simply of a constructor name, con , an
\enumerated" data value named \con" of
type paramty and variant con is de�ned.

2. For each clause of the form (con [!] ty) a
constructor (injection) procedure named
\con" of type

(proc (ty) paramty)

is de�ned that returns a value of vari-
ant con, a projection procedure named
\con%" of type (proc (paramty) ty) is
de�ned that returns the value injected
into a value of type tyname, and if the !

is present a procedure named \set-con!"
of type

(proc (paramty ty) unit)

is de�ned that assigns a value of type ty

to the variant.

3. For each clause of the form

(con $ (lab [!] ty) �: :)

a constructor procedure named \con" of
type

(proc (ty1 ty2 +: :) paramty)

is de�ned that returns a value of variant
con , and a projection procedure named
\con%" of type

(proc (paramty)

($ (lab1 ty1) (lab2 ty2) +: :))

18

Figure 4: Context free syntax

program prog �! fdecl j exp g +: :

declaration decl | see section ??
expression exp | see section ??
constant constant �! bool j string j num j char
boolean bool �! #t j #f
string string | a Scheme string

number num | a Scheme number
character char | a Scheme character constant
symbol symbol | a Scheme identi�er (symbol)
keyword keyword �! => j & j $ j % j %-set! j begin j case j datum

j define j define-syntax j else j if j lambda
j let j let-syntax j letrec j letrec-syntax
j local j or j quote j quasiquote j set!
j syntax j syntax-case j the
j type j unquote j unquote-splicing

identi�er id | a Scheme identi�er not beginning with &

label lab �! id

variable identi�er varid | an id , but not a keyword or !
type identi�er tyid | an id , but not $, &, proc, proc*, or a primty

type name tyname �! tyid

constructor con | a varid , but not a var

variable var | a varid , but not a con

fresh variable fvar | a fresh var (to avoid variable capture)
natural number nat �! 0 j 1 j 2 j : : :

type ty �! paramty j primty j procty
j recty j tupty j tyvar j vecty

vector type vecty �! (vec ty)

record type recty �! ($ (lab [!] ty) �: : [? tyvar])
tuple type tupty �! (& f[!] tyg �: :[? tyvar])

procedure type procty �! (proc (ty1 �: : [&opt ty +: :]
[&rest ty j ? tyvar])

ty)

primitive type primty �! bool j char j num j port j str j sym j syntax
type variable tyvar �! apptyvar j imptyvar

applicative type variable apptyvar �! 'tyid j 'nat
imperative type variable imptyvar �! `tyid j `nat

(Continued in �gure ??.)

19

Figure 5: Context free syntax

(Continuation of �gure ??.)

body body �! decl �: : exp
datum template template | a Scheme datum template

formal parameter fp �! var [!]
value binding valbind �! val [!] body

parameterized type paramty �! (tyname ty �: :)
constructor binding conbind �! con

j (con [!] ty)
j (con �$ (lab [!] ty) �: :)

syntax pattern syntax-pattern | see[?] and [?]
syntax template syntax-template | see[?] and [?]

Scheme expression scheme-exp | a Scheme expression

is de�ned that returns a record of the val-
ues projected into a value of type tyname.
A procedures named \con->lab" of type
(proc (paramty) ty) is also de�ned for
each label lab1, lab2, +: : with associated
type ty, which is equivalent to (lambda

(x) (% lab (con% x))). Finally, for
each label �eld of the form (lab ! ty),
a procedure named \set-con->lab!" of
type

(proc (paramty ty) unit)

is de�ned that assigns a value of type ty

to the �eld.

Data types declared by a type declaration
may be mutually recursive. Type abbrevia-
tions may not be directly recursive or indi-
rectly recursive through other type abbrevia-
tions, though indirect recursion through data
types is allowed.

If there is only one variant in a data type,
its predicate is not de�ned.

See sections ?? and ??.

3.3.3 De�nitions

(define var [!] exp)

De�nes the binding of var to be the value of
exp in the top-level environment. Var may
not have been previously de�ned. The type
of exp is closed to form a type scheme asso-
ciated with var in the context of subsequent
top-level declarations and expressions. In the
context of exp, its type is not closed. The op-
tional ! declares the binding to be mutable
and forces all type variables in the type of the
binding to be imperative, so they they cannot
be instantiated generically.

Bindings introduced by de�nitions may be
rede�ned by subsequent de�nitions, provided
the type of the rede�nition value is at least
as general as the type of the original de�ni-
tion. The type of the original de�nition is
maintained in the top-level environment. See
section ??.

20

3.3.4 Local declarations

(local (decl1 �: :) decl �: :)

Declarations decl1 �: : are evaluated in se-
quence, extending in turn the environment
of the local declaration and then declarations
decl �: : are in sequence. The bindings pro-
vided by decl �: :, but not those of decl1 �: :,
are then used to extend the environment of
the local declaration. Local declarations may
be used to de�ne abstract data types. Though
reference to type names introduced in decl1 �: :
is not restricted, access to their associated pro-
cedures is limited to decl �: :.

3.3.5 Syntactic extension

(define-syntax keyword exp)

Exp must have type (proc (syntax) syntax).
See [?] and [?].

3.4 Bodies

The bodies of lambda, let, letrec, let-syntax,
and letrec-syntax expressions consist of a
sequence of zero or more declarations followed
by one or more expressions. The declarations
are evaluated in sequence, with the scope of
each including those that follow as well as
the body's expression, except for contiguous
groups of de�nitions, which are equivalent to
a single letrec. Finally, the body's expression
is evaluated and its value returned.

3.5 Expressions

In addition to the following primitive expres-
sion forms, Infer has a number of derived ex-
pression forms de�ned by the syntactic trans-
formations in section ??.

3.5.1 Variables

var

As in Scheme.

3.5.2 Constants

constant

As in Scheme. Has type bool, string, num, or
char, as appropriate.

3.5.3 Record construction

($ (lab [!] exp) �: :)

The order of the �elds is not signi�cant, but
the labels must be distinct. Returns a record
r such that ($ lab r) is the value of the exp

corresponding to lab. A ! indicates that a �eld
is mutable.

3.5.4 Tuple construction

(& f[!] expg �: :)

Returns a tuple whose elements are the values
of exp, �: :. The \length" of a tuple is the
number of its elements. A ! indicates that the
�eld following it is mutable.

3.5.5 Record and tuple selection

(% lab exp)

(% nat exp)

In the �rst form exp must evaluate to a record
with a �eld named lab and the contents of that
�eld is returned. In the second form exp must

21

evaluate to a tuple and the value of the �eld
indexed by nat is returned.

3.5.6 Record and tuple assignment

(%-set! lab exp1 exp2)

(%-set! nat exp1 exp2)

In the �rst form exp must evaluate to a record
with a �eld named lab and the contents of that
�eld is assigned the value of exp2. In the sec-
ond form exp must evaluate to a tuple and the
value of the �eld indexed by nat is assigned
the value of exp2. The assigned �eld must be
mutable. Both forms have type unit.

3.5.7 Data Type Case

(case exp

(con f var

j (var1 �: :) g exp1 +: :) �: :
[(else exp2 +: :)])

The con �: :must be distinct and all name con-
structors of the same data type, which must
be the type of exp. The case clause must also
be within the scope of the declaration of this
type.
If the value, v, of exp is associated with one

of the given constructors, that constructor's
case clause is entered. Otherwise, if there is an
else clause, exp2 �: : are evaluated in sequence
and the value of the last expression is returned,
and if there is no else clause no action is taken.
Each of the last expressions in each clause

must have the same type, t, which is also the
type of the case expression. If con �: : in-
clude all of the constructors of their data type,
an else clause is not permitted. Otherwise, if
there is no else clause, t must be unit.
When the clause matching the variant of exp

is found, further evaluation depends on which

sort of syntax form follows the constructor of
the clause.

1. If it is var , then var is bound to the re-
sult of projecting the value of exp to the
variant type of con , and then exp1 +: : are
evaluated in the scope of var .

2. If it is (), then exp1 +: : are evaluated.
This is most often used when con is an
enumerated variant.

3. If it is (var1 +: :), then the con variant
must contain a record with �elds named
by var1 +: :. The variables var1 +: : are
bound to the values of their respective
�elds, and then exp1 +: : are evaluated in
the scope of these bindings. The order of
var1 +: : is not signi�cant, and they need
not name all �elds of the variant record.

For each clause the value of the last exp1 +: :

expression is returned. See section ??.
Scheme-style case expressions that dispatch

on lists of primitive values are also supported.
See sections ?? and ??.

3.5.8 Datum creation

(datum exp)

Evaluates exp and returns a datum corre-
sponding to the external representation of its
value. Procedures, ports, and any other un-
printable values are represented by the datum
�??.

3.5.9 Value quotation

(quote template)

The type of the quote form is inferred from
the contents of the datum. The unquote,
unquote-splicing, quasiquote, &, and $ are
all \active" within a quoted datum.

22

3.5.10 Datum quotation

(quasiquote template)

Has type datum. Unquote subexpressions (fol-
lowing a comma) must have type datum and
unquote-splicing subexpressions must have
type (list datum).

3.5.11 Procedure call

(exp +: :)

Procedure call, as in Scheme.

3.5.12 Begin blocks

(begin exp �: : exp0)

Sequencing, as in Scheme. exp, �: : must have
type unit. Has the type of exp0.

3.5.13 Conditional evaluation

(if exp0 exp1 exp2)

Conditional expression, as in Scheme. exp0
must have type bool and exp1 must have the
same type as exp2, which is the type of the if
expression.

3.5.14 Procedural abstraction

(lambda (fp �: : [&opt (valbind) �: :]
[&rest fp])

body)

The sequence of formal declarations, fp, de-
clare the required arguments. Exercising the
! option in an fp declares the binding to be
mutable and forces type variables in the type

of the binding to be imperative, so that they
cannot be instantiated generically.
Optional argument declarations follow &opt.

The valbind bodies are evaluated in sequence,
each in the scope of all preceding required and
optional arguments. A \rest" formal paramter
may be declared following &rest, in which case
the procedure will accept any number of argu-
ments greater or equal to the number of re-
quired arguments.
After any optional arguments have been

matched, the remaining arguments are formed
into a list that is bound to the rest formal pa-
rameter. All rest arguments must be of the
same type.

3.5.15 Value binding

(let ((valbind) �: :) body)

(letrec ((valbind) �: :) body)

As in Scheme. The binding types are closed to
form type schemes before checking the body.
In the case of letrec the binding types are
used to type the bindings themselves, but the
binding types are not closed when the bindings
themselves are checked.

3.5.16 Assignment

(set! var exp)

Variable assignment, as in Scheme. Has type
unit. var must have a mutable binding.

3.5.17 Type assertion

(the ty exp)

Asserts that the type of exp must be ty, caus-
ing a type-checking error if this is not the case,
and returns the value of exp .

23

3.5.18 Syntax generation

(syntax syntax-template)

(syntax-case exp (id �: :)
(syntax-pattern [fender-exp]output-exp)
�: :)

Used to de�ne syntactic extensions in con-
junction with define-syntax, let-syntax, or
letrec-syntax. See [?] and [?]. Vector
elements are treated like other subelements
in a pattern or template. Both syntax and
syntax-case forms have type syntax. Exp

and each output-exp must have type syntax.
Each fender-exp, if present, must have type
bool.

3.5.19 Syntax binding

(let-syntax ((keyword exp) �: :)
body)

(letrec-syntax ((keyword exp) �: :)
body)

The exp must have type (proc (syntax)

syntax). See [?] and [?].

3.6 Derived forms

Patterns on the left- and right-hand sides of
syntactic equivalences may contain optional,
alternative, and ellipsis, as well as pattern
variables (indicated by italics). When op-
tional, alternative, and ellipsis appear in the
right-hand side of syntactic equivalences, they
refer to the corresponding optional, alterna-
tive, and ellipsis in the left-hand side, where
the correspondence is determined by shared
pattern variables. For example,

(a [x j (b y �: :)])
� (c [(d x) j y �: :])

abbreviates the rules:

1. (a) � (c)

2. (a x) � (c (d x)), and

3. (a (b y �: :)) � (c y �: :)

3.6.1 decl

(begin decl �: :) � (local () decl �: :)

(define (fp x �: :) exp +: :)

� (define fp (lambda (x �: :) exp +: :))

(abbrevtype tyname ty)

� (abbrevtype (tyname) ty)

(datatype tyname conbind �: :)
� (datatype (tyname) conbind �: :)

3.6.2 body

decl �: : exp +: :

� decl �: : (begin exp +: :)

3.6.3 exp

'template � (quote template)

`template � (quasiquote template)

(begin) � (begin unit)

(if exp0 exp1) � (if exp0 exp1 unit)

(let var ((fp exp) �: :) exp0 +: :)

� (letrec ((var (lambda (fp �: :)
exp0 +: :)))

(var exp �: :))

(case exp

((x �: :) exp1 +: :) �: :
[(else exp2 �: :)])

� (let ((fvar exp))

24

(cond ((or (eqv? fvar 'x) �: :)
exp1 +: :) �: :
[(else exp2 +: :)]))

3.6.4 ty

tyname � (tyname)

(proc* (ty1) ty2) � (proc (ty1) ty2)

(proc* (ty1 ty2 +: :) ty3)

� (proc (ty1) (proc* (ty2 +: :) ty3))

3.7 Standard types

A few data types and a type abbreviation must
be primitive, for they are used by standard
procedures. All of the procedures that would
be created by the type declarations in this
section are provided as standard procedures.
The datum and list types are implemented
specially in an Infer implementation based on
Scheme.
Values of type datum have the same exter-

nal and literal representation as in Scheme,
but (unless they are unprintable) they appear
(with one exception noted below) to the Infer
programmer as if they were elements of a type
de�ned as follows:

(datatype datum

empty

(bool bool)

(char char)

(num num)

(str str)

(sym sym)

(vec (vec datum))

(pair $ (left ! datum)

(right ! datum)))

The empty list is represented by empty. Using
the datum form, it is possible for unprintable

values to be of type datum. Unprintable val-
ues are either opaque objects, such as proce-
dures and ports, or values for which a ground
type (a type without type variables) cannot
be inferred. They are represented by the da-
tum enumerated variant ??. Though there is
an enumerated value ??, and a corresponding
predicate ???, there is no corresponding pro-
jection procedure (??%). See section ??.

(datatype unit unit)

Unit is the type of statements (expressions
evaluated for e�ect only).

(datatype (list 'a)

nil

(cons $ (hd 'a) (tl (list 'a))))

In an Infer implementation built on top of a
Lisp (Scheme) implementation, the variants of
the list type should be implemented as the
empty list and cons cells.

(datatype (option 'a)

absent

(present 'a))

(abbrevtype (alist 'a 'b)

(list (& 'a 'b)))

The option and alist types are used by some
of Infer's primitive procedures.

3.8 Standard procedures

The standard procedures of Infer are those
documented in this section plus those associ-
ated with the standard data types of section
??.

datum->list

: (proc (datum) (list datum))

list->datum

: (proc ((list datum)) datum)

25

Procedures that coerce between datum and
list of datum types. The argument of
datum->list must be a list built of pairs.

member? : (proc ('a (list 'a)) bool)

memq? : (proc ('a (list 'a)) bool)

memv? : (proc ('a (list 'a)) bool)

Same as Scheme's member, memq, and memv,
except returned values are boolean.

member : (proc ('a (list 'a))

(list 'a))

memq : (proc ('a (list 'a)) (list 'a))

memv : (proc ('a (list 'a)) (list 'a))

Same as Scheme's member, memq, and memv, ex-
cept the empty list is returned if no matching
element is found in the list.

assoc : (proc ('a (alist 'a 'b))

(option 'b))

assq : (proc ('a (alist 'a 'b))

(option 'b))

assv : (proc ('a (alist 'a 'b))

(option 'b))

These are similar to the Scheme procedures of
the same name, but they return a value of type
(option 'b), rather than a boolean or a value
of type (& 'a 'b). The option and alist

types are de�ned in the standard preamble.

identifier? : (proc (syntax) bool)

bound-identifier=?

: (proc (syntax syntax) bool)

free-identifier=?

: (proc (syntax syntax) bool)

implicit-identifier

: (proc (syntax sym) syntax)

These procedures are used to de�ne syntactic
extensions in conjunction with define-syntax,
let-syntax, or letrec-syntax. See [?] and
[?].

The following standard Scheme procedures
are provided with the indicated types. In-
fer supports all other procedures of Standard
Scheme. See also the standard preamble (sec-
tion ??). The complex number procedures are
supported only if the implementation supports
complex numbers.

* : (proc (&rest num) num)

+ : (proc (&rest num) num)

- : (proc (num &opt num) num)

/ : (proc (num &opt num) num)

< : (proc (&rest num) bool)

<= : (proc (&rest num) bool)

= : (proc (&rest num) bool)

> : (proc (&rest num) bool)

>= : (proc (&rest num) bool)

abs : (proc (num) num)

acos : (proc (num) num)

angle : (proc (num) num)

apply : (proc ((proc (? 'a) 'b) ? 'a)

'b)

append : (proc (&rest (list 'a))

(list 'a))

asin : (proc (num) num)

atan : (proc (num) num)

call-with-current-continuation

: (proc ((proc ((proc (`a) 'b))

`a))

`a)

call-with-input-file

: (proc (string (proc () 'a)) 'a)

call-with-output-file

: (proc (string (proc () 'a)) 'a)

ceiling : (proc (num) num)

char->integer : (proc (char) num)

char-alphabetic? : (proc (char) bool)

char-ci<=? : (proc (char char) bool)

char-ci<? : (proc (char char) bool)

char-ci=? : (proc (char char) bool)

char-ci>=? : (proc (char char) bool)

char-ci>? : (proc (char char) bool)

char-downcase : (proc (char) char)

char-lower-case? : (proc (char) bool)

26

char-numeric? : (proc (char) bool)

char-upcase : (proc (char) char)

char-upper-case? : (proc (char) bool)

char-whitespace? : (proc (char) bool)

char<=? : (proc (char char) bool)

char<? : (proc (char char) bool)

char=? : (proc (char char) bool)

char>=? : (proc (char char) bool)

char>? : (proc (char char) bool)

close-input-port : (proc (port) unit)

close-output-port : (proc (port) unit)

complex? : (proc (num) bool)

cos : (proc (num) num)

current-input-port : (proc () port)

current-output-port : (proc () port)

denominator : (proc (num) num)

display

: (proc (datum &opt port) unit)

eof-object? : (proc (datum) bool)

eq? : (proc ('a 'a) bool)

equal? : (proc ('a 'a) bool)

eqv? : (proc ('a 'a) bool)

even? : (proc (num) bool)

exact->inexact : (proc (num) num)

exact? : (proc (num) bool)

exp : (proc (num) num)

expt : (proc (num num) num)

floor : (proc (num) num)

for-each : (proc ((proc ('a) unit)

(list 'a))

unit)

gcd : (proc (&rest num) num)

image-part : (proc (num) num)

inexact->exact : (proc (num) num)

inexact? : (proc (num) bool)

input-port? : (proc (port) bool)

integer->char : (proc (num) char)

integer? : (proc (num) bool)

lcm : (proc (&rest num) num)

length : (proc ((list 'a)) num)

list : (proc (&rest 'a) (list 'a))

list->vector : (proc ((list 'a))

(vec 'a))

list-ref : (proc ((list 'a) num) 'a)

log : (proc (num) num)

magnitude : (proc (num) num)

make-polar : (proc (num) num)

make-rectangular : (proc (num) num)

make-string : (proc (num char) str)

make-vector : (proc (num `a) (vec `a))

map : (proc ((proc ('a) 'b) (list 'a))

(list 'b))

max : (proc (num num) num)

min : (proc (num num) num)

modulo : (proc (num num) num)

negative? : (proc (num) bool)

newline : (proc (&opt port) unit)

not : (proc (bool) bool)

number->string : (proc (num) str)

numerator : (proc (num) num)

odd? : (proc (num) bool)

open-input-file : (proc (string) port)

open-output-file

: (proc (string) port)

output-port? : (proc (port) bool)

peek-char : (proc (&opt port) char)

positive? : (proc (num) bool)

quotient : (proc (num num) num)

rational? : (proc (num) bool)

rationalize : (proc (num) num)

read : (proc (&opt port) datum)

read-char : (proc (&opt port) char)

real-part : (proc (num) num)

real? : (proc (num) bool)

remainder : (proc (num num) num)

reverse : (proc ((list 'a)) (list 'a))

round : (proc (num) num)

set-car! : (proc ((list 'a) 'a) unit)

set-cdr! : (proc ((list 'a) 'a) unit)

sin : (proc (num) num)

sqrt : (proc (num) num)

string : (proc (&rest char) str)

string->number : (proc (str) num)

string->symbol : (proc (str) sym)

string-append : (proc (&rest str) str)

string-ci<=? : (proc (str str) bool)

string-ci<? : (proc (str str) bool)

string-ci=? : (proc (str str) bool)

27

string-ci>=? : (proc (str str) bool)

string-ci>? : (proc (str str) bool)

string-length : (proc (str) num)

string-ref : (proc (str num) char)

string-set!

: (proc (str num char) unit)

string<=? : (proc (str str) bool)

string<? : (proc (str str) bool)

string=? : (proc (str str) bool)

string>=? : (proc (str str) bool)

string>? : (proc (str str) bool)

substring : (proc (str num num) str)

symbol->string : (proc (sym) str)

tan : (proc (num) num)

truncate : (proc (num) num)

vector : (proc (`a) (vec `a))

vector-length : (proc (vec) num)

vector-ref : (proc ((vec 'a) num) 'a)

vector-set!

: (proc ((vec 'a) num 'a) unit)

write : (proc (datum &opt port) unit)

write-char

: (proc (char &opt port) unit)

zero? : (proc (num) bool)

3.9 Standard preamble

The following declarations are loaded auto-
matically when Infer is initialized. They may
be undone.

(define call/cc

call-with-current-continuation)

(define left pair->left)

(define right pair->right)

(define boolean? bool?)

(define number? num?)

(define null? nil?)

(define string? str?)

(define symbol? sym?)

(define car cons->hd)

(define cdr cons->tl)

(define caar

(lambda (x)

(car (car x))))

...

(define cddddr

(lambda (x)

(cdr (cdr (cdr (cdr x))))))

(define-syntax lambda*

(syntax-rules ()

((lambda* (fs) exp ...)

(lambda (fs) exp ...))

((lambda* (fs1 fs2 ...) exp ...)

(lambda (fs1)

(lambda* (fs2 ...) exp ...)))))

(define-syntax let*

(syntax-rules ()

((let* ((fs exp)) body ...)

(let ((fs exp)) body ...))

((let* ((fs1 exp1) (fs2 exp2) ...)

body ...)

(let ((fs1 exp1))

(let* ((fs2 exp2) ...)

body ...)))))

(define-syntax and

(syntax-rules ()

((and) #t)

((and test) test)

((and test1 test2 ...)

(let ((x test1))

(if x (and test2 ...) x)))))

(define-syntax or

(syntax-rules ()

((or) \#f)

((or test) test)

((or test1 test2 ...)

(let ((x test1))

(if x x (or test2 ...))))))

(define-syntax cond

28

(syntax-rules (else)

((cond) unit)

((cond ((else exp))) exp)

((cond ((test exp ...)

clause ...))

(if test

(begin exp ...)

(cond clause ...)))))

(define-syntax with

(syntax-rules ()

((with () exp1 exp2 ...)

(begin exp2 ...))

((with (lab1 lab2 ...)

exp1 exp2 ...)

(let ((var exp1))

(let ((lab1 ($ lab1 var))

(lab2 ($ lab2 var))

...)

exp2 ...)))))

(define-syntax do

(syntax-rules ()

((do ((var init exp) ...)

(test exp1 ...)

command ...)

(letrec

((loop

(lambda (var ...)

(if test

(begin exp1 ...)

(begin

command ...

(loop exp ...))))))

(loop init ...)))))

(define-syntax init

(syntax-rules ()

(#(init)

#(begin

#(undo init-point)

#(define init-point unit)))))

(define init-point unit)

Figure 6: Additional syntax

expressions exp �! fdir
directive dir | see section ??
keyword keyword �! the-scheme

j trace-type

type ty �! boxty

box type boxty �! (box ty)

4 Implementation

This section describes the current implemen-
tation of Infer, including additions to the In-
fer language that are of a temporary or ex-
perimental nature and programming environ-
ment features. The implementation, currently
runs under Chez Scheme (available from Ca-
dence Research Systems. 620 Park Ridge
Road, Bloomington, IN 47401) and Mac-
Scheme (available from Lightship Software,
P.O. Box 1636, Beaverton, OR 97075).
GNU Emacs support is available for the

Chez implementation in the form of an
infer.el �le.

4.1 Additional syntax and se-
mantics

Additions to the syntax of declarations and ex-
pressions and the standard preamble are de-
scribed in this section. Subsection 4.1.n ex-
tends subsection 3.n. Section ?? describes
the syntax and semantics of directives.

4.1.2 Syntactic classes

See �gure ??.

29

4.1.5 Expressions

(the-scheme ty scheme-exp)

Scheme-exp is executed as a Scheme expres-
sion and its value is returned. It is assumed
the value has type ty . This is a hole in the
type system, so it must be used with great
caution. Free variables in scheme-exp are cap-
tured by local Infer bindings whose scope in-
cludes the the-scheme expression, while free
variables that are not captured in this way are
associated with top-level Scheme (not Infer)
bindings.

(trace-type id exp)

Prints \checking id" just before beginning
to typecheck exp and prints \type id is ty,"
where ty is the type of exp, when exp has been
checked. There may be as yet uninstantiated,
but non-generic, type-variables in ty . Equiva-
lent to exp at runtime.

4.1.6 Derived forms

declarations

#(begin x �: :) � x �: :

#(set x) � #(set x #t)

#(unset x) � #(set x #f)

4.1.7 Standard types

The datum type declaration is extended with
the clause (dbox box).

4.1.8 Standard procedures

current-input-port

: (proc (&opt port) port)

current-output-port

: (proc (&opt port) port)

When an argument is given, the argument be-
comes the standard input port and standard
ouput port, respectively. Returns the stan-
dard input port and standard output port, re-
spectively.

exit : (proc () 'a)

Returns to Scheme. (infer) may then be
used to return to Infer with the top-level con-
text of the last exit.

expand : (proc (datum) datum)

expand-once : (proc (datum) datum)

Takes a datum representing an Infer expres-
sion and returns a datum representing the
expression resulting from full expansion or
one step of expansion of syntactic extensions
within the given expression. Useful for debug-
ging syntactic extensions.

gensym : (proc () sym)

Returns a new uninterned symbol.

quit : (proc () 'a)

Return to the operating system.

reset : (proc () 'a)

Returns to the outer top-level loop of Infer.

Complex numbers are not supported.

30

4.1.9 Standard preamble

Infer behaves as if the following code were au-
tomatically loaded. These declarations may
be undone or forgotten.

(define-syntax with-syntax

(lambda (x)

(syntax-case x ()

((with-syntax ((p e0) ...)

e1 e2 ...)

(syntax

(syntax-case (list e0 ...) ()

((p ...) (begin e1 e2 ...))

)))))

(define-syntax transcript-on

(lambda (x)

(syntax-case x ()

((transcript-on file)

(syntax

#(set transcript-file file)

)))))

(define-syntax transcript-off

(lambda (x)

(syntax-case x ()

((transcript-off)

(syntax

#(set transcript-file #f))))))

(define-syntax :

(lambda (x)

(syntax-case x ()

((: exp)

(syntax exp))

((: exp1 exp2 exp3 ...)

(syntax

(: (exp1 exp2) exp3 ...))))))

(define-syntax when

(lambda (x)

(syntax-case x ()

((when test exp ...)

(syntax

(if test (begin exp ...)))))))

(define-syntax unless

(lambda (x)

(syntax-case x ()

((unless test exp ...)

(syntax

(if (not test)))

(begin exp ...)))))

(define-syntax fluid-let

(lambda (x)

(syntax-case x ()

((fluid-let ((var exp) ...)

body ...)

(syntax

(let ((fvar var) ...)

(dynamic-wind

(lambda ()

(set! var exp) ...)

(lambda ()

body ...)

(lambda ()

(set! var fvar) ...)

)))))))

(define-syntax delay

(lambda (x)

(syntax-case x ()

((delay exp)

(syntax

(let ((val ! absent))

(lambda ()

(case val

(absent ()

(set! val

(present exp))

exp)

(present exp exp)

))))))))

(define (force future)

(future))

31

(define (fprintf port str &rest datums)

(let ((len (string-length str)))

(let f ((i 0) (ls datums))

(unless (= i len)

(let ((ch (string-ref str i)))

(cond

((and (char=? ch #\~)

(< (+ i 1) len))

(case (string-ref str

(+ i 1))

((#\s)

(write (car ls) port)

(f (+ i 2) (cdr ls)))

((#\a)

(display (car ls) port)

(f (+ i 2) (cdr ls)))

((#\p)

(pretty-print (car ls)

port)

(f (+ i 2) (cdr ls)))

((#\%)

(newline port)

(f (+ i 2) ls))

((#\~)

(write-char #\~ port)

(f (+ i 2) ls))

(else

(write-char #\~ port)

(f (+ i 1) ls)))))

(else

(write-char ch)

(f (+ i 1) ls)))))))

(define (printf str &rest datums)

(apply2 fprintf

(current-output-port)

str

datums))

(define (error sy &opt (st "")

&rest datums)

(printf "~%ERROR in ~s" (sym sy))

(unless (string=? st "")

(display ": ")

(apply2 printf st datums))

(newline)

(reset))

(define (for-each2 f lst1 lst2)

(let loop ((x lst1) (y lst2))

(if (null? x)

(if (null? y)

'()

(error 'for-each2

"lists of unequal length: ~p ~p"

lst1 lst2))

(f (car x) (car y))

(loop (cdr x) (cdr y)))))

(define (map2 f lst1 lst2)

(let loop ((x lst1) (y lst2))

(if (null? x)

(if (null? y)

'()

(error 'map2

"lists of unequal length: ~p ~p"

lst1 lst2))

(cons

(f (car x) (car y))

(loop (cdr x)

(cdr y))))))

(define (throw k v)

(let ((x (k v)))

(error 'throw

"a `continuation' returned:~%~p"

x)))

;;; Dynamic wind

;;; Ellipsis indicates omitted code

;;; A description follows the preamble

(define original-call/cc call/cc)

(define state-space ...)

32

(define dynamic-wind

(lambda (prelude body postlude)

...))

(define call/cc ...)

(define call-with-current-continuation

call/cc)

#(forget state-space)

#(forget original-call/cc)

;;; Datum parser generator

(define-syntax alt

(syntax-rules ()

((alt pp1 pp2 pp3 ...)

(lambda (d s f)

(pp1 d s

(lambda ()

((alt pp2 pp3 ...)

d s f)))))

((alt pp1) pp1)))

(define-syntax seq

(syntax-rules (+ *)

((seq pp)

(lambda (d s f)

(case d

(pair (left right)

(if (empty? right)

(pp left s f)

(f)))

(else (f)))))

((seq pp *) (*syntax-loop* pp #f))

((seq pp +) (*syntax-loop* pp #t))

((seq (con var ...) pp1 pp2 ...)

(lambda (d s f)

((*seq* pp1 pp2 ...)

d

(lambda* (var ...)

(lambda ()

(s (con var ...))))

f)))))

(define-syntax *seq*

(syntax-rules (& quote + * &rest)

((*seq* &rest pp)

(lambda (d s f)

(pp d

(lambda (pt) ((s pt)))

f)))

((*seq* pp *)

(lambda (d s f)

((*syntax-loop* pp #f)

d

(lambda (pt) ((s pt))) f)))

((*seq* pp +)

(lambda (d s f)

((*syntax-loop* pp #t)

d

(lambda (pt) ((s pt))) f)))

((*seq* (quote id) pp ...)

(lambda (d s f)

(case d

(pair (left right)

(if (and

(sym? left)

(eq? 'id

(sym% left)))

((*seq* pp ...)

right s f)

(f)))

(else (f)))))

((*seq* pp1 pp2 ...)

(lambda (d s f)

(case d

(pair (left right)

(pp1 left

(lambda (pt)

((*seq* pp2 ...)

right

(s pt)

f))

f))

(else (f)))))

((*seq*) (lambda (d s f) (s)))))

33

(define *syntax-loop*

(lambda (pp at-least-one)

(lambda (d s f)

(letrec

((loop

(lambda (d acc)

(case d

(pair (left right)

(pp left

(lambda (pt)

(loop right

(cons pt acc)))

f))

(empty ()

(s (reverse acc)))

(else (f))))))

(if (and at-least-one

(not (pair? d)))

(f)

(loop d '()))))))

(define inj-pp

(lambda (pp inj)

(lambda (d s f)

(pp d

(lambda (x) (s (inj x)))

f))))

(define datum-pp

(lambda (type? type%)

(lambda (d s f)

(if (type? d)

(s (type% d))

(f)))))

;;; Move init-point to this point

#(forget init-point)

(define init-point unit)

The dynamic-wind procedure de�nition is
too long to be included in full above. It's type

is

(proc ((proc () unit)

(proc () 'a)

(proc () unit))

'a)

The arguments are referred to as the prelude,
body, and postlude. Unless continuations are
used to transfer control into or out of the body,
the prelude, body, and postlude procedures
are invoked in succession and the value re-
turned by the body is returned as the value of
the dynamic-wind call. In addition, if when-
ever control enters (leaves) the body via invo-
cation of a �rst-class continuation, the prelude
(resp. postlude) procedure is invoked. Control
may not enter or leave the prelude or postlude
procedures via �rst-class continuations.

4.2 Directives

Directives may be thought of as \compile-time
expressions." Like declarations and expres-
sions not contained in directives, they are eval-
uated immediately when they are entered at
top-level and as they are encounted when load-
ing a source �le. Directives are also evaluated
as they are encountered when compiling a �le
but not when loading an object �le. Declara-
tions and expressions not contained in direc-
tives, on the other hand, are evaluated when
an object �le is loaded, not when the corre-
sponding source �le is compiled.
Directives may only appear at top-level or

within an evaluate directive.
Unless otherwise indicated, directives return

unit.

4.2.1 Compile-time evaluation

#(evaluate exp)

34

The given expression is evaluated at the time
indicated at the beginning of section ??.

4.2.2 Infer Parameters

#(set infer-parameter exp)

#(view infer-parameters)

The �rst form sets the indicated infer param-
eter to the value of exp. The second form re-
turns a datum corresponding to the value of
the indicated parameter. The Infer parame-
ters, along with their permitted and default
values are listed in �gure ??.
Symbols of which data and programs are

composed are considered equivalent even when
they di�er in case unless the case-sensitive
parameter is #t.
The top-level prompt string is speci�ed by

the infer-prompt parameter.
See sections ?? and ?? for usage of the

extension and verbose-load parameters.
The binding of a top-level Infer variable is a

box that is bound to a top-level Scheme vari-
able whose name is formed by concatinating
the string indicated by the Infer parameter
top-level-prefix with the name of the In-
fer variable. The Infer implementation uses
the pre�x \&," so to avoid corruption of the
Infer system this pre�x should not be used.
If a Scheme implementation that hosts Infer
may be corrupted by assigning to any top-level
variables, the Infer implementation should be
modi�ed so the default pre�x is a string that
will avoid con
icts.
If the transcript-file parameter is a

string, it names a �le to which all top-level
input and output is appended.
The parameters warn-forward-refs and

warn-forward-type-refs parameters control
the printing of warning messages when for-
ward references are detected to values and
types, respectively.

4.2.3 Loading �les

#(load exp)

The expression should evaluate to a string, say
str . If str has the extension indicated by the
Infer parameter infer-object-file-extension,
the e�ect is as if the code from which the �le
named by str was generated were loaded, ex-
cept that the environment in which the source
code is evaluated is Infer's initial top-level en-
vironment. Otherwise, the contents of the �le
named by str is treated as if it were read at
top-level, except for top-level output. Top-
level prompts and input are not printed. Type
messages are not printed unless the Infer pa-
rameter verbose-load is #t. The values of
top-level expressions that are not of type unit
are printed, as well as error messages. See sec-
tion ?? for the e�ects of a load directive in a
�le being compiled.

4.2.4 Compilation

#(infer-compile exp)

The expression should evaluate to a string, say
str . The Infer source �le indicated by str is
compiled. It str does not end with \.is,"
this extension is added to obtain the source
�le name. Let pre�x indicate the source �le
name less this extension. An Infer object �le
named \pre�x.io" is output, which is suit-
able for loading by Infer. (Top-level refer-
ences are to the top-level Infer environment
and the Infer type environments is extended
when the �le is loaded.) Intermediate Scheme
code is left in the �le \pre�x.ss." Compila-
tion begins in Infer's initial top-level environ-
ment. A �le named \pre�x.log" is created
that contains the top-level type messages and
directives. Forward references to variables and

35

Figure 7: Infer Parameters

parameter possible values default value

case-sensitive #t or #f #f

infer-object-file-extension any string ".io"

infer-prompt any string "|-"

infer-source-file-extension any string ".is"

log-file-extension any string ".log"

proc*-print #t or #f #t

scheme-object-file-extension any string ".so"

scheme-source-file-extension any string ".ss"

top-level-prefix any string ""

transcript-file any string or #f #f

verbose-load #t or #f #f

warn-forward-refs #t or #f #t

warn-forward-type-refs #t or #f #t

types must be resolved within the �le.

If a load directive is encountered while a
�le is being Infer-compiled and the indicated
�le contains Infer source code, this code is in-
cluded in the compiled �le in place of the load
directive. If the �le to be loaded, call it f , is
named with the .io extension, indicating that
it contains compiled code, the compilation en-
vironment is extended by loading f and object
code is produced that will load f when the
�le currently being compiled is loaded. At the
time the object �le being compiled is loaded,
the �le indicated by str must be the same ver-
sion of the �le f . (This is checked by assigning
each Infer object �le a random serial number.)

The strings .is, .io, .ss, and .log men-
tioned above are the default values of Infer
parameters, and thus may be changed. See
section ??.

The top-level environment in which this di-
rective is issued is not changed. Thus a com-
piled �le must be loaded before it can be used.

#(scheme-compile exp)

The expression should evaluate to a string, say
str . The Infer source �le indicated by str is
compiled. It string does not end with \.is,"
this extension is added to obtain the source
�le name. Let pre�x indicate the source �le
name less this extension. A Scheme object �le
named \pre�x.so" is output, which is suit-
able for loading by Scheme. (Top-level ref-
erences are to the top-level Scheme environ-
ment and the Infer type environment is not
extended when the �le is loaded.) Intermedi-
ate Scheme code is left in the �le \pre�x.ss."
Compilation begins in the initial Infer environ-
ment. A �le named \str.log" is created that
contains the top-level type messages and di-
rectives. Forward references to variables and
types must be resolved within the �le.
If a load directive is encountered while a �le

is being Scheme-compiled, the indicated �le
must be an Infer source �le and the e�ect is
to include the source code in place of the load

36

directive.

The strings .is, .so, .ss, and .log men-
tioned above are the default values of Infer
parameters, and thus may be changed. See
section ??.

The top-level environment in which this di-
rective is issued is not changed.

4.2.5 Undoing

#(undo var)

#(undo-type tyvar)

#(undo-syntax keyword)

Undo the bindings of top-level declarations
back to the �rst binding of var , tyvar , or
keyword , respectively. The e�ect is that of
leaving the lexical scope of the undone bind-
ings.

4.2.6 Forgetting

#(forget var)

#(forget-type tyvar)

#(forget-syntax keyword)

Remove the top-level binding of the indicated
var , tyvar , or keyword , respectively, from the
top-level environment. This allows the given
variable, type, or keyword to be rede�ned, but
does not e�ect any existing uses of the old vari-
able, type, or keyword.

4.2.7 Forward references

#(forwards)

Print at top-level all variables with unresolved
forward references along with their type con-
straints.

4.3 Top level

When an expression, exp, is entered at top
level, where exp : ty, if ty is not unit or an
unbound type variable, then \: ty" is printed
followed by the value of exp. Values that are
not of type datum are printed as an expression
that would construct the value.
The symbol ?? is displayed when printing an

opaque value (such as a procedure) or value of
unit type. If a type name whose de�nition is
not in the current type environment must be
printed, a colon followed by a unique identi�-
cation number are appended to the name.
If the proc*-print parameter is #t, the

proc* type abbreviation is used when printing
the type of a unary procedure whose range is
a unary procedure.
For each variable var bound at top level with

type ty, \var : ty" is printed, unless the bind-
ing is mutable, in which case \!" replaces \:"
For each type declaration, the name of the

type is printed followed by the names of any
new enumerated values and constructors..
Keyboard interrupts return control to the

top level.

4.4 Bugs

1. The intermediate Scheme source �le gen-
erated during compilation must not exist
prior to the compilation.

2. Internal declarations other than de�ni-
tions are not currently supported.

3. Circular data structures cannot be read
or printed.

4. extend-syntax [?] is used instead of
define-syntax.

5. If an expression is expanded by an
extend-syntax syntactic extension, the
expansion appears in error messages,

37

when the source might have been retained
instead.

6. Internal de�nitions are not supported.

7. Nested quasiquotations are not expanded
properly.

8. Run-time error messages sometimes be-
tray the Scheme-based nature of the im-
plementation.

9. Compilation in the initial Infer environ-
ment and generation of .log are not yet
implemented.

10. This document should be more complete
and indexed.

11. The interface to the Scheme debugger
should be documented.

12. There should be a way for the user to have
a personal preamble extension.

Acknowledgements

Hsianlin Dzeng has done most of the cur-
rent Infer implementation and has contributed
signi�cantly to its design. The suggestions
of many patient readers, especially Venkatesh
Choppella and Hsianlin Dzeng, have improved
this documentation. All the early users of In-
fer are especially thanked for their patience
and suggestions. The syntactic extension code
was derived from a Scheme implementation by
Kent Dybvig and Bob Hieb.

References

[1] Cleaveland, J.C.,An Introduction to Data

Types, Addison-Wesley, 1986.

[2] Clinger, W., and Rees, J., \Revised4

report on the algorithmic language

Scheme," Lisp Pointers 4 :3, pp. 1{55,
1991. Also available as a technical report
from Indiana University, MIT, and the
University of Oregon.

[3] Duba, B., Harper, R., and MacQueen,
D., \Typing �rst-class continuations in
ML," Proceedings of the Seventeenth An-
nual Symposium on Principles of Pro-
gramming Languages, 1991, 163-173; re-
vised version in preparation.

[4] Dybvig, R. K., The Scheme Programming

Language, Prentice-Hall, 1987.

[5] Dybvig, R. K., \Writing hygienic macros
in Scheme with syntax-case," Technical
Report 356, Indiana University Computer
Science Department, June 1992.

[6] Harper, R., Milner, R., and Tofte, M.,
The de�nition of Standard ML, MIT
Press, 1990.

[7] Hieb, R., Dybvig, R. K., and Bruggeman,
C., \Syntactic Abstraction in Scheme,"
Technical Report 355, Indiana Univer-
sity Computer Science Department, June
1992.

[8] IEEE Std 1178-1990, IEEE Standard for
the Scheme Programming Language, In-
stitute of Electrical and Electronics Engi-
neers, Inc., New York, N.Y., 1991.

[9] Paulson, L., ML for the Working Pro-

grammer, Cambridge University Press,
1991.

[10] R�emy, D., \Type inference for records
in a natural extension of ML," Technical
Report 1431, Inria-Rocquencourt, May
1991.

[11] Springer, G., and Friedman, D.P.,
Scheme and the Art of Programming,

MIT Press/McGraw Hill, 1989.

38

[12] Tofte. M., \Type inference for polymor-
phic references," Information and Com-

putation 89 :1, 1990. [[published refer-
ence?]]

[13] Wand, M., \Finding the source of type er-
rors," Conf. Rec. of the 13th ACM Symp.
on Principles of ProgrammingLanguages,
1986, 38-43.

[14] Wand, M., \Complete type inference for
simple objects," Proceedings of the Sec-
ond Symposium on Logic in Computer
Science, 1987.

[15] Wand, M., \Corrigendum: Complete
type inference for simple ojbects," Pro-
ceedings of the Third Symposium on
Logic in Computer Science, 1988.

39

