
An Implementation of an Applicative File System?

Technical Report 354??

Brian C. Heck and David S. Wise

Computer Science Department
Indiana University

Bloomington, IN 47405{4101 USA
Fax: +1 (812) 855-4829

Email: heckb@cs.indiana.edu

Abstract. A purely functional �le system has been built on top of pure
Scheme. It provides persistent structures and massive storage expected of
�le systems, without explicit side-e�ects like read and write. The �le system
becomes an additional, lazy argument to programs that would read from it,
and an additional result from functions that would alter it.
Functional programming on lazy structures replaces in-place side-e�ects with
a signi�cant storage management problem, handled by conjoining the heap to
the �le system. A hardware implementation of reference counting is extended
out to manage sectors, as well as the primary heap. Backing it is a garbage
collector of heap and of disk (i.e. UNIX's fsck), needed only at reboot.

CR categories and Subject Descriptors:
D.4.2 [Storage Management]: Storage hierarchies; D.1.1 [Applicative
(Functional) Programming]; E.2 [Data Storage Representations]: Linked
representations; H.0 [Information Systems].
General Term: Design.

Additional KeyWords and Phrases: Reference counting heap, mark/sweep
garbage collection, hardware, Scheme, functional programming.

1 Motivation

The acceptance of functional, or applicative, programming languages has been en-
couraging. However, as often as they are taught and used, their scope of application
has been restricted to formalism, to toy algorithms, and to simple systems. True,
\purity" has been constrained at higher levels, to yield success stories like Lisp's
(with side e�ects), ML's [11] (without laziness), and maybe Haskell's [5] (under UNIX
I/O). With such constraints, however, they are unlikely to ful�ll their acknowledged
promise for parallel processing.

?? To appear in Proc. Intl. Workshop on Memory Management , Springer Lecture Notes in
Computer Science (1992).

? Research reported herein was sponsored, in part, by the National Science Foundation
under Grant Number CCR 90-02797.

In a formal context applicative languages are often used as the foundation for
semantics, for program analysis, and for rigorous documentation or proof. Although
one can argue that important, non-\toy" algorithms (like divide-and-conquer tree
searching or Strassen's matrix multiplication) were �rst invented and are best taught
using functional style; nevertheless, even these are used in production from C or
Fortran source code.

Similarly, it has long been understood that Landin's streams [9], or lazy evalua-
tion, allows a simple system to be expressed as an applicative program [4, 6] whose
input is the stream stdin and whose output is the stream stdout. However, two
things essential to a full operating system are still missing from such models: some
kind of indeterminism, e.g. to interleave multiple, asynchronous inputs; and a per-
sistent �le system to cushion users against failures. A reliable �le system is essential
to allow recovery from a crash without rehearsing all of history, beginning when the
system was �rst installed. Designing and implementing the �le system is the goal of
this project.

We expect two things from an Applicative File System (AFS). The �rst, already
mentioned, is the ability to establish critical data structures in persistent media|
commonly on a magnetic disk. Then all of ephemeral, primary memory might be
lost, yet the system can rapidly be restarted from data on disk, recovering the system
to a persistent con�guration that recently preceded the catastrophe.

The second seems incidental: that �les are larger than structures in mainmemory.
Sometimes they are stored in secondary memory because of sheer bulk; often they
are static over long periods. These properties derive from physical properties of the
storage medium, and our own habits in using it.

However, AFS must behave within the constraints of pure functional program-
ming: that the only operation is applying a function to arguments. Side e�ects are
not available; thus, the programmer can neither \read" nor \write" a �le. He can,
however, traverse one stream-like parameter, and generate another one as a result.
Either may be \bound" to a name in a distinguished environment that is commonly
called a �le directory.

The remainder of this paper is in six parts. The next section brie
y contrasts
common serial structures with, in particular, linked trees, setting up the importance
of reference-counting hardware in Section 3. Similarly, Section 4 deals with streamed
input and output, setting up the �le system described in Sections 5 and 6, formally
in the former, operationally in the latter. Finally, Section 7 presents a simple running
example, and Section 8 contrasts this with past work and o�ers conclusions.

2 Side-e�ected Aggregates vs. Recopied Trees.

The only memory model we use is Lisp's (actually Scheme's) heap. Every data struc-
ture is built from binary nodes, a member of the recursive domain:

S = E + S � S;

where E is a
at domain of elementary items. Conventional vectors, and their con-
ventional in-place updates are not used. If static, they are easily mimicked with

2

linked lists or (better yet) trees; so they are unnecessary. Moreover, it is possible to
recopy a perfect tree of n nodes, incorporating one change, by creating only lgn new
nodes. Therefore, side-e�ect-free updates are simulated cheaply and we can prohibit
side-e�ects, consistent with functional programming and lazy evaluation.

Since the only non-trivial structure is a list, the only �le structure is a persis-
tent list. Because �le updates, similarly, cannot be done by means of side-e�ects,
it is possible to sustain two, perhaps several, successive incarnations of a single �le
simultaneously|merely as di�erent lists, likely with shared substructure.

From the perspective of the database manager we have simpli�ed the �le system;
we need only to keep the most current of several surviving incarnations, even while
older ones are still bound and traversed elsewhere in the system. Later we shall
describe how lists in memory migrate o� to disk as �les, and vice versa.

The inital perspective is that the �le consistency problem has simply been traded
for for a massive storage management problem. The manager or garbage collector
needs to handle both binary nodes in primary (ephemeral) memory and sector-
objects in secondary (persistent) memory. The remainder of this paper describes
how that system was built and how it runs.

3 Reference Counting vs. Garbage Collection

We have built a system that has a hybrid storage manager; it has reference counting
machinery both in main memory as well as on disk, and it is backed up with garbage
collectors in both places.

A foundation to the system is the hardware implementation of Reference Count-
ing Memory (RCM) [17, 18]. RCM is reported elsewhere, and the interesting story
here is how AFS was laid over it. However, a brief overview of the hardware is
necessary �rst.

3.1 Reference Counting in Hardware

RCM has been implemented as a device on a NeXT computer. Although its design
would support full memory speed, the �rst prototype appears as eight megabytes of
microsecond memory. It is con�gured as a half-meganode heap and an equal amount
of serial memory that \roots" RCM. A second version is being designed for parallel
processing; the description below presumes that there are several RCMs.

Every write of a pointer in RCM is a read-modify-write. That is, a new pointer
is overwritten at a memory location only with removal of a former reference in
that location during the same memory cycle. The algorithm to write a pointer is
dispatched from a processor to memory where the following C code is executed
uninterruptibly (as a remote procedure local to destination):

struct node
f

integral RefCt;
node *left, *right;

g;

3

void store(pointer, destination)
node *pointer, **destination;
f

dispatch incrementCount(pointer);
dispatch decrementCount(*destination);
*destination = pointer;

g

All these operations occur essentially in parallel, subject to two constraints: the incre-
ment is dispatched before the decrement, and the former content at the destination
is used just before it is overwritten. Both the fetch from destination and the store
there occur during the same memory cycle (read-modify-write). The sequentiality
of these three steps in uniprocessor C satis�es the constraints of a uniprocessor, al-
though we intend them to be nearly simultaneous in hardware. Again, the increment
and decrement are dispatched on-line, but they complete o�-line.

Reference-counting transactions can be interleaved with similar ones dispatched
from other memories to the same destination, as long as increments/decrements
arrive at the targeted reference count as some merging of the orders in which they
were dispatched. A unique, non-caching path between any source-destination pair,
as on a bus or a banyan net meets this constraint.

At the destination address, both increments

void incrementCount(p)
node *p;
f

if Sticky(p{>RefCt) ;else p{>RefCt++ ;
g

and decrements occur as atomic transactions.

void decrementCount(p)
node *p;
f

if (Sticky(p{>RefCt) jj { {(p{>RefCt)) ;else FREE(p) ;
g

The use of FREE above indicates return to the local available space list. Each of

these three operations requires only �nite time; a node can return to available space
still containing live, yet-counted pointers [15]. Thus, one memory location can, on
one hand, handle a store and, on the other, act on a couple increments or decrements
during one memory cycle.

RCM is controlled by reading or writing to special memory registers. Notably,
new nodes of two types are allocated by reading from distinguished addresses. Be-
cause of this and because increments, particularly, must not be deferred, RCM is
written-through the cache and read without caching.

4

In addition, RCM has on-board support for the rotations required in Deutsch-
Schorr-Waite marking and has an on-line sweeper so that memory cycles for garbage
collection can beat stop-and-copy. Early benchmarks show it running MachScheme

(hobbled to use a recursive stack) faster than equivalent code using a RAM heap
[18].

MachScheme is MacScheme [13] ported to the Mach operating system on the
NeXT computer, and subsequently revised to use RCM for its heap of binary nodes.
We acknowledge Lightship for granting source-code access to MacScheme.

3.2 AFS over MachScheme over RCM

AFS is then implemented overMachScheme which uses MacScheme's tagged pointers,
extended for RCM hardware. RCM provides two types of nodes in its randomly
allocated heap space. Nodes having addresses of the form 8n are terminal nodes
(
oating-point numbers); nonterminal binary nodes have addresses of the form 8n+4.

MachScheme's tagging system and RCM design allows us 18-bit addresses into
our �le system. With 1024-byte sectors this yields a quarter-gigabyte �le system.
However, the e�ect of internal fragmentation reduces this. Moreover, the present
tests were run on a prototype �le-system of 4000 sectors, so to demonstrate a space-
constrained con�guration.

AFS's directory structure is modeled after UNIX [12, 14]. All �les have an asso-
ciated data node (dnode) similar to a UNIX inode except that there are no indirect
pointers. Dnodes contain a single pointer to the unique �rst sector of the �le.

Initially, we wanted to have �les collected by reference counting on disk, like
those in UNIX. When we examined our design for sharing data we discovered that
we really needed to maintain reference counts on each sector. So we began to use
typed pointers for references from heap space to sectors, but this required reference
counting to interfere, dispatching additional disk transactions on every write or over-
write of a sector reference; they would be prohibitively expensive. What we needed
was a second RCM dedicated to keeping reference counts for sectors with count
information dispatched from the RCM MachScheme was using. We, therefore, stole
enough nodes from the existing RCM to dedicate one per sector for the prototype
AFS.

As a result, all the reference counts both for nodes in memory, and for sectors on
disk are maintained by the same circuits in RCM. The di�erence is that a node whose
count drops to zero implicitly returns to available space. However, sector reference
counts are \nailed down" so that they cannot return to zero (and be handled like an
RCM binary node, instead of as a whole sector); thus, their counts must periodically
be scanned to �nd one-counts|to be returned to the sector pool. (This scan will be
eliminated under the next version of RCM.)

3.3 Garbage Collection on Disk

It is desirable that any garbage collection be deferred as much as possible because
such a lengthy traversal is slow, particularly under multiprocessing and on disk.
Garbage collection on disk parallels UNIX's fsck; it is slow but it can be necessary|
especially for recovery after a catastrophe.

5

Moreover, MachScheme has its own garbage collector, using RCM's mark/sweep
hardware. In order that these two collectors not interfere with each other, the RCM-
resident counts on disk sectors are stored in two parts corresponding to the RCM-
sourced and to the on-disk references. Thus, MachScheme's internal collector recom-
putes the former, but does not traverse the disk. fsck roots from the current disk
directory, and traverses only the persistent memory; it requires a \quiet system,"
just like UNIX.

A sector on disk is composed of two parts: most of it is a compressed repre-
sentation of the Scheme expression. A preorder-sequential representation is used,
with tags indicating types immediately following. Circularities are detected and rep-
resented appropriately. Ten-bit pointers refer to positions in structure within that
sector (uncounted), or to expanded 24-bit (counted) o�-sector references. They form
the second part of the sector|compressed at the end.

Thus, fsck need not traverse the �rst part of any sector, but must traverse and
count the references at the end. And when a sector is condemned because its reference
count drops to zero, all those forwarding references must be dereferenced.

3.4 Directories and Write-only-memory

The \�le system" we discuss here is not built free-standing. In fact, it is nothing
more than a permanent UNIX �le of four kilosectors, which models a small, private
random-access disk. UNIX utilities see it as a jumble of bits, and its UNIX-directory
entry is irrelevant to the description below.

Within it is at least one|-possibly several successive|directories that we have
generated. The most recent one of those represents the \current" �le system. As
discussed in Section 2, \creating," \deleting," or \changing" the binding of a �le's
name is e�ected by recopying the directory (itself a �le) to include that alteration.
Thenceforth, the file system is bound to the newer directory.

After a �le binding is created, the bound structure soon migrates onto disk. Be-
cause any �le binding must now refer to a structure entirely disk-resident, huge �les
no longer need to consume heap in main memory.Manipulation of these �les remains
the same as if they were resident in that heap|except for the delays associated with
�le access, needed to copy sectors from it back into the heap.

The remaining problem is how to assure recovery of the �le system after a sys-
tem crash. The entire �le system is still rooted in some ephemeral register of the
computer, even though its entire content is resident on disk. However, the persistent
information there is useless unless its root can be found.

One word of permanent memory (or disk) is set aside as write-only-memory, to
receive a copy of the root of the �le system after every update. (This contrasts with
Section 2 protocols.) Operationally, this seems to be a side e�ect, but this binding
is completely invisible to a running system, which uses its own ephemeral register
as its root of the �le system. In e�ect, the memory-resident root of the �le system
is copied into permanent memory, but nothing in this lifetime can use that copy;
therefore, it may as well \not exist."

Whenever a conventional operating system is rebooted, it uses this distinguished
address into permanent storage in order to root and to restore the �le system as it

6

was when last stable. The system is restored to a con�guration from the not-too-
distant-past, and comparatively little is lost, just as in UNIX.

Of course, the former streams, stdin and stdout, are lost during a catastrophe,
and the reboot establishes a new stdout' and provides a new stdin', presumably
initiated by a user aware that the crash occurred and likely inquisitive of what �les
survive in the aftermath.

4 Stdin and Stdout

Stdin and stdout are classically treated as special streams/�les with read-once and
write-only privileges respectively. As discussed in Section 1, many researchers have
suggested using streams for I/O. Merging these two approaches under AFS provides
an elegant solution. (These ideas are not implemented in the current AFS due to
the eager nature of Scheme.)

As in any �le in the system, stdin should become manifest in main memory
when a read operation is attempted upon it. The data structure representing stdin

should be a lazy list. The tail of the list would be a suspension which, when thawed,
creates a list with the head being a character read from the real input device (or
a port-not-ready token) and the tail being a copy of the original tail suspension.
This new pair is placed in the tail position of the manifest portion of the lazy list and
control returns. To get a character from the stdin �le one simply takes the head of
the list. The user is responsible for keeping track of where she is in the stdin data
structure. Each computational thread has an incarnation of the �le system, so each
may have a di�erent opinion of what the next character to be read is. There is no
restriction that keeps a thread from rebinding its own stdin to a di�erent device or
�le.

No side-e�ects are necessary to maintain stdin because only the main thread
can write to the master �le system. Until the main thread updates its version of
stdin, the entire stream of characters up to the last actually read from the device
can remain memory resident (or swapped to disk). Updating the main �le system to
re
ect the current consumption of stdin by the main thread would be achieved by
the user installing what she perceives to be the tail of the current stdin as stdin'
in a new �le system. An ideal time to perform this update would be just before
spawning a new thread. Due to reference counting, the list of characters would be
automatically collected as soon as all references to the older stdin no longer exist.

Stdout may be handled by the classic write-only-file viewpoint with the �le
system piping the stdout �le to a logical device (perhaps unique for each �le system
which is active). The operating system may map each of the logical devices to an
actual output device performing any merge operations necessary.

5 Functionality

Notation from formal semantics is used to specify the types of AFS primitives.

7

Finite Sets
� 2P Persistent memory addresses
� 2M Main memory addresses
� 2 I Identi�ers as �le names

Domains
S = E + (S � S) S-expressions

� 2A = P +M Addresses
� 2D = I ! P+

?
Directories

� 2R = A!N Reference Count
� 2C = P !M? Cache

An interface to the �le system has been provided through the following com-
mands. All commands take an implicit �le system and return a new system implic-
itly.

mkf : D ! I ! S ! D

Makes S persistent and associates I with that persistent
structure in the new �le system.

rmf : D ! I ! D

Returns a new �le system with no directory entry for I
getf : D ! I ! S �D

Returns the data structure associated with I in D plus a
new D.

mkdir : D ! I ! D

Returns a new �le system with an entry for the directory I.
lnh : D ! I ! I ! D

Returns a new �le system with an association between the
existing �le (the second identi�er) with the �rst
identi�er via a hard link.

lns : D ! I ! I ! D

Returns a new �le system with an association between the
existing �le (the second identi�er) with the �rst
identi�er via a soft link.

fsck : D ! D

Returns a new �le system after a disk garbage collection.
Intended to be run only by the main thread.

createfs : I !?
Used to build a new, empty �le system in the UNIX �le I.
The user must install the system to use it.

load-fs : I ! D

Installs the �le system contained in the UNIX �le I into
the current Scheme session.

close-fs : D !?
Stores the current �le system into the UNIX �le it
originated from and removes all �le systems from the
Scheme session.

8

6 System Operations

AFS users have the ability to create hard and soft links in much the same manner as
in UNIX. (Cf. UNIX commands ln and ln -s respectively.) As in UNIX, hard links
are counted references and soft links are uncounted. One interesting change, due to
the elimination of side-e�ects, is a modi�cation in the behavior of hard links. (Soft
links behave exactly the same as their UNIX counterparts.) Following a hard link in
UNIX returns the most current version of the �le; this behavior stems from UNIX

overwriting the �le to install the new contents. However, AFS does not install the
new data structure into the existing �le system. Figure 1 contains before and after
diagrams resulting from writing new \contents" to an existing hard link.

Initially, in the directory �1, hard links �1 and �2 correlate to the disk resident
structure beginning with sector �1. Issuing the command \(mkf �1 (cons 6 15))"
creates a new �le system in which �2, �2 still points to its old contents, but �1 does
not. In �1 (the root of the old �le system), both links still point to the old data
structure, �1.

6.1 File Creation

A request for migration of a data structure � to disk initiates a preorder-sequential
compression [7] of � into a set of sectors P+. At some time (unde�ned but \soon")
after a request to make a data structure a �le, the data structure will become persis-
tent. Currently, AFS has eager behavior inherited from Scheme, but implicit laziness
could be inserted. Lazy �le write operations are consistent with most current op-
erating systems' views of �les and bu�ers; until all bu�ers are
ushed and the �le
committed, no guarantees can be made about the state of the �le. Laziness should
be transparent to the user except after a catastrophic system failure after which
the �le system is guaranteed to come back up in some stable, pre-existing state; we
just cannot say exactly what state. (The user will learn to program con�rmations
to stdout that depend on successful commits to migration.)

Graphs migrated to disk may produce arbitrary graphs of sectors. In the trivial
case of a
at list of nonterminal nodes, all having unary reference counts, the �le
becomes a
at list of sectors. One consideration for migration of graphs to disk is
that multiply referenced nodes provide opportunities for data sharing and introduce
a possibility of circularity. We assert that circularity in manifest graphs can be
detected and sector reference counts corrected to allow reference counting to collect
the disk structures [3].

As for suspensions, we would install them into the �le system verbatim, that is,
unexpanded. The suspensions would remain persistent on disk, but heap resident
versions could be thawed and allowed to continue their work. Because Scheme is
eager, however, we don't provide for suspensions yet.

Figure 2 shows the data structure rooted at �1 before and after it becomes per-
sistent. The content of �1 is copied into a new heap node �2. This is immediately
followed by adding an entry to the resident sector cache associating the address of
the �le's �rst sector, �1 (a preallocated sector) with �2. (The resident sector cache
which maps resident sector addresses to RCM addresses (� : P ! M) reduces the
likelihood of having multiple copies of sectors heap resident, but more importantly,

9

%%ee

%%ee %%ee

1st SectorFilename

Directory{�1

�1

�2 �1

�1

v v

v v

?
�
���

?
C
C
C
C
C
C
C
CCW

�
�

�
�

�
�

�
�

Before |
With two hard links
to the same �le.

Sector �1

Sector �0

Disk
�
�

�
�

�
�

�
�

Disk

�1

�2

�2

�1

1st SectorFilename

Directory{�2

v v

?
C
C
C
C
C
C
C
CW

Sector �1

%%ee

v v

?
�
���

Sector �0

%%ee %%ee

6 15

Sector �2

After |
With one hard link
to each of two �les.

Fig. 1. Result of requesting (mkf �1 (cons 6 15)).

it prevents costly disk accesses if a needed sector is found to have a cache entry.)
Next, the contents of �1's car and cdr �elds are overwritten by forwarding pointers
to the �le's �rst sector, �1.

The modi�cations to the original data structure to insert forwarding pointers are
side-e�ects only at the level of implementation, not with respect to language seman-
tics. Further, we assert there is no net consumption of heap space by the migration
process. The recovery of the nodes containing forwarding pointers is completed dur-
ing the next garbage-collection cycle. Thus the space needed for the new node �2 is
o�set by recovery (in the future) of the pre-existing node �1.

During compression, any multiply referenced, nonterminal nodes (�k) encoun-
tered are treated as separate trees and are rooted at the head of a new sector �k
(and have their contents replaced by forwarding pointers as �1's was in the above

10

�

�
	

�

�
	

Disk

Resident Sector Cache

Sect.Addr. RCM Addr.
| |

| |

Initial con�guration

?
xx

�3

�

@
@
@R

xx
�4

�

-

�
�
�
��

�1

xx
�

�
�

�
�

�	

�
�
�
�
�
���

��SS
�6

xx
�7

�
��

B
BBN

xx
�8

?
A
AAU

�10

��SS
�11

��SS ��SS
�12

��SS
�13

u u
�
���

S
SSw

u u
�
���

C
CCW

u u
�
���

C
CCW

JJ

JJ

JJ

JJ

�

�
	

�

�
	

Disk

Sector �1

?
xx

�3

�
�

�
��	

@
@
@
@@R

xx

�4

-
�
�
�
��

�
�
�
�
��

�1

�1�1

xx
�2

�

S
S
S
Sw

��SS
�6

xx
�7

�
�
�
���

�
�
�
��

xx
�8

�
�
�
���

C
C
C
CCW

��SS
�10

��SS
�11

��SS
�12

��SS
�13

Resident Sector Cache

Sect.Addr. RCM Addr.

�1 �2

||

Fig. 2. Example of Data Migration: making �1 persistent.

11

example). A pointer to �k is written into the current, compression bu�er and the �k
is marked as disk resident (via a forwarding pointer as discussed below). Next, �k
is stacked for later compression onto disk (rooted at �k). The placement of multiply
referenced, nonterminal nodes at sector heads allows the sharing of that single data
structure by all its referents.

While traversing the data structure, data from all uniquely referenced nodes and
multiply referenced terminal nodes is copied into the current compression bu�er. (If
the bu�er is full, a pointer to an empty sector is added and the bu�er is written
to the sector preallocated for it. Processing continues with the new, empty bu�er.)
Multiply referenced, terminal nodes are not assigned to unique sectors (to reduce
internal fragmentation).

Sector pointers encountered in the heap during compression are added to the
current sector as normal data along with one additional entry. At the end of every
sector, a set of o�-sector references, as mentioned in Section 3.3, is maintained. This
list enables the disk's garbage collector to recalculate sector reference counts without
scanning the sector.

6.2 File and Sector Migration from Disk to Heap

A getf command is treated as a request to load the root sector of the �le into the
heap. (The same mechanism is used to render sector addresses encountered in the
heap into heap addresses.) The sector address is clashed against the resident sector
cache. In the case of a hit (�� 6= ?), the address of the heap resident copy of the
data structure is returned. A cache miss (�� = ?) forces a load of the desired sector
into the heap and the addition of an entry in the cache to re
ect that action. A
traversal of the entire graph stored in the �le will cause the �le to be loaded into the
heap one sector at a time. This is not to say that the entire �le will be heap resident
at any given time; if the �le is su�ciently large that may not be possible).

7 Examples

The �rst example is a �le editor taken from Friedman's and Wise's [4] paper. The
example editor consumes a list of commands (stored in the �le \commands"), applies
the commands to the contents of another �le \rhyme", and returns a list. We then
install the list as a new version of the �le \rhyme" in a new �le system. The old
version of \rhyme" is never deleted; it is automatically reclaimed when no longer in
use.
The editor has six basic commands:

type {Prints characters up to the next newline.
repos {Repositions the cursor at the beginning of the text.
dele {Deletes the character to the right of the cursor.
ins {Inserts the given string to the left of the cursor.
�nd {Finds the �rst occurrence of the given string to the right

of the cursor. Success is reported if the string is found.
Otherwise the cursor is advanced to the end of the text

12

and failure is reported.
subst {Locates the target string just as the �nd command

and replaces it with the replacement string. Reports
success or failure in the same manner as �nd.

MacScheme* Top Level Version 1.9 (Development)

>>> (createfs "fsys")

#t

>>> (load-fs "fsys")

#t

>>> (mkf "rhyme" (rcmlist #\t #\h #\e #\space #\q #\u #\i #\c #\k

#\space #\b #\r #\o #\w #\n #\newline #\f #\o #\x))

#t

>>> (mkf "commands"

(rcmlist

(rcmlist find (rcmlist #\q #\u #\i #\c #\k #\space))

(rcmlist type)

(rcmlist dele)

(rcmlist dele)

(rcmlist ins (rcmlist #\d))

(rcmlist subst (rcmlist #\newline) nil)

(rcmlist repos)

(rcmlist subst (rcmlist #\q #\u) (rcmlist #\s))

))

#t

>>> (mkf "rhyme" (editor (getf "commands") (getf "rhyme")))

#\:"find"(#\q #\u #\i #\c #\k #\space)

"Found: "(#\q #\u #\i #\c #\k #\space)

#\:"type"#\b#\r#\o#\w#\n

#\:"dele"

#\:"dele"

#\:"ins"(#\d)

#\:"subst"(#\newline)()

"Found"(#\newline)

13

#\:"repos"

#\:"subst"(#\q #\u)(#\s)

"Found"(#\q #\u)

#\:#t

>>> (getf "rhyme")

(#\t #\h #\e #\space #\s #\i #\c #\k #\space #\d #\o #\w #\n #\f

#\o #\x)

>>>

7.1 Example of Catastrophic Failure

When the system fails, AFS attempts to return to a previous, stable state. It will
attempt to bootstrap the last version installed in the write-only memory discussed
in Section 3.4. In the example below a system is created with thirty �les (each with
a unique copy of the same S-expression for convenience). While executing we cause
the system to fail (via an interrupting control{C). To see how the system fared
under a failure we list the �les to determine which �le was last created. According
to the directory, \seed24" is the last �le created intact. File \seed23" was probably
in the process of being written to disk, but since the new �le system (with \seed23"
installed) was not written to the write-only-memory before the failure, the �le is
lost. This behavior is consistent with most current �le systems.

MacScheme* Top Level Version 1.9 (Development)

>>> (createfs "fsys")

#t

>>> (load-fs "fsys")

#t

>>> (mk-manyfiles "seed" (rcmlist 1 (rcmlist 4 5.4)) 30)

^C

Program received signal 2, Interrupt

(gdb) q

prototype: ffsrnrcmsch

MacScheme* Top Level Version 1.9 (Development)

>>> (load-fs "fsys")

#t

>>> (ls)

("f" "seed24" "Fri Mar 27 21:10:07 1992

" "f" "seed25" "Fri Mar 27 21:10:07 1992

14

" "f" "seed26" "Fri Mar 27 21:10:07 1992

" "f" "seed27" "Fri Mar 27 21:10:07 1992

" "f" "seed28" "Fri Mar 27 21:10:07 1992

" "f" "seed29" "Fri Mar 27 21:10:06 1992

" "d" ".." "Fri Mar 27 21:09:49 1992

" "d" "." "Fri Mar 27 21:09:49 1992

")

>>> (getf "seed24")

(1 (4 5.4))

>>>

8 Conclusions

Present treatment of the migration of data between layers of memory under func-
tional programming falls into two categories. Sometimes the problem is set aside,
and the language enjoys an absence of restriction on transactions that are \outside"
the program, as in ML, Lisp 1.5, or Scheme. Such languages do not extend very well
to parallel processing.

Other languages attempt to isolate the problem: Backus's ASM in FP [1], William's
and Wimmer's histories in FL [16], and Lucassen's and Gi�ord's e�ect streams in
FX [10] are all serious e�orts to encapsulate the \impure" �le activity in order to
isolate it from the \pure" functional portion of the language. Haskell [5] follows this
tack. Alternatively, the time or scope for creation of persistent structures has been
restricted [2].

In contrast, this research neither partitions nor encapsulates data. This treat-
ment, in fact, would be transparent to the user if she were not required to partici-
pate, contributing some important declarations about her data. (ObjectStore [8], a
general database system, similarly depends on only a few type assertions.) This is
experimental work; one test of success is just to build a hierarchical memory in a
purely functional environment without any \barriers." Another is to make it work
well.

We have succeeded in the �rst test. The design and construction e�ort was not
straightforward, but the di�culties we encountered all had an elegant solution, ap-
propriately within the scope of the tools we had chosen.

Scheme is hardly an ideal language for this experiment; its lack of lazy evaluation
corrupts the transparent implementation of UNIX pipes for stdin and stdout. How-
ever, a remarkably convincing test for such a generalized �le system is to bring it to
life under a general-purpose programming environment. We have built a production
environment.

15

References

1. John Backus. Can programming be liberated from the von Neumann style? A func-

tional style and its algebra of programs. Comm. ACM, 21,8 (August 1978), 613{641.

2. David J. McNally and Antony J. T. Davie. Two models for integrating persistence and

lazy functional languages. SIGPLAN Notices, 26,5 (May 1991), 43{52.

3. Daniel P. Friedman and David S. Wise. Garbage collecting a heap which includes a

scatter table. Information Processing Letters 5,6 (Dec 1976), 161{164.

4. Daniel P. Friedman and David S. Wise. Aspects of applicative programming for �le

systems. In Proc. of ACM Conf. on Language Design for Reliable Software, SIGPLAN

Notices 12,3 (Mar 1977), 41{55.

5. Paul Hudak, Simon Peyton Jones, and Philip Wadler (eds.). Report on the Program-

ming Language Haskell. SIGPLAN Notices 27,5 (May 1992), R1{R164.

6. Peter Henderson, Geraint A. Jones, and Simon B. Jones. The LispKit Manual. Tech.

Monograph PRG-32 (2 vols.), Programming Research Grp., Oxford Univ. (1983).

7. Donald E. Knuth. The Art of Computer Programming 1 (2nd edition), Reading, MA,

Addison Wesley (1973).

8. Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The ObjectStore

database system, Comm. ACM 34,10 (Oct 1991), 50{63.

9. P. J. Landin. A correspondence between ALGOL 60 and Church's lambda notation:

Part I. Comm. ACM 8,2 (Feb 1965), 89{101.

10. John M. Lucassen and David K. Gi�ord. Polymorphic e�ect systems. Conf. Rec. 15th

ACM Symp. on Principles of Programming Languages (Jan 1988), 47{57.

11. R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. Cambridge, MA,

MIT Press (1990).

12. D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Bell System Tech.

J. 57,6 (Jul{Aug 1978), 1905{1930.

13. Lightship Software. MacScheme c
Version 1.9 development. Beaverton, OR (1989).

14. K. Thompson. UNIX Implementation. Bell System Tech. J. 57,6 (Jul{Aug 1978),

1931{1946.

15. J. Weizenbaum. Symmetric list processor. Comm. ACM 6,9 (Dec 1963), 524{544.

16. John H. Williams and Edward Wimmers. Sacri�cing simplicity for convenience: where

do you draw the line? Conf. Rec. 15th ACM Symp. on Principles of Programming

Languages (Jan 1988), 169{179.

16

17. David S. Wise. Design for a multiprocessing heap with on-board reference counting. In

P. Jouannaud (ed.), Functional Programming Languages and Computer Architecture,

Lecture Notes in Computer Science 201, Berlin, Springer (Sept 1985), 289{304.

18. David S. Wise, Caleb Hess, Willie Hunt, and Eric Ost. Uniprocessor performance

of a reference-counting hardware heap. Tech. Rept., Computer Science Department,

Indiana Univ. (in preparation).

This article was processed using the LaTEX macro package with LLNCS style

17

