
RULE-BASED PROGRAM RESTRUCTURING FOR HIGH

PERFORMANCE PARALLEL PROCESSOR SYSTEMS

by

Lawrence J. Tenny

Submitted to the faculty of the Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

April 3, 1992

Accepted by the Graduate Faculty, Indiana University, in partial ful-

�llment of the requirements of the degree of Doctor of Philosophy.

Dr. Dennis B. Gannon
(Principal Adviser)

Dr. Christopher Haynes

Dr. David B. Leake

April 3, 1992 Dr. William Wheeler

ii

c
 Copyright 1992

Lawrence J. Tenny

ALL RIGHTS RESERVED

iii

To the computer,

without whom none of this would have been possible: : :or necessary.

iv

Abstract

Writing good programs for high performance parallel computers is di�cult. The

programmer must have a deep understanding of the underlying machine architecture.

Issues such as memory hierarchy, communication topology, processor architecture,

task scheduling, and processor allocation, can have a dramatic e�ect on a program's

performance. What makes matters di�cult is that, if peak performance is to be

achieved, radical architectural di�erences require the program to be customized for

each machine.

Source to source program restructuring o�ers the opportunity for a single incar-

nation of a program to be transformed at the source level so that it better matches

capabilities of any given parallel computer. For serial machines, well-known compiler

optimization techniques are su�cient. For parallel machines, however, the issue is not

so clear. Fundamental architectural di�erences considerably complicate the process

of improving the program-machine match. No longer does a relatively simple analysis

of a program yield the most improvement. A deep understanding of the program and

the architecture along with a powerful and extensible inference model is required.

In this thesis we lay the foundation for rule-based source to source program re-

structuring as a program optimization technique for high performance parallel pro-

cessor systems. We develop rule-based methods for the basic operations required of

a restructuring compiler. We develop rule-based methods for deriving program data

dependencies, �nding data dependence recurrences, partitioning dependence graphs

into �-blocks, specifying machine properties, and selecting and planning program

restructuring transformations.

v

Acknowledgements

This thesis represents the culmination of several years work and over 34,000 lines of

code. A project of this magnitude is never solely the work one individual.

First, I would like to thank the members of my committee, Bill Wheeler, Chris

Haynes, David Leake, and Dennis Gannon, for guiding this research and o�ering

many valuable suggestions. I especially thank the chairman of my committee, Dennis

Gannon. His research in parallel computing and program restructuring, inspired this

e�ort. His perpetual faith in my abilities and his willingness help me at every turn

made this work in�nitely easier.

I would like to thank Charles Da�nger. Together, through many long but en-

joyable hours of work, we developed several rule-based languages. One of these ulti-

mately lead to language used in this research. He taught me OPS5, a language he

learned not from a manual, but by reading the uncommented source code of a crude

Common Lisp port. Tragically, a caving accident took his life just over a year before

this work was completed. His friendship, tenacious dedication to programming, and

unquenchable computing spirit is sorely missed.

This work would not have been possible if not for �nancial support I received from

many generous sources. Fellowships from The Glenn A. Black Laboratory of Archae-

ology and the Proctor & Gamble Corporation and the support of the Department of

Computer Science helped defray the cost of tuition. A dizzying array of jobs, some

odd, some not so odd, with the University Computer Services allowed me to focus on

research, while making enough to live.

vi

Contents

Abstract v

Acknowledgements vi

1 Preliminaries 1

1.1 Introduction : 1

1.2 The Problem : 2

1.2.1 Parallel Organizations : 4

1.2.2 Levels of Parallelism : 6

1.2.3 Vector Execution : 7

1.2.4 Loop Level Parallel Execution : : : : : : : : : : : : : : : : : : 8

1.2.5 From Algorithms to Languages to Hardware : : : : : : : : : : 9

1.2.6 Some Examples : 11

1.3 The Rule-Based Approach : 16

1.4 Related Work : 16

1.5 Thesis Overview : 18

1.5.1 Rex : 19

1.5.2 Overview : 20

2 Data Dependence Analysis 22

2.1 Introduction : 22

2.1.1 Overview : 23

2.1.2 Language Model : 24

2.2 Scalar Analysis : 24

vii

2.2.1 Reaching De�nitions : 32

2.3 Subscript Analysis : 34

2.3.1 De�nitions : 35

2.3.2 The GCD Test : 37

2.4 The Data-Dependence Graph : 42

2.4.1 Preliminaries : 43

2.4.2 Variables, Data Flow, and Statements : : : : : : : : : : : : : : 45

2.4.3 Deriving the DDG : 48

2.4.4 An Example : 56

2.5 Summary : 58

3 Recurrences 59

3.1 Introduction : 59

3.2 Transitive Closure of � : 61

3.3 Finding Recurrences : 62

3.3.1 Representing Recurrences : 63

3.3.2 Deriving Recurrences : 65

3.4 �-Blocks: Building an Acyclic DDG : : : : : : : : : : : : : : : : : : : 66

3.5 �-Block Order : 69

3.6 Summary : 70

4 Transformation Operators 72

4.1 Introduction : 72

4.2 Properties : 73

4.2.1 Machine Properties : 74

4.2.2 Program Properties : 75

4.3 Vectorization : 79

4.3.1 Finding Vectorizable Statements : : : : : : : : : : : : : : : : : 79

viii

4.3.2 Vectorizing Operators : 80

4.3.3 Changing Recurrences : 83

4.4 Parallelizing Loops : 92

4.4.1 Localization : 93

4.5 Summary : 94

5 Planning 95

5.1 Introduction : 95

5.2 Planning Model : 96

5.2.1 Condition Hierarchy : 97

5.2.2 Property-Directed Low-Level Planning : : : : : : : : : : : : : 99

5.2.3 Operator-Directed High-Level Plan Re�nement : : : : : : : : 99

5.2.4 M Consistency : 103

5.2.5 Backtracking : 108

5.3 Examples : 110

5.4 Summary : 112

6 Organization of a Rule-Based Restructurer 113

6.1 Introduction : 113

6.2 Control : 114

6.2.1 Lexicographic Con
ict Resolution : : : : : : : : : : : : : : : : 114

6.2.2 Selecting Levels With Context Elements : : : : : : : : : : : : 116

6.2.3 Rule Systems as First-Class Objects : : : : : : : : : : : : : : 117

6.3 Support Routines : 120

6.4 Summary : 120

7 Thesis Summary 121

7.1 Overview of Results : 121

ix

7.2 Future Work : 123

A Rex-UPSL Syntax 125

A.1 BNF Syntax : 125

B Element Attributes 129

B.1 Element Attribute Declarations : 129

B.2 Element Attributes : 129

x

List of Tables

1 Classi�cation of computer architectures. : : : : : : : : : : : : : : : : 5

2 Machine property classes in M. : 74

3 Condition Hierarchy : 98

4 Specialists organization of a rule-based restructurer. : : : : : : : : : : 118

xi

List of Figures

1 Extremes of processor/memory organization. : : : : : : : : : : : : : : 6

2 Abstract syntax for the language model. : : : : : : : : : : : : : : : : 24

3 Iterative algorithm to compute reaching de�nitions. : : : : : : : : : : 33

4 A data dependence graph. : 42

5 Derivation of the data dependence graph. : : : : : : : : : : : : : : : : 56

6 Dependencies before and after valid loop interchange. : : : : : : : : : 84

7 Dependencies before and after invalid loop interchange. : : : : : : : : 87

xii

Chapter 1

Preliminaries

1.1 Introduction

Writing good programs for supercomputers is di�cult. The programmer must have a

deep understanding of both the program and the machine architecture. Issues such as

memory hierarchy, communication topology, processor architecture, task scheduling,

and processor allocation can have a dramatic e�ect on a program's performance.

To make matters worse, radical architectural di�erences require the programmer to

customize the program for each machine in order to achieve peak performance.

Most vendors supply restructuring compilers for their machines. Restructuring

compilers attempt to improve the match between the program and the unique machine

architecture. These compilers can improve performance, but with limited knowledge,

poorly organized heuristics, and no centralized reasoning process, they generally can

not produce code that takes full advantage of the supercomputer's potential.

In this thesis we lay the foundation for rule-based source to source program restruc-

turing as a program optimization technique for supercomputers. The transformations

we use are similar to those employed by commercial restructuring compilers. What is

di�erent however, is the organization of heuristics and the use of a rule-based inference

model. Using these tools, we develop methods for selecting and planning sequences

of transformation operators that result in a better match between the program and

the hardware.

1

Chapter 1. Preliminaries 2

We target our work on restructuring Fortran programs for parallel or vector

execution on supercomputers, but there is nothing inherent in our approach that re-

quires us to use Fortran. The methods described in this thesis can be used with

other imperative languages. Indeed, many of the techniques developed here could be

extended to more traditional program understanding problems such as serial program

optimization, formal program veri�cation, program debugging, and performance eval-

uation.

1.2 The Problem

Source to source program restructuring is a process in which a program is changed at

the source level in a semantically invariant way so that the resulting program better

matches the speci�c architectural characteristics of the target machine. The match

improvement results a corresponding improvement in the program's performance on

the target machine. For our purposes, the class of target machines is the class of

parallel machines. Thus, we are concerned with transformations that improve per-

formance on parallel machines. While the class of programming languages is the

imperative languages, for practical reasons, we narrow the �eld to Fortran.

The target machine might be a real machine or an abstract machine representing

a collection of machine features. In either case, the e�cacy of the restructuring

process is measured, in large part, by the performance enhancement obtained. With

real machines, the degree of performance enhancement can be measured directly.

With abstract machines, performance enhancement can usually be derived from an

analytical model of the architecture under study. The analysis of real machines is

often frustrated by the introduction subtle, but important, di�erences between the

theoretic model and the real hardware.

For a serial computation model, �nding and evaluating restructuring operators

Chapter 1. Preliminaries 3

that improve performance is reasonably well understood. For parallel computation

models however, the issue is not so clear. Fundamental di�erences between mem-

ory hierarchies, communication topologies, processor power, and the availability of

scheduling primitives considerably complicate the process of improving the program-

machine match. No longer does a relatively simple analysis of a program yield most of

the match improvements. A deep understanding of the program and the architecture

is required.

A program transformation must also preserve the meaning of the original pro-

gram. We must guard against introducing new program behavior when applying

transformations.

A program transformation must improve performance. It is surprisingly easy to

�nd transformations that seem reasonable, but degrade performance signi�cantly. For

the restructuring process to be useful, it must avoid applying such transformations.

These last two ideas provide us with two important requirements for the transfor-

mation process.

Validity: The transformation must preserve the semantics of the original program.

The problem of validity, which is ultimately a problem of dependence analysis,

becomes increasing complex as transformations are applied and parallelism is

introduced.

Usefulness: For a transformation to be useful, it must improve performance. Bet-

ter performance may come from many sources: vectorization, parallelization,

reduced paging tra�c, better cache or register utilization, reduced communica-

tion overhead, etc. Measuring the usefulness of a transformation is a di�cult

task. Here is where heuristics and architectural knowledge must be used by the

reasoning system to guide the transformation process.

Chapter 1. Preliminaries 4

1.2.1 Parallel Organizations

One of the issues that make programming parallel computers signi�cantly more dif-

�cult than programming serial computers is that, unlike serial computers, there is

more than one fundamental parallel architecture. This means that the programmer

must carefully consider how parallelism is to be used to best solve the problem.

Characterizations

Flynn [32] introduced a simple characterization of computer architectures based on

the notion of streams [31]. A stream is a sequence of items acted on by a processor.

The items can be either data or instructions.

The four combinations of single and multiple, data and instruction streams gives

rise to the four architectural characterizations of computers in Table 1. The famil-

iar serial computer is characterized by its single instruction stream and single data

stream.

The family of parallel computers is characterized by either multiple data streams

or multiple instruction streams, or both. The single instruction stream, multiple data

stream computer (SIMD) exploits parallelism by broadcasting a single instruction or

group of instructions to a set of processors. Each processor acts on a disjoint data

set. Vector and array processors are typical examples of this architecture.

The multiple instruction stream, multiple data stream (MIMD) architecture is

characterized by multiple processors, each executing a disjoint set of instructions on

disjoint data sets. Multiprocessors like the BBN Butter
y [26] are prime examples of

this type of architecture.

The last combination, multiple instruction streams acting on a single data stream

(MISD), is not widely identi�ed. However, it is reasonable to classify pipelined ma-

chines as MISD, so we label it as such in Table 1.

Chapter 1. Preliminaries 5

Single Data Stream Multiple Data Stream
Single Instruction Stream SISD SIMD

von Neumann data parallel
Multiple Instruction Stream MISD MIMD

pipeline function parallel

Table 1: Classi�cation of computer architectures.

There are other characterizations of architectures. Most notable are those by

Kuck [45] and Treleaven [66]. These are in many ways more detailed, but are much

less prevalent in the literature.

Memory and Processors

In addition to the SIMD and MIMD distinctions given above, parallel machines are

also characterized by memory organization. At one extreme, a set of global memo-

ries is connected to the processors via interconnection network (Figure 1a). This is

sometimes called the \dance hall" con�guration. At the other extreme, each proces-

sor has its own local memory (Figure 1b). This is sometimes called the \boudoir"

con�guration.

The dance hall con�guration represents the class of uniform access, shared mem-

ory machines. Processor communication is performed directly in shared memory. The

boudoir con�guration represents the class of non-shared memory machines. Commu-

nication in these machines is by passing messages through the network. While the

shared memory machines embody a more powerful communication paradigm, they

are more di�cult to implement.

There is a considerable spectrum of machines between these two extremes. Some

machines with the boudoir con�guration, like the BBN Butter
y, have hardware and

software to support seamless shared memory access, but at considerable expense due

to network latency [14]. Machines of the dance hall con�guration, like the NYU

Ultracomputer [38], attempt to battle the cost of network latency by associating a

Chapter 1. Preliminaries 6

P P P P P PP P

Network

M M M M M M M M

Network

M M M M M M M M

P P P P P PP P

(a) (b)

Figure 1: Extremes of processor/memory organization.

small amount of local memory with each processor.

1.2.2 Levels of Parallelism

Often referred to as the granularity of parallelism, there are many di�erent possibilities

for the size of parallel subtasks. For some business-oriented, commercial machines,

multiple processors work on separate programs in order to increase the throughput

of the system. Processors do not cooperate in the execution of a particular program.

This type of parallelism is on the program level and is of very large granularity. Since

we are concerned with decreasing the turnaround time of particular program, this

program level parallelism is not discussed further.

Programs are often structured into one or more procedures. Assigning procedures

to processors results in procedure level parallelism. The individual subtasks, proce-

dures, represent a large number of machine instructions, hence this level represents

large grain parallelism. Clearly this grain size requires a MIMD organization, but

memory could be arranged either in the dance hall or the boudoir con�gurations, or

somewhere in between.

Within a procedure, loops o�er considerable opportunity for parallelism [12, 47,

49]. We will see in the discussion below that in some cases di�erent iterations of

Chapter 1. Preliminaries 7

a loop can be distributed to di�erent processors. This loop level parallelism o�ers

varying grain size (depending on the number of instructions in the loop body) and

is most suited for SIMD organizations, although MIMD computers can exploit this

level e�ectively.

Finally, at the statement level, some machines have an architecture that allows

a particular instruction to be executed over a collection of data. This classic SIMD

organization is used for vector and array processors. This grain size is the smallest

we consider, but not the smallest possible.1

Both the loop and statement levels of parallelism attract a considerable amount of

attention in the discussion that follows. By restructuring a serial program for loop and

statement level parallelism, we are essentially �nding and exploiting data parallelism

hidden in the original serial algorithm. More than this, however, we attempt to exploit

parallelism in a way that improves performance on a particular target machine. This

requires considerable knowledge of the target machine's strengths and weaknesses.

Issues such as ideal grain size and processor capability play a vital role in selecting

and planning a sequence of restructuring transformations.

1.2.3 Vector Execution

In a scalar computational model, an instruction consists of an operator and a small

number of scalar operands. The application of the operator results in a scalar value.

If the operator must be applied to several similar operands, an explicit iterative

construct, such as a DO loop, is used.

In a vector model, an instruction consists of an operator and a small number of

sets of operands. The operator is applied to the corresponding elements of the sets,

1Consider a pipelined machine in which a particular instruction and its arguments are operated
on by several stages. Here the level is at the machine instruction rather than the source language
statement.

Chapter 1. Preliminaries 8

producing a set of results. On an array processor, the operator is applied simultane-

ously to the corresponding elements. On a vector processor, the operator is applied

sequentially, but through the use of pipelined hardware, the sequential application

can be much faster than with the iterative process used on a conventional scalar

machine.

In languages that support vector semantics, such as Fortran 90 [17], vector

operands are speci�ed as sections of arrays. For example, to perform an element-wise

addition of the �rst n elements of arrays a and b with the result going to array c, a

Fortran 90 programmer would write:

c(1:n) = a(1:n) + b(1:n)

The same operation in Fortran 77 requires a loop.

do 10 i=1,n

c(i) = a(i) + b(i)

10 continue

The point here is not that the �rst version is shorter, but that for machines which

have hardware to support vector operations, the �rst version more closely matches

the machine's architecture. The better match results in better performance.

1.2.4 Loop Level Parallel Execution

Another way to achieve faster execution is to arrange for each iteration of the loop

to be executed simultaneously on di�erent processors. Some languages, like Cedar

Fortran [29], provide semantics for this type of execution. The previous loop would

be written as,

Chapter 1. Preliminaries 9

doall 10 i=1,n

c(i) = a(i) + b(i)

10 continue

Here, each iteration of the loop is scheduled for execution on the available pro-

cessors. If a su�cient number of processors are available, each iteration is assigned a

di�erent processor and each proceeds more or less simultaneously.

1.2.5 From Algorithms to Languages to Hardware

There are at least three fundamental sources of parallelism: the algorithm, the pro-

gramming language, and the hardware. For each of these there is an associated virtual

machine with its own language and computational model [62].

For the virtual machine at the algorithm level, there is an abstract parallel com-

putational model. This model usually conforms to either the SIMD or MIMD orga-

nization, but can contain elements of both. Communication strategies, synchronous

vs. asynchronous processors, and shared vs. non-shared memory, are all issues that

are settled at algorithm design time. The resulting parallel computation model and

the algorithm are closely matched to provide the best possible performance.

Ultimately, the algorithm must be rendered in a programming language. The vir-

tual machine for the language level embodies a parallel computation model that is de-

�ned by the parallel semantics of the language. Some languages, like Ada and Pl/i,

provide semantics for procedure level parallelism. Other languages, like Fortran

90, provide semantics for statement level parallelism. Concomitant with parallel se-

mantics, each language must also provide the necessary synchronization mechanisms.

Some languages, likeVpc++ [35], also provide semantics for explicit domain decom-

position. Whatever the extent of the semantics, the algorithm must be realized in

the tools provided by the language.

Chapter 1. Preliminaries 10

Finally, at the hardware level, there is a virtual machine whose parallel compu-

tation model is embodied in silicon.2 The virtual machine at this level encompasses

all the details not considered at the higher levels. Issues such as cache size and or-

ganization, memory and network latency, and processor capabilities are at the very

foundation of hardware virtual machine. Whatever the extent of the functionality

presented at the language level, the program must be realized in the tools provided

by the hardware.

The essential problem, and often the most serious challenge, for any parallel system

is to match each succeeding level so that performance is not lost, or at least not lost

to a debilitating extent.

For serial machines, this matching process is relatively easy. There are relatively

minor di�erences between the levels in a serial system. For parallel systems, these

di�erences can be quite dramatic. In this thesis, we are interested in improving

the match between the serial language level and a parallel hardware level. This

implies that the underlying algorithm and original language statements embody a

serial computational model. Our challenge then is doubly hard. We are not simply

improving the match between parallel models, but �nding sources of parallelism that

better match the underlying hardware's parallel computation model.

We view this match improvement process as one of �nding and applying a series

of source to source restructuring operators that transform one program form into

another, semantically equivalent form, that performs better on the underlying hard-

ware. The nature and order of the restructuring operators is of critical importance

to the success of the process.

In order to preserve the original semantics of a program, considerable attention

must be devoted to analyzing the data dependencies in the program | a task that

in general, is undecidable. Once these dependencies have been exposed, we need to

2At least for the next few years.

Chapter 1. Preliminaries 11

select, plan, and apply a series of operators that preserve the original semantics while

improving the program-machine match.

Dependence analysis is critically important to insure that the original semantics

are preserved. We must guarantee that our optimization process does not introduce

new program behavior.

1.2.6 Some Examples

The familiar algorithm for matrix multiply is usually encoded in the following way

for serial computers.

L1:do j=1,256

L2: do i=1,256

L3: do k=1,256

S: a(i,j) = a(i,j) + b(i,k) * c(k,j)

enddo

enddo

enddo

Here we assume the matrix a(n,n) has been initialized to 0. Elements of the rows

and columns of matrices b and c are multiplied and the sums are accumulated in

matrix a.

An optimizing compiler for a serial machine can directly generate good code for

this loop since the accumulated sum in each element of matrix a can be kept in a

register during iterations of the inner loop.

Let us assume that the target hardware is a vector machine capable of process-

ing entire vectors at once. We would like to exploit this machine feature to better

match the program to the hardware's capabilities and thus increase the program's

performance.

Chapter 1. Preliminaries 12

One approach is to simply convert loop L3 to vector form. However, the vector

semantics of languages like Fortran 90 require that all operands be available simul-

taneously. Notice that a(i,j) is both used and recalculated on every iteration of the

inner loop. Using terminology introduced in the next chapter, we say that there is

a loop-carried dependence on statement S. This dependence means that the operands

for the proposed vectorization of statement S are not simultaneously available, hence

the dependence prohibits vectorization.

The loop-carried dependence can be modi�ed so that vectorization is no longer

inhibited. By interchanging loops L2 and L3, the carrier of the dependence is moved

out one level, thus making vectorization possible.

First, the loops are interchanged,

L3:do k=1,256

L2: do i=1,256

L1: do j=1,256

S: a(i,j) = a(i,j) + b(i,k) * c(k,j)

enddo

enddo

enddo

then statement S is vectorized.

L3:do k=1,256

L2: do i=1,256

S: a(i,1:256) = a(i,1:256) + b(i,k) * c(k,1:256)

enddo

enddo

Although this loop would perform signi�cantly better than the original, serial

version, it can still be improved. With loop L2 now the innermost loop, each element

of a must be loaded and stored 256 times. By moving L2 to the outer most position,

Chapter 1. Preliminaries 13

we can reduce the loads and stores of each element of a to just one. The reduced

number of memory stores signi�cantly improves performance on machines with cache

memories.

L2:do i=1,256

L3: do k=1,256

S: a(i,1:256) = a(i,1:256) + b(i,k) * c(k,1:256)

enddo

enddo

Some machines, like the Alliant FX/8, have multiple vector processors. This

architecture allows a program to use both statement level parallelism (vectorization)

as well as loop level parallelism. For machines like the Alliant, the restructuring

process involves the additional step of distributing di�erent iterations of the outer

loop among the available processors.

L1:doall i=1,256

L3: do k=1,256

S: a(i,1:256) = a(i,1:256) + b(i,k) * c(k,1:256)

enddo

enddo

The previous example illustrates two important points. First, the restructur-

ing process is a series of transformation steps. Often, these steps involve removing

or rearranging dependencies. Sometimes they involve more complex issues such as

changing the grain size of a subtask to better match the optimal size of the underly-

ing hardware. Always, they involving planning in order to meet the primary goals of

validity and usefulness.

Second, the example illustrates the importance of knowning the features of the

underlying hardware. In many cases, the transformation process is guided by the fea-

tures of the target machine. This has lead some to term the process feature driven [68].

Chapter 1. Preliminaries 14

Our next example illustrates the importance of this last point. Suppose we would

like to restructure the following loop for a BBN Butter
y.

do i=1,n

do j=1,n

y(i) = y(i) + a(i,j) * x(i,j)

enddo

enddo

The Butter
y is a non-uniform access, shared memory, parallel computer. The

individual processors do not have vector capabilities, so our approach is to simply

distribute the inner loop among the processors.

The Butter
y provides a scheduling primitive called genoni that executes a sub-

routine once for each index in a range. Restructuring the program so that the n

iterations of the inner loop are scheduled on the available processors yields:

genoni(inner,n-1)

...

subroutine inner(d,i)

i = i + 1

do j=1,n

y(i) = y(i) + a(i,j) * x(i,j)

enddo

return

end

Notice that each task accesses two matrices. Matrices are often quite large. The

communication topology of the Butter
y and the non-uniform access, shared global

memory, impose a considerable penalty for non-local memory access [14]. Ideally, we

would have local copies of ith row of arrays a and x on each processor. The Butter
y

has a primitive block transfer function btransfer3 which e�ciently moves blocks of

3We assume that we are using the GP1000 model. The TC2000 model emulates block transfers
in software, thereby signi�cantly reducing its usefulness here. A good example why detailed machine

Chapter 1. Preliminaries 15

memory across the communications network. For su�ciently large matrix sizes, the

following version of inner would perform better.

subroutine inner(d,i)

real localx(n),locala(n)

i = i + 1

btransfer(x(i,*),localx,n*8)

btransfer(a(i,*),locala,n*8)

do j=1,n

y(i) = y(i) + locala(j) * localx(j)

enddo

return

end

Although this program is much simpler than most we might expect to encounter,

we needed a considerable amount of knowledge about the machine and the program.

We also reasoned with this knowledge. We concluded, for example, that btransfer

might be useful because each processor is accessing potentially large data structures

in global memory and such access is expensive. This motivated our use of btransfer

to make local copies of the global data.

Our use of btransfer, however, is not free. In fact, the restructured version uses

more memory and makes twice as many memory references. For su�ciently large

matrices the cost of the extra local memory references is outweighed by the cost of

the global memory references in the original version.

Exactly how large `su�ciently large' is depends on a number of factors. Two of the

most signi�cant are the aggregate network bandwidth and the matrix's distribution

in global memory. The restructurer must make use these and other factors in deciding

the break even point. There are no hard and fast rules in this part of the domain.

Heuristics must be employed to guide the restructuring process.

knowledge is important in program restructuring.

Chapter 1. Preliminaries 16

1.3 The Rule-Based Approach

A review of the literature on program restructuring reveals something of a potpourri

of heuristics for selecting restructuring operators. Most researchers hardcode the se-

lection heuristics; weaving the reasons for a particular operator selection deep into

the fabric of their restructurers. This can make modifying the heuristics di�cult and

retargeting the restructurer nearly impossible. Hardcoding heuristics also makes un-

derstanding and explaining why a particular operator was chosen very di�cult because

the heuristics that guided the choice are far removed from a central organization.

The KAP [28, 43] series of retargetable restructurers, use decision tables [73, 21]

to organize heuristics. While they do allow some degree of retargetability, decision

tables o�er only limited centralization of heuristics. Further, decision tables provide

only a
at view of the heuristic space. This view makes the use of sophisticated

reasoning methods much more di�cult.

A rule-based approach allows for a more sophisticated, knowledge-based reason-

ing paradigm. Using a collection of discrete rules, a restructurer is more modular

and extensible than traditional restructurers. This modularity and extensibility is

crucial in developing new transformation operators, planning methods, and optimiza-

tion techniques. This makes a rule-based restructurer an ideal vehicle for program

restructuring research.

1.4 Related Work

The genesis of program restructuring for supercomputer was, in large part, the

ILLIAC-IV project at the University of Illinois.4 One of the early researchers in the

ILLIAC-IV project was David Kuck. Kuck's research focused on programming the

4See [42] for an entertaining account of the turbulent history of the ILLIAC-IV.

Chapter 1. Preliminaries 17

ILLIAC-IV [48] and on uncovering parallelism in Fortran [47]. Others [58, 50, 24]

were also at work uncovering parallelism and proposing program transformations.

Today, restructuring compilers for Fortran is indeed a popular research topic.

The following is a brief outline of restructurers that are most visible in the literature

and have in
uenced this research considerably.

The Parafrase project [49] at the University of Illinois is the grandfather of all

restructurers. It was the �rst to incorporate and spawn much of the research in

dependence analysis and vectorization. Building data dependence graphs, �nding

cycles in the graphs, and constructing what would later be called the �-block graph,

were all innovations of the Parafrase project.

Allen and Kennedy's PFC (Parallel Fortran Converter) at Rice University [8]

was originally derived from the Illinois Parafrase compiler. PFC converts Fortran

77 programs to a vector similar to Fortran 90.5 PFC was innovative in that it

implemented if-conversion [5] so that control and data dependencies could be treated

uniformly. PTOOL [7], another restructurer from Rice, incorporates many of the

ideas of PFC.

SUPERB (SUprenum ParallelizER Bonn) is an interactive Fortran parallelizer

developed at the University of Bonn for the SUPRENUM project [76, 44, 37]. The

target language is SUPRENUM Fortran similar to Fortran 90 with additional

MIMD extensions.

KAP/205 is a commercial Fortran restructurer for the Cyber-205. It is a mem-

ber of the family of KAP retargetable restructurers produced by a Kuck & Asso-

ciates [43]. The Cedar Fortran restructuring compiler built for the Ceder project

at Illinois [30, 29] was also developed by Kuck & Associates.

5Although Fortran 90, then Fortran 8x, was not �rmly speci�ed at the time PFC was
developed.

Chapter 1. Preliminaries 18

Tiny is a loop restructuring research tool developed at the Oregon Graduate In-

stitute of Science and Technology by Wolfe [74].

Other lesser known restructuring compilers include, PAT (Parallelizing Assistant

Tool) [61], ParaScope [9], PTRAN (Parallel TRANslator) [3], the Texas Instruments

ASC compiler [24, 70], the Cray-1 Fortran compiler [40], and the Massachusetts

Computer Associates Vectorizer [52, 55].

Finally, some work has focused on the rule-based approach to program restructur-

ing. In [69, 68], Wang and Gannon propose an organizational structure for transforma-

tion heuristics and a set of transformation operators embodied in rules. Although the

focus leans toward applying general techniques associated with arti�cial intelligence

and not speci�cally a rule-based approach, the advantages of modularity,
exibility,

and retargetability are clearly evident.

At IBM Yorktown, Bose [15, 16] has implemented a rule-based advisor called

EAVE. EAVE advises programmers on the best way to write loops so that IBM's

VS FORTRAN compiler will generate the most favorable code. Although EAVE

does not restructure code, it does reason with similar knowledge about similar issues.

The only restructuring project that uses rule-based approach is the SAVER

project under development at the University of Marburg in Germany [18]. SAVER

attempts to apply both parallelization and vectorization transformations. It is not

clear from the literature if SAVER will be an entirely rule-based restructurer. The

preliminary reports indicate that dependence analysis is rule-based [19] and that vec-

torization and parallelization will be done by an \expert system."

1.5 Thesis Overview

It is important to de�ne the scope of this thesis. The aim of our research is not to

develop new transformation operators nor to discuss in depth issues in dependence

Chapter 1. Preliminaries 19

analysis. Our goal is to investigate and develop a core set of fundamental rule-based

methods for program restructuring.

In this thesis, we develop rule-based methods for some of the fundamental prob-

lems in restructuring. We develop rules for deriving a data dependence graph from

simple variable and
ow information available from a program parse. We derive rules

for �nding recurrences (cycles) in the dependence graph and for �nding the strongly

connected components of the graph. Using these program properties and a set of

machine properties, we develop rules to select and plan a sequence of transformation

operators.

1.5.1 Rex

Behind the examples, rules, and results discussed in this thesis is a working prototype

rule-based program restructurer. The restructurer, called Rex, is an experimental

restructurer written in the experimental rule-based programming language, Rex-

UPSL. Both the language and the prototype were built for this project. The focus

of the research, however, is not restructurer. Rex is simply an e�ective tool for

testing ideas. All the rules and examples in the thesis come directly from the working

prototype. This is both good and bad.

By using a real programming language, our descriptions become far more precise

and clear. The vague, imprecise nature of pseudo code simply does not convey the

same depth of information as does an executable example. The formal nature of

the language means that a rule's ancestry can often be traced directly to a theorem,

de�nition, or lemma. This is particularly satisfying.

However, using Rexmeans that the reader is burdened with the additional task of

learning enough of the language to make sense out of the rules. Rather than devote

a chapter to the syntax and semantics of Rex-UPSL, we introduce the language

slowly, on an as-needed basis. Hopefully, this approach serves the reader better than

Chapter 1. Preliminaries 20

a more complete introduction.

When more information is needed, the formal syntax of Rex-UPSL can be found

in Appendix A. Other sources of interest are the user's manual [64] and a book on a

closely related language [20].

1.5.2 Overview

In Chapter 2, Data Dependence Analysis, we discuss the theory of dependence analy-

sis and derive one well known test, the GCD Test, for performing subscript analysis.

After the theory of data dependence analysis is introduced, we develop a small, yet

powerful set of rules that derive the dependence relations and build the data depen-

dence graph. The dependence graph and the concepts from dependence analysis are

used throughout the thesis.

Chapter 3, Recurrences, examines the causes and consequences of cycles (recur-

rences) in the dependence graph. In Chapter 3, we develop a set of rules to detect

recurrences in the dependence graph. In addition to �nding recurrences, we present

rules to partition the graph into its strongly connected components. We use this par-

titioned graph to determine new statement orderings after the application of a series

of program transformation operators.

In Chapter 4, Transformation Operators, we introduce a core collection of trans-

formation operators. Associated with each operator is a set of preconditions that must

be satis�ed before the operator can be applied. These preconditions are encoded in

collection of rules. These rules form an essential part of the planning process.

Chapter 5, Planning, develops a hierarchical model for planning a sequence of

operators. This is a pivotal chapter. The rationale behind the design of the rules

developed in the previous chapters and the need for dependence analysis becomes

even more apparent as the planning model is developed.

Chapter 1. Preliminaries 21

Chapter 6, Organization of a Rule-Based Restructurer, discusses the issues in-

volved in the architecture of a restructurer. The issue of control and the ways in

which control in a rule-based system can be managed are discussed in detail.

In Chapter 7, Thesis Summary, we review the results presented in the thesis and

discuss other avenues of research that can be based on the resulted presented.

Appendix A, Rex Syntax, provides a formal syntactic description of Rex-UPSL.

This description is helpful in gaining an initial understanding the rule-based program-

ming language used throughout the thesis.

Appendix B, Element Attributes, is included for reference. The reader may �nd it

helpful to have a complete listing of the element classes and their associated attributes.

Chapter 2

Data Dependence Analysis

We begin this chapter with a brief introduction to the theory and notation of data

dependence analysis. We derive one well known test, the GCD Test, that can be used

to determine data dependencies in array references.

We then turn our attention to the development of rules that can derive the data

dependence graph. The graph and its components are used extensively in following

chapters. The presentation here serves not only to describe the dependence graph in

a concise, uniform, and formal manner, but also illustrates the syntax and semantics

of the rule-based language used throughout this thesis.

Much about data dependence analysis is not covered in this chapter. In particular,

we do not address interprocedural analysis [67], semantic analysis [56], nor symbolic

subscript analysis [39]. The goals of this chapter are to provide a foundation for our

discussion of rule-based program restructuring and to present a set of rules that derive

the fundamental data dependence information used in restructuring.

2.1 Introduction

The semantics of most programming languages impose a strict order on the execution

of statements in the language. Except for speci�c transfer of control statements (eg.

goto), the order imposed by the language is the textual order of the statements

in the program. Arbitrary changes to the textual order of statements in a program

22

Chapter 2. Data Dependence Analysis 23

change the behavior of the program. Thus the semantics of the programming language

demand a particular order of execution.

This order might seem to pose a rather serious problem for compilers that attempt

to optimize serial code, since many of these optimizations result in a reordering of

statements [2, 4]. Compilers that attempt to automatically vectorize or parallelize

statements are not exempt from this problem. Many of the transformation operators

used by these compilers change the execution order of statements.

Under certain conditions, statement ordering can be relaxed. Some statements

may be executed concurrently or in a random order without changing the semantics

of the resulting program. Developing rule-based methods for determining which of

the statements in a given program can be reordered and what constraints exist for

the set of alternate orderings is the subject of this chapter.

2.1.1 Overview

In this chapter we present a set of rules for deriving a directed graph representing

all the data dependencies in a region of a program. This data dependence graph is

an essential component of the restructuring process. Before we can discuss the graph

derivation, we �rst introduce some notation and background.

In the next section, we discuss the notion of dependence analysis in the absence

of arrays. Scalar dependence analysis serves as a vehicle for much of our introduction

to the notation.

In Section 3, we include arrays in the discussion. We introduce additional notation

and derive one well known test, the GCD Test, used in subscript analysis.

In the the last section we develop a rule-based representation for variables, data

ow, statements, and data dependencies. Using this representation we develop a

small, but powerful set of rules for deriving the data dependence graph.

Chapter 2. Data Dependence Analysis 24

program �! procedure+
procedure �! procedure-declaration declaration* statement+
statement �! assignment | conditional | do-loop
assignment �! variable = expr
conditional �! if (logical-expr) then statement+ [else statement+] endif
do-loop �! do variable = expr , expr [, expr] statement+ enddo

Figure 2: Abstract syntax for the language model.

2.1.2 Language Model

We use a restricted version of Fortran as our language model (see Figure 2). We

use Fortran because it is the language of choice in high performance computing

environments that bene�t most from the restructuring processes described in this

thesis.

The Fortran we use is restricted in the sense that our model retains some, but

not all of the semantic qualities of Fortran. For simplicity we do not allow any

of the methods for aliasing memory locations (like equivalence or common blocks),

non-structured loops, loops that contain more than one induction variable, or non-

linear functions in array indices. These restrictions may seem severe, but in practice,

many Fortran programs �t this model.

The ideas presented here are not tied to the language model we have chosen.

Indeed, these techniques can be adapted to virtually all imperative languages.

2.2 Scalar Analysis

Some variables, called scalar variables, denote individual memory locations, while

others, called array variables, denote groups of memory locations. The importance of

this distinction will become clear shortly. For now, we assume that all variables are

scalar. Arrays will be handled after we have developed some basic tools.

Chapter 2. Data Dependence Analysis 25

Aside from speci�c control transfer actions, the semantics of our model, and indeed

of most programming languages, require statements to be executed in textual order.

This requirement arises directly from the often implicit requirement that the order

of the side-e�ects to the state of the program is predictable. Consider the following

statements.

S1: z = x + y

S2: a = z + b

If S2 is executed before S1, the value in the variable a would likely be di�erent

than if S1 is executed �rst. It would seem that the textual order of statements in a

program mandate a �xed execution order. However, consider the following, slightly

di�erent, pair of statements.

S3: z = x + b

S4: a = c + b

Here S3 and S4 may be executed in either order without changing the �nal values

of a or z. We call this property commutativity.

A fundamental problem for us is to determine when two statements are commuta-

tive. Commutativity implies that parallel execution of the statements is semantically

valid, assuming of course that other factors such as I/O are not involved. To see why

this might be the case, consider a parallel processing model in which two or more

statements are randomly distributed to two or more processors for unsynchronized

execution. Due to the probabilistic nature of such a model, it would be impossible to

guarantee a speci�c execution order while at the same time maintaining concurrent

execution (ie. no synchronization). If the statements are commutative, we would

require no such guarantee.

Chapter 2. Data Dependence Analysis 26

Most of the program restructuring transformations discussed in this thesis belong

to a class of transformations known as reordering transformations. These transfor-

mations improve performance by reordering a group of statements without adding or

removing statements. Determining commutativity for groups of statements is vital in

proving the semantic invariance of a proposed reordering transformation.

In this section we describe a framework for analyzing the data dependencies in

a program. Along the way we will assume that information about control is readily

obtainable from a traditional control dependence analysis. For an indepth treatment

of control analysis see [2] and [75]. We will take the liberty of referring to data

dependence analysis as simply dependence analysis unless the reference is unclear.

We begin our discussion with a de�nition.

De�nition 2.1 Let P be a program in our model.

S 2 P () S is a statement in P

VAR(S) = fv : v is an occurrence of a variable in Sg

VAR(S) is the set of all occurrences of variables in S, not simply the set of variables

in S. Each occurrence of a variable in a statement is unique. We might denote a

variable occurrence by its node identi�er in the program's parse tree. We could

introduce notation like vi, where the subscript would be unique for each occurrence

of variable v in statement S. In order to streamline matters as much as possible we

introduce notation at the set level and urge the reader to keep this subtle distinction

in mind when we deal at the variable level. Later, we will denote an occurrence of

variable v in statement S by vi for 1 � i � n where n is the number of occurrences of

v in S.

Chapter 2. Data Dependence Analysis 27

De�nition 2.2 Let P be a program and S 2 P a statement.

USE(S) = fv : v 2 VAR(S) ^ v used in Sg

DEF(S) = fv : v 2 VAR(S) ^ v de�ned in Sg

USE(S)
n

= fN : N is the name of v ^ v 2 USE(S)g

DEF(S)n = fN : N is the name of v ^ v 2 DEF(S)g

Here the sets DEF(S) and USE(S) contain all the occurrences of variables de�ned

and of variables used in S, respectively. The sets DEF (S)n and USE (S)n contain

just the names of the variables that occur in DEF(S) and USE(S). DEF (S)n and

USE (S)n are the name projections of the corresponding sets.

We have not given a precise meaning of the term `de�ned'. For now, we will avoid

giving this term a precise meaning other than to suggest that it refers to variables

modi�ed in a statement. After some important notation and results are introduced,

we will return to this issue.

We use the following lemma in our proof of the Commutativity Theorem. The

lemma says that we have captured all the variables in S with the USE and DEF sets.

Lemma 2.1 If P is a program and S 2 P a statement then,

USE(S)n [DEF(S)n = fn : n is the name of a variable in Sg

Proof In our language model, as in most programming languages, all variables that

occur in a statement occur either in a USE context or in a DEF context, or both.

Hence, all variables in S are in either USE (S)n or DEF (S)n . 2

Now with the sets USE (S)n and DEF (S)n and Lemma 2.1, we are able to state

the following su�cient condition for commutativity.

Chapter 2. Data Dependence Analysis 28

Theorem 2.1 (Commutativity) Let S1, S2 2 P be statements of program P. Then

a su�cient condition for commutativity is:

(DEF(S1)n \ USE(S2)n) [(1)

(USE(S1)n \ DEF(S2)n) [

(DEF(S1)n \ DEF(S2)n) = ;

Proof Our aim here is to show that if (1) holds, then the execution of S1 followed by

S2 is semantically equivalent to the execution of S2 followed by S1. That is, the state

of the variables mentioned in S1 and S2 are the same after the pair of statements

have been executed in either order.

If (1) holds, then it follows that each of the clauses is ;. We take each clause in

turn.

First, (DEF (S1)n \ USE (S2)n) = ; implies that no variable de�ned in S1 is used

in S2. Hence, execution order will not a�ect members of USE (S2).

Likewise, (USE (S1)n \ DEF (S2)n) = ; implies that no variable de�ned in S2 is

used in S1 and again, execution order will not a�ect members of USE (S1).

Finally, (DEF (S1)n\DEF (S2)n) = ; implies that S1 and S2 do not de�ne common

variables, so the state of variables in (DEF (S1) [DEF (S2)) after the execution of

the statements in either order is the same.

These cases account for all variables in the USE and DEF sets of each statement,

and by Lemma 2.1 account for all variables in the statements. 2

Notice that Theorem 2.1 does not provide us with a necessary condition for com-

mutativity, only a su�cient one. In fact, it has been shown that the more general

problem is undecidable [13].

The clauses in (1) present three di�erent conditions that cause S1 and S2 to fail

the su�cient condition for commutativity. If any of the clauses is not ;, then the

Chapter 2. Data Dependence Analysis 29

statements would not meet the su�cient condition. We de�ne a relation for each

clause.

De�nition 2.3 Let S1, S2 2 P be statements of program P such that S1 is executed

before S2. De�ne,

S1 �
t S2 () DEF (S1)n \ USE(S2)n 6= ;

S1 �
a S2 () USE(S1)n \ DEF (S2)n 6= ;

S1 �
o S2 () DEF (S1)n \ DEF (S2)n 6= ;

If two statements are in the relations �t, �a, or �o, there is said to exist a true

dependence, anti dependence, or output dependence, respectively, from the �rst state-

ment to the second. There is an implied direction in the dependence. Expressions

like, Si �o Sj are read as: \There is an output dependence from Si to Sj" or \Sj is

output dependent on Si."

We use � without superscript annotation to denote the generic data dependence

relation. That is,

Si � Sj () Si �
t Sj _ Si �

a Sj _ Si �
o Sj

Among the three relations, there is an important distinction between the true

dependence �t, and the two relations, �a and �o. The �a and �o relations arise because

our model allows variables to be re-used. If our model prohibited such re-use, as is the

case in functional languages, we could reduce our discussion of dependence relations

to �t. This also suggests dependencies that anti and output dependencies can be

eliminated from programs by introducing new variables in places where variables

are re-used. This and other program transformations are discussed in the following

chapters.

Chapter 2. Data Dependence Analysis 30

Theorem 2.1 along with the dependence relations are a fundamental result for our

work. But in order to apply Theorem 2.1 we need to examine the USE and DEF sets

more closely.

For any statement S 2 P , we might have jDEF (S)j > 1 or jUSE (S)j > 1.

We cannot simply refer to the statements themselves as the discrete objects of a

dependence. Although we do this when we refer to a dependence from one statement

to another. The object of the dependence must involve the variable which causes the

dependence. Likewise, we cannot refer to a particular variable as the discrete object

of a dependence because the same variable may occur more than once in a statement

possibly giving rise to more than one dependence. Since the same variable my appear

more than once in a statement, perhaps both in DEF (S) and in USE(S), we need

to distinguish between occurrences of the same variable in a statement. Each of these

occurrences, of course, could participate in a dependence relation.

Fortunately, our de�nition of VAR(S) allows USE (S) and DEF (S) to have the

property such that each occurrence of a variable is represented. The following de�ni-

tions allow us to refer to individual instances of variables in a program.

De�nition 2.4 Let P be a program with only scalar variables and S 2 P a statement.

De�ne,

v � v0 () v; v0 2

 [
S2P

V AR(S)

!
^ v has same name and scope as v0

D = f(S; v) : v 2 DEF(S) ^ S 2 Pg

U = f(S; v) : v 2 USE(S) ^ S 2 Pg

DS = f(s; v) : (s; v) 2 D ^ s = Sg

US = f(s; v) : (s; v) 2 U ^ s = Sg

We say that (S; v) is an instance of a variable v in statement S.

Chapter 2. Data Dependence Analysis 31

The intent here is that D represents instances of variable de�nitions in P, while U

represents instances of variable uses in P. The sets DS and US represent the instances

in a particular statement, S. It should be clear that for any program P and statement

S 2 P , DS � D and US � U .

We promised a more concrete de�nition of the term `de�ned' in the remarks fol-

lowing De�nition 2.2. We are now in a position to ful�ll that promise. Consider the

following statements:

S1: z = x + y

S2: a = z + b

Earlier we suggested that S1 and S2 are not commutative and De�nition 2.2 along

Theorem 2.1 provided us with the insight. De�nition 2.3 allowed us to categorize

the dependence as S1�tS2. A problem arises when another statement is introduced

between S1 and S2.

S1: z = x + y

S
0: z = c + d

S2: a = z + b

Now does S1 �t S2 still hold? The answer is no. The de�nition of z in S1 does not

reach S2. However, notice that both S0 �tS2 and S1 �oS0 hold. Hence, there still is an

order imposed on the statements, but it is not quite the same as that imposed by �.

In the next chapter we consider �+, the transitive closure of the � relation. For now

we concentrate on the � relation and this requires that we re�ne the meaning of the

term `de�ned' to include only the reaching de�nitions.

Chapter 2. Data Dependence Analysis 32

2.2.1 Reaching De�nitions

The problem of determining the reaching de�nitions is vital in determining the data

dependencies in a program. We brie
y look at one algorithm to determine reaching

de�nitions in order to make clear what a reaching de�nition is.

De�nition 2.5 Let S 2 P be a statement in program P.

GEN [S] = DS

KILL[S] =
[

S0 6=S

f(S0; v0) : v � v0 ^ v 2 DEF (S)g

IN [S] =
[

S02P

f(S0; v) : 9 a path from S0 to S where v is not KILLedg

OUT [S] = GEN [S] [(IN [S] � KILL[S])

These four sets denote the new de�nitions that are generated (GEN) by this

statement, the de�nitions that mask previous de�nitions (KILL), the de�nitions that

reach this statement (IN), and the de�nitions that survive this statement (OUT).

Figure 3 is an iterative algorithm from [2] which computes the reaching de�nitions,

the set IN[S], for each statement. The algorithm starts by initializing the sets GEN[S],

KILL[S], and OUT[S] to the set of variables de�ned in S, for each S 2 P . Until no

changes are made to OUT[S] for any statement S 2 P , IN[S] is assigned the union of

the OUT sets of the predecessors of S. OUT[S] is assigned GEN[S] plus the di�erence

between the set of variables that reach S and the set of variables that are KILLed by

S.

Along with reaching de�nitions, we need to consider uses that live until a particular

statement. That is, we need also consider reaching uses: uses of a variable with no

intervening de�nition until some statement S 2 P . The algorithm for computing

reaching uses is similar to the one for reaching de�nitions.

Chapter 2. Data Dependence Analysis 33

/* initialize KILL[S], GEN[S], IN[S], and PRED[S] */

for S in P

OUT[S] = KILL[S] = GEN[S] = the set of variables defined in S

IN[S] = ;
PRED[S] = the set of predecessors of S

end

/* iterate through P until no changes are made */

change = TRUE

while(change)

change = FALSE

for S in P

IN[S] =
S
S02PRED[S] OUT[S0]

OLD = OUT[S]

OUT[S] = GEN[S] [(IN[S] - KILL[S])

if OUT[S] != OLD then change = TRUE

end

end

Figure 3: Iterative algorithm to compute reaching de�nitions.

Now that reaching de�nitions and reaching uses have been introduced, we can

modify our previous de�nition of the � relations as follows.

De�nition 2.6 Let S1, S2 2 P be statements of program P such that S1 is executed

before S2. Let REACHD(S1,S2) be the set of instances of variable de�nitions that

reach statement S2 from S1 with no intervening de�nition. Let REACHD(S1; S2)n be

the name projection of REACHD(S1,S2). Let REACHU(S1,S2) be the set of instances

of variable uses that reach statement S2 from S1 with no intervening de�nition. Let

REACHU(S1; S2)n be the name projection of REACHU(S1,S2).

S1 �
t S2 () (DEF(S1)n \ REACHD(S1;S2)n) \ USE(S2)n 6= ;

S1 �
a S2 () (USE(S1)n \ REACHU(S1;S2)n) \ DEF(S2)n 6= ;

S1 �
o S2 () (DEF(S1)n \ REACHD(S1;S2)n) \ DEF(S2)n 6= ;

Chapter 2. Data Dependence Analysis 34

This de�nition of the � relations is more precise, yet somewhat more complex than

our previous de�nition. Throughout the remaining part of this thesis, whenever we

refer to a � relation, we implicitly refer to this de�nition.

2.3 Subscript Analysis

In the previous section we restricted our attention to scalar variables. Here we shift

the focus to dependence analysis in the presence of arrays, especially in the context

of loops. Arrays, often called subscripted variables or vectors, are used extensively in

loops. Loops o�er a great potential source for speedup in parallel systems [47, 12, 49].

However, vectors used in the context of loops complicate the analysis considerably [71,

72, 75]. Most of the restructuring transformations discussed in the following chapters

are applied to loops and thus rely extensively on the information obtained from the

dependence analysis of arrays in loops.

In this section we introduce some additional dependence notation along with a few

new concepts. We derive one well known dependence test, the GCD Test, that can be

used to disprove the existence of a dependence. The general problem of proving the

existence of a dependence based on arbitrary subscript expressions is undecidable.

Consider the following loop.

do i = 1,10

S1: z(i) = 2 * x(i)

S2: y(i) = z(i) + 1

enddo

Intuitively we see that S1 �t S2, and indeed if we simply assumed that z was a

scalar variable using the results of the previous section we would conclude that S2 is

dependent on S1. However, consider following slightly di�erent loop.

Chapter 2. Data Dependence Analysis 35

do i = 1,10

S1: z(i*2) = 2 * x(i)

S2: y(i) = z(i*2+1) + 1

enddo

Here we would again conclude S1�tS2, but we see that S1 de�nes the even elements

of z while S2 uses the odd elements of z. Our scalar analysis fails because we are

forced to treat the entire array z as a single variable.

What we need to look at is not simply which variables are used or de�ned, an

approach that was su�cient for scalars, but which positions within the arrays are

used or de�ned. Since these positions are referenced by subscript expressions, the

fundamental problem is to determine when these subscript expressions refer to the

same element in an array.

2.3.1 De�nitions

In our language model as in most programming languages, loops may be nested to

virtually any depth. In practice, nesting to several levels is quite common so our

approach should be general enough to handle loop nesting to an arbitrary depth.

De�nition 2.7 Let L1; : : : ; Ln be loops nested to depth n in program P. We de�ne

an iteration vector for L1; : : : ; Ln to be i = (i1; : : : ; in) where each ij in 1 � j � n is

the value of the induction variable of loop Lj for some iteration of the loop.

We say that fi : i is a vector in L1; : : : ; Lng is the iteration space of the loop

L1; : : : ; Ln.

An iteration vector describes the state of each induction variable in any particular

iteration of the loop. There is a di�erent iteration vector for each possible value of each

induction variable. For example, in the following loop we have fig = 10 � 20 � 5.

Chapter 2. Data Dependence Analysis 36

L1:do i=1,10

L2: do j=1,20

L3: do k=1,5

: : :

Loops need not be, and often are not, perfectly nested. We might have a nesting

similar to the loop below. Here the length of the iteration vector for L1 is 1, but the

length of the iteration vector for L1; L2 and L1; L3 is 2.

L1:do i=1,25

L2: do j=1,4

S1: a(j,i) = c * b(i,j)

enddo

c = e(i)

L3: do j=1,4

a(j,i) = c * d(i,j)

enddo

enddo

The association of an iteration vector with a statement is written as S(i) and

denotes a particular instance of the statement in an iteration of a loop. For example,

S1((1; 3)) is the statement instance: a(3,1) = c * b(1,3).

As in the previous section, the central problem is to determine when two state-

ments are in a � relation. We say that two statements S1; S2 2 P are dependent if

and only if there exists some pair of iterations vectors (i; i0) such that S1(i) �t S2(i0),

S1(i) �a S2(i0), or S1(i) �o S2(i0) holds.

De�nition 2.8 Let Sj; Sk 2 P be two statements in loop L1; : : : ; Ln and let Sj(i),

Sk(i0) be a pair of statement instances where (i; i0) is in the iteration space of the loop.

De�ne,

�j = i0j � ij

Chapter 2. Data Dependence Analysis 37

�j =

8>>>>><
>>>>>:

> �j < 0

= �j = 0

< �j > 0

� = (�1; : : : ; �m); where m = min(jij; ji0j)

� = (�1; : : : ; �m); where m = min(jij; ji0j)

We call � the distance vector and � the direction vector between i and i0.

De�nition 2.9 Let * refer to an arbitrary direction � 2 f<;>;=g. We de�ne the

set of plausible direction vectors, (Sj; Sk), between two statements Sj; Sk 2 P where

Sj occurs textually before Sk in P as,

 (Sj; Sk) = f=; : : :g [f=; : : : ; <; �; : : :g [f<; �; : : :g

We will use the direction vector in stating the GCD Test and in deriving the de-

pendence graph. The direction vector is useful in categorizing a dependence between

two statements. If the distance vector between two statment instances Sj(i) and

Sk(i0) is non-zero and Sj(i) � Sk(i0) holds, then we say that the dependence is loop-

carried. We denote a loop-carried dependence by �c where c is the distance between

the iteration vectors. If the distance vector is zero, we say that the dependence is

loop-independent.

2.3.2 The GCD Test

Our present challenge is to determine if two statements are dependent given the

possible set of iteration vectors and the subscript expressions contained in the array

references of the statements. The following loop illustrates the problem.

Chapter 2. Data Dependence Analysis 38

do i=1,10

S1: a(8*i-2) = d

S2: c = a(2*i)

enddo

We would like to know if there exists iteration vectors (i; i0) such that S1(i)� S2(i0)

holds. In other words, we would like to know it there is a solution1 to the following

dependence equation, 8x� 2y = 2 where 1 � x; y � 10.

Recall that we limit subscript expressions to simple linear functions. In general,

we can write the dependence equation as,

a0 +
X

1�j�n

ajij = b0 +
X

1�j�n

bji
0
j

which we may write in a more familiar form as,

X
1�j�n

ajij �
X

1�j�n

bji
0
j = (b0 � a0)

which is a linear diophantine equation.

If there is a solution within the bounds of our induction variables then we know

that a dependence exists. On the other hand, if we can prove that no solution exists,

then no dependence exists. In order to develop this idea further, we need the following

results.

Lemma 2.2 Let X
1�i�n

aixi = c

1Let i = (2) and i0 = (7).

Chapter 2. Data Dependence Analysis 39

be a linear diophantine equation and g = gcd(a1; : : : ; an), then

9v1; : : : ; vn :
X

1�i�n

aivi = g

Proof Let C = f
P

1�i�n aivi : vi 2 Zg and c
0 = minfc 2 C ^ c 6= 0g. First, we claim

that c0 divides each ai, 1 � i � n. Assume that c0 does not divide aj for some j in

1 � j � n, then

aj = c0q + r

r = aj � c0q

= aj � (
X

1�i�n

aivi)q

= aj(1 � vj)q +
X
i6=j

1�i�n

�aiviq

Hence r 2 C, but this contradicts the de�nition of c0. Since aj was chosen arbi-

trarily, it follows that c0 divides each ai.

Next, we claim that g = gcd(a1; : : : ; an) = c0. If g < c0 then c0 is a greater common

divisor of a1; : : : ; an which contradicts the de�nition of g.

If g > c0 then g does not divide c0. But, from the previous claim, c0 divides

a1; : : : ; an so g must divide c0. Hence, g = c0 and

9v1; : : : ; vn :
X

1�i�n

aivi = gcd(a1; : : : ; an) = g

2

Chapter 2. Data Dependence Analysis 40

Theorem 2.2 Let X
1�j�n

ajxj = c

be a linear diophantine equation, and g = gcd(a1; : : : ; an). The equation has a solution

if and only if g divides c.

Proof If g divides c then gk = c and from Lemma 2.2 there exists v1; : : : ; vn such

that
P

1�i�n aivi = g. Hence,

gk = c = k
X

1�i�n

aivi

and the solutions are (v1c=g; : : : ; vnc=g).

If the equation has a solution (u1; : : : ; un) and g divides each ai 1 � i � n, then

clearly g divides c. 2

Corollary 2.1 Let X
1�j�n

ajxj = c

be a linear diophantine dependence equation associated with Sm; Sn 2 P . If the equa-

tion has no solution then Sm � Sn does not hold.

Theorem 2.2 provides us with a simple way to prove that no solution exists, and

by Corollary 2.1 that no dependence exists. But when gcd(a1; : : : ; an) does divide c,

the theorem does not tell us where the solution is. In particular, it does not tell us

if the solution exists within the iteration space of the loop. This problem is rather

fundamental when dealing with arrays. The iteration space of a loop is not always

known at compile time because the loop bounds may depend on values computed at

run time. Using only the corollary, we are forced to take the conservative approach

and assume a dependence exists whenever the equation has a solution, even though

the solution may not fall within the iteration space of the loop.

Chapter 2. Data Dependence Analysis 41

Although the following theorem does not tell us if a solution exists within the

iteration space, the GCD Test can indicate if the dependence is loop-carried or loop-

independent.

Theorem 2.3 (GCD Test) Let a1; : : : ; am and b1; : : : ; bn be the coe�cients of a de-

pendence equation, � be a direction vector between two statement instances S(i) and

S 0(i0), and g = gcd(faj � bj : �j = `='g; faj : �j 6= `='g; fbj : �j 6= `='g).

If S � S0, then g divides (b0 � a0).

Proof We may write the dependence equation as,

X
1�j�n

f(aj � bj)ij : �j = `='g +
X

1�j�n

f(ajij : �j 6= `='g (2)

�
X

1�j�n

f(bji
0
j : �j 6= `='g = b0 � a0

Since (2) is a linear diophantine dependence equation associated with S and S0,

if S(i) � S0(i0) then by Corollary 2.1, g divides (b0 � a0). 2

To illustrate how Theorem 2.3 might be used to distinguish between loop-carried
and loop-independent dependencies, consider the following loop.

L1:do i=1,10

L2: do j=1,10

S1: a(2*i+3*j+2) = d

S2: c = a(5*i+9*j+4)

enddo

enddo

The dependence equation is 2+2x1+3x2 = 4+5y1+9y2. Which by Theorem 2.2

has a solution since gcd(5; 9;�2;�3) = 1 which divides 2.

If we choose � = (=;=) we have gcd(5 � 2; 9 � 3) = gcd(3; 6) = 3 which does

not divide 2. By Theorem 2.3 there is no dependence between S1(i); S2(i) and if a

dependence exists within the iteration space it is a loop-carried dependence.

Chapter 2. Data Dependence Analysis 42

do i=1,n

S1: a(i+2) = b(i)

S2: c(i+3) = a(i)

S3: b(i+1) = c(i)

enddo

S

S

S

1

3

2

δt

δ
δt

t

Figure 4: A data dependence graph.

Another dependence test, the Separability Test [71], is based on the explicit rep-

resentation of the solution space of the dependence equation. The Separability Test

can be applied only if the dependence equation has exactly one induction variable.

However, the test yields both a necessary and su�cient condition for dependence.

Finally, the Banerjee Test [10] can be used to determine of a solution exists within

the iteration space but can not be used to determine if the solution is integer or real.

Since we require that the solutions be integer, the Banerjee Test can only be used to

disprove a dependence.

2.4 The Data-Dependence Graph

A data dependence graph (DDG) [46] is a digraph G = (V;E) where V = fSi jSi 2 Pg

and E = f(Si; Sj) jSi � Sjg. Edge direction in G corresponds to the implied direction

of the dependence. We label each edge with the corresponding dependence relation:

�t, �a, or �o (see Figure 4).

The DDG serves as the abstract representation of the data dependencies in the

program. The relations represented in the DDG namely, �t, �a, and �o, characterize

the cause of non-commutativity. As we will see in the chapters that follow, the

problem of �nding the correct sequence of program transformations that result in

some desired goal is essentially one of �nding isomorphisms to a subgraph of the

DDG. In this section we develop a concise set of rules for deriving the DDG from

Chapter 2. Data Dependence Analysis 43

simple variable, data
ow, and statement information.

This approach is unique in many respects. On the practical side, it allows us

to treat changes to the DDG in a uniform, well de�ned manner. This uniformity

greatly simpli�es the otherwise complex program dependence information and makes

updating the dependences, especially after a series of program transformations, not

only possible, but relatively easy (see Section 5.2.4).

A more fundamentally unique and advantageous feature of this approach is that it

provides a clear, syntactic, and even executable de�nition of precisely what the DDG

represents.

Finally, an equally important advantage is that the representation presented here

allows us to exploit the powerful pattern matching facilities inherent in rule-based

languages to �nd the graph isomorphisms that are the essence of the restructuring

process.

2.4.1 Preliminaries

The rules presented in this section and in the following chapters are written in an

experimental programming language developed for this project. The language, called

Rex-UPSL [64], supports both a traditional Scheme [59] environment as well as a

tuple space similar to that of a relational database [27]. The tuple space is called

memory and is denoted byM. The individual tuples inM, called memory elements,

are denoted byMe.

De�nition 2.10 A memory element Me, is an ordered tuple of the form

(class obj obj : : :)

where class is a Scheme symbol and obj is a Scheme object.

Memory, M, is the collection of all memory elements.

Chapter 2. Data Dependence Analysis 44

With each position in the tuple we associate an attribute name. This allows

symbolic access to objects within a tuple.

De�nition 2.11 An attribute name within a memory element is any symbol preceded

by the ^ special character.

Attribute names are associated with class names in declaration statements (see

Appendix B). For example,

(declare-attribute box color width height depth)

associates the attributes color, width, height, and depth with the class name box.

The following memory element describes a particular instance of box.

(box ^color red ^width 12 ^height 10 ^depth 8)

A particular rule in a Rex-UPSL program is applicable when the preconditions

speci�ed in the rule are satis�ed by one or more tuples,Me 2 M.

De�nition 2.12 A rule is an expression of the following form.

(rule name pattern pattern : : :| {z }
LHS

--> expression| {z }
RHS

)

The left hand side (LHS) is a conjunction of patterns, called condition elements.

The right hand side (RHS) is an arbitrary Rex-UPSL expression.

A rule consists of two parts: a left hand side and a right hand side. The left

hand side is a conjunction of patterns similar to a prototypicalMe, but may contain

Chapter 2. Data Dependence Analysis 45

variables or relational operators. The right hand side is an expression that is a

candidate for evaluation when the left hand side patterns are consistently matched

by some subset of M.

It is important to note here that rules in Rex-UPSL are declarative objects in much

the same sense as clauses in Prolog. Rules do not examineM when encountered by

the Rex-UPSL interpreter. Rather, the set of satis�ed rules is determined after each

change to M. This set is constructed using an e�cient, state saving, many pattern,

many object matching algorithm [34].

The syntax and semantics of our rule-based language will be illustrated here by

way of example and discussion. A formal syntactic description is presented in Ap-

pendix A. See [64] for a full discussion of the language.

2.4.2 Variables, Data Flow, and Statements

We begin our discussion of the DDG derivation rules by developing a representation

in M for variables, data
ow, and statements in a region R of program P. We use

the following de�nitions.

Recall that a variable instance is the pair (Sj; vi) where Sj 2 P and vi is an

occurrence of variable v in Sj.

De�nition 2.13 For each variable instance (Sj; vi), let t(Sj;vi) be a unique positive

integer. We will use t(Sj;vi) as a tag to refer to the instance (Sj; vi).

De�nition 2.14 Let tv and tSj be positive integers such that,

8v;v0 v � v0 $ tv = tv0

and,

8k 6=j tSj 6= tSk

Chapter 2. Data Dependence Analysis 46

We will use tv and tSj as tags to refer to variables and statements.

De�nition 2.15 For each variable v,

let vn be the name of variable v, and,

let vr be

8><
>:

VAR REF if v is a scalar variable

ARRAY REF if v is an array variable

Variables

The set of variable instances referenced in a region of a program is represented inM

by elements of class var. Five attributes are associated with each variable instance.

� stmt is the statement's tag, tS.

� access is the symbol def if the variable instance represents a de�nition of the

variable, or is the symbol use if the instance represents a use of the variable.

� instance is the tag, t(Sj;vi), of the variable instance.

� var is the variable's name, vn.

� ref is ARRAY_REF if this is an array reference or VAR_REF if it is a scalar

reference.

For each instance of each variable v accessed in a use context in each statement

Sj in region R of program P, M contains:

(var ^var vn ^access use ^instance t(Sj;vi) ^stmt tSj ^ref vr)

Likewise, for each instance of each variable v accessed in a de�nition context in each

statement Sj in region R of program P, M contains:

(var ^var vn ^access def ^instance t(Sj;vi) ^stmt tSj ^ref vr)

Chapter 2. Data Dependence Analysis 47

By Lemma 2.1, all variable instances in region R are represented in M.

Data Flow

The reaching de�nitions and reaching uses discussed in Section 2.2.1 are represented

in M by the class flow. Four attributes are associated with the class flow.

� var is the variable's name.

� from is the tag, tSi, of the initial
ow point.

� to is the tag, tSj , of the terminal
ow point.

� flow-type is def-use if the de�nition of v in Si reaches a use of v in Sj,

use-def if a use of v in Si reaches a de�nition of v in Sj , or def-def if a

de�nition of v in Si reaches a de�nition of v in Sj .

The reaching de�nition of variable a in,

S1: a = 89

S2: b = c**2

S3: c = a*c

is represented in M as,

(flow ^var a ^from tS1 ^to tS3 ^flow-type def-use)

Statements

Statements are represented in M by the class statement. The following �ve at-

tributes are used.

� class is the classi�cation of the statement, eg. ASSIGN for assignment state-

ments.

Chapter 2. Data Dependence Analysis 48

� stmt is the statement's tag, tS.

� depth is the nesting depth of this statement within loops, starting from 0.

� control is the tag of the control parent for this statement.

� order is an integer indicating relative textual ordering of this statement.

The order attribute indicates the relative textual ordering of statements. Textual

ordering is a weaker notion than execution ordering. Execution ordering is essential

in determining the reaching de�nitions and reaching uses of a variable. We will see in

Section 2.4.3 that textual order is su�cient to distinguish between loop-independent

and loop-carried dependencies.

In the next section we show how the DDG can be derived from this representational

set. This is not the only representational set, nor is it the smallest. There are

disadvantages in using this set. Most notably, we sacri�ce the ability to handle

variable aliases by not explicitly representing execution paths. The set we have chosen

does allow us to use a much smaller collection of rules to derive the DDG. Essentially,

we have pushed some of the complexity of the derivation into the builtin
ow analysis

(see Figure 3) at the price of reducing the number of things we can reason about.

2.4.3 Deriving the DDG

With a uniform representation in M for the variables, data
ow, and statements, in

this section we present six rules for deriving the DDG.

Representing DDG Edges

Edges in the DDG are the dependencies in region R. Each edge is represented by the

class dependence and is annotated with the following attributes.

Chapter 2. Data Dependence Analysis 49

� var is the variable name.

� from is the statement tag of initial point.

� to is the statement tag of terminal point.

� type is one of: true, anti, or output.

� ref is either ARRAY_REF or VAR_REF.

� extent is either loop-independent or loop-carried.

� carrier is the statement tag of the loop that carries the dependence.

� vfrom is the variable instance tag of the initial point.

� vto is the variable instance tag of the terminal point.

Scalar Analysis

We begin with three rules that build the initial true, output, and anti dependence

edges. Recall that for a true dependence between statement Si and Sj, there must be

a de�nition of some variable v in Si and a use of v in statement Sj with no intervening

de�nition of v. That is, the de�nition of v in Si reaches the use in Sj.

In Rex-UPSL, these preconditions are expressed in the following rule.

Rule 2.1

(rule true

(var ^access def ^var <v> ^instance <vt1> ^stmt <st1> ^ref <r>)

(var ^access use ^var <v> ^instance <vt2> ^stmt <st2> ^ref <r>)

(flow ^flow-type def-use ^var <v> ^from <st1> ^to <st2>)

-->

(make dependence ^var <v> ^type true ^from <st1> ^to <st2>

^vfrom <vt1> ^vto <vt2> ^ref <r> ^extent nil)

(add-directions <vt1> <vt2> <st1> <st2>))

Chapter 2. Data Dependence Analysis 50

First, a note on syntax. The condition elements on the left hand side are the

preconditions for the application of the rule. The condition elements look like memory

elements except for the brackets < > surrounding some of the identi�ers. These

brackets denote variables in the condition element. Variables mentioned more than

once on the left hand side must match the same value. When the rule becomes active,

these values are available for use in the right hand side expression.

Here the left hand side has three condition elements. The �rst and second match

any pair of instances of a particular variable in which the variable occurs in a def con-

text and a use context, respectively. The third condition element matches any of the

flow memory elements involving a de�nition of the variable in one statement <st1>,

followed by a use of the variable in another statement <st2>, with no intermediate

de�nition.

Because multiple occurrences of a condition element variable must match the same

value, the �rst two condition elements match instances of the same variable. The

integer tags representing the instances are bound to the condition element variables,

<vt1> and <vt2>. Likewise, because the condition element variable <v> must be

bound consistently, the third condition element restricts which memory elements the

�rst and second condition elements can match. These involve a de�nition of <v> in

statement <st1> followed by a use of <v> in statement <st2> with no intervening

de�nition along any execution path from <st1> to <st2>.

On the right hand side, the make special form builds a memory element from its

arguments. The �rst argument is the element class. The remaining arguments are

the attribute-value pairs for the element.

The function add-direction-vectors will be discussed shortly.

The rules for output and anti dependence edges are similar.

Chapter 2. Data Dependence Analysis 51

Rule 2.2

(rule output

(var ^access def ^var <v> ^instance <vt1> ^stmt <st1> ^ref <r>)

(var ^access def ^var <v> ^instance <vt2> ^stmt <st2> ^ref <r>)

(flow ^flow-type def-def ^var <v> ^from <st1> ^to <st2>)

-->

(make dependence ^var <v> ^type output ^from <st1> ^to <st2>

^vfrom <vt1> ^vto <vt2> ^ref <r> ^extent nil)

(add-directions <vt1> <vt2> <st1> <st2>))

Rule 2.3

(rule anti

(var ^access use ^var <v> ^instance <vt1> ^stmt <st1> ^ref <r>)

(var ^access def ^var <v> ^instance <vt2> ^stmt <st2> ^ref <r>)

(flow ^flow-type use-def ^var <v> ^from <st1> ^to <st2>)

-->

(make dependence ^var <v> ^type anti ^from <st1> ^to <st2>

^vfrom <vt1> ^vto <vt2> ^ref <r> ^extent nil)

(add-directions <vt1> <vt2> <st1> <st2>))

The following example illustrates how these rules work. Suppose we have two

statements with tags tS1 and tS2 that reference variable count. Statement tS2 assigns

to count some value (i.e. count 2 DEF(S2)), while tS1 reads from count (i.e. count 2

USE(S1)). M would then contain the following three memory elements.

(var ^var count ^access use ^instance t(S1;count) ^stmt tS1 ^ref VAR_REF)

(var ^var count ^access def ^instance t(S2;count) ^stmt tS2 ^ref VAR_REF)

(flow ^var count ^from tS1 ^to tS2 ^flow-type use-def)

The �rst two preconditions of the anti rule are satis�ed by the two var elements.

These represent the two instances of the variable count that occur in statements tS1

and tS2 . The condition element variables <vt1> and <vt2> are bound to the tags for

use instance and the de�ning instance, respectively.

Chapter 2. Data Dependence Analysis 52

The third precondition is satis�ed by the flow element. This element represents a

reaching use of tcount from statement S1 to statement S2. The resulting dependence

edge is represented by the memory element,

(dependence ^var count ^type anti ^from tS1 ^to tS2

^vfrom t(S1;count) ^vto t(S2;count) ^ref VAR_REF ^extent nil)

In addition to creating the dependence edge, each of the rules invokes a function

called add-direction-vectors. This builtin function applies the GCD Test to the

variable instances. The resulting direction vectors are added toM. We will use these

direction vectors in subscript analysis.

Direction vectors are represented by the element class direction. The following

attributes are used.

� dir is a direction, <, >, or =.

� dim is the dimension described by this element.

� depth is the depth described by this element.

� var-from is the initial point of the dependence.

� var-to is the terminal point of the dependence.

Each dimension in a multi-dimensional array gives rise to a set of direction vectors.

Each dimension/depth pair is represented by a memory element.

Subscripted Variables

Because they do not distinguish between loop-carried and loop-independent depen-

dencies, the previous set of rules is not su�cient. In the chapters that follow, we will

Chapter 2. Data Dependence Analysis 53

make considerable use of the extent and carrier attributes. So it is vital that we

have rules to �ll in these attributes.

More importantly, the rules presented so far treat all variables as scalars, thus do

not consider the e�ects of subscript expressions in array references. The subscript

analysis, performed by the builtin GCD Test, is represented by the direction ele-

ments in memory. Here, we use the direction vector information to �ll in both the

extent and carrier attributes as well as to �lter out dependencies that are not

supported by the direction vectors.

The following rule �nds dependencies that are loop-independent. It is more com-

plex than the previous rules.

Rule 2.4

(rule loop-independent

f<ce> (dependence ^from <st1> ^to <st2>

^vfrom <vt1> ^vto <vt2> ^extent nil)g
(direction ^dir '= ^var-from <vt1> ^var-to <vt2>)

-(direction ^dir <> '= ^var-from <vt1> ^var-to <vt2>)

(statement ^stmt <st1> ^order <pos>)

(statement ^stmt <st2> ^order f> <pos>g)
-->

(modify <ce> ^extent loop-independent ^carrier 0))

The variable <ce> is associated with the �rst condition element on the left hand

side. Because variables can appear on either end of a condition element, the brackets

force the correct association. The variable <ce> is bound to the memory element that

successfully matched the condition element.2

The negation unary operator, -, appears with the third condition element. This

causes rule satisfaction to fail if there exists elements in memory that match the

corresponding condition element. For Rule 2.4, the third condition element requires

that no direction di�erent from = exists for this dependence. The second condition

2Memory elements are represented externally as Rex-UPSL vectors. Memory elements are �rst-
class objects.

Chapter 2. Data Dependence Analysis 54

element requires that there is at least one = direction in the direction vector. Together,

condition elements two and three guarantee that the direction vector has only =

members.

Finally, the right hand side uses the modify special form to change the memory

element representing the dependence edge. The extent and carrier attributes are

modi�ed.

The rule is satis�ed when there exists a dependence edge whose extent attribute

is nil, there exists no < or > direction vectors associated with this edge, and the

initial point of the dependence appears textually before the terminal point of the

dependence.

The rule is satis�ed at most once for each dependence edge since the extent

attribute must be nil. The rule is satis�ed only if all direction vectors are =. This

corresponds to our previous de�nition of a loop-independent dependence.

Since a loop-independent dependence has no carrier loop, the carrier attribute

is set to 0.

For loop-carried dependencies, we must consider the set of plausible direction

vectors. Recall from De�nition 2.9 that the set of plausible direction vectors is,

essentially, all direction vectors whose �rst direction vector that di�ers from = is <.

Any dependence whose direction vectors are not plausible, is not a valid dependence.

The following rule �lls in the extent and carrier attributes for valid dependen-

cies.

Rule 2.5

(rule loop-carried

f<ce> (dependence ^from <st1> ^to <st2> ^ref ARRAY_REF

^extent <extent> ^var <v> ^type <t> ^vfrom <vt1> ^vto <vt2>)g
(direction ^dir '< ^dim <dim> ^var-from <vt1> ^var-to <vt2> ^depth <d>)

(loop ^stmt <loop> ^depth <d>)

-(direction ^dir << > < >> ^dim <dim> ^var-from <vt1> ^var-to <vt2>

^depth f< <d>g)
(statement ^stmt <st1> ^order <pos>)

Chapter 2. Data Dependence Analysis 55

(statement ^stmt <st2> ^order f<= <pos>g)
-(dependence ^from <st1> ^to <st2> ^ref ARRAY_REF ^carrier <loop>

^extent loop-carried ^var <v> ^type <t> ^vfrom <vt1> ^vto <vt2>)

-->

(if (eq? <extent> 'nil)

(modify <ce> ^extent loop-carried ^carrier <loop>)

(make dependence ^from <st1> ^to <st2> ^ref ARRAY_REF ^type <t>

^var <v> ^vfrom <vt1> ^vto <vt2>

^extent loop-carried ^carrier <loop>)))

The negated condition element uses the \or" grouping operator, << >>. Unfor-

tunately, this makes the condition element more di�cult to read. The element is

matched only if memory does not contain any > or < direction vectors at a depth less

than the �rst < direction. Condition elements two and three insure that the direction

vector for the dependence is plausible.

The right hand side modi�es the dependence edge so that the extent attribute is

loop-carried. The carrier attribute is set to the statement tag for the loop at level

of the leftmost < direction. If the dependence that triggers Rule 2.5 has already been

processed, then a dependence edge is created for another dimension. This continues

until an edge is created for each dimension.

Notice that this rule applies only to dependencies in subscripted variables. For

scalar variables, the conditions for determining a loop-carried extent and the infor-

mation required for �nding the carrier loop is somewhat di�erent. Information about

loop nesting is also needed.

Loops are represented in M by the class loop. Loop representation is more

complex than for other objects encountered so far. Since we need only two of the loop

attributes here, will postpone the enumeration of all the attributes until Chapter 4.

Rule 2.6

(rule loop-carried-scalar

f<ce> (dependence ^from <st1> ^to <st2> ^ref VAR_REF

^vfrom <vt1> ^vto <vt2> ^extent nil)g
(statement ^stmt <st1> ^order <pos> ^depth <d1>)

Chapter 2. Data Dependence Analysis 56

S

S

S

S

1

3

4

2

δ
δ

t

t

δt
S

S

S

S

1

3

4

2

δ
δ

t

t

δt

δa

δa

S

S

S

S

1

3

4

2

δ
δ

t

t

δt

δa

δaδoδo

(a) (b) (c)

Figure 5: Derivation of the data dependence graph.

(statement ^stmt <st2> ^order f<= <pos>g ^depth <d2>)

(loop ^stmt <loop1> ^depth <d1>)

(loop ^stmt <loop2> ^depth <d2>)

-->

(modify <ce> ^extent loop-carried

^carrier (if (<= <d1> <d2>) <loop1> <loop2>)))

Here the variables <d1> and <d2> are bound to the nesting depths of loops for

the two statements involved in the dependence. The carrier attribute is set to the

outermost of the two loops.

2.4.4 An Example

In this section we present a brief sketch of the DDG derivation for the following loop.

do i=1,100

S1: a(i) = a(i+1)

S2: b(2*i) = a(i)

S3: c = b(2*i+1)

S4: a(i+1) = b(2*i)+c

enddo

Chapter 2. Data Dependence Analysis 57

We assume that a parse tree has been constructed and the necessary information

such as statement, variable, and instance tags, is readily available. Further, we assume

that variable and
ow analysis has been performed and the appropriate var, flow,

statement, and loop elements are in M. In what follows, we present the derivation

of each type of dependence edge separately.

We begin with the true dependence edges (Figure 5a). The de�nition of a(i)

in S1 and the use of a(i) in S2 along with the assertion from
ow analysis that

the de�nition in S1 of a reaches the use of a in S2 satis�es the preconditions of

Rule 2.1. The dependence edge is added to M. Subscript analysis enters a single =

direction element into M. Rule 2.4 is satis�ed and the extent attribute is marked

loop-independent.

The de�nition of b(2*i) in S2 followed by the use of b(2*i+1) in S3 results in a

true dependence edge, but because the GCD Test proves that no solution exists for

the dependence equation, no direction vectors are added to M. Without direction

vectors, no rules capable of �lling in the extent can be satis�ed and the dependence

edge is never completed.

Finally, the de�nition of c in S3 followed by the use of c in S4 satis�es Rule 2.1.

In addition to the presence of the dependence edge and the loop elements, Rule 2.6

is satis�ed because S4 textually follows S3. Rule 2.4 modi�es the extent attribute to

loop-independent and sets the carrier attribute to the tag for the do statement.

The anti dependence edges (Figure 5b) are derived in a similar way. Rule 2.3

enters anti dependence edges from S1 to S4 on a, from S2 to S4 on a, from S3 to S2

on b, from S4 to S2 on b, and from S4 to S3 on c.

Rule 2.4 sets the extent attribute to loop-independent and the carrier at-

tribute to 0 for the dependence from S1 to S4 on a.

For the dependencies from S3 to S2 on b and from S4 to S2 on b, Rule 2.5 sets

the extent attribute to loop-carried and the carrier attribute to the tag value

Chapter 2. Data Dependence Analysis 58

for the loop.

Finally, for the dependence from S4 to S3 on c, Rule 2.6 sets the extent attribute

to loop-carried and the carrier attribute to the tag value for the loop.

Notice that the dependence from S2 to S4 on a does not satisfy any of the rules.

Since the direction vector associated with this dependence is (>), this otherwise valid

scalar dependence does not hold after subscript analysis.

The two output dependence edges (Figure 5c) are derived by the satisfaction of

Rule 2.2 and Rule 2.5 for the loop-carried edge, and by Rules 2.2 and Rule 2.5 for

the self-dependence edge.

2.5 Summary

In this chapter we discussed scalar and vector data dependence analysis and derived

one well known dependence test, the GCD Test. We described a rule-based approach

to deriving a data dependence graph and presented a set of rules that formally describe

the meaning of data dependence. During our discussion, we illustrated the syntax

and semantics of the experimental rule-based language, Rex-UPSL.

Chapter 3

Recurrences

In this chapter we continue our look at the data dependence graph by developing

rules to detect cycles. Further, we show how nodes can be grouped to form an acyclic

dependence graph. This acyclic graph represents the sources of parallelism in the

program. It is used in the following chapters to guide the restructuring process.

3.1 Introduction

When language level parallelism constructs are introduced into a program, either

by vectorizing statements or by scheduling loop iterations for concurrent execution,

cycles in the dependence graph must be considered.

The following loop contains a loop-carried dependence that induces a cycle in the

dependence graph.

do i=1,64

a(i) = a(i-1)*c

end

This loop is a tempting candidate for vectorization, but it cannot be vectorized.

The semantics of vector machines require that all of the operands be available prior to

the statement's execution. In this case, however, one operand depends on a previous

iteration of the loop. This is an example of a broad class of recurrence computations

in which there is a cycle in the dependence graph. Here the cycle is quite short, but

59

Chapter 3. Recurrences 60

in general the cycle could include an arbitrary number of statements. Concurrent

execution by vectorization of individual statements is inhibited by these cycles.

A cycle exists in the dependence graph when: 1) there is a path of dependencies

from Si to Sj, and 2) there is a loop-carried dependence from Sj to Si. A loop-carried

dependence is necessary because structured loops are the only iterative construct in

our model.

Although the absence of loop-carried dependencies is clearly a su�cient condition

allowing vectorization or parallelization, it is overly conservative. Using this condition

alone may cause a restructurer to abandon an otherwise useful restructuring plan.

In this chapter, we present results that allow a rule-based restructurer to use both

necessary conditions to increase the e�cacy of the restructuring process.

In the next section we formalize the notion of \a dependence path from Si to

Sj" and present two rules for �nding these paths. In Section 3, we discuss a method

that a rule-based restructurer can use to detect and represent recurrences. The re-

structuring rules in the next chapter will use information about these recurrences to

guide the restructuring process. They will also dynamically update the recurrence

representations after recurrence elimination operators have been applied.

Inevitably, some recurrences are likely to remain in the program after the restruc-

turing process. Because there may be dependencies between statements in di�erent

recurrences there is, ultimately, an order in which the recurrences themselves must

be executed. In Section 4, we present a set of rules to partition the dependence graph

into �-blocks. This forms an acyclic graph that can be topologically sorted to produce

a semantically valid statement ordering.

In the �nal section we present a single, powerful rule that performs the topological

sort and produces a semantically valid statement ordering.

Chapter 3. Recurrences 61

3.2 Transitive Closure of �

In Section 2.2 we introduced the notion of a dependence path between two statements.

This illustrated the idea of the transitive closure of the � relation. In this section, we

examine this issue in depth and present a two rules to derive the transitive closure

of the � relations represented in a dependence graph. In the next section we use this

new relation to detect the recurrences in the dependence graph.

We begin with the de�nition.

De�nition 3.1 De�ne the �+ relation inductively as,

Si �
+ Sj i�

8><
>:
Si � Sj or,

Si �
+ Sn ^ Sn � Sj where i 6= n 6= j

The �+ relation represents a chain of data dependencies between statements Si

and Sj . Notice that De�nition 3.1 uses the generic dependence relation �, hence the

de�nition of �+ does not depend on the types of data dependencies along the path

from Si to Sj.

We represent the �+ relation in M with the class dependence+. The attributes

for dependence+ are:

� path is a list of statement tags along path.

� from is the statement tag of initial point in the path.

� to is the statement tag of terminal point in the path.

Once all the edges of the dependence graph have been derived, the following rules

are employed to derived the �+ relations inM. We have a separate rule for each part

of De�nition 3.1.

Chapter 3. Recurrences 62

Rule 3.1

(rule base-case

(dependence ^from <st1> ^to f<st2> <> <st1>g ^extent <> nil)

-(dependence+ ^from <st1> ^to <st2>)

-->

(make dependence+ ^from <st1> ^to <st2> ^path (list <st1> <st2>)))

This rule handles the base case of De�nition 3.1. The second condition element

guarantees that the rule is satis�ed exactly once for each pair Si; Sj where Si � Sj.

Rule 3.2

(rule induction-step

(dependence+ ^from <st1> ^to <st2> ^path <others>)

(dependence ^from <st2> ^to f<st3> <> <st2> <> <st1>g ^extent <> nil)

-->

(unless (in? <st3> <others>)

(make dependence+ ^from <st1> ^to <st3> ^path (cons <st3> <others>))))

This rule handles the induction step of De�nition 3.1. The second condition

element uses the <> predicate and the grouping brackets to insure that the i 6= n 6= j

condition of De�nition 3.1 is satis�ed. On the right hand side, the unless special

form guarantees that the terminal point of the proposed new for �+ relation is not

already a member of the path. This prevents cycles in the closure derivation.

3.3 Finding Recurrences

Cycles in the dependence graph arise from recurrence computations in the program.

To simplifymatters, we will use the term recurrence to mean a cycle in the dependence

graph.

De�nition 3.2 If 9 i; j : Si �+Sj ^ Sj � Si, then we say that there is a recurrence

in the dependence graph.

The following theorem states that a loop-carried dependence is a required for a

recurrence in the dependence graph.

Chapter 3. Recurrences 63

Theorem 3.1 A recurrence exists in a dependence graph if and only if

9 i; j : Si �
+Sj ^ Sj�c Si

Proof If there exists i; j such that Si �+Sj ^ Sj�c Si, then by De�nition 3.2, there

exists a recurrence in the graph.

If there is a recurrence in the dependence graph, then by De�nition 3.2 there

exists statements Si and Sj such that Si �+Sj ^ Sj� Si. Without lost of generality,

we may assume that there are no loop-carried dependencies in along the dependence

path Si �+Sj. If there are, then we are done. If there are not, then by De�nition 2.6

and De�nition 3.1, the execution of Si precedes the execution of Sj since Si �+ Sj.

By De�nition 2.6 and Sj � Si, the execution of Sj precedes the execution of Si. Since

the only iterative construct in our model is the structured loop, the dependence from

Sj to Si is loop-carried. 2

3.3.1 Representing Recurrences

Representing recurrences in M is somewhat more involved because each recurrence

can have an arbitrary number of members. If M were a strictly relational database,

eachMe could contain only atomic values and M would then be a collection of nor-

malized relations [27]. Although normalized relations lead to simpler rules, using lists

inMe has advantages for the imperative code. For our representation of recurrences

we use a normalized form for the bene�t of the rules, and an unnormalized form for

the bene�t of the right hand side expressions.

We represent recurrences in M by the element class recurrence. Each mem-

ber of a recurrence is represented by the class recurrence-member. The attributes

associated with the class recurrence are:

� id is a unique recurrence identi�er.

Chapter 3. Recurrences 64

� from is a statement tag of the initial point of the loop-carried dependence.

� to is statement tag of the terminal point of the loop-carried dependence.

� members is a list of members of the recurrence.

� vname is the variable involved in the loop-carried dependence.

The attributes for the class recurrence-member are:

� id is a unique recurrence identi�er.

� stmt is a statement tag of the member.

� carrier is a statement tag of the carrier loop.

The intent here is that each recurrence has a unique symbol associated with its

id attribute. The same symbol is associated with each of the recurrence-member's

id attributes. In relational database terms, this symbol is the foreign key by which

access is gained to individual members of the recurrence.

The members attribute, however, violates the normal form requirement. This

makesM an invalid relational database, although it is still a collection of mathemat-

ical relations.

As an example of recurrence representation in M, consider the following set of

relations: S1 � S2; S2 � S3, and S3 �1 S1. Here we have a recurrence involving three

statements S1; S2, and S3, with a loop-carried dependence at depth 1 between S3 and

S1. This recurrence is represented as:

(recurrence ^id U76 ^from tS3 ^to tS1 ^members (tS1 tS2 tS3) ^vname tv)

(recurrence-member ^id U76 ^stmt tS1 ^depth 1)

(recurrence-member ^id U76 ^stmt tS2 ^depth 1)

(recurrence-member ^id U76 ^stmt tS3 ^depth 1)

Chapter 3. Recurrences 65

The recurrence identi�er, U76, is the key with which each of the recurrence mem-

bers is accessed. We will use a similar representational scheme for �-blocks.

3.3.2 Deriving Recurrences

From Theorem 3.1 we know that the necessary conditions for a recurrence is a chain of

dependencies between two statements and loop-carried dependence from the terminal

point to the initial point in the chain. The simplest case that satis�es these conditions

is a loop-carried self-dependence. The following rule handles this case.

Rule 3.3

(rule build-single-recurrences

(dependence ^var <v> ^extent loop-carried ^from <st> ^to <st>

^carrier <loop> ^vfrom <vt1> ^vto <vt2>)

-->

(let ([<id> (gensym)])

(make recurrence ^id <id> ^members (cons <st> nil)

^from <st> ^to <st> ^vname <v>)

(make recurrence-member ^id <id> ^stmt <st> ^carrier <loop>)))

The variables associated with the from and to attributes are the same. This

forces these variables to be bound to the same value. The extent attribute of the

dependence is loop-carried.

The right hand side invokes the gensym special form to create a unique symbol to

be used as the recurrence identi�er. This identi�er is associated with the id attribute

of both the recurrence element and the recurrence-member element.

For dependence chains longer than one element and an accompanying loop-carried

dependence, the following rule constructs the representation of the recurrence in M.

Rule 3.4

(rule build-multi-recurrences

(dependence ^var <v> ^extent loop-carried ^from <st1> ^to <st2>

^carrier <loop> ^vfrom <vt1> ^vto <vt2>)

(dependence+ ^from <st2> ^to <st1> ^path <others>)

-->

Chapter 3. Recurrences 66

(let ([<id> (gensym)])

(make recurrence ^id <id> ^members <others> ^from <st1>

^to <st2> ^vname <v>)

((rec loop

(lambda (l)

(if (null? l) nil

(begin

(make recurrence-member ^id <id> ^stmt (car l) ^carrier <loop>)

(loop (cdr l)))))) <others>)))

The right hand side generates and binds a new symbol to the variable <id>. This

symbol is associated with the id attributes of the recurrence element and each of

the recurrence-member elements.

3.4 �-Blocks: Building an Acyclic DDG

It is important to node that every recurrence is found by the previous two rules.

Some recurrences might be subcycles of other recurrences. While some recurrences

are guaranteed to be maximal recurrences. The set of maximal recurrences are called

�-blocks [46, 49].

Given the set of �-blocks for a dependence graph G, we can construct a new graph

G0 whose nodes are the �-blocks of G and whose edges are the dependencies between

statements in di�erent �-blocks. G0 represents the strongly connected components of

G. The directed edges in G0 impose a partial ordering on the execution of �-blocks.

G0 is clearly an acyclic graph. A topological sort yields a valid execution ordering for

the �-blocks. We will see in the Chapter 6 that a series of transformation operators

may result in a di�erent set of �-blocks and a di�erent execution ordering.

We use a representation for �-blocks that is similar to recurrences. The class

pi-block represents the �-blocks in M while the class pi-block-member represents

the members of the �-block. The attributes for the class pi-block are:

� id is a unique �-block identi�er.

Chapter 3. Recurrences 67

� seq is a sequence number used in ordering �-blocks.

The attributes for class pi-block-member are:

� id is a unique �-block identi�er.

� stmt is a statement tag of the member.

� cnt is a recurrence reference count.

To build the set of �-blocks, we need to �nd the strongly connected components of

the dependence graph. In an imperative environment, Tarjan's algorithm [63] would

be best. For our purposes, a more computationally expensive, yet simpler approach

will do. The following lemma serves as the basis for our approach.

Lemma 3.1 If two recurrences have a statement in common, then the union of state-

ments in the recurrences form a larger recurrence.

Proof Given two recurrences, A and B and a statement S in common, there is a

path from a node in A to node S in B. Conversely, there is a path from a node in B

to a node S in A. By De�nition 3.2 there is a path from any statement in A to any

statement in B and from any statement in B to any statement in A. Hence, A [B is

a recurrence. 2

Essentially, our approach is to merge recurrences until we have disjoint sets. Al-

though this is not the most computationally e�cient approach, it is suitable for the

rule-based programming paradigm.

We use two new element classes, merge and merged. The class merge has the

attributes:

� into is the �-block identi�er to merge into.

� from is a recurrence identi�er to merge from.

Chapter 3. Recurrences 68

The class merged as the attributes:

� id is a recurrence identi�er.

� stmt is the tag of merged statement.

We begin by creating a pi-block for each statement that is not a member of a

recurrence.

Rule 3.5

(rule make-statements

(statement ^stmt <st> ^class f<> COMMENT <> IF <> LOGIFg)
-(recurrence-member ^stmt <st>)

-->

(let ([<id> (gensym)])

(make pi-block ^id <id> ^seq (set! *sequence* (+ 1 *sequence*)))

(make pi-block-member ^id <id> ^stmt <st> ^cnt 1)))

Next, we generate subgoals to merge those statements that are members of exactly

one recurrence into an (as yet) unrepresented �-block.

Rule 3.6

(rule no-merge

(recurrence-member ^id <id> ^stmt <st>)

-(recurrence-member ^id f<> <id>g ^stmt <st>)

-(merge ^from <id>)

-->

(make merge ^from <id> ^into (gensym)))

For recurrences that are not disjoint, the following two rules generate a subgoals

to merge the recurrences into common �-blocks.

Rule 3.7

(rule merge-starter

(recurrence-member ^id <id1> ^stmt <st>)

(recurrence-member ^id f<id2> <> <id1>g ^stmt <st>)

-(merge ^from <id1>)

-(merge ^from <id2>)

-->

(let ([<pbid> (gensym)])

(make merge ^from <id1> ^into <pbid>)

(make merge ^from <id2> ^into <pbid>)))

Chapter 3. Recurrences 69

Rule 3.8

(rule merge-odd

(recurrence-member ^id <id> ^stmt <st>)

(pi-block-member ^id <pbid> ^stmt <st>)

-(merge ^from <id> ^into <pbid>)

-->

(make merge ^from <id> ^into <pbid>))

Finally, for each merge subgoal, the following three rules carry out the indicated

merge, creating pi-blocks where necessary.

Rule 3.9

(rule merge-first

(merge ^from <id> ^into <pbid>)

(recurrence-member ^id <id> ^stmt <st>)

-(pi-block-member ^id <pbid> ^stmt <st>)

-->

(make merged ^id <id> ^stmt <st>)

(make pi-block-member ^id <pbid> ^stmt <st> ^cnt 1))

Rule 3.10

(rule merge

(merge ^from <id> ^into <pbid>)

(recurrence-member ^id <id> ^stmt <st>)

f<ce> (pi-block-member ^id <pbid> ^stmt <st> ^cnt <c>)g
-(merged ^id <id> ^stmt <st>)

-->

(make merged ^id <id> ^stmt <st>)

(modify <ce> ^cnt (+ 1 <c>)))

Rule 3.11

(rule make-pi-block

(merge ^from <id> ^into <pbid>)

-(pi-block ^id <pbid>)

-->

(make pi-block ^id <pbid> ^seq (set! *sequence* (+ 1 *sequence*))))

3.5 �-Block Order

In the previous section we alluded to ordering �-blocks of a dependence graph to

obtain valid execution order. Since the �-blocks together with the dependence edges

Chapter 3. Recurrences 70

form an acyclic graph, a topological sort is possible. Given the order-statements

subgoal, the following rule is satis�ed until no two �-blocks are out of order relative

to their seq attributes.

Rule 3.12

(rule sort

f<ce0> (order-statements)g
f<ce1> (pi-block ^id <id1> ^seq <pos1>)g
f<ce2> (pi-block ^id f<id2> <> <id1>g ^seq f<pos2> < <pos1>g)g
(pi-block-member ^stmt <st1> ^id <id1>)

(pi-block-member ^stmt <st2> ^id <id2>)

(dependence ^from <st1> ^to <st2>)

-->

(remove <ce0>)

(make order-statements)

(modify <ce1> ^seq <pos2>)

(modify <ce2> ^seq <pos1>))

The second, third, and �fth condition elements on the left hand side are critical.

These are satis�ed if and only if there exists two distinct (note the <id2> <> <id1>

clause) �-blocks in an ordering that contradicts a dependence assertion. The modify

actions on the right hand side change the ordering change the ordering to conform to

the dependence assertion.

For reasons discussed in Chapter 6, the �rst condition element on the left hand side

together with the �rst expression on the right hand side serve to keep the inference

engine focused on this rule. Without this focus, other rules, possibly some that add

or delete �-blocks, could be selected for execution while this rule is active.

3.6 Summary

In this chapter we have presented a representational scheme for dependence paths,

recurrences, and �-blocks. We have developed a series of rules for deriving the de-

pendence paths, detecting recurrences, and partitioning the graph into �-blocks.

Chapter 3. Recurrences 71

In the next chapter we use the derived dependencies, recurrences, and �-blocks to

guide the transformation operator selection process.

Chapter 4

Transformation Operators

The previous chapters provided us with the theory necessary to insure semantic in-

variance of a program after the application of one or more transformation operators.

They also provided us with a representation schema for, and the rules to derive, data

dependencies, recurrences, and �-blocks.

This chapter begins our discussion of the transformation operators. Here we

present a detailed look at several transformation operators. Our discussion focuses

on the preconditions that must exist before an operator can be applied. We also

pay special attention to the conditions that suggest a particular operator. These

conditions play an important role in selecting operators and planning a sequence of

operators.

4.1 Introduction

The restructuring process consists of selecting and applying a series of transformation

operators. The goal of the restructuring process is to improve the match between the

programming language and the underlying hardware. The process is, in part, one of

�nding and exploiting parallelism already present in the original serial program. But,

�nding sources of parallelism is not the whole story. The match can also be improved,

and thus the performance improved, by increasing data localization on non-uniform

memory access machines [51], optimizing cache performance [36], re-using registers,

72

Chapter 4. Transformation Operators 73

and other optimizations.

In a series of transformation operators, each operator either improves the program-

machine match or it converts the program into a form suitable for the application

of another operator. For each operator there is a set of indications that suggest

the operator's use. The use of a particular operator is indicated by either its direct

improvement of the match or its ability to convert the program into a form required

by some other operator.

Also associated with some operators is a set of counter-indications. These are

conditions, such as a recurrence or the absence of a particular machine property, that

prevent the application of a given operator.

Indications can be viewed as a �rst approximation to the usefulness requirement,

while counter-indications are a similar approximation of the validity requirement.

In this chapter we examine in detail a small, but important, set of transformation

operators. For each operator there is a set of preconditions that must be satis�ed

by M for the operator to be applied. Some preconditions are complex enough to

require their own rules, others can be speci�ed in the condition elements on the

left hand side of the rule that selects the transformation operator. In either case,

encapsulating preconditions in rules serves not only to modularize the preconditions,

but also to formalize them.

In the next chapter, we use the transformation operators discussed here to illus-

trate a hierarchical, rule-based planning strategy.

4.2 Properties

The restructuring process attempts to convert one program representation into an-

other, semantically equivalent, representation that more closely matches the proper-

ties of the target machine. This means that we must account for the target machine's

Chapter 4. Transformation Operators 74

Class Property
vector-capable Has vector hardware

parallel-capable Has parallel hardware
allow-vector-masks Has vector masking
allow-nonunit-stride Strides other than 1 allowed

vector-length Speci�es min, max, and best lengths
grain-size Speci�es min and best grain sizes

Table 2: Machine property classes in M.

properties. Implicitly, it also means we must account for the program's properties. In

this section we discuss both of these issues and develop a representation for properties

in M.

4.2.1 Machine Properties

For each target machine there is a vast array of properties that describe architectural

features of the machine. Some of these properties are speci�c to the machine. Some

are speci�c to the class of the machine (SIMD, MIMD, etc).

Whatever the source of the properties, some are essential in the restructuring

process. Whether the machine is capable of vector or parallel processing, for example,

is clearly essential information. The minimum, maximum, and optimum vector sizes,

the feasibility of non-unit strides, and the vector masking capabilities are important

for vector processors. For parallel processors, the minimum and optimal grain sizes

are important. These are just a few of the many useful machine properties, others

can be found in the literature [68, 43, 28, 18, 65, 22, 37, 30]. In order to simplify the

discussion, we consider only a small set of properties (see Table 2).

Some of these properties, like the best vector length, are only rough �rst approxi-

mations. Properties such as this often depend on more than what can be derived from

a static, analytic model of the target machine. Indeed a useful avenue of research is

Chapter 4. Transformation Operators 75

to develop rule-based reasoning methods that combine information obtained from an

analytic machine model and indepth semantic analysis of the program to derive more

accurate sets of machine properties.

4.2.2 Program Properties

Results in the previous two chapters provide us with almost all the program properties

we need. We presented both representations and derivation rules for data dependen-

cies, recurrences, and �-blocks. Other properties, such as statement classi�cations

and control dependencies1 were derived from a traditional parse of the program.

Representing Loop Properties

Loops can be nested to arbitrary depths. Loops have lower and upper bounds along

with some increment value. Associated with a loop, is some collection of statements,

often called the loop body.

As with recurrences and �-blocks, loops represent a non-
at relational domain.

To simplify its use in rules, we normalize the representation using a unique symbol

as a foreign key to access members of the loop.

A loop is represented in M by the class loop. The attributes for loop are:

� id is the unique loop identi�er.

� stmt is the statement tag of the loop header.

� depth is the nesting level of this loop.

� lower is the lower bound for the loop.

� upper is the upper bound for the loop.

1Recall that the control parent of each statement is contained in the statement class.

Chapter 4. Transformation Operators 76

� step is the increment value for the loop.

� request-id is used in updating loop information.

Each statement in the body of the loop is represented by the class loop-member. The

attributes for loop-member are:

� id is the unique loop identi�er.

� stmt is the tag for this statement.

� parallelizable is yes if the statement is parallelizable.

Finally, for each loop we maintain the separate class loop-profile.

� id is the unique loop identi�er.

� stride is ok if the stride is acceptable.

� length is ok if the loop length is acceptable.

Deriving Loop Properties

The loop-profile class contains the derived properties stride and length. The

following rules use machine properties along with the loop properties to derive these

values.

Rule 4.1

(rule nonunit-stride-check

(loop ^id <id> ^step <> 1)

f<ce> (loop-profile ^id <id> ^stride nil)g
(allow-nonunit-stride)

-->

(modify <ce> ^stride ok))

Chapter 4. Transformation Operators 77

In this rule, the stride attribute is marked ok if the loop is a non-unit stride, but

such strides are allowed by the hardware. For some machines, such as the Cyber 205,

the use of non-unit strides require expensive scatter/gather operations [43]. Often,

the cost of these operations may dominate the performance enhancement gained by

vectorization. For machines like the Cyber, this rule might be modi�ed to allow

non-unit strides if the length of the vector operation is above the some break even

threshold.

Rule 4.2

(rule unit-stride-check

(loop ^id <id> ^step 1)

f<ce> (loop-profile ^id <id> ^stride nil)g
-->

(modify <ce> ^stride ok))

If the stride is 1, then this rule modi�es the stride attribute of the loop's pro�le.

Rule 4.3

(rule length-check-constant

(loop ^id <id> ^length <c>)

(vector-length ^min f<= <c>g)
f<ce> (loop-profile ^id <id> ^length nil)g

-->

(modify <ce> ^length ok))

Rule 4.4

(rule length-check-expr

(loop ^id <id> ^length EXPR)

f<ce> (loop-profile ^id <id> ^length nil)g
-->

(modify <ce> ^length ok))

These rules modify the length attribute if the loop length (trip count) is greater

than or equal to the minimum allowable vector length, or the loop length is not

known at compile time. The length attribute is used to determine if vectorization

will improve performance.

Chapter 4. Transformation Operators 78

The startup costs for a vector instruction is always greater than the cost to pro-

duce a single result once the pipeline is full. These startup costs are often quite high.

If the number of instructions to be executed by a single vector instruction is below

some minimum threshold, there will be a net performance loss in using the vector

instruction as opposed to a traditional loop. This threshold is highly machine depen-

dent. It also can depend on the vector instruction, state of the cache, and many other

factors. These two rules represent only a �rst approximation to the general problem

of �nding the break even point.

Program References

Two additional program properties are useful. The class function-reference lists

each statement that contains a reference to function. The attributes are:

� function is the function's name.

� stmt is the statement's tag.

The class reference distinguishes each variable reference within each statement as ei-

ther a scalar reference, denoted by VAR_REF, or array reference, denoted by ARRAY_REF.

The attributes are:

� var is the referenced variable's name

� stmt is the statement's tag.

� var-type is either ARRAY_REF or VAR_REF

Chapter 4. Transformation Operators 79

4.3 Vectorization

In terms of potential performance enhancement, vectorization is one of two primary

transformation operations that improve the match between a serial program and a su-

percomputer class target machine. The other primary transformation, parallelization,

is discussed in the next section. In this section, we discuss a rule-based scheme for

�nding potential vectorization candidates and applying the vectorization transforma-

tion operator. We discuss methods for classifying statements as vectorizable, selecting

statements that meet the preconditions for vectorization, and selecting operators to

create the preconditions for vectorization.

4.3.1 Finding Vectorizable Statements

Not all statements are candidates for vectorization. Clearly, statements that perform

I/O, invoke functions, or have arbitrary subscript expressions, are not vectorizable.

These restrictions seem rather severe. One might think that few statements are

vectorizable. But, in practice, many statements can be vectorized.

The following de�nition makes clear precisely what we mean by a vectorizable

statement.

De�nition 4.1 A statement S 2 P in program P is vectorizable if and only if all of

the following are true,

� The machine is vector capable.

� S is an assignment statement.

� S is a statement inside a loop.

� S contains at least one array reference whose subscript expression contains the

induction variable for the loop.

Chapter 4. Transformation Operators 80

� The stride for the innermost loop containing S is allowed.

� The length (trip count) of the innermost loop containing S is above the threshold

limit.

� S contains no function references.

� The vectorization of S is not explicitly inhibited.2

De�nition 4.1 leads directly to the following rule.

Rule 4.5

(rule vectorizable

(vector-capable)

(vectorize-phase)

(statement ^class ASSIGN ^stmt <st> ^depth <d>)

(reference ^stmt <st> ^var-type ARRAY_REF)

(loop ^id <id> ^depth <d>)

(loop-profile ^id <id> ^length ok ^stride ok)

-(function-reference ^stmt <st>)

-(vectorizable ^stmt <st>)

-(inhibit-vectorization ^stmt <st>)

-->

(make vectorizable ^stmt <st>))

This rule adds an element of the class vectorizable for each statement in region

R of program P that is vectorizable by De�nition 4.1. In the next section we will

see that a precondition for the vectorize transformation operator is a corresponding

vectorizable element in M.

4.3.2 Vectorizing Operators

In the restructuring phase in which the rules of this chapter are active, the transfor-

mation operators are represented in M. For reasons discussed in the next chapter,

2Inhibiting vectorization, discussed in the next chapter, is used during backtracking in planning.

Chapter 4. Transformation Operators 81

the operators are not applied immediatedly. In this section we discuss the derivation

and representation of two vectorizing operators.

The vectorize Operator

As mentioned previously, a statement may not be vectorized if it is a member of a

recurrence carried by the innermost loop. For vectorizable statements outside of IF

statements that are not members inner-loop recurrences, the following rule adds the

element class vectorize to M.

Rule 4.6

(rule vectorize

(vectorizable ^stmt <st>)

(statement ^stmt <st> ^control <cpid> ^depth <d>)

(loop ^stmt <loop> ^depth <d>)

-(recurrence-member ^stmt <st> ^carrier <loop>)

-(statement ^stmt <cpid> ^class << IF LOGIF >>)

-(vectorize ^stmt <st>)

-->

(make vectorize ^stmt <st>))

The vectorize-with-guard Operator

IF statements denote conditional execution of one or more statements. A direct

vectorization of a statement in the body of an IF may change the result of the loop

because during some iterations, the statement may not be executed. Some machines

are capable of conditional vector execution. This property is represented by the

element class allow-vector-masks. The following rule is identical to Rule 4.6, except

that it requires the control parent to be an IF statement and the machine property

allow-vector-masks. The rule generates a vectorize-with-guard element.

Chapter 4. Transformation Operators 82

Rule 4.7

(rule vectorizable-guard

(vectorizable ^stmt <st>)

(allow-vector-masks)

(statement ^stmt <st> ^control <cpid> ^depth <d>)

(loop ^stmt <loop> ^depth <d>)

-(recurrence-member ^stmt <st> ^carrier <loop>)

(statement ^stmt <cpid> ^class << IF LOGIF >>)

-(vectorize-with-guard ^stmt <st>)

-->

(make vectorize-with-guard ^stmt <st> ^guard-stmt <cpid>

^guard-var (generate-temporary-variable)))

The intent here is that a loop of the form,

do i=1,100

if (k(i).gt.10) a(i) = a(i)*k(i)

enddo

is vectorized as,

do i=1,100

%k(i) = k(i).gt.10

enddo

where(%k(1:100)) a(1:100) = a(1:100)*k(1:100)

The variable %k is a compiler generated mask array that holds the value .true.

for each element of k that is greater than 10. The where clause is a guard that allows

the element by element assignment to array a to succeed only when the corresponding

element of the mask array is .true..3

This generates an additional statement which in turn can sometimes be vectorized.

But it also generates a dependence from the mask array to the new vector statement.

3The where clause is part of the Fortran 90 standard.

Chapter 4. Transformation Operators 83

This technique of converting the control dependence to a data dependence is related

to if-conversion [5] used in PFC [8].

The following rule adds dependence created by the if-conversion.

Rule 4.8

(rule if-conversion

(vectorize-with-guard ^stmt <st> ^guard-var <guard> ^guard-stmt <if>)

-(vectorize-if ^stmt <if>)

-->

(make dependence ^from <if> ^to <st> ^extent loop-independent

^var <guard> ^type true ^ref ARRAY_REF)

(make vectorize-if ^stmt <if> ^guard-var <guard>))

4.3.3 Changing Recurrences

Both Rule 4.6 and Rule 4.7 require that the statement not be part of recurrence carried

by the innermost loop. In this section, we examine two transformation operators, loop

interchange and scalar expansion. Loop interchange can be used to move a recurrence

to an outer loop, while scalar expansion can be used to break a recurrence. In either

case, the change can allow some statements to be vectorized.

Loop Interchange

Wolfe [72], Allen and Kennedy [6], and Banerjee [11] have studied the loop interchange

problem extensively. Loop interchange is widely used in restructuring compilers pri-

marily because it represents a powerful method with which one can exploit statement

level parallelism, reduce memory bank con
icts, or increase register utilization. A

loop interchange transformation takes a loop of the form,

Chapter 4. Transformation Operators 84

L1:do i=1,3

L2: do j=1,3

a(i,j) = a(i+1,j+1)

enddo

enddo

and converts it into a loop of the form,

L2:do j=1,3

L1: do i=1,3

a(i,j) = a(i+1,j+1)

enddo

enddo

S1,1S S

S

S

S

S S

S

S

1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

S1,1S S

S

S

S

S S

S

S

1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

(a) (b)

Figure 6: Dependencies before and after valid loop interchange.

Loop interchange is perhaps the most basic of all restructuring transformations.

It is implemented in nearly every commercial restructuring compiler. It is most prof-

itable in vectorization when an inner loop carries a dependence that can be exchanged

Chapter 4. Transformation Operators 85

for an outer loop that does not carry a dependence. The inner loop can then be vec-

torized if the a�ected loop-carried dependence was part of a recurrence that had

previously inhibited vectorization.

In some cases, a loop permutation changes the grain size of a parallelized outer

loop. By increasing the grain size, the startup and scheduling overhead can be justi�ed

by larger units of work.

Interchanging loops also interchanges the loop bounds on the innermost loop.

This can change a loop's stride through memory, often an important consideration

for optimizing memory access.

Together with strip mining, loop permutation can be used to optimize cache usage

by increasing the locality of data reference [36, 1].

Interchanging loops may increase the size of the vector, hence reduce the startup

overhead. For example,

do i=1,100

do j=1,5

a(i,j) = a(i,j)*b(i)+c(i,j)

enddo

enddo

can be vectorized, but the resulting code executes 100 small vectors. Interchanging

the loops and vectorizing yields code the executes 5 long vectors instructions. The

impact of the startup overhead is signi�cantly lower.

It is important to note that no new statements are executed and no statements

that are executed in the original loop are left out of the restructured loop. All the

dependencies that exist in the original loop remain in the restructured loop. However,

the direction of some of the dependencies may change. If a loop interchange results

in changing the direction of some or all of the dependencies, the transformation is

invalid.

Chapter 4. Transformation Operators 86

Consider again the previous example of loop interchange.

L1:do i=1,3

L2: do j=1,3

a(i,j) = a(i+1,j+1)

enddo

enddo

Figure 6 makes this notion of direction change more clear. Figure 6a shows the

original dependencies. The statement instances are represented by nodes while the

dependencies are represented by solid directed edges. Dotted directed edges represent

the execution
ow between statement instances.

L2:do j=1,3

L1: do i=1,3

a(i,j) = a(i+1,j+1)

enddo

enddo

After L1 and L2 are interchanged (Figure 6b), each instance retains the same

dependence relation, hence the loop interchange is valid.
Consider the following, slightly di�erent loop,

L1:do i=1,3

L2: do j=1,3

a(i,j) = a(i-1,j+1)

enddo

enddo

and the corresponding loop interchange,

L2:do j=1,3

L1: do i=1,3

a(i,j) = a(i-1,j+1)

Chapter 4. Transformation Operators 87

S1,1S S

S

S

S

S S

S

S

1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

S1,1S S

S

S

S

S S

S

S

1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

(a) (b)

Figure 7: Dependencies before and after invalid loop interchange.

enddo

enddo

The dependencies are illustrated in Figures 7a and 7b. Notice that the loop

interchange changes a true dependence into an anti dependence. This transformation

is invalid.

What preconditions must exist in order for a particular loop interchange to be

valid? This question is examined in detail in the literature. The answer can essentially

be formulated in terms of direction vectors as follows. Each loop interchange results

in a corresponding permutation of the direction vectors of each of the dependence

relations associated with the statements in the body of the loops. If the permutation

changes the direction of a dependence, then the interchange is invalid.

Lemma 4.1 If a loop interchange changes leftmost loop-carried direction of any di-

rection vector from a < direction to a > direction, then the loop interchange is invalid.

Proof See [11]. 2

Chapter 4. Transformation Operators 88

For example, a pair of loops with direction vectors, f(=,<),(<,>)g, could not be

interchanged because the direction vector would change from (<,>) to (>,<). Here

the leftmost loop-carried direction is changed from < to >, hence the interchange is

invalid.

Although we have mentioned several reasons for loop interchange, the emphasis

of this section is changing recurrences to enable vectorization. Here the primary

reason for loop interchange is to move a recurrence to an outer loop, thus allowing

vectorization of an inner loop. The following rule is satis�ed by these conditions as

well as the conditions of Lemma 4.1.

Rule 4.9

(rule loop-interchange

(vectorizable ^stmt <st>)

(statement ^stmt <st> ^depth <d1>)

f<ce1> (loop ^stmt <inner> ^depth <d1>)g
(recurrence-member ^stmt <st> ^id <id> ^carrier <inner>)

(recurrence ^id <id> ^from <st1> ^to <st2> ^vname <v>)

(dependence ^var <v> ^ref ARRAY_REF ^from <st1> ^to <st2>

^vfrom <vt1> ^vto <vt2> ^carrier <inner>)

(direction ^dir '< ^depth <d1> ^dim <dim> ^var-from <vt1> ^var-to <vt2>)

(direction ^dir '= ^depth <d2> ^dim <dim> ^var-from <vt1> ^var-to <vt2>)

f<ce2> (loop ^stmt <outer> ^depth <d2>)g
-(interchange-loops ^this <d1> ^that <d2>)

-(direction ^dir '> ^depth <d1> ^carrier-depth >= <d2>)

-(direction ^dir <> '= ^depth <d2> ^dim <> <dim>

^var-from <vt1> ^var-to <vt2>)

-->

(modify <ce1> ^depth <d2>)

(modify <ce2> ^depth <d1>)

(make interchange-loops ^this <d1> ^that <d2> ^request-id (gensym)

^reason vectorize ^stmt <st> ^id <id>

^inner <outer> ^outer <inner>))

The left hand side is long, but not overly complex. The �rst six condition elements

are satis�ed if a vectorizable statement is a member of a recurrence carried by the

innermost loop.

Chapter 4. Transformation Operators 89

The next two condition elements are satis�ed when: 1) there exists a < direction

associated with the dependence carrying loop, and 2) there is a = direction in the same

dimension associated with an outer loop. The reason that we require a = direction

in some dimension associated with an outer loop is that any other direction would

maintain the recurrence at its current level and the loop-interchange would not be

useful.

The �rst of the �nal two condition elements requires that there exist no > direction

whose carrier loop is between the outer and inner loop, inclusive. This guarantees

that the interchange does not move a > direction to the left of any < direction.4

The last condition element prevents a pathological case. Consider the following

loop with the direction vector, (=,<) for one dimension and the direction vector,

(<,=) in the other dimension.

L1:do j=2,n

L2: do i=2,n

a(i,j) = a(i-1,j-1)+b(i)

enddo

enddo

Without the last condition element, Rule 4.9 would interchange L1 and L2, yielding,

L2:do i=2,n

L1: do j=2,n

a(i,j) = a(i-1,j-1)+b(i)

enddo

enddo

which would satisfy Rule 4.9, yielding the original loop nest. The process would

continue ad in�nitum.

4Recall that only < directions can be associated with levels that carry dependencies.

Chapter 4. Transformation Operators 90

Scalar Expansion

Some recurrences cannot be moved to outer loops. Perhaps there is no outer loop

to move the recurrence to or the conditions of Rule 4.9 are not satis�ed. In these

circumstances, scalar expansion [49] can sometimes be applied to eliminate a recur-

rence.

The idea behind scalar expansion is simple. Recall from Chapter 2 that output

and anti dependencies arise from the re-use of variables. With the scalar expansion

operator, we provide distinct variables for every use by expanding scalars into arrays.

The drawback is, of course, more memory usage. The bene�t, however, might be

faster execution.

As an example, consider the following loop.

do i=1,100

S1: x = a(i)+b(i)

S2: c(i) = x*2

enddo

The dependencies on x, S1 �+ S2 and S2 �c S1, form a recurrence that inhibits the

vectorization of S1 and S2. A scalar expansion of x into the new array %x, yields the

following loop.

do i=1,100

S1: %x(i) = a(i)+b(i)

S2: c(i) = %x(i)*2

enddo

Both S1 and S2 can now be vectorize.

The scalar expansion operator is represented inM with the class scalar-expand

whose attributes are:

Chapter 4. Transformation Operators 91

� var is the name of variable to expand.

� stmt is the statement's tag.

� reason is the reason for the expansion.

� wrt-loop is the loop to expand with respect to.

As with loop interchange, scalar expansion is attempted only when it results in

changing a recurrence that directly inhibits the vectorization of a statement. The

following rule adds an element of the class scalar-expand under the appropriate

conditions.

Rule 4.10

(rule scalar-expansion

(vectorizable ^stmt <st>)

(statement ^stmt <st> ^depth <d>)

(loop ^stmt <loop> ^depth <d>)

(recurrence-member ^stmt <st> ^id <id> ^carrier <loop>)

(recurrence ^id <id> ^from <st1> ^to f<st2> <> <st1>g ^vname <v>)

(dependence ^var <v> ^type anti ^ref VAR_REF ^carrier <loop>)

-(dependence ^var <v> ^type true ^extent loop-carried)

-(scalar-expand ^var <v>)

-->

(make scalar-expand ^var <v> ^wrt-loop <loop>

^reason break-then-vectorize ^stmt <st>))

The �rst �ve condition elements require that a vectorizable statement be a mem-

ber of a recurrence and that the dependence causing the recurrence is a scalar anti

dependence carried by the inner loop. The next condition element requires that there

be no loop-carried true dependencies on the same variable. If there are true depen-

dencies, a more complex transformation involving partial loop unrolling is required.

Chapter 4. Transformation Operators 92

4.4 Parallelizing Loops

As mentioned in Chapter 1, some machines have vector hardware, some have parallel

hardware, some have both. In this section, we focus on the parallel execution of loop

iterations. This is a common form of parallelism and is supported by most parallel

dialects of the Fortran language. To simplify the discussion, only the doall [29]

style constructs that impose no explicit synchronization between loop iterations are

considered. Other constructs, such as doaccross [29], that allow synchronization are

not discussed.

For semantic invariance the parallelize transformation operator requires, among

other things, that no loop-carried dependencies exist. The reason for this should

be clear. Given two iterations of a loop assigned to separate processors, absent

synchronization, no guarantee can be made about the execution order of the iterations.

If a loop-carried dependence exists, then a semantically required order is imposed on

the execution of the loop iterations. Without synchronization, the required order may

be violated.

There are other considerations for parallelized loops. The semantics of I/O op-

erations are usually unde�ned if executed in parallel. For our discussion, if the loop

body contains I/O statements, the loop is not eligible for parallelization.

Likewise, the semantics of parallel function evaluation is usually unde�ned. Thus,

loop bodies that contain function references are similarly ineligible for parallelization.

The following rule is similar to Rule 4.5. It marks statements as parallelizable if

they do no I/O and contain no function references.

Rule 4.11

(rule parallelizable

(parallelize-phase)

(parallel-capable)

f<ce> (loop-member ^stmt <st> ^parallelizable no)g
-(function-reference ^stmt <st>)

-(statement ^stmt <st> ^class << WRITE FORMAT READ >>)

Chapter 4. Transformation Operators 93

-->

(modify <ce> ^parallelizable yes))

If all statements in the loop are marked as parallelizable and the loop is not a

carrier of any dependence, then the loop can be parallelized.

Rule 4.12

(rule parallelize-loop

(loop ^id <id> ^stmt <loop>)

-(loop-member ^id <id> ^parallelizable no)

-(dependence ^extent loop-carried ^carrier <loop>)

-->

(make parallelize-loop ^id <id> ^stmt <loop>))

4.4.1 Localization

As with vectorization, when parallelizing a loop, we require that the loop not be a

carrier of a dependence. A principle similar to scalar expansion, known as scalar

localization, can be used to break loop-carried dependencies.

Many dialects of Fortran support local declarations whose scope is the body of

a loop, but whose extent, semantically at least, is just one iteration of the loop. When

iterations of a loop are distributed among the available processors, a separate copy

of each loop local variable is allocated on each processor. Since each iteration of the

loop has a local variable, the vectorizer's job of expanding a scalar into an array is a

simple matter of local variable declaration for the parallelizer. The implementation

(language and hardware) handles the dirty work for the parallelizer.

This is the companion rule for scalar expansion. We localize scalars that are loop-

carried. If there are no loop-carried dependencies and all members of the loop are

parallelizable, then the loop can be parallelized.

Rule 4.13

(rule localize-scalar

(loop ^id <loop-id> ^stmt <loop>)

Chapter 4. Transformation Operators 94

-(loop-member ^id <id> ^parallelizable no)

(dependence ^var <v> ^extent loop-carried ^type << output anti >>

^carrier <loop> ^ref VAR_REF)

-(dependence ^var <v> ^extent loop-carried ^type true ^carrier <loop>)

-(localize-scalar ^var <v> ^stmt <loop>)

-->

(make localize-scalar ^var <v> ^stmt <loop>))

4.5 Summary

In this chapter we have discussed the transformation operators, their preconditions,

and the representation of the associated program and machine properties. In the next

chapter, we extend the ideas presented here by presenting a set of rules for updating

M, planning, backtracking, and re�ning plans.

Chapter 5

Planning

The previous chapter introduced several program transformation operators along with

a set of rules to select operators. In this chapter we examine the issues involved in

planning a sequence of transformation operators. We develop a planning model and

present a set of rules, based on the operators from Chapter 4, that implement the

model.

5.1 Introduction

Program restructuring is a process that involves planning a sequence of transformation

operators to a�ect some performance improvementwhile at the same timemaintaining

the semantic properties of the program. In this chapter we examine the issues involved

in �nding a sequence of transformation operators that guarantee semantic invariance

(validity constraint) and improve performance (usefulness constraint).

Planning a sequence of operators can be di�cult. By de�nition, transformation

operators change the program in some way. These changes often interact. Such

interaction can cause an otherwise appropriate operator to violate one or both of the

restructuring constraints.

In the next section we present a hierarchical planning model for a rule-base re-

structurer. In this model, the planner attempts to avoid foreseeable operator con
icts

while constructing a crude plan. The crude plan is examined and repaired by a higher

95

Chapter 5. Planning 96

level planner. If a crude plan is unsalvageable, the planner backtracks, constructing

a new plan that is again subject to evaluation.

A critical feature of this model is that the planner maintains a consistent de-

scription of the transformed program through the use of update rules associated with

each operator. For each operator, the update rules make the appropriate changes to

M so that M represents the program properties present after the application of the

operator.

5.2 Planning Model

The interactions between operators make planning a sequence of operators a non-

trivial task. In the �eld of arti�cial intelligence, planning methods have received

a considerable amount of attention. Hierarchical strategies have proven useful in

domains where operator interaction is signi�cant [60].

Hierarchical planning involves developing plans of successively higher resolution

at successively higher levels. The �nal plan, derived from the highest planning level,

has the desired resolution. From this perspective, hierarchical planning is an iterative

process in which initial, crude plan is repaired or re�ned in successive phases until a

plan emerges that is free of defects.

In this section, we present a hierarchical planning model in which successive phases

focus on re�ning the program/machine match. The initial, crude plan developed from

property-directed rules of Chapter 4 is re�ned by the operator-directed re�nement

rules presented below.

The planning model presented here is based primarily on empirical results and

experience in program restructuring. The approach we take di�ers somewhat in that

no hierarchy of abstraction spaces (which are usually associated with hierarchical

planners) are employed. Instead, we focus on a hierarchy of conditions. This condition

Chapter 5. Planning 97

hierarchy strati�es the operator selection process into managable levels.

The hierarchical planning model is characterized by the following features.

Condition Hierarchy Associated with each level in the hierarchy is a set of con-

ditions that are signi�cant to the level. Conditions outside a given level are

viewed as details to be worked out at other levels.

Property-Directed Low-Level Planning Operator selection is based on pro-

gram and machine properties. The rules of Chapter 4 are used to select basic

transformation operators.

Operator-Directed High-Level Re�nement Operator selection is based on the

operators entered into the plan at lower levels. For example, assume that a

vectorize operator appears in the plan. During high-level plan re�nement, an

operator might be introduced to harvest the loop in sections so as to reduce the

impact of startup overhead or improve memory performance.

M Consistency Associated with each operator are rules to update M so that it

remains consistent with the transformed state of the program.

Backtracking Fatally
awed, crude plans are discarded. The o�ending operators

are inhibited in the next attempt. A new crude plan is constructed and sub-

mitted for re�nement.

5.2.1 Condition Hierarchy

At the lowest levels, the rules of Chapter 4 are used to select the transformation

operators, thus creating the initial, crude plan. Using other transformation operators

such as statement ordering, strip mining, and loop �ssion, successive levels re�ne the

crude plan.

Chapter 5. Planning 98

Condition Level Operators/Property
ASSIGN 0 vectorizable

ARRAY_REF 0 vectorizable

no function references 0 vectorizable

vectorization not inhibited 0 vectorizable

loop length and stride ok 0 vectorizable

vectorizable 1 vectorize, vectorize-with-guard
vectorizable 1 scalar-expand, interchange-loops

no inner level recurrence 1 vectorize, vectorize-with-guard
no IF control dependence 1 vectorize

IF control dependence 1 vectorize-with-guard

scalar recurrence 1 scalar-expand

inner level recurrence 1 scalar-expand, interchange-loops
legal loop interchange possible 1 interchange-loops

no function reference 2 parallelizable

no I/O performed 2 parallelizable

parallelizable 2 parallelize-loop

no inner loop-carried 2 parallelize-loop

inner loop-carried 2 localize-scalar

vectorize 3 loop-fission

better strip size 4 strip-mine, interchange-loops
need new statement order 5 re-order statements

similar, small loops 6 loop-fusion

Table 3: Condition Hierarchy

The conditions at each level direct the application of the rules at the level. The

consideration of other conditions, such as statement order, optimal vector size, and

optimal strip size, is postponed until higher levels. This basic organization is repeated

at each level. Associated with each level is a set of conditions to which the rules of

the level are sensitive. Table 3 illustrates the strati�cation of conditions by level and

operator or property derived.

Organizing the conditions into a hierarchical form allows the rule-based reason-

ing system to focus on a simpli�ed set of priorities. When the rules of a level are

Chapter 5. Planning 99

exhausted, the next level, together with its set of conditions, is used to guide the

reasoning process.

5.2.2 Property-Directed Low-Level Planning

We divide the levels in the planning hierarchy into two groups; the property-directed

low-level group and the operator-directed high-level group.

The low-level group uses the rules of Chapter 4 to select transformation operators

based on the properties presented by or derived from the program. The derived

properties include the dependence relations discussed in Chapter 2 and the recurrence

relations discussed in Chapter 3. Other properties presented by the program include

the control dependencies, statement classi�cations, and textual ordering.

5.2.3 Operator-Directed High-Level Plan Re�nement

In operator-directed high-level group, operators are selected based on the operator

selections made during property-directed low-level planning. Operators selected dur-

ing this phase improve the e�cacy of the low-level operators or remove debilitating

interactions between low-level operators.

Statement Re-Ordering

As discussed in Chapter 3, the dependence graph, in general, contains cycles. Par-

titioning the graph into its strongly connected components (�-blocks) and sorting

topologically yields an ordering consistent with the semantics of the program. Rule

3.12 together with the rules that derive the �-blocks, generate the new ordering.

But why is a new ordering required? The following example illustrates a case where

the original statement ordering together with a valid set of statement transformation

operations violates the original program semantics.

Chapter 5. Planning 100

do i=1,n

S1: a(i) = b(i)

S2: b(i+1) = k(i)

enddo

Vectorizing statements S1 and S2, yields,

S1: a(1:n) = b(1:n)

S2: b(2:n+1) = k(1:n)

which has a meaning di�erent from the loop.

In the loop, values in array b determine the values in the array a. In turn,

values in array k determine values in array b. In the vectorized statements, however,

array a is determined by the values in b prior to any reference to k. Hence, the

ordering of the vectorized statements has a di�erent meaning. In the loop there is a

true dependence from S2 to S1. This dependence is unchanged by the vectorization

process. A topological sort of the �-blocks1 yields the correct statement ordering.

S2: b(2:n+1) = k(1:n)

S1: a(1:n) = b(1:n)

Statement re-ordering is done after low-level transformation operators have been

selected. The low-level operators result not only in vectorization and parallelization,

but may break recurrences and generate new �-blocks. Often, this new collection of

�-blocks must be re-ordered to maintain semantic invariance.

1Since there are no cycles in the dependence graph for this loop, each statement is in a separate
�-block.

Chapter 5. Planning 101

Loop Fission

When vectorization occurs to some, but not all, statements in a loop, the vectorized

statements must be removed from the innermost nesting of the loop. Because of

dependencies between statements in the loop and the vectorized statements, this

might involve �ssioning the loops. Consider the following loops.

do i=1,n

S1: a(i) = cos(b(i))**2

S2: c(i) = d(i)+e(i)*k

S3: write(6,2) c(i)

enddo

The conditions of Rule 4.5 permit the vectorization of statement S2, but do not permit

the vectorization of S1 or S3. Loop �ssion results in two loops.

do i=1,n

S1: a(i) = cos(b(i))**2

enddo

S2: c(1:n) = d(1:n)+e(1:n)*k

do i=1,n

S3: write(6,2) c(i)

enddo

Loop Fusion

Loop fusion is the inverse of loop �ssion. Because loop overhead can be signi�cant,

successive loops that have identical bounds are merged into a single loop.

Statement re-ordering applied to the previous example yields:

S2: c(1:n) = d(1:n)+e(1:n)*k

do i=1,n

S1: a(i) = cos(b(i))**2

Chapter 5. Planning 102

enddo

do i=1,n

S3: write(6,2) c(i)

enddo

This is a prime candidate for loop fusion.

S2: c(1:n) = d(1:n)+e(1:n)*k

do i=1,n

S1: a(i) = cos(b(i))**2

S3: write(6,2) c(i)

enddo

Since loop fusion is the inverse of loop �ssion, any system that supports both must

be careful not to fuse the same loops previously �ssioned.

Strip Mining

Strip mining [53], sometimes called loop sectioning or loop blocking, divides the it-

eration space of a loop into blocks of �xed size. Each block can either be vectorized

or parallelized. The size of a block corresponds to either the optimum vector size or

number of processors of the target machine.

For a machine with 64 element vector registers, the loop,

do i=1,256

a(i) = b(i) + c(i)

enddo

would be mined in 64 element blocks.

do j=0,3

do i=j*64+1,(j+1)*64

Chapter 5. Planning 103

a(i) = b(i) + c(i)

enddo

enddo

Strip mining is useful for vector machines where there is a limited vector size.

While most vector machines have a fairly small maximum vector size, some do not.

The Cyber-205, a memory-to-memory architecture, is an example of a machine with

the rather large maximum vector length of 64k.

Strip mining has also been shown to be useful in reducing the demand on memory

caches [36]. By blocking a loop into sections small enough to �t into the cache, the

locality of reference of a loop can be strengthened, thus increasing the number of

cache hits and improving performance. This strategy has also been used to improve

performance of virtual memory systems [1].

Rule 5.1

(rule strip-mine

(vectorize ^stmt <st>)

(statement ^stmt <st> ^depth <d>)

(loop-member ^id <id> ^stmt <st>)

(loop ^id <id> ^depth <d>)

(vector-size ^best <size>)

-(strip-mine ^id <id>)

-->

(make strip-mine ^id <id> ^size <size>))

5.2.4 M Consistency

The representation of program properties as well as the rules of the previous chapters

were designed speci�cally to allow for the e�ects of transformation operators. The

rules of this section carry out the necessary updates to M.

Chapter 5. Planning 104

Loop Interchange

When loops are interchanged, the direction vectors associated with dependencies

carried by the loops must be changed to re
ect the new loop nesting. Loop interchange

moves a recurrence carrier loop from the innermost nesting level to an outer nesting

level. Unless this change is re
ected in the direction vector representation, the loop

interchange will not have its intended e�ect.

To updateM after a loop interchange, the corresponding elements of the direction

vectors are interchanged.

Rule 5.2

(rule loop-interchange-change-directions

(interchange-loops ^this <d1> ^that <d2> ^request-id <c>)

f<ce0> (direction ^dir <dir0> ^depth <d1> ^dim <dim> ^request-id <> <c>

^var-from <vt1> ^var-to <vt2>)g
f<ce1> (direction ^dir <dir1> ^depth <d2> ^dim <dim> ^request-id <> <c>

^var-from <vt1> ^var-to <vt2>)g
-->

(modify <ce0> ^dir <dir1> ^request-id <c>)

(modify <ce1> ^dir <dir0> ^request-id <c>))

A loop-interchange operator together with each pair of corresponding direction

vector elements satis�es this rule. The direction vector elements are interchanged

and marked (via request-id). The marking guarantees that the rule is satis�ed only

once for each pair of direction vectors.

Scalar Expansion

A fundamental di�erence between scalar expansion and loop interchange is that with

scalar expansion, recurrences are removed. With loop interchange, recurrences are

displaced to other loop levels. Also, unlike loop interchange, scalar expand results

in the introduction of a new array. References to this new array might provide new

sources for vectorization. Both of these di�erences are re
ected in the way M is

updated after the introduction of a scalar expand operator.

Chapter 5. Planning 105

Scalar expansion changes scalar references to array references. This introduction

of array references might reveal new sources for vectorization. The following rule

modi�es all references to the variable from scalar reference to an array reference.

Assuming other factors are present, Rule 4.5 will use this change to assert that the

referring statement is vectorizable.

Rule 5.3

(rule scalar-expand-change-references

(scalar-expand ^var <v>)

f<ce> (reference ^var <v> ^var-type VAR_REF)g
-->

(modify <ce> ^var-type ARRAY_REF))

The purpose of scalar expansion is to remove an inhibiting recurrence. Once the

recurrence is removed, the members of the recurrence become candidates for vector-

ization. The following rules delete the loop-carried dependencies and the recurrences

associated with the scalar. The rules also update the �-blocks.

Rule 5.4

(rule scalar-expand-delete-dependencies

(scalar-expand ^var <v>)

f<ce> (dependence ^var <v> ^extent loop-carried)g
-->

(remove <ce>))

Scalar expansion breaks a recurrence by converting a loop-carried scalar depen-

dence into a loop-independent dependence (cf. Theorem 3.1). Since the associated

recurrences are deleted and the a�ected �-blocks are updated, failure to delete these

dependencies could result in a cyclic �-block graph. Cycles in the �-block graph

result in a non-terminating topological sort. For each loop-carried dependence in-

volving the expanded scalar, Rule 5.4 deletes each loop-carried dependence involving

the expanded scalar.

Chapter 5. Planning 106

The following pair of rules work together to delete the recurrences that are based

on loop-carried dependencies involving the expanded scalar. The �rst of these rules

removes the recurrence class and generates a subgoal to remove the members of the

class. The second rule removes the members.

Rule 5.5

(rule scalar-expand-delete-recurrences

(scalar-expand ^var <v>)

f<ce> (recurrence ^id <id> ^vname <v>)g
-->

(remove <ce>)

(make remove-recurrence-member ^id <id>))

Rule 5.6

(rule delete-recurrence-members

(remove-recurrence-member ^id <id>)

f<ce> (recurrence-member ^id <id> ^stmt <st>)g
-->

(make remove-pi-block-member ^stmt <st>)

(remove <ce>))

To keepM consistent, in altering the recurrences represented in M the �-blocks

represented must also be altered. Notice that for each recurrence member removed,

Rule 5.6 generates a subgoal to remove the associated �-block member. Since �-block

members (statements) may be members of more than one recurrence, they cannot

simply be removed from a �-block when one of the recurrences is deleted. However,

when all of the recurrences that contain a particular statement are deleted by rules 5.5

and 5.6, then the statement must be removed from a �-block. One solution uses a

reference count in each element of the class pi-block-member. The reference count

is decremented each time Rule 5.7 is satis�ed.

Rule 5.7

(rule dec-pi-block-member

f<ce1> (remove-pi-block-member ^stmt <st>)g

Chapter 5. Planning 107

f<ce2> (pi-block-member ^stmt <st> ^cnt <c>)g
-->

(remove <ce1>)

(modify <ce2> ^cnt (- <c> 1)))

When the reference count reaches zero, the �-block member is removed fromM.

Rule 5.8

(rule delete-pi-block-member

f<ce> (pi-block-member ^cnt <= 0)g
-->

(remove <ce>))

When a �-block contains has no members, it is removed from M by the following

rule.

Rule 5.9

(rule delete-pi-blocks

f<ce> (pi-block ^id <id>)g
-(pi-block-member ^id <id>)

-->

(remove <ce>))

Finally, every statementmust be a member of exactly one �-block if the topological

sort of the �-blocks is to yield a correct statement ordering. The actions of the

previous rules may orphan some statements. The following rule creates a new �-

block for each orphaned statement.

Rule 5.10

(rule orphans

(statement ^stmt <st>)

-(pi-block-member ^stmt <st>)

-->

(let ([<id> (gensym)])

(make pi-block ^id <id> ^seq (set! *sequence* (+ 1 *sequence*)))

(make pi-block-member ^id <id> ^stmt <st>)))

Chapter 5. Planning 108

Scalar Localization

As with scalar expansion, scalar localization side-e�ects M. However, scalar lo-

calization is used in conjunction with loop parallelization, not vectorization. Loop

parallelization requires that no loop-carried dependencies exist. Membership in recur-

rences is not considered by Rule 4.12. Although by Theorem 3.1 the former implies

the latter, by explicitly requiring in Rule 4.12 that no loop-carried dependencies exist,

the lengthy update of recurrences and �-blocks need not be done. The removal of

loop-carried dependencies is still required and is accomplished by the following rule.

Rule 5.11

(rule localize-scalar-delete-dependencies

(localize-scalar ^var <v> ^stmt <loop>)

f<ce> (dependence ^var <v> ^extent loop-carried ^carrier <loop>)g
-->

(remove <ce>))

5.2.5 Backtracking

Some plans contain operators that do not achieve their intended goal. As long as

these operators do not change the state of M in such a way as to inhibit other goal-

satisfying operators, they represent little more than a loss of e�ciency. However, when

the unneeded operators causes changes inM that might inhibit other operators, the

plan is considered fatally
awed. A new plan must be created that does not include

the unneeded operators. Discarding all or a part of a plan and retreating to a previous

choice point the search tree is called backtracking.

Since there is no simple way to return to a previous M state, backtracking is

expensive in our planning model. Essentially, backtracking requires thatM be rebuilt

using the rules of Chapters 2, 3, and 4. In Chapter 6, we discuss ways that M

can be partitioned so that only parts need to rebuilt. Even with this enhancement,

backtracking has a non-trivial complexity that makes it undesirable.

Chapter 5. Planning 109

What sort of situation forces the planner to backtrack and rebuild M? Consider

the following loop.

L1:do j=2,n

L2: do i=2,n

S1: a(i,j) = a(i-1,j)+b(i-1)+x

S2: x = x*2

S3: c(i) = d(i)*k

enddo

enddo

Statement S1 is classi�ed as vectorizable by Rule 4.5, however, the statement

cannot be vectorized because it is a member of a recurrence carried by loop L2.

Interchanging loops L1 and L2 would move the recurrence to the outer loop. But, S1

still cannot be vectorized because of the loop-carried scalar true dependence, S2 �tcS1,

forms a recurrence carried by the inner loop.2 The problem is that interchanging

L1 and L2 does not remove all of the recurrences that S1 is involved in. Ultimately,

the plan contains no vectorize operators, but does contain a single, unnecessary

loop-interchange operator. By making L2 the outermost loop, the vectorization of

S3 is prevented. The plan is fatally
awed.

The backtracking solution is to rebuild M, explicitly inhibit the vectorization of

S1 (cf. the last condition element of Rule 4.5), and restart the planner. This time, a

interchange-loop operator is not proposed for S1, hence the conditions are satis�ed

for the vectorization of S3.

The need to backtrack after low-level plan development is easily recognized by

rules of the following form.

2Recall from Chapter 4 that scalar expansion is not used to break recurrences carried by a scalar
true dependence.

Chapter 5. Planning 110

Rule 5.12

(rule unnecessary-loop-interchange-first

(check-fatal-flaws)

(interchange-loops ^reason vectorize ^stmt <st>)

-(vectorize ^stmt <st>)

-(backtrack-needed)

-->

(make backtrack-needed)

(in-ps planner-specialist (make inhibit-vectorization ^stmt <st>)))

The meaning of the condition elements should be obvious. The right hand side

contains the in-ps special form. More will be said about in-ps special form in

Chapter 6.

5.3 Examples

In this section we take a detailed look at the operator selection and planning process

with two examples.

The �rst example illustrates the use of scalar expansion to remove recurrences

that block vectorization. In the following loop, there is a loop-carried scalar anti

dependence from S2 to S1.

do i=1,n

S1: x = a(i)+b(i)

S2: c(i) = x*2

enddo

The rules of Chapters 2 and 3 build the dependence graph, recurrences, and �-

blocks. These elements, together with elements derived from a parse of the program,

are used by the rules of this chapter and Chapter 4.

Assuming that the target machine is capable of vector processing, Rule 4.5 marks

statement S1 as vectorizable. The resulting change to M together with the pres-

ence of the scalar recurrence causes Rule 4.10 to be satis�ed. Rule 4.10 enters the

Chapter 5. Planning 111

scalar-expand operator to the plan.

The use of scalar-expand in the plan causes the M consistency rules described

above to become active. Rule 5.3 changes the references to x from VAR_REF to

ARRAY_REF, thus enabling the vectorization of S2 as well. Rules 5.4, 5.5, 5.6, and

5.7 delete the loop-carried dependence and the recurrence, and decrement the �-

block reference count. This enables Rule 4.6 to add the vectorize operator for both

S1 and S2 to the plan.

At this point, the plan is to scalar expand x and vectorizeS1 and S2. By harvesting

the loop in sections of the optimal size (see Section 4.2), the match between the code

and the underlying hardware can be further improved. During plan re�nement, Rule

5. 1 adds the strip-mine operator to the plan.

Assuming the optimal vector size is 64 and n is a multiple of 64, execution of this

�nal plan results in the following code.

do i=1,n,64

S1: %x(i:i+64) = a(i:i+64)+b(i:i+64)

S2: c(i:i+64) = %x(i:i+64)*2

enddo

By exploiting both the vector capabilities of the hardware and the optimal vector

size, this version of the loop better matches the target machine. The essential point in

the plan development process was the removal of the recurrence. The need to remove

the recurrence is detected by the Rule 4.10. Once the recurrence has been removed

and the associated updates made to M, other operators are chosen.

In the next example loop-interchange is used to move the carrier loop of a

recurrence to the outermost position.

Chapter 5. Planning 112

L1:do 20 j=1,n

L2: do 21 i=2,n

S: a(i,j) = a(i-1,j) + b(i)

enddo

enddo

Statement S cannot be vectorized because of the recurrence characterized by the

loop-carried true dependence, S �t1S. The direction vectors, (=,<) and (=,=), suggest

that interchanging loop L2 and loop L1 would move the recurrence to outermost level,

thus enabling the vectorization of S. Rule 4.9 is satis�ed by these conditions and adds

the interchange-loops operator to the plan. The resulting changes to M satisfy

the conditions for vectorization (see Rule 4.6).

5.4 Summary

This chapter discusses a simple model for the selection and planning of a sequence of

transformation operators. Operator interaction is reduced, although not eliminated,

by employing a hierarchical planning strategy. Successive levels in the hierarchy

represent successively better plan re�nement. Some conditions require that a plan

developed at a lower level be abandoned and a new plan proposed. Such backtracking,

although expensive, is required.

Chapter 6

Organization of a Rule-Based

Restructurer

The previous chapters discussed the methods of a rule-based program restructurer.

In this chapter we discuss some issues involved in the organization of a rule-based

program restructurer. We assume that the restructurer uses the planning model

of Chapter 5, the dependence, recurrence, and �-block graph construction rules of

chapters 2 and 3, and the operator selection rules of Chapter 4.

6.1 Introduction

As mentioned in Chapter 1, an experimental rule-based restructurer, called Rex,

serves as a testbed for the results discussed in the previous chapters. In this chapter

we continue this theme beyond the scope of conditions and operators to the some-

what introspective realm of the reasoning system's organization. The purpose of this

chapter is not to describe the details of a particular rule-based restructurer, but to

discuss the issues involved in building a restructurer that implements the results of

the previous chapters. Where appropriate, we use Rex as an example rule-based

restructurer.

113

Chapter 6. Organization of a Rule-Based Restructurer 114

6.2 Control

The data-driven nature of rule-based reasoning makes control a complex and some-

times a troublesome issue in rule-based reasoning systems. Our planning model re-

quires a good deal of control. Control is complicated by the interactions between

rules. In fact, it has been suggested that a rule-based system could not be used in a

program restructurer because of the complexity of rule interactions [68].

6.2.1 Lexicographic Con
ict Resolution

Rules become active based on the contents ofM. However, it is not the case that only

one rule is satis�ed byM at any particular time. In fact, under most circumstances,

a number of rules are satis�ed simultaneously. Selecting a particular rule from the

con
ict set is performed by a process called con
ict resolution. Because con
ict

resolution plays a critical part in de�ning the semantics of a rule-based reasoning

system, it is discussed in some detail here.

Many con
ict resolution strategies have been proposed and used in rule-based

reasoning systems [54]. Rather than review other methods, in this section we describe

the con
ict resolution strategy assumed for the rules presented in this thesis.

The inference process of a rule-based reasoning system consists of cycle of three

phases: 1) rule satisfaction, 2) con
ict resolution, and 3) rule application.

In the rule satisfaction phase, a state saving discrimination network, called a

RETE Tree [34], is used to determine the set of instantiations.1 These instantiations

are entered into the con
ict set. Con
ict resolution is the process of selecting from

the con
ict set, a single instantiation for the rule application phase. After the rule

application phase, the process continues with the rule satisfaction phase. Only one

rule is selected from the con
ict set on each cycle.

1An instantiation is a rule together with the subset ofM that satis�es the rule.

Chapter 6. Organization of a Rule-Based Restructurer 115

Refraction is the �nal step in con
ict resolution. Refraction is the removal of the

selected instantiation from the con
ict set. Without removing the instantiation from

the con
ict set, the next iteration of the cycle might select the instantiation again,

causing the rule to become active again with the same subset of elements from M.

Refraction guarantees that the rule will become active only once for each satisfying

subset of M.

A unique time stamp is associated with each element in M. The time stamp,

which denotes an element's recency, imposes a partial order on the elements of M.

In the �rst step of con
ict resolution, the instantiations in the con
ict set are ordered

lexicographically by the time stamps of the elements matching the �rst condition,

the second, the third, and so on. If one instantiation is ordered before all others, it

becomes the selected instantiation. It is removed from the con
ict set (refraction)

and passed to the rule application phase.

If two or more rules are lexicographically equivalent, then the instantiation with

the most complex left hand side is selected. Complexity is computed by counting

both the number of condition elements and the number of predicates on the left hand

side. If two or more of the remaining instantiations have the same complexity, then

an arbitrary instantiation is selected, removed, and passed to the rule application

phase.

Notice that with this con
ict resolution strategy, rule order plays no part in the

selection of an instantiation from the con
ict set. The strategy uses only the recency

of elements, and failing that, the complexity of the condition elements.

In building a rule-based system, the recency can be used to control rule selection.

Recency is used to force the inference system to focus on sorting �-blocks in Rule

3.12. But using recency to enforce some desired control structure has its limitations.

It would be di�cult, for example, to use recency to enforce a broad control structure

over a large, complex set of rules.

Chapter 6. Organization of a Rule-Based Restructurer 116

In the next section, we discuss an alternative method of imposing a control struc-

ture on a rule-based reasoning system.

6.2.2 Selecting Levels With Context Elements

Recency helps insure that a particular subgoal will get continued attention by the

inference process, but it cannot, in general, be applied to a complex set of goals.

In this section, we discuss a method of enabling some subset of rules by the use of

context elements [20].

The idea behind context elements is simple. Suppose in some phase of the reason-

ing process, we need to focus the inference process on some sub-collection of rules.

We can limit rule satis�ability to this sub-collection by adding to all the rules in the

sub-collection, a condition element that is only satis�ed during the phase.

Many of the rules of Chapter 4 used these context elements to limit satis�ability

to a particular level corresponding to the condition hierarchy discussed in Chapter 5.

For example, consider Rule 4.5

Rule 4.5

(rule vectorizable

(vector-capable)

(vectorize-phase)

(statement ^class ASSIGN ^stmt <st> ^depth <d>)

(reference ^stmt <st> ^var-type ARRAY_REF)

(loop ^id <id> ^depth <d>)

(loop-profile ^id <id> ^length ok ^stride ok)

-(function-reference ^stmt <st>)

-(vectorizable ^stmt <st>)

-(inhibit-vectorization ^stmt <st>)

-->

(make vectorizable ^stmt <st>))

Here, the context must be vectorize-phase for Rule 4.5 to be satis�able by

M. This is an e�ective and widely used method for focusing the inference process.

However, using context elements requires that the context elements be added to the

Chapter 6. Organization of a Rule-Based Restructurer 117

left hand sides of the individual rules. This limits the
exibility because the rules

are only satis�able in the given context. Under some circumstances, we might want

a sub-collection of rules to be satis�able in several contexts.

In addition to limiting
exibility, context elements do not help deal with back-

tracking. Essentially, backtracking requires that M be purged, operator inhibiting

elements added, and the inference process restarted. Clearly this is expensive. Some

of the cost can be saved if only part of M is purged. Conceivably, this we could

have rules that determine which elements of M should be removed. But in the �nal

analysis, this added overhead is likely to outweigh any bene�ts reaped from partially

purging M. In the next section, we discuss a new method of encapsulating entire

sub-collections of rules and subsets of M.

6.2.3 Rule Systems as First-Class Objects

We de�ne a rule system as a collection of rules together with a set of elements,M,

a con
ict set, and an environment. The rules of the system are only sensitive to

the set of elements, M, associated with the system. The only instantiations in the

con
ict set associated with the system are those derived from satisfaction of rules of

the system by elements from the memoryM, associated with the rule system.

De�nition 6.1 A rule system is a tuple of the form, < R;M;C;E >, where R is a

collection of rules, M is a set of elements, C is a set of instantiations derived from

the satisfaction of members of R by subsets of M, and E is an environment.

In Rex, a rule system is a procedural, �rst-class object. It is procedural in the

sense that it can be applied.2 It is �rst-class in the sense that it can be passed to

2When applied to a single non-negative integer argument, the rule system performs the indicated
number of satisfy-select-act cycles. Without an argument, the rule system cycles until the con
ict
set is empty. All other arguments are unde�ned.

Chapter 6. Organization of a Rule-Based Restructurer 118

Specialist Function
top-level Handles high-level plan re�nement
dependence Constructs DDG and �+ relations
recurrence Builds recurrence and �-block relations
planner Handles low-level plan development
marker Provides user-interface marking support

Table 4: Specialists organization of a rule-based restructurer.

and returned from procedures, bound to variables, and stored in data structures.3 As

with other objects in Scheme, the extent of rule system objects is inde�nite.

All of the procedures and special forms of Rex associated with rule-based pro-

gramming e�ect the lexically closest rule system. As one would expect, all the scoping

rules of Scheme apply to rule systems.

Specialists

The ability to encapsulate rule systems as �rst-class objects allows a restructurer to

be organized as a collection of separate rule systems. By separating the rule space into

groups, we can signi�cantly reduce the overhead involved in backtracking, while at the

same time providing another level of control beyond recency and context elements.

Experiments with Rex suggest that at least �ve rule systems, called specialists,

are useful (see Table 4). Each system contains the rules speci�c to its domain. The

dependence specialist, for example, uses the rules of Chapter 2 to derive the data

dependence graph along with the �+ relations. Likewise, the recurrence specialist

uses the rules of chapter 3 and 4 to derive the recurrence and �-block relations.

How does this help backtracking? Let us assume that during plan re�nement,

the top-level specialist determines that a plan submitted by the planner is fatally

3Including elements of anyM.

Chapter 6. Organization of a Rule-Based Restructurer 119

awed. The top-level specialist can initiate actions that purge the memory of the

planner, inhibit the o�ending parts of the plan, and restart the planner. Notice

that the work done by the dependence and recurrence specialists is still valid|only

the plan created by the planner needs to be rebuilt. Not only does this provide

considerable computational savings, but it also allows the top-level specialist to

maintain record of previous troublesome operators.

Communication

One of the problems with the specialist organization is communication between rule

systems. Since memory spaces are disjoint, we need a new special form to transmit

the changes made in one rule system to the memory of another rule system.

The in-ps special form takes two arguments. The �rst argument is a rule system

object. The second is an expression. In the uniprocessor model, the expression

evaluated in an environment containing the given production system. Thus, changes

made to memory by the expression are re
ected in the given production system. In

a distributed model, changes could be encapsulated into messages which are sent to

the rule systems over some interconnection network.

The in-ps form is too low level a mechanism to perform the services needed in

backtracking. We can, however, use the in-ps form in a set of copy rules for each

specialists.

Essentially, a copy rule has two preconditions: a production system to copy to and

an element from M to copy. The right hand side uses the in-ps form to make the

change in the foreign rule system's memory. A copy rule in the dependence specialist

to copy a dependence edge to another specialist is of the form,

Rule 6.2

(rule copy-dependencies

(copy-to <ps>)

(dependence ^var <v> ^from <st1> ^to <st2> ^type <type>

Chapter 6. Organization of a Rule-Based Restructurer 120

^ref <ref> ^extent f<extent> <> nilg
^carrier <carrier> ^vfrom <vt1> ^vto <vt2>)

-->

(in-ps <ps>

(make dependence ^var <v> ^from <st1> ^to <st2> ^type <type>

^ref <ref> ^extent <extent>

^carrier <carrier> ^vfrom <vt1> ^vto <vt2>)))

6.3 Support Routines

In addition to the rule-based environment, a rule-based restructurer similar to the

one described in this thesis needs access to at least three other resources: a language

parser (Fortran in this case), a subscript analyzer, and a user interface.

The language parser builds a parse tree representation of the program under study

from the source code. Using information obtained by a parse of the program along

with simple
ow analysis, the specialists construct individual abstract program rep-

resentations. These representations drive the restructuring process.

Although rule-based methods for subscript analysis have been proposed [19], for

simplicity we assumed that subscript analysis is performed by a separate GCD Test-

based solver.

Finally, an interactive interface is useful. The user interface should display the

source code, the current restructuring plan, and possibly allow input from the user.

6.4 Summary

In this chapter we have provided a brief overview of an organization for a rule-based

program restructurer. We discussed the issue of control from three aspects: recency,

context elements, and specialists.

Chapter 7

Thesis Summary

In this chapter we present a brief overview of the results of the thesis. We also suggest

avenues for future research.

7.1 Overview of Results

In Chapter 1, we de�ned the problem under study and presented the two requirements

for program restructuring: validity and usefulness. We discussed Flynn's characteri-

zation of computer architectures and related this characterization to the exploitable

sources of parallelism. We presented our view of program restructuring as one of

improving the match between program level and the hardware level and presented

some examples of program restructuring. Finally, we outlined the goals of the thesis

and reviewed the related research.

In Chapter 2, we discussed the theory of data dependence analysis and derived

one well known test, the GCD Test. The GCD Test is used in the rules developed in

Chapter 2 to analyze dependence equations that arise during subscript analysis. We

stated and proved the Commutativity Theorem and de�ned three data dependence

relations, �t, �a, and �o. We developed a representational scheme for the dependence

relations, variables, use-de�nition and de�nition-use chains, and direction vectors.

This scheme is used to represent the data dependence graph in M. We developed

six rules that derive the three dependence relations, �t, �a, and �o. These rules also

121

Chapter 7. Thesis Summary 122

distinguish between loop-carried and loop-independent dependencies.

In Chapter 3, we de�ned the transitive closure relation, �+, and developed a set of

rules to derive the transitive closure of dependence relations in the dependence graph.

Next, we stated and proved a theorem that characterized certain dependence chains

as recurrences in the dependence graph. We used this theorem to develop rules to

�nd recurrences in the graph. Finally, in Chapter 3 we developed a series of rules to

partition the dependence graph into strongly connected components. We presented a

rule that sorts these components, called �-blocks, topologically. This topological sort

yields a new, valid statement ordering.

In Chapter 4, we discussed the program and machine properties that a�ect the

program restructuring process. We introduced several rules to derive machine proper-

ties. We developed rules that select both vectorization and parallelization operators.

Along with these rules we also developed rules for removing operator inhibiting pro-

gram properties such as inner loop recurrences.

In Chapter 5, we developed a hierarchical planning model. The model consists of a

condition hierarchy, property-directed low-level planning, operator-directed high-level

planning, methods for updating M, and a strategy for backtracking. We introduced

a series of high-level operators that either improve memory performance or improve

the e�cacy of an operator selected at a lower level in the planning hierarchy. Finally,

we presented a series of examples that illustrate the planning model.

In Chapter 6, we discussed the organization of a rule-based program restructurer.

We concentrated on the issue of control and presented three ways to modify control

in a rule-based reasoning system. We introduced a new approach to control in which

collections of rules are bundled into �rst-class objects. We showed how this approach

simpli�es backtracking.

Chapter 7. Thesis Summary 123

7.2 Future Work

This thesis, of course, does not explore every aspect of rule-based program restruc-

turing. Many avenues of research in this �eld remain to be investigated. In what

follows, we present just a few of the open problems and areas for future work.

In the remarks at the end of Section 2.4.2, we noted that the representational set

chosen as the starting point for dependence analysis limited what we could reason

about. Speci�cally, we noted that by not representing execution paths we could not

reason about variable aliases.

The variable alias problem can be stated as follows. Let S1 � S2 hold because

of some variable v. Further, assume that variable v0 references the same memory

location as v. Variable v0 is said to be an alias for v. Aliases can come from the use of

equivalence statements or common blocks in Fortran. For many other languages,

pointers provide another mechanism for variable aliasing.

Whatever the source, variable aliases present obvious problems for dependence

analysis. Brandes [19] has investigated rule-based methods of dependence analysis

capable of reasoning about execution paths. Combining these methods with the

results from Chapter 2, might be fruitful in addressing the variable aliasing problem.

The dependence analysis of Chapter 2 was limited to a single region of the pro-

gram. Procedures invoked in this region where implicitly assumed to not modify

any of the dependence relations. In most circumstances, however, shared, global vari-

ables or modi�ed procedure parameters could result in a di�erent set of dependencies.

Interprocedural dependence analysis [67] attempts to �nd these other sources of de-

pendencies by examining the entire program, including all of the procedures. This

analysis is more complex than the analysis presented in Chapter 2, but the methods

of Chapter 2 could be extended to include an interprocedural analysis component.

In the literature one �nds many more transformation operators than presented in

Chapter 7. Thesis Summary 124

Chapter 4. Additional rules could be added to accommodate these other transforma-

tions. This would require additional rules to implement each of the transformations

along with rules to update M to re
ect the application of the operators. Additional

condition levels may also be required in the planning model.

The results of this thesis could be extended to work in areas outside of program

restructurering. For example, the current generation of reduced instruction set com-

puters (RISC) [57] need very sophisticated compilers [25, 41, 23]. The compiler for

a RISC architecture must determine strategies for handling branch prediction, regis-

ter allocation, pipeline scheduling, and many other issues. These problems could be

addressed through the use of a rule-based reasoning system. Some of the results of

this thesis, especially those of chapters 2 and 3, could be used to improve a RISC

compiler.

Appendix A

Rex-UPSL Syntax

Rex-UPSL is a programming language primarily designed for building large systems

of program restructuring rules, for historical reasons, called production systems. The

left hand side patterns for rules in Rex-UPSL are written using a syntax very similar

to OPS5 [33]. The right hand side actions of rules are written in Scheme [59]. In this

appendix we present an extended Backus-Naur Form (BNF) syntax for Rex-UPSL.

The syntax for Scheme expressions is adapted from the o�cal Scheme report [59]

and is integrated into the sytactic description of Rex-UPSL where appropriate.

An in depth discussion of the language and its uses can be found in [64].

The BNF presented here is extended with the following notation.

� Terminals are written in boldface type

� Descriptive terminals are written in italics.

� Items followed by + occur one or more times.

� Items followed by * occur zero or more times.

A.1 BNF Syntax

program �! statement*

statement �! rule | expression | declaration

declaration �! (literal lit-dcl+)

125

Appendix A. Rex-UPSL Syntax 126

| (literalize symbol symbol+)

| (vector-attribute symbol+)

system �! (ps statement+)| (named-ps symbol statement+)

lit-dcl �! symbol = number

tl-ce �! (symbol tl-lhs-term*)

tl-lhs-term �! ^ symbol tl-lhs-value | ^ number tl-lhs-value

tl-lhs-value �! symbol | num

rule �! (rule symbol lhs --> rhs)

lhs �! positive-ce ce*

ce �! positive-ce | negative-ce

positive-ce �! form | f element-var form g | f form element-var g

negative-ce �! - form

form �! (symbol lhs-term*)

lhs-term �! ^ symbol lhs-value | ^ number lhs-value | lhs-value

lhs-value �! f restriction*g | restriction

restriction �! << any-atom* >> | predicate atomic-value | atomic-value

atomic-value �! ' symbol | var-or-const

var-or-const �! symbol | number | variable

predicate �! <> | = | < | <= | >= | > | <=>

rhs �! expression

token �! identi�er | boolean | number | character | string

| (|) | #(| ' | .

deliminator �! whitespace | (|) | � | ;

whitespace �! space, newline, or tab

comment �! ; characters up to newline

atomsphere �! whitespace | comment

intertoken-space �! atomsphere*

Appendix A. Rex-UPSL Syntax 127

identi�er �! initial subsequent* | perculiar-identi�er

initial �! letter | special-initial

letter �! a | b | : : : | Z

special-initial �! ! | $ | % | & | * | / | : | < | = > | ? | ~ | | ^

subsequent �! initial | digit | special-subsequent

digit �! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

special-subsequent �! . | + | -

expresison-keyword �! quote | lambda | if | set! | begin | cond

| and | or | let | let* | letrec

| literalize | vector-attribute

variable �! any identi�er that is not a keyword

boolean �! # t | # f

character �! #\any-character

any-character �! any character

number �! + unumber | - unumber

unumber �! digit digit*| digit . digit*

string �! � any-character*�

symbol �! identi�er

datum �! simple-datum | compound-datum

simple-datum �! boolean | number | character | string | symbol

compound-datum �! list | vector

list �! (datum*)| (datum datum*. datum)| ' datum

vector �! #(datum*)

expression �! variable | literal | procedure-call | lambda-expr

| conditional | assignment | derived-expr | system

literal �! quotation | self-evaluating

self-evaluating �! boolean | number | character | string

Appendix A. Rex-UPSL Syntax 128

quotation �! ' datum | (quote datam)

procedure-call �! (operator operand*)

operator �! expression

operand �! expression

lambda-expr �! (lambda formals expression*)

formals �! (variable*)| variable | (variable variable*. variable)

conditional �! (if expression expression expression)

assignment �! (set! variable expression)

derived-expression �! (cond cond-clause+)

| (cond cond-clause*(else expression+))

| (and expression*)

| (or expression*)

| (let (binding-spec) expression*)

| (let* (binding-spec) expression*)

| (letrec (binding-spec) expression*)

| (begin expression*)

cond-clause �! (expression*)

binding-spec �! (variable expression)

Appendix B

Element Attributes

This appendix contains a complete list of all the element attributes used in the thesis.

Although some of the information presented here is duplicated in the body of the

thesis, this appendix brings together all of the element attribute declarations in one

place.

B.1 Element Attribute Declarations

The declare-attribute special form is used to associate element attributes with

element classes. The symbol following the declare-attribute is the class name. All

other symbols are attributes of the class.

B.2 Element Attributes

(declare-attribute dependence

var ; variable name

from ; statement from

to ; statement to

type ; true, anti, output

ref ; ARRAY_REF or VAR_REF

extent ; loop-carried or loop-independent

carrier ; loop that carries the dependence

vfrom ; variable instance from

vto) ; variable instance to

129

Appendix B. Element Attributes 130

(declare-attribute direction

dir ; direction at this depth

dim ; array dimension

depth ; depth

carrier-depth ; depth that carries the dependence

var-from ; variable instance from

var-to ; variable instance to

request-id) ; used in update

(declare-attribute recurrence

id ; unique recurrence identifier

from ; instance of loop-carried

to ; dependence that caused recurrence

members ; list of members

vname) ; variable name

(declare-attribute recurrence-member

id ; unique recurrence identifier

stmt ; statement

carrier) ; carrier loop for recurrence

(declare-attribute statement

class ; statement

stmt ; statement class

depth ; loop nesting level for statement

control ; control parent

order) ; relative statment order

(declare-attribute function-reference

function ; function name

stmt) ; statement

(declare-attribute reference

var ; variable name

stmt ; statement

var-type) ; ARRAY_REF or VAR_REF

Appendix B. Element Attributes 131

(declare-attribute pi-block

id ; unique pi-block identifier

seq) ; sequence number

(declare-attribute pi-block-member

id ; unique pi-block identifier

stmt ; statement

cnt) ; number of recurrences referenced

(declare-attribute vectorizable

stmt) ; statement

(declare-attribute vectorize

stmt) ; statement

(declare-attribute vectorize-with-guard

guard-var ; guard variable

stmt ; statement to vectorize

guard-stmt) ; if statement

(declare-attribute vectorize-if

guard-var ; guard variable

stmt) ; if statement to vectorize

(declare-attribute scalar-expand

var ; variable to expand

stmt ; statement

reason ; reason for scalar expansion

wrt-loop) ; loop to expand with respect to

Appendix B. Element Attributes 132

(declare-attribute interchange-loops

id ; id of recurrence

stmt ; statement affected

reason ; reason for interchange

this ; this loop

that ; that loop

request-id ; used in direction vector update

inner ; new inner loop statement

outer) ; new outer loop statement

(declare-attribute next-pi-block

seq) ; next pi-block to generate

(declare-attribute gather-pi-block-members

id ; id of pi-block to gather

members) ; members of the pi-block

(declare-attribute inhibit-vectorization

stmt) ; statement

(declare-attribute localize-scalar

var ; variable to localize

stmt) ; loop statement

(declare-attribute parallelize-loop

id ; loop id

stmt) ; loop statement

(declare-attribute order

id ; pi-block identifier

seq) ; sequence

Appendix B. Element Attributes 133

(declare-attribute remove-recurrence-member

id) ; recurrence members to remove

(declare-attribute remove-pi-block-member

stmt) ; statment to remove

(declare-attribute region

body) ; region of code to analyze

(declare-attribute loop

id ; loop id

stmt ; loop header statement

depth ; depth of this loop

length ; upper - lower

lower ; lower bound

upper ; upper bound

request-id ; used in update

step ; step value

induction-var) ; induction variable

(declare-attribute loop-member

id ; loop id

stmt ; statement that is a member of loop

parallelizable); yes or no

(declare-attribute loop-profile

id ; loop id

stride ; is stride acceptable?

length) ; is loop length acceptable?

(declare-attribute vector-length

min ; min useful vector length

max ; max allowable vector length

best) ; best vector length

Appendix B. Element Attributes 134

(declare-attribute var

var ; variable name

stmt ; statement

access ; use or def

instance ; variable instance

ref) ; ARRAY_REF or VAR_REF

(declare-attribute flow

var ; variable name

from ; statement from

to ; statement to

flow-type) ; use-def, def-def, or def-use

(declare-attribute dependence+

path ; statements along path from..to

from ; statement from

to) ; statement to

Bibliography

[1] Abu-Sufah, W., Kuck, D., and Lawrie, D. Automatic Program Transfor-

mations for Virtual Memory Computers. In Proc. National Computer Conference

(June 1979), pp. 969{974.

[2] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers Principles, Tech-

niques, and Tools. Addison Wesley, 1985.

[3] Allen, F., Burke, M., Charles, P., Cytron, R., and Ferrante, J.

An Overview of the PTRAN Analysis System for Multiprocessing. Journal of

Parallel and Distributed Computing 5 (March 1988), 617{640.

[4] Allen, F. E., and Cocke, J. A Catalogue of Optimizing Transformations. In

Design an optimization of compilers (March 1971), R. Rustin, Ed., Prentice-Hall,

pp. 1{30.

[5] Allen, J., and Kennedy, K. Conversion of Control Dependence to Data

Dependence. In 10th ACM Symposium on Principles of Programming Languages

(1983), ACM, pp. 177{189.

[6] Allen, J. R., and Kennedy, K. Automatic Loop Interchange. In SIGPLAN

Notices: Proc. ACM SIGPLAN 84 Sym. on Compiler Construction (June 1984),

vol. 19.

[7] Allen, R., Baumgartner, D., Kennedy, K., and Porterfield, A.

PTOOL: A Semi-automatic Parallel Programming Assistant. Tech. rep., De-

partment of Computer Science, Rice University, January 1987.

135

BIBLIOGRAPHY 136

[8] Allen, R., and Kennedy, K. Automatic Translation of fortran Programs

to Vector Form. ACM Trans. on Programming Languages and Systems 9, 4

(October 1987), 491{542.

[9] Balasundarum, V., Kennedy, K., Kremer, U., and McKinley, K. The

ParaScope Editor: An Interactive Parallel Programming Tool. In Proc. of the

Supercomputing 89 (November 1989), pp. 540{550.

[10] Banerjee, U. Data Dependence in Ordinary Programs. Master's thesis, Uni-

versity of Illinios at Urbana-Champaign, 1976.

[11] Banerjee, U. A Theory of Loop Permutations. In Languages and Compilers

for Parallel Computing (1989), MIT Press, pp. 54{74.

[12] Banerjee, U., Chen, S.-C., Kuck, D., and Towel, R. Time and Parallel

Processor Bonds for fortran-like Loops. IEEE Trans. Comput. C-28, 9 (1979).

[13] Bernstein, A. Analysis of Programs for Parallel Processing. IEEE Trans.

Electronic Computers 15 (1966), 757{62.

[14] Bodin, F., Windheiser, D., Jalby, W., Atapattu, D., Lee, M., and

Gannon, D. Performance Evaluation and Prediction for Parallel Algorithms

on the BBN GP1000. Tech. Rep. 304, Computer Science Department, Indiana

University, February 1990.

[15] Bose, P. Heuristic Rule-based Transformations for Enhanced Vectorization. In

1988 International Conference on Parallel Processing (1988), pp. 63{66.

[16] Bose, P. Interactive Program Improvement via EAVE: An Expert Advisor

for Vectorization. In Proc. 1988 ACM Int'l. Conf. on Supercomuting (January

1988).

BIBLIOGRAPHY 137

[17] Brainerd, W. S., Goldberg, C. H., and Adams, J. C. Programmer's

Guide to Fortran 90. McGraw Hill, 1990.

[18] Brandes, T. Automatic Vectorisation for High Level Languages Based on an

Expert System. In Lecture Notes in Computer Science no. 237: CONPAR86

(1986), pp. 303{310.

[19] Brandes, T. Determination of Dependencies in a Knowledge-Based Paralleliza-

tion Tool. Parallel Computing 8 (1988), 111{119.

[20] Brownston, L., Farrel, R., Kant, E., and Martin, N. Programming

Expert Systems in OPS5. Addison-Wesley, 1986.

[21] Byler, M., Davies, J. R. B., Huson, C., Leasure, B., and Wolfe,

M. Multiple Version Loops. In Proceedings of the International Conference on

Parallel Processing (August 1987), pp. 312{318.

[22] Callahan, D., Cocke, J., and Kennedy, K. Estimating Interlock and Im-

proving Balance for Pipelined Architectures. Journal of Parallel and Distributed

Computing, 5 (1988), 334{358.

[23] Chow, F., Himelstein, M., Killian, E., and Weber, L. Engineering a

RISC Compiler System. In Proceedings of COMPCON Spring 86 (March 1986),

pp. 132{137.

[24] Cohagen, W. L. Vector Optimization for the ASC. In Proceedings of the

Seventh Annual Princeton Conference on Information Sciences and Systems

(Princeton, N.J., 1973), Dept. of Electrical Engineering, pp. 169{174.

[25] Coutant, D., Hammond, C., and Kelly, J. Compiler for the New Gener-

ation of Hewlett-Packard Computers. In Proceedings of the COMPCON Spring

86 (March 1986), pp. 48{61.

BIBLIOGRAPHY 138

[26] Crowther, W., Goodhue, J., Starr, E., Thomas, R., Milliken, W.,

and Blackadar, T. Performance Measurements on a 128-node Butter
y Par-

allel Processor. In Proc. International Conference on Parallel Processing (August

1985).

[27] Date, C. An Introduction to Database Systems. Addison-Wesley, 1983.

[28] Davies, J., Huson, C., Macke, T., leasure, B., and Wolfe, M. The

KAP/S-1: An Advanced Source-to-Source Vectorizer for the S-1 Mark IIa Su-

percomputer. In Proc. International Conference on Parallel Processing (1986),

pp. 833{835.

[29] Eigenmann, R., Hoeflinger, J., Jaxon, G., Li, Z., and Padua, D.

Restructuring fortran Programs for Cedar. In Proc. of the International Conf.

on Parallel Processing (1991), pp. 57{66.

[30] Eigenmann, R., Hoeflinger, J., Jaxon, G., and Padua, D. Cedar

fortran and Its Compiler. In Lecture Notes in Computer Science, No. 457:

CONPAR90-VAPP IV (1990), pp. 288{299.

[31] Flynn, M. Very High Speed Computing Systems. Proc. IEEE 54 (1966),

1901{1909.

[32] Flynn, M. Some Computer Organizations and Their E�ectiveness. IEEE Trans-

actions on Computers C-21, 9 (September 1972).

[33] Forgy, C. OPS5 User's Manual. Tech. Rep. CMU-CS-81-135, Department of

Computer Science, Carnegie-Mellon University, july 1981.

[34] Forgy, C. RETE: A Fast Algorithm for the Many Pattern/Many Object Pat-

tern Match Problem. Arti�cial Intelligence 19 (1982), 17{37.

BIBLIOGRAPHY 139

[35] Gannon, D., Guarna, V. A., and Lee, J. K. Static Analysis and Runtime

Support for Parallel Execution of C. In Languages and Compilers for Parallel

Computing (1989), D. Gelernter, A. Nicolau, and D. Padua, Eds., MIT Press,

pp. 254{275.

[36] Gannon, D., Jalby, W., and Gallivan, K. Strategies for Cache and Local

Memory Management by Global Program Transformation. Journal of parallel

and distributed computing 5 (1988), 587{616.

[37] Gerndt, H. M., and Zima, H. P. Optimizing Communication in Superb.

In Lecture Notes in Computer Science No. 457: CONPAR90-VAPP IV (1990),

pp. 300{311.

[38] Gottlieb, A., Grishman, R., Kruskal, C. P., McAuliffe, K. P.,

Rudolph, L., and Snir, M. The NYU Ultracomputer { Desiging a MIMD

Shared Memory Parallel Computer. IEEE Trans. on Computers (February 1983),

175{189.

[39] Haghighat, M. R. Symbolic Dependence Analysis for High Performance Par-

allelizing Compilers. Tech. Rep. 995, CSRD, May 1990.

[40] Higbee, L. Vectorization and Conversion of fortran Programs for the Cray-

1 CFT Compiler. Tech. Rep. 2240207, Cray Research Inc., Mendota Heights,

Minn., June 1979.

[41] Hopkins, M. Compiling for the RT PC ROMP. Tech. Rep. SA23-1057, IBM,

1986.

[42] Hord, R. M. Parallel Supercomputing in SIMD Architectures. CRC Press,

1990.

BIBLIOGRAPHY 140

[43] Huson, C., Macke, T., Davies, J. R., Wolfe, M., and Leasure, B. The

KAP/205: An Advanced Source-to-Source Vectorizer for the Cyber 205 Super-

computer. In Proceedings of the 1986 International Conf. on Parallel Processing

(1986), IEEE Computer Society Press, pp. 827{832.

[44] Kremer, U., Bast, H.-J., Gerndt, M., and Zima, H. Advanced Tools and

Techniques for Automatic Parallelization. Parallel Computing, 7 (July 1988),

387{393.

[45] Kuck, D. The Structure of Computers and Computations. John Wiley, 1978.

[46] Kuck, D., Kuhn, R., Padua, D., Leasure, B., and Wolfe, M. De-

pendence Graphs and Compiler Optimizations. In Conference Record of the

8th Annual ACM Symposium on Principles of Programming Languages (1981),

pp. 207{218.

[47] Kuck, D., Muraoka, Y., and Chen, S.-C. On the Number of Opera-

tions Simultaneously Executable in fortran-like Programs and Their Resulting

Speedup. IEEE Trans. Comput. C-21 (1972), 1293{1310.

[48] Kuck, D. J. ILLIAC IV Software and Application Programming. IEEE Trans.

on Computers C-17, 8 (August 1968), 758{770.

[49] Kuck, D. J., Sameb, A. H., Cytron, R., Veidenbaum, A. V., Poly-

chronopoulos, C. D., Lee, G., McDaniel, T., Leasure, B. R., Beck-

man, C., Davies, J. R. B., and Kruskal, C. P. The E�ects of Program

Restructuring, Algorithm Change, and Architecture Choice on Program Perfor-

mance. In 1984 International Conference on Parallel Processing (1984), R. M.

Keller, Ed., pp. 129{138.

BIBLIOGRAPHY 141

[50] Lamport, L. The Parallel Execution of DO Loops. Comm. of ACM 17 (1974),

83{93.

[51] Lee, M.-H. Data Localization in Parallel Computer Systems. PhD thesis, Dept.

of Computer Science, Indiana University, February 1991. Techinal Report No.

325.

[52] Levesque, J. M. Applications of the Vectorizer for E�ective Use of High-Speed

Computers. In High Speed Computer and Algorithm Organization, D. Kuck,

D. Lawrie, and A. H. Sameh, Eds. Academic Press, New York, 1977, pp. 447{

449.

[53] Loveman, D. B. Program Improvement by Source-to-Source Transformation.

JACM 24, 1 (1977), 121{145.

[54] McDermott, J., and Forgy, C. Production System Con
ict Resolution

Strategies. In Pattern-Directed Inference Systems, D. Waterman and F. Haynes-

Roth, Eds. Academic Press, Inc, 1978.

[55] Myszewski, M. The Vectorizer Systems: Current and Proposed Capabilites.

Tech. Rep. CA-17809-1511, Massachusetts Computer Associates, Inc., Wake�eld,

MA, September 1978.

[56] Padua, D. A., and Wolfe, M. J. Advanced Compiler Optimizations for

Supercomputers. Communications of the ACM 29, 12 (December 1986).

[57] Patterson, D. A. Reduced Instruction Set Computers. Communications of

the ACM 28, 1 (January 1985), 8{21.

[58] Ramamoorthy, C., and Gonzalez, M. A Survey of Techniques for Rec-

ognizing Parallel Processable Streams in Computer Programs. In 1969 Joint

Comput. Conf., AFIPS Conf. Proc. (1969), vol. 35, AFIPS Press, pp. 1{15.

BIBLIOGRAPHY 142

[59] Rees, J., and Clinger, W. Revised3 Report on the Algorithmic Language

Scheme. Tech. Rep. 174, Department of Computer Science, Indiana University,

December 1986.

[60] Sacerdoti, E. Planning in a Hierarchy of Abstraction Spaces. Arti�cial Intel-

ligence 5, 2, 115{135.

[61] Smith, K. PAT { An Interative fortran Parallelizing Assistant Tool. In 1988

International Conference on Parallel Processing (1988), pp. 58{62.

[62] Tanenbaum, A. S. Structured Computer Organization. Prentice-Hall, 1984.

[63] Tarjan, R. Depth First Search and Linear Graph Algorithms. SIAM J. Com-

put. 1, 2 (1972), 146{160.

[64] Tenny, L. UPSL User's Manual. Tech. Rep. 257, Department of Computer

Science, Indiana University, Bloomington, Indiana, 1988.

[65] Torres, J., Ayguade, E., Labarta, J., Llaberia, J., and Valero, M.

On Automatic Loop Data-mapping for Distributed-memory Multiprocessors. In

Lecture Notes in Computer Science no. 487 (1991), pp. 173{182.

[66] Treleaven, P. Control-driven Data-driven, and Demand-driven Computer

Architecture. Parallel Computing 2 (1985).

[67] Triolet, R. Interprocedural Analysis for Program Restructuring with

Parafrase. Tech. Rep. 538, Center for Supercomputer Research and Develop-

ment, Univ. of Illinios, Urbana, 1985.

[68] Wang, K.-Y. Intelligent Program Optimization and Parallelization for Parallel

Computers. PhD thesis, Purdue University, May 1991.

BIBLIOGRAPHY 143

[69] Wang, K.-Y., and Gannon, D. Applying AI Techniques to Program Opti-

mization for Parallel Computers. In Parallel Processing for Supercomputers and

Arti�cial Intelligence (1989), K. Hwang and D. DeGroot, Eds., McGraw-Hill,

pp. 441{485.

[70] Wedel, D. Fortran for the Texas Instruments ASC System. ACM SIGPLAN

Notices 3, 10 (March 1975).

[71] Wolfe, M. Optimizing Supercompilers for Supercomputers. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, 1982.

[72] Wolfe, M. Advanced Loop Interchanging. In Proc. of the 1986 Interna-

tional Conference on Parallel Processing (1986), IEEE Computer Science Press,

pp. 536{543.

[73] Wolfe, M. Vector Optimization vs Vectorization. Journal of Parallel and

Distributed Computing 5 (1988), 551{567.

[74] Wolfe, M. The Tiny Loop Restructuring Research Tool. In Proc. of the 1991

International Conference on Parallel Processing (1991), pp. 46{53.

[75] Zima, H. Supercompilers for Parallel and Vector Computers. Frontier Series.

ACM Press, 1990.

[76] Zima, H., Bast, H.-J., and Gerndt, M. SUPERB: A Tool for Semi-

automatic MIMD/SIMD Parallelization. Parallel Computing 6 (June 1988),

1{18.

