
First-Class Extents

Shinn-Der Lee and Daniel P. Friedman

Computer Science Department

Indiana University

Bloomington, Indiana 47405

sdlee@cs.indiana.edu dfried@cs.indiana.edu

August 4, 1992

Abstract

Adding environments as �rst-class values to a language can greatly enhance its

expressiveness. But �rst-class environments do not mesh well into a lexically scoped

language since they rely on identi�ers (variable names). By distinguishing variables

from identi�ers and therefore extents from environments, we present an alternative:

�rst-class extents. First-class extents are de�ned on variables rather than identi�ers and

are therefore immune to name capturing problems that plague �rst-class environments.

Then by distinguishing variables from locations and therefore extents from stores, our

�rst-class extents can coexist with imperative features and still allow tail-recursion to

be properly implemented as iteration.

To test our claims, we extend Scheme with a collection of features that are essential

to �rst-class extents, give a denotational semantics for the extension, and demonstrate

that it can be fully embedded into Scheme albeit losing tail-recursiveness. Then we

show how �rst-class extents lead to a way of extending Scheme with object-oriented

programming features.

1

1 Introduction

In traditional languages a variable with the name i is mapped to a value v by an environment

map �:

i
�
7! v:

Adding environments as �rst-class values to a language can greatly enhance its expres-

siveness. MIT Scheme [1, 15], T [18], and Symmetric Lisp [8] have shown that records,

structures, closures, modules, classes, abstract data types, and inheritance can all be ex-

pressed with �rst-class environments. But since �rst-class environments rely on identi�ers

(variable names), �-conversion (renaming) of variables could lead to context anomalies due

to inadvertent name capturing.

To illustrate, consider the following expression in MIT Scheme:

(let ((x 1))

(let ((env (let ((y 3)) (make-environment))))

(let ((p (eval '(lambda () x) env)))

(p))))

The environment env constructed by make-environment inherits from its enclosing envi-

ronment the bindings of x and y whose values are 1 and 3, respectively. The code '(lambda ()

x) is then evaluated within env. Hence invoking the procedure p returns 1, the value of the

inherited binding. To show that �-conversion does not work with �rst-class environments

we �-convert y to x in the above expression:

(let ((x 1))

(let ((env (let ((x 3)) (make-environment))))

(let ((p (eval '(lambda () x) env)))

(p))))

The renaming should cause no problem since x does not occur free in the body expression

(make-environment). But env now inherits two bindings of x and the inner one shadows

the outer one. The result of invoking p is therefore 3, not 1. So changing a variable's name

does change the expression's meaning.

The problem with �rst-class environments is that they rely on a variable's name, its

identi�er, rather than on the variable itself. In a lexically scoped language �-conversion

implies that a variable can have many di�erent names. Hence, relying on a variable's

name is problematic. The obvious alternative is to rely on the semantics of an identi�er,

the variable. So a variable with the name i should be mapped to a value v using the

composition of two maps: a map � that binds i to a variable a and a map � that associates

a to v:

2

i
�
7! a

�
7! v:

We continue to call the map � an environment and use it to express static/dynamic scope.

The newly introduced map � is called an extent, it allows us to explicitly characterize

static/dynamic extent of a language. Now we can make the extent map a �rst-class value

and still retain static scope for the variables. That is, �rst-class extents allow us to de-

�ne variables with static scope and dynamic extent. They are therefore immune to name

capturing and �-conversion anomalies. With �rst-class extents we retain most of the ex-

pressiveness of �rst-class environments and still enjoy the security and modularity of static

scope.

In this report we use Scheme [4] to test our claims. We choose Scheme for three reasons.

First, Scheme has only a few basic constructs, greatly simplifying the presentation. Second,

�rst-class extents are compatible with Scheme's static scope; �rst-class environments, how-

ever, are not. Third, a specialized use of �rst-class extents already exists in most Scheme

implementations, it is the uid binding operation uid-let [1].

Extending an imperative language such as Scheme with �rst-class extents raises an

immediate concern: the interaction between dynamic extent and side e�ects. The two

notions must be separated. Thus the mapping of a variable a to a value v should be further

re�ned into the composition of two maps: an extent map � that takes a to a store location

l and a store map � that binds l to v:

i
�
7! a

�
7! l

�
7! v:

That is, we distinguish variables from locations. One might be tempted not to make this

distinction, but to use the original � to model both extent and side e�ects. That, however,

would mean that the language is not properly tail-recursive, since extent must be simulated

by side e�ects with shallow binding [7].

The rest of this report is organized as follows. In section 2 we describe FCE, an extension

of Scheme with a collection of operations that is essential to �rst-class extents. We then show

that FCE can be embedded into Scheme. In section 3 we demonstrate how �rst-class extents

lead to a natural way of extending Scheme with object-oriented programming features. In

section 4 we compare our �rst-class extents to related work on �rst-class environments and

�rst-class stores. Finally we state our conclusion in section 5.

2 FCE

This section extends Scheme [4] with a set of essential �rst-class extent features. The

extension is called FCE and a complete formal description of it, in the form of a denotational

3

semantics, is deferred to the appendix.

We �rst introduce two basic operations: make-empty-extent and with-extent .

Make-empty-extent is a zero argument procedure that produces a distinct empty extent

with each invocation. The special form (with-extent ext body) evaluates the expression

body within the extent denoted by the expression ext . It returns the value of body.

At any point during a computation there can be multiple extents in e�ect at the same

time. The one that is most recently in e�ect is the most recent extent (MRE) and the one

that is least recently in e�ect is the least recent extent (LRE). For example, with respect

to the expression body in

(with-extent ext1

(with-extent ext2

body))

the MRE is ext2 and the previous most recent extent is ext1 . Similarly in

(with-extent ext1

(with-extent (with-extent ext2 body1)

body2))

the MRE and the previous most recent extent of body1 are ext2 and ext1 , respectively.

But the MRE of body2 is the extent denoted by (with-extent ext2 body1), not ext2 . The

previous most recent extent, however, is still ext1 .

We assume the existence of a base extent that is always the LRE. All programs are

evaluated within this base extent. Thus an ordinary Scheme program can be seen as a

program that uses no other �rst-class extent features. In order to treat all extents equally,

the base extent is made available by invoking the thunk get-base-extent.

We next de�ne variable reference, assignment, new binding creation, and binding un-

shadowing (from now on the term binding means extent binding if not stated otherwise).

In the process we also take into consideration the meanings of the relevant Scheme opera-

tions: variable reference, lambda, set!, call-with-current-continuation (call/cc), and

top-level de�ne.

2.1 Variable Reference and Assignment

With multiple extents in e�ect, a variable reference denotes the value de�ned in the most

recently installed extent that has a binding for the variable. Such a binding is the variable's

current binding. Metaphorically, the multiple extents in e�ect form a stack whose top

element is the MRE. A reference searches the stack from top to bottom. The �rst binding

found is its current binding.

An assignment (set! id exp) always updates the current binding of the variable denoted

by the identi�er id. To update the binding in any extent we can make that extent the MRE

4

(de�ne id exp) => (with-extent (get-base-extent)

(def id exp))

Figure 1: De�ne.

(make-extent (id exp) : : :) => (let ((val exp) : : :)

(let ((ext (make-empty-extent)))

(with-extent ext

(begin (def id val) : : : ext))))

Figure 2: Make-extent.

and then use set!.

2.2 New Binding Creation

New bindings established by a procedure invocation are added to the LRE. To add bindings

to the MRE we employ the new special form (def id exp). To add bindings to any other

extent we can make that extent the MRE and then use def.

There are three cases for the operation (def id exp). First, if id is an unbound identi�er,

it becomes a globally bound identi�er and is associated with a new variable. In the base

extent this new variable is bound to a fresh location whose value is unspeci�ed. In addition,

in the MRE the new variable is bound to another fresh location whose value is that of the

expression exp. Second, if id is bound and the MRE has no binding for it, a new binding

associating id to a fresh location whose value is exp is added to the MRE. Third, if id is

bound and the MRE has a binding for it, the def becomes an assignment operation and

the value of the current binding in the MRE is updated.

The def special form is a generalization of Scheme's top-level de�ne: a top-level de�ne

expression in Scheme is equivalent to a def expression when the base extent is the MRE; see

Figure 1 (we assume that the new variables introduced by syntactic extensions are hygienic).

When the identi�er id is not bound de�ne allocates a new location for it and adds a new

binding to the store. Similarly def allocates a new variable for id and adds a binding to

the base extent. When id is already bound de�ne becomes an assignment, as does def.

With def an extent consisting of bindings of a number of variables can be incrementally

constructed using the make-extent syntax de�ned in Figure 2. Finally the de�nition of

uid-let [1] in Figure 3 in terms of �rst-class extents shows why we claim that uid-let is

a specialized use of �rst-class extents.

5

(uid-let ((id exp)) body) => (with-extent (make-extent (id exp)) body)

Figure 3: Fluid-let.

2.3 An Example

Next, as an example we develop a simple register machine similar to that described in [15].

The machine has three registers, namely r0, r1, and r2. The abstract data type of registers

is shown in Figure 4. In it each register created by make-reg is a separate extent and

the exact same variable contents is being used in each of the registers. Since the variable

contents is visible only to the fetch and assign instructions, the security of registers is

maintained. We can use the same technique to de�ne record structures in general: a record

is an extent with each of its �elds being a binding. In particular a register is represented

as a record of a single �eld called contents.

In addition to fetch and assign the machine has three other instructions: the uncon-

ditional goto , the conditional branch , and halt . The machine is de�ned as an extent; see

Figure 5.

A program of the machine is also an extent. Each of its bindings associates a label with

a thunk that represents a non-empty sequence of instructions. By invoking such a thunk

control is transferred to the �rst instruction of the sequence. Each sequence of instructions

consists of any number of assign or fetch instructions followed by one of the other three

instructions: halt , goto, or branch. This ensures that the thunks are in iterative form [14].

The entry point of a program is by convention always the label start. For instance, Figure 6

shows a program that computes the greatest common divisor (GCD) of the two numbers

found in registers r0 and r1 . The answer is returned through r0 . Therefore if gcd-regs is

an extent consisting of the three machine registers, the following expression computes the

GCD:

(let ((contents "unspeci�ed"))

(def make-reg (lambda (val) (make-extent (contents val))))

(def fetch (lambda (reg) (with-extent reg contents)))

(def assign (lambda (reg val) (with-extent reg (def contents val)))))

Figure 4: Register.

6

(def machine

(make-extent

(fetch fetch)

(assign assign)

(halt (lambda () 'done))

(goto (lambda (label) (label)))

(branch (lambda (test then-lab else-lab) (goto (if test then-lab else-lab))))))

Figure 5: Register machine.

(def gcd-prog

(make-extent

(start (lambda () (goto loop)))

(loop (lambda () (branch (zero? (fetch r1)) done next)))

(next (lambda () (assign r2 (remainder (fetch r0) (fetch r1)))

(assign r0 (fetch r1))

(assign r1 (fetch r2))

(goto loop)))

(done (lambda () (halt)))))

Figure 6: GCD program.

(with-extent machine

(with-extent gcd-prog

(with-extent gcd-regs

(begin (goto start) (fetch r0)))))

2.4 Binding Unshadowing

The with-extent operation imposes a shadowing semantics on bindings: a more recent

extent's bindings shadow those of a less recent extent. The dual is an operation that undoes

the work done by some with-extent on a variable. It unshadows the variable's current

binding and exposes its most recently shadowed one. We name such an operation with-

shadowed and de�ne its syntax as (with-shadowed id body). During the evaluation of the

expression body, the previous current binding of id temporarily becomes the current binding,

any reference to id in the evaluation of body gets its value from the previus current binding.

Inductively, when an unshadowing operation is within another unshadowing operation of

the same variable, the previous previous current binding becomes the current binding, and

7

so forth. Given this semantics it is an error when there is no shadowed binding. Hence we

also provide a predicate to tell whether that is the case. The expression (shadowed? id) is

true if the current binding of the variable denoted by the identi�er id is shadowing another

binding of id ; it is false otherwise.

To illustrate, the following sum-x computes the sum of all bindings of x, except the last

one, in all the extents currently in e�ect:

(def sum-x

(lambda ()

(if (shadowed? x)

(+ x (with-shadowed x (sum-x)))

0)))

As an example, assuming that extents ext1, ext2, and ext3 bind x to 1, 2, and 3, respectively,

and that the LRE has the only other binding for x . Then the following expression returns

6:

(with-extent ext1

(with-extent ext2

(with-extent ext3

(sum-x))))

The following derivation depicts the di�erent values the same x denotes within di�erent

extents:

(sum-of-x)

! (+ 3 (with-shadowed x (sum-x)))

! (+ 3 (with-shadowed x

(+ 2 (with-shadowed x (sum-x)))))

! (+ 3 (with-shadowed x

(+ 2 (with-shadowed x

(+ 1 (with-shadowed x (sum-x)))))))

! (+ 3 (with-shadowed x

(+ 2 (with-shadowed x

(+ 1 (with-shadowed x 0))))))

! (+ 3 (+ 2 (+ 1 0)))

With-shadowed has many applications. Let variables x and y be de�ned in both

extents ext1 and ext2 . Then consider combining the two extents in such a way that the

current bindings of x and y are those in ext1 and ext2, respectively. Installing the extents in

either order does not work. Forming a new extent ext3 out of the desired bindings will not

work, since any side e�ects made to x or y of ext3 do not a�ect the corresponding bindings

in ext1 or ext2 . With with-shadowed, however, we can devise the following solution:

8

(def extended-assign

(make-extent

(assign (lambda (reg val)

(display (fetch reg))

(with-shadowed assign (assign reg val))

(display (fetch reg))))))

Figure 7: Extended-assign.

(with-extent ext1

(with-extent ext2

(with-shadowed x

exp)))

During the evaluation of the expression exp the current binding of y is the one in ext2 . As

for x the current binding is the one in ext1 , since the one in ext2 has been unshadowed by

the with-shadowed operation.

Another major use of unshadowing is to extend the de�nition of a procedure. For

instance, continuing the register machine example of section 2.3, the extended-assign of

Figure 7 extends the assign instruction of Figure 4 so that each time a register is updated

its old and new contents are displayed. Hence in addition to computing the GCD of two

numbers, the following also displays the contents of each register when it is updated:

(with-extent machine

(with-extent gcd-prog

(with-extent gcd-regs

(with-extent extended-assign

(begin (goto start) (fetch r0))))))

So far we have extended Scheme with two major �rst-class extent features: a def

operation to incrementally add bindings to an extent and a with-shadowed operation to

unshadow bindings that are shadowed by nested extents. At any point during a computation

the extents installed, including the always present base extent, together with the established

unshadowings constitute the (current) e�ective extent of the computation at that point.

E�ective extent is an important notion since it completely determines the current binding

of every variable reference and assignment. In the following we make e�ective extents

�rst-class values as well.

9

(lambda/e args body) => (let ((e�-ext (get-e�ective-extent)))

(lambda args

(with-e�ective-extent e�-ext body)))

Figure 8: Lambda/e.

(def call/cc/e

(lambda (f)

(let ((e�-ext (get-e�ective-extent)))

(call/cc

(lambda (k)

(f (lambda (v) (with-e�ective-extent e�-ext (k v)))))))))

Figure 9: Call/cc/e.

2.5 First-Class E�ective Extents

Procedures and continuations take on di�erent meanings depending on whether or not they

are closed over the de�nition-time e�ective extent. We do not impose an arbitrary decision

on this issue. Instead, in FCE, by the principle of orthogonality the forming of procedures

and continuations, and the decision whether to close them over the de�nition-time e�ective

extent are independent of each other. Hence we provide two new operations: get-e�ective-

extent and with-e�ective-extent. Get-e�ective-extent is a zero argument procedure

that returns as a �rst-class value the current e�ective extent. The special form (with-

e�ective-extent e�-ext body) evaluates the expression e�-ext to an e�ective extent, installs

it as the new current e�ective extent, evaluates the expression body within the new current

e�ective extent, then the old current e�ective extent is restored and the value of body is

returned.

We let lambda construct procedures that do not close over the de�nition-time e�ective

extent. Then we can construct procedures that close over the de�nition-time e�ective

extent using the syntactic extension lambda/e de�ned in Figure 8. Briey, when such

a procedure is built e�-ext is bound to the de�nition-time e�ective extent. Subsequently

when the procedure is invoked, the procedure's body expressions are evaluated within e�-ext

rather than the invocation-time e�ective extent.

Similarly we let call/cc obtain continuations that do not close over the de�nition-

time e�ective extent and then use it to de�ne call/cc/e, which obtains continuations that

close over the de�nition-time e�ective extent; see Figure 9. That is, e�-ext is bound to

10

(def debugger-assign

(make-extent

(assign (lambda (reg val)

(with-shadowed assign (assign reg val))

(call/cc/e debugger)))))

(def debugger

(with-extent machine

(with-extent debugger-regs

(lambda/e (break-point)

(display-gcd-regs gcd-regs)

(assign r0 (+ 1 (fetch r0)))

(break-point "unspeci�ed")))))

(def display-gcd-regs

(lambda (gcd-regs)

(display (fetch r0))

(display (fetch r1))

(display (fetch r2))))

Figure 10: Break point facilities.

the de�nition-time e�ective extent and k is bound to the current continuation. Then a

procedure acting as a continuation is built out of e�-ext and k , and passed to f . Later,

invoking such a procedure installs e�-ext as the new current e�ective extent before it passes

the value v to k .

Continuing the register machine example of section 2.3 we use lambda/e, call/cc/e,

and with-shadowed to implement a break point mechanism so that each time a register is

assigned a new value, the machine transfers the control to a debugger. The debugger receives

such a break point, increments its own r0 register, and resumes the stopped program.

Figure 10 shows the needed additional facilities. Using with-shadowed , the debugger-

assign instruction invokes the original assign to update a register's contents. A break point,

which is the current continuation and e�ective extent, is then obtained with call/cc/e and

passed to the debugger. Later, the debugger resumes the program by invoking the break

point. Since debugger is de�ned with lambda/e, it is closed over its de�nition-time e�ective

extent. Therefore the r0 in debugger denotes the debugger's own r0 register.

The following code shows how to invoke the GCD program with the break point mech-

anism:

11

(with-extent machine

(with-extent gcd-prog

(with-extent gcd-regs

(with-extent debugger-assign

(begin (goto start) (fetch r0))))))

And if the debugger's r0 register is de�ned as

(def debugger-regs (make-extent (r0 (make-reg 0))))

the number of times a program is stopped can be obtained with

(with-extent machine

(with-extent debugger-regs

(fetch r0)))

2.6 Tail-Recursiveness

The three with- operations are not tail-recursive. Each one of them sets up a new e�ective

extent, evaluates its body expression within the new e�ective extent, and then resets the

old e�ective extent before the body expression's value is returned. Although they are

not tail-recursive they do have counterparts that are: use-extent, use-shadowed, and

use-e�ective-extent. The expression (use-e�ective-extent e�-ext) installs the e�ective

extent denoted by the expression e�-ext as the new current e�ective extent in the subsequent

computation. Similarly the expression (use-extent ext) extends the current e�ective extent

so that the extent denoted by the expression ext becomes the MRE in the subsequent

computation. The expression (use-shadowed id) updates the current e�ective extent so

that the previous current binding of id becomes the new current binding in the subsequent

computation.

Figure 11 de�nes the with- operations in terms of their use- counterparts. In the

auxiliary procedure use, e�-ext is bound to the current e�ective extent and the new current

e�ective extent is installed by invoking the install-new-e�-ext thunk. Then by calling the

action thunk the body expression is evaluated within the new current e�ective extent.

Afterwards the old current e�ective extent e�-ext is reinstated and the value of body is

returned.

2.7 Predicates

FCE has four more predicates, namely extent?, e�ective-extent?, empty-extent?, and

def?. The �rst two di�erentiate extents and e�ective extents from other kinds of values.

The expression (extent? exp) is true if the expression exp denotes an extent. Similarly

the expression (e�ective-extent? exp) is true if the expression exp denotes an e�ective

12

(with-e�ective-extent e�-ext body) => (use (lambda ()

(use-e�ective-extent e�-ext))

(lambda () body))

(with-extent ext body) => (use (lambda () (use-extent ext))

(lambda () body))

(with-shadowed id body) => (use (lambda () (use-shadowed id))

(lambda () body))

(def use

(lambda (install-new-e�-ext action)

(let ((e�-ext (get-e�ective-extent)))

(install-new-e�-ext)

(let ((val (action)))

(use-e�ective-extent e�-ext)

val))))

Figure 11: With-e�ective-extent, with-extent, and with-shadowed.

extent. The third predicate (empty-extent? exp) is true if exp is an extent with no

variable de�ned in it. The fourth predicate (def? id) is true if the MRE has a binding for

the variable denoted by the identi�er id .

In summary, we have introduced twelve basic FCE operations: eight procedures get-

base-extent,make-empty-extent, use-extent, extent?, empty-extent?, get-e�ective-

extent, use-e�ective-extent, and e�ective-extent?, and four special forms def, def?,

use-shadowed, and shadowed?.

2.8 Embedding

FCE can be fully embedded [9] into Scheme. That is, every basic FCE expression can be

de�ned by an equivalent Scheme expression that gives its meaning. Such an embedding

shows that Scheme is as expressive as FCE. It also enables us to study the interactions

between �rst-class extents and Scheme more directly.

The embedding is a derivation of the denotational semantics. There are two major tasks

involved in constructing such an embedding. First, extents and e�ective extents must be

made �rst-class values. Second, the characterization of FCE presented above implies a deep

binding semantics: for each variable, its current binding is determined based on the current

e�ective extent. Yet Scheme identi�es extents with stores since it identi�es variables with

locations. Consequently there is only one extent in Scheme, which is the base extent, and

13

(def extend-object

(lambda (own-attrs . optional-superobject)

(cons own-attrs

(if (null? optional-superobject) '() (car optional-superobject)))))

Figure 12: Extend-object.

a variable's current binding in Scheme is therefore always the one in the base extent. As a

result the embedding's success is governed by the simulation of the deep binding semantics

by a shallow binding one.

With respect to the shallow binding semantics the basic Scheme operations' meanings

remain unchanged, whereas the new FCE features' interpretations require further explana-

tion. They are described in detail in the appendix.

3 Object-Oriented Programming

In this section we demonstrate how the addition of �rst-class extents leads to an unusual

approach to object-oriented programming. Our object system is almost a reconstruction of

Object Scheme [6]. Instead of spelling out an object system in detail we simply sketch how

some of the most fundamental object-oriented mechanisms can be programmed with FCE.

First, we consider the characterization and representation of an object, and the construction

of an object's inheritance hierarchy. Next we consider writing object-oriented code using

method inheritance, method invocation, and self-reference mechanisms. Finally we compare

our system with other Scheme-based object systems.

3.1 Objects

In our system, we do not distinguish between classes and instances. Rather, they are both,

by convention, specialized objects. We view an object as a collection of attributes that form

the state of the object. An attribute can be either a class variable, an instance variable, a

method, or any other information that is relevant to an object.

We represent an attribute by an extent binding. Thus a method is a Scheme procedure

bound to an ordinary Scheme variable. Our representation of an object O is a list of not

necessarily distinct extents (E1 E2 : : :En), (n � 0). The tail of the list, namely (E2 : : :En),

is the superobject S of O. Attributes that O inherits from S are the collection of bindings

in S. Attributes owned by O are those in the head of the list, namely E1. They add new

attributes to S in order to extend S. The extent E1 is called the own extent of O.

14

In such a setting we can construct an object with the extend-object procedure de�ned in

Figure 12. The space-delimited period preceding the formal paramter superobject indicates

that, when extend-object is called, own-attrsmatches the �rst actual argument and optional-

superobject matches the list of the rest of the actual arguments. So an object without a

superobject can be constructed by (extend-object own-attrs) where own-attrs is the own

extent of the object. On the other hand, an object with a superobject superobject can be

constructed by (extend-object own-attrs superobject).

In a system with multiple inheritance, an object can have many superobjects. Object

systems like Object Scheme [6] and CLOS [11] use topological sorting algorithms to pro-

duce a total ordering of the inheritance graph. We enforce no speci�c multiple inheritance

mechanism. Instead we require that the superobjects, represented by lists of extents, are

combined into a single superobject that is in the form of a list of extents.

Knowing that an object is made up of extents we can use def to incrementally add

attributes to an object's own extent. Thus as in CLOS, it is possible to construct an object

by forming its inheritance hierarchy �rst and adding in attributes later. In other words,

the development of an object's inheritance hierarchy can be separated from that of its

attributes.

3.2 Object-Oriented Code

Here, a message is a piece of program and sending a message to an object is equivalent

to evaluating the program within the receiving object's state, which is its extents. The

message will always refer to the latest bindings de�ned in the receiving object. In this way

we achieve self-reference in object inheritance [5, 12, 17] without resorting to any explicit

mechanism such as the pseudo variable self.

We use the syntactic extension with-object de�ned in Figure 13 to pass the message

msg to the object obj . Briey, the procedure with-exts freezes the establishment of the

extents of obj by forming thunks along the way. In the meantime it also reverses the order

in which the extents appeared in the list so that the object's own extent is established last.

Eventually the �nal thunk formed by with-exts is invoked within init-e�-ext . Since the

de�nition-time e�ective extent of init-e�-ext consists of only the base extent, the e�ective

extent of the procedure (lambda () msg) is the base extent. Thus the invocation-time

e�ective extent of with-object is disabled and the message msg is evaluated in the extents

of obj only. Hence a message has no access to the state of any object except that of the

receiving one.

So far, we only have access to the latest bindings of an object. But we often need

to access the superobject's bindings as well. With-shadowed thus comes into play. It

provides a very general mechanism that enables a message sent to an object to reference

15

(with-object obj msg) => (letrec ((with-exts

(lambda (exts thunk)

(if (null? exts)

(thunk)

(with-exts (cdr exts)

(lambda ()

(with-extent (car exts)

(thunk))))))))

(with-e�ective-extent

(with-extent (get-base-extent) init-e�-ext)

(with-exts obj (lambda () msg))))

(def init-e�-ext (get-e�ective-extent))

Figure 13: With-object.

the superceded bindings de�ned in the object's superobject. As a result we can use it to

express the around, before, and after method inheritance mechanisms of CLOS.

3.3 An Example

As an example, Figure 14 shows a class, 2dcp , of two-dimensional Cartesian points as an

object. The class has four attributes. Three of them, namely new-instance , distance , and

closer?, are methods. The fourth one, called this-class, is a class variable denoting the class

2dcp itself.

The new-instancemethod illustrates how something like the around method inheritance

mechanism might work. It also shows how the inheritance hierarchy of an object can be

de�ned independently of the attachment of attributes to the object. The job of new-instance

is to instantiate a Cartesian point (a, b) when given the two coordinates a and b. But the

new-instance method de�ned in the 2dcp class does not create an object by itself. Instead,

using with-shadowed, it calls the new-instance method that is de�ned in the base extent

to produce an instance of the class:

(with-shadowed new-instance (new-instance))

Then using def, it incrementally adds the coordinates to the returned object to produce

the desired instance:

(with-object inst

(begin (def x init-x) (def y init-y)))

16

(def 2dcp

(let ((own-attrs

(let ((x 'any) (y 'any))

(make-extent

(new-instance

(lambda (init-x init-y)

(let ((inst (with-shadowed new-instance (new-instance))))

(with-object inst

(begin (def x init-x) (def y init-y)))

inst)))

(distance

(lambda () (sqrt (+ (square x) (square y)))))

(closer?

(lambda (pt)

(< (distance) (with-object pt (distance)))))))))

(let ((obj (extend-object own-attrs)))

(with-object obj (def this-class obj))

obj)))

Figure 14: Two-dimensional Cartesian points class.

This, however, requires that the new-instance method be de�ned in the base extent as

shown in Figure 15. It attaches an empty extent in front of the class object denoted by the

variable this-class.

An immediate consequence of this is that we can de�ne a generic function [11] to instan-

tiate an arbitrary class, provided that the class has a properly de�ned new-instance method

and a variable named this-class that denotes the class itself. We call this generic function

new and de�ne it in Figure 15. Now we can express the instantiation of a two-dimensional

Cartesian point (3, 4) in a more readable style: (new 2dcp 3 4).

The other two class methods, namely distance and closer?, show how to accomplish

self-reference without resorting to any special mechanism. Consider invoking closer? on

the argument pt1 within the state of some point pt0 . It compares the distances of both

points pt0 and pt1 from the origin in order to determine which point is closer to the origin.

Once within the state of pt0 the binding of distance is already established. Thus a simple

variable reference is all it takes to access that method. Similarly in the body of distance

the bindings of x and y are already in place, ensuring that the references to the coordinates

will access the correct values.

17

(def new-instance

(lambda args

(extend-object (make-empty-extent) this-class)))

(def new

(lambda (obj . args)

(with-object obj (apply new-instance args))))

Figure 15: New-instance and new.

3.4 Other Scheme-based Object Systems

Finally we compare our object system with other Scheme-based ones. Our system is derived

from Object Scheme [6]. The di�erence between the two systems is in the way unshadowing

is accomplished. The counterpart of with-shadowed in Object Scheme is the shadowed

operation. The expression (shadowed id obj) denotes the binding of id that is immediately

shadowed by the binding of id in the own extent of object obj. There are two restrictions on

the use of shadowed. First, (shadowed id obj) must be evaluated within the own extent

of obj . Second, the own extent of obj must have a binding for id . It seems to us that the

restrictions are too arti�cial just to reference a variable de�ned in the superobject. Besides,

with-shadowed allows for more exibility than shadowed. We can express shadowed in

terms of with-shadowed as follows:

(shadowed id obj) => (with-shadowed id id)

Furthermore, suppose that O is the object (E1 E2 E3) where the attribute a is de�ned

in all three extents. One subobject (E0 E1 E2 E3) of O may inherit the a 's in all three

extents E1, E2, and E3, while a second subobject (E0

0
E1 E2 E3) may inherit the a 's in

E2 and E3 only. In Object Scheme these possibilities must be programmed into the a's in

the extents of O before the subobjects are constructed. This is not only cumbersome but

sometimes impossible, since the object O may not know in advance how many subobjects

it will have and what their behavior will be.

Next we compare our system to the other Scheme-based object systems. In our system

an object is treated as a true state and a message sent to an object is a piece of program

to be evaluated within the state of the receiving object. As a result when evaluating a

message we can access any attribute of the receiving object by just an ordinary Scheme

variable reference. This treatment of objects has several important consequences. First,

it permits us to take full advantage of the simplicity, modularity, and security of lexically

bound variables. Moreover, the mechanism we use to control the privacy of an object's

attributes is the same one we use to control the visibility of ordinary Scheme variables. For

18

instance in the 2dcp class of Figure 14, the variables x and y are private within the instances

of the class, only the methods de�ned in the class have access to them.

Another advantage of treating an object as a true state is that we can achieve self-

reference by simple ordinary Scheme variable references. This enables us to write object-

oriented code in the same way as we write ordinary Scheme code. For instance the piece of

code (+ x y) computes the sum of x and y in ordinary Scheme as well as in any object.

Also, we can view Scheme as an object whose list of extents is (). In fact this is

exactly what we did when we de�ned with-object in section 3.2. There we also made

the assumption that the Scheme object is always the implicit least speci�c superobject of

all other objects. This view is critical in that it allows us to say that ordinary Scheme

programming is a special case of object-oriented programming where computation is always

carried out within the state of the Scheme object. As a result when combined with the fact

that writing object-oriented code is the same as writing ordinary Scheme code, we can say

that our system is a natural extension of Scheme.

In other Scheme-based object systems [2, 16], an object is a dispatcher simulating an

environment. But unlike an ordinary environment that associates identi�ers with values,

a dispatcher maps values (symbols for instance) to values. Thus an object's attributes are

accessed through procedure invocations rather than by ordinary Scheme variable references.

As a result the state represented by a dispatcher cannot be established so that a message

can be evaluated within it. This is because a dispatcher is not a true environment.

Another major drawback of implementing an object as a dispatcher is that the resulting

object-oriented code is not Scheme-like. For instance, assume that the object obj has two

attributes x and y that are denoted by the values 'x-cor and 'y-cor, respectively. Then to

compute the sum of x and y one must write (+ (send obj 'x-cor) (send obj 'y-cor)), or (+

(send self 'x-cor) (send self 'y-cor)) if the pseudo variable self is equated to obj .

Another problem with simulating an object as a dispatcher is that it cannot use lexical

scoping to control the accessibility of an object's attributes. Instead it must rely on the

uniqueness of a dispatcher's domain, e.g. symbols like 'x-attrand 'y-attr, to hide its attributes

from the rest of the program.

Yet the most critical de�ciency is that ordinary Scheme is not an object since it cannot

be made into a dispatcher. This is another reason why the object-oriented code of [2, 16] is

not Scheme-like. Clearly the object-oriented programming style induced by implementing

an object as a dispatcher does not integrate well with Scheme's programming style.

4 Related Work

Consider the register abstract data type of Figure 4. Since the contents of a register is

denoted by a lexical variable contents , we have total control over its scope | only fetch

19

(de�ne make-reg (lambda (val) (make-environment (de�ne contents val))))

(de�ne fetch (lambda (reg) (lexical-reference reg 'contents)))

(de�ne assign (lambda (reg val) (lexical-assignment reg 'contents val)))

Figure 16: Registers as �rst-class environments.

and assign can operate on it. Thus

(let ((contents "unspeci�ed"))

(with-extent reg (def contents contents)))

does no harm to the contents of the register reg , since this contents is a di�erent variable

from the one used by fetch and assign.

In contrast, consider the same abstract data type de�ned in [15] using MIT Scheme's

�rst-class environments; see Figure 16. Because a register's contents is associated with

the symbol 'contents , anyone can read and write a register. There is no security to the

abstract data type. Also, renaming the identi�er contents changes the semantics of the

data type, unless the symbols in fetch and assign are changed accordingly. Furthermore,

given a register reg as a �rst-class environment, its contents will be clobbered when a new

de�nition of contents is added to it:

(eval '(de�ne contents "unspeci�ed") reg)

Clearly �rst-class environments lack the security and modularity of �rst-class extents.

There are, however, situations where �rst-class extents cannot replace �rst-class envi-

ronments. They are when the system is incapable of �guring out the variable associated

with an identi�er. For instance, program module interfaces, the interconnections between

separately compilable program units, must rely on some protocol that ultimately must be

expressed at the symbolic level. The identi�ers of �rst-class environments best serve this

purpose.

Stores have also been made �rst-class values. The language GL [10] uses �rst-class

stores in testing and debugging programs. With �rst-class stores, a location can denote

multiple \versions" of values. These versions must be stored somewhere. In a multiple

memory module architecture, such as SIMD, they could be in the same location of di�erent

memory modules. In a conventional architecture, they could be in di�erent core dump �les

resident on disks. In any event, the mapping from locations to values needs an extra level

of indirection to model the dynamic behavior of locations.

Since extents are independent of stores, multiple extents can exist in a single store.

It is therefore possible to simulate �rst-class stores with �rst-class extents. The dynamic

behavior of locations can be promoted to the earlier stage of variables. That is, a location

20

that is associated with multiple versions of values can be simulated by associating the

variable that denotes the location to multiple locations holding the values.

5 Conclusions

When it is not necessary we do not want our programs to depend on identi�ers (variable

names). To avoid the dependency we have distinguished variables from identi�ers and loca-

tions. In the process we have created an intermediate level, extents, between environments

and stores:

Ide
environment
����������! Var

extent
����������! Loc

store
����������! Val:

We have shown the advantages of �rst-class extents over �rst-class environments and stores,

as well as their limitations. They should coexist. The interesting question is: \Which to use

when?" We have presented a set of features whose behavior is essential to every language

with �rst-class extents. The three major features discussed are an incremental de�nition

operation, an unshadowing operation, and an e�ective extents mechanism. In particular we

have incorporated these features into Scheme.

Based on �rst-class extents we have reconstructed Drescher's Object Scheme [6] in

which object-oriented programming is a natural extension of Scheme's uid binding. Object

Scheme is signi�cantly di�erent from other Scheme object systems. In particular an ob-

ject's attributes, including instance variables, class variables, and methods, are all denoted

by lexical variables rather than symbols. No special mechanisms, such as send and self,

are therefore needed for their de�nition and access.

The last issue concerns implementations. It is possible to embed the �rst-class extent

features directly into a language. In particular we have embedded them into Scheme.

Acknowledgements

We owe much to Gary Drescher, whose Object Scheme inspired this work. We are grateful

to Julia Lawall and Gary Drescher for many discussions on the design and implementation

of FCE. We thank Matthias Felleisen and John Simmons for their comments on earlier

drafts of this paper. The programs were typeset using the SLaTEX system provided by

Dorai Sitaram.

This research was partially supported by the National Science Foundation under grants

CCR 87-02117, CCR 89-01919, and CCR 90-00597.

21

References

[1] H. Abelson and G. J. Sussman with J. Sussman. Structure and Interpretation of

Computer Programs. MIT, 1985.

[2] N. Adams and J. Rees. Object-oriented programming in Scheme. In Proceedings of the

ACM Conference on Lisp and Functional Programming, pages 277{288, 1988.

[3] Cadence Research Systems. Chez Scheme System Manual Revision 2.1, September

1991.

[4] W. Clinger and J. Rees (editors). Revised4 report on the algorithmic language Scheme.

Lisp Pointers, 4(3):1{55, 1991.

[5] W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness.

In Proceedings of the ACM Conference on Object-Oriented Programming: Systems,

Languages and Applications, pages 433{443, 1989.

[6] G. L. Drescher. Object Scheme: Object inheritance as uid binding. Technical report,

Thinking Machines Corporation, 1990.

[7] B. F. Duba, M. Felleisen, and D. P. Friedman. Dynamic identi�ers can be neat.

Technical Report 220, Computer Science Department, Indiana University, April 1987.

[8] D. Gelernter, S. Jagannathan, and T. London. Environments as �rst class objects. In

Proceedings of the Fourteenth ACM Symposium on Principles of Programming Lan-

guages, pages 98{110, 1987.

[9] C. T. Haynes and D. P. Friedman. Embedding continuations in procedural objects.

ACM Transaction on Programming Languages and Systems, 9(4):582{598, October

1987.

[10] G. F. Johnson and D. Duggan. Stores and partial continuations as �rst-class objects

in a language and its environment. In Proceedings of the Fifteenth ACM Symposium

on Principles of Programming Languages, pages 158{168, 1988.

[11] G. L. Steele Jr. Common Lisp: The Language. Digital Press, second edition, 1990.

[12] S. N. Kamin. Inheritance in Smalltalk-80: A denotational de�nition. In Proceedings of

the Fifteenth ACM Symposium on Principles of Programming Languages, pages 80{87,

1988.

22

[13] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic macro expansion.

In Proceedings of the ACM Conference on Lisp and Functional Programming, pages

151{161, 1986.

[14] J. McCarthy. Towards a mathematical science of computation. In Proceedings of IFIP

Congress 63, pages 21{28. North-Holland, 1963.

[15] J. S. Miller and G. J. Rozas. Free variables and �rst-class environments. Lisp and

Symbolic Computation, 4(2):107{141, 1991.

[16] K. N�rmark. Simulation of object-oriented concepts and mechanisms in Scheme. Tech-

nical Report R 90-01, Institute of Electronic Systems, Aalborg University, January

1990.

[17] U. S. Reddy. Objects as closures: Abstract semantics of object-oriented languages.

In Proceedings of the ACM Conference on Lisp and Functional Programming, pages

289{297, 1988.

[18] J. A. Rees, N. I. Adams, and J. R. Meehan. The T Manual. Computer Science

Department, Yale University, 1984.

[19] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT, 1981.

23

Appendix

This appendix consists of two sections. The �rst is a denotational description of FCE.

The second is a Scheme interpretation of FCE in the form of an embedding.

A Formal Semantics of FCE

In this section, we provide a denotational description [7, 19] of FCE. It is presented in three

parts: the abstract syntax of the basic FCE expressions, the semantic domains on which the

basic expressions are de�ned, and the valuation function that maps the basic expressions

to their meanings drawn from the semantic domains.

A.1 Abstract Syntax

c : C (Constants)

i : I (Identi�ers)

e : E (Expressions)

e ::= c j (if e e e) j i j (set! i e) j (lambda (i) e) j (e e) j (call/cc e)

j (get-base-extent) j (make-empty-extent) j (use-extent e)

j (get-e�ective-extent) j (use-e�ective-extent e)

j (def i e) j (use-shadowed i)

j (extent? e) j (empty-extent? e) j (e�ective-extent? e)

j (def? i) j (shadowed? i)

Figure 17: Abstract syntax.

Figure 17 de�nes the abstract syntax of FCE. FCE has, in addition to Scheme's basic

expressions1, twelve new basic constructs: the procedures get-base-extent,make-empty-

extent , use-extent , extent? , empty-extent?, get-e�ective-extent , use-e�ective-

extent , and e�ective-extent?, and the special forms def , def?, use-shadowed , and

shadowed?.

A.2 Semantic Domains

1In order to simplify the presentation, we omit multiple argument procedures.

24

1: a : Var (Variables)

2: l : Loc (Locations)

3: � : Env = Ide �!� Var (Environments)

4: " : Ext = Var �!� Loc (Extents)

5: � : Sto = Loc �!� Val (Stores)

6: l̂ : ELoc � Loc (Extent-Locations)

7: n : Ind = f0; 1; 2; : : :g (Stack Indices)

8: � : Stk = Ind �!� ELoc (Stack)

9: u : Reg = Ind � Ind (Unshadowed Regions)

10: � : Bli = Var �!� Reg� (Blinders)

11: � : EExt = Ind � Stk� Bli (E�ective Extents)

12: � : Con = Val �! EExt �! Sto �! Val (Continuations)

13: p : Pro = Val �! EExt �! Sto �! Con �! Val (Procedures)

14: v : Val = Ext + ELoc + EExt + � � � (Values)

Figure 18: Semantic domains.

To model extents and e�ective extents as �rst-class values FCE must separate the notion

of extent from those of environment and store. Once we have the semantic model for FCE

we must generalize the basic Scheme expressions' semantics accordingly. Then in order to

show that FCE is a conservative extension of Scheme we must demonstrate that, when its

added features are removed, the FCE semantic model degenerates into that of Scheme.

Equations 1{5 of Figure 18 de�ne the semantic domains of variables, locations, environ-

ments, extents, and stores. Environments, extents, and stores are �nite functions. Since

extents are �rst-class values, they should be included in the domain of values. But when

a binding is incrementally added to an extent by def, its e�ect must be shared by all the

program units that have access to the extent. Hence we introduce the domain of extent-

locations, which is a sub-domain of locations, as a level of indirection to model this sharing;

see equation 6 of Figure 18. Therefore the value domain is expanded with both extents and

extent-locations (cf. equation 14 of Figure 18).

We model the nesting of extents by a stack of not necessarily distinct extent-locations,

with the extent associated with the top extent-location being the most recent extent (MRE).

The stack's elements are extent-locations rather than extents. The indirection is used to

model the sharing semantics mentioned above. The extent-locations are not necessarily

distinct because an extent can be installed more than once. The semantic domains related

to extent-location stacks are de�ned by equations 7{8 of Figure 18.

We de�ne a stack to be a �nite function that maps from stack indices (non-negative

25

 : Var �! Ind �! Stk �! Reg� �! Sto �! Ind

 an � [] � = a 2 Dom(�(� n)) ! n, a (n�1) � [] �

 a n � [(n1; n2),u
�] � =

n = n1 ! n2�1

j n > n1 ! a 2 Dom(�(� n)) ! n, a (n�1) � [(n1; n2),u
�] �

j n < n1 ! an � u� �

� : Var �! EExt �! Sto �! Ind

� a (n; �; �) � = an � (� a) �

' : Var �! EExt �! Sto �! Ind

'a (n; �; �) � = a ((�a (n; �; �) �)�1) � (� a) �

Figure 19: Semantic functions.

integers) to extent-locations, with the bottom of the stack being indexed by 0. The advan-

tage of doing so will become clear later. Within such a setting the �rst binding found for a

variable, starting from the top of the stack, is the current binding of the variable and the

extent in which the current binding resides is the current extent of the variable. But this

is correct only if the variable reference is not within any use-shadowed expression of the

variable in question.

Next we model unshadowing with unshadowed regions. An unshadowed region of a

variable is a pair of stack indices (n,n0+1). It indicates that n is the stack-top index when

the unshadowing happens and that n0 is the index of the new current extent. Hence the

variable's current binding is not in any of the extents whose extent-locations are indexed by

n; : : : ; n0+1. Next we de�ne a blinder to be a �nite function from variables to sequences of

unshadowed regions. A variable is not unshadowed by any use-shadowed expression when

the sequence of unshadowed regions associated with it is empty. Otherwise it is mapped

to the non-empty sequence [head,tail] where head is the unshadowed region encoding the

most recent unshadowing and tail is a sequence of unshadowed regions encoding the previous

unshadowings, inductively. The semantic domains of unshadowed regions and blinders are

de�ned by equations 9{10 of Figure 18.

A stack-top index, an extent-location stack, and a blinder together form an e�ective

extent. The semantic domain of e�ective extents is de�ned by equation 11 of Figure 18.

Since e�ective extents are �rst-class values, the value domain must include the domain of

e�ective extents as a summand as well (cf. equation 14 of Figure 18).

Next, with respect to the e�ective extents, we de�ne two semantic functions to determine

26

the stack indices of the current extent and the previous current extent of a given variable.

These functions are called � and ', respectively, and are shown in Figure 19. They are

de�ned in terms of an auxiliary function . The function takes �ve arguments: (1) a

variable a whose current extent is requested, (2) a stack index n indicating the extent to

look for a binding of a, (3) a stack � of extent-locations, (4) a sequence of unshadowed

regions u� of a, and (5) a store �. It returns the stack index of the current extent of

a. According to the sequence of unshadowed regions u�, is split into two cases. If the

sequence is empty, there is no more unshadowing. Therefore the extent indicated by the

index n is consulted to determine if it has a binding for a. If so, n is the desired index.

Otherwise, n is decremented (i.e., stack is popped) and the search continues inductively.

On the other hand, if the unshadowed sequence is [(n1; n2),u
�] where (n1; n2) is the most

recent unshadowed region, n is compared against n1. There are three subcases. First, if

n = n1, n2�1 is the desired index because (n1; n2) is the most recent unshadowed region

and therefore n2�1 is the index of the current extent. Second, if n > n1, there are some

extents installed after the most recent unshadowing and therefore they should be consulted.

Third, if n < n1, all extents in the region (n1,n2) are skipped and the search continues with

the next unshadowed region.

We now have an e�ective extent model for FCE. We must consider how the new model

interacts with continuations and procedures. Since FCE procedures and continuations do

not close over the de�nition-time e�ective extent, they are passed the invocation-time e�ec-

tive extent. The semantic domains of continuations and procedures are de�ned by equations

12{13 of Figure 18.

Finally when FCE degenerates to Scheme, the new e�ective extent model can be reduced

to a simple extent that associates each variable with exactly one location. Consequently the

domain of e�ective extents can be absorbed by that of the stores. First, the blinder of an

e�ective extent always maps a variable to an empty sequence of unshadowed regions since

there is no use-shadowed expression in Scheme. We therefore can drop the blinder from

the e�ective extent. We can also drop the extent-location stack from the e�ective extent

since Scheme has no use-extent expression. Consequently we do not need the e�ective

extent and therefore FCE is a conservative extension of Scheme.

A.3 Valuation Function

The valuation function [[]] is de�ned in Figure 20. The constant and if clauses are straight-

forward and are thus omitted. Also left out are the clauses for the predicates extent?,

empty-extent?, def?, shadowed?, and e�ective-extent?. In the clauses for variable

reference, set!, def, and use-shadowed, we show only the cases when the identi�er involved

is bound. We also omit the case when the variable to be unshadowed by use-shadowed is

27

[[]] : Exp �! Env �! EExt �! Sto �! Con �! Val

[[i]] � (n; �; �) � � = let v = �(�(�(� (� i) (n; �; �) �))(� i)) in � v (n; �; �) �

[[(set! i e)]] � � � � =

klet (v; (n; �; �); �) = [[e]] � � � in

� ? (n; �; �) �[�(�(� (� i) (n; �; �) �))(� i) 7!v]

[[(lambda (i) e)]] � � � � =

let p = �v��� . [[e]] �[i 7!af] � �[l̂0 7!(� l̂0)[af 7! lf]][lf 7!v] � in

� p � �

[[(ep ev)]] � � � � =

klet (p; �; �) = [[ep]] � � � in

klet (v; �; �) = [[ev]] � � � in

p v � � �

[[(call/cc e)]] � � � � =

let v = �v���0 . � v � � in

klet (p; �; �) = [[e]] � � � in

p v � � �

[[(get-scheme-extent)]] � � � � = � l̂0 � �

[[(make-empty-extent)]] � � � � = � l̂f � �[l̂f 7!;"]

[[(use-extent e)]] � � � � =

klet (l̂; (n; �; �); �) = [[e]] � � � in � ? (n+1; � [n+1 7! l̂]; �) �

[[(get-e�ective-extent)]] � � � � = � � � �

[[(use-e�ective-extent e)]] � � � � = klet (�; �0; �) = [[e]] � � � in � ? � �

[[(def i e)]] � � � � =

klet (v; (n; �; �); �) = [[e]] � � � in

(� i) 2 Dom(�(� n)) !

� ? (n; �; �) �[�(� n)(� i) 7!v],

� ? (n; �; �) �[� n 7!(�(� n))[� i 7! lf]][lf 7!v]

[[(use-shadowed i)]] � (n; �; �) � � =

� ? (n; �; �[� i 7! [(n; ('(� i) (n; �; �) �)+1),�(� i)]]) �

Figure 20: Valuation function [[]].

28

not shadowing another binding.

The notation used in Figure 20 is summarized as follows. The unspeci�ed value is

denoted by ?. The arid extent is denoted by ;". It binds no variables. The notation �0

denotes the initial e�ective extent whose con�guration is (0; �0; �0). The initial stack �0

of extent-locations has size one. It maps the index 0 to l̂0, which is the extent-location

of the base extent. The initial blinder �0 maps every variable to the empty sequence [] of

unshadowed regions. The initial store �0 maps the extent-location l̂0 to the base extent.

The notation f [d 7! r] denotes the function g, an extension of the function f . (g d) is r

whereas (g d0) is (f d0) when d0 6= d. The subscript f of af , lf , and l̂f indicates that they

are fresh. The notation

klet (v; �0; �) = [[e]] � � � in

E

is another way of expressing

[[e]] � � � (�v �0 � . E):

B Interpreting FCE

In this section we show that FCE can be fully embedded [9] into Scheme. That is, every

basic FCE construct can be de�ned by an equivalent Scheme expression that gives meaning

to the construct. We prefer implementing FCE in terms of an embedding rather than in

terms of an interpreter for several reasons. First, an embedding allows us to better study

the similarities as well as the di�erences between the two languages, especially when one is a

conservative extension of the other. Second, it demonstrates the inherent power of Scheme

to express new concepts and mechanisms.

The embedding is a derivation of the denotational semantics given in the last section.

There are two major tasks involved in such an embedding. First, extents and e�ective

extents must be made �rst-class values. Second, the semantics of FCE developed in the last

section is a deep binding one: each time a variable is referenced its location is determined

based on the current e�ective extent. Yet the location of a variable reference in Scheme

is always the one in the only extent, which is equated to the only store. As a result the

success of the embedding is governed by the simulation of the deep binding semantics by a

shallow binding one.

B.1 Extents

We simulate the variable associated with the identi�er id by the following accessor-setter

pair of procedures:

29

(cons (lambda () id) (lambda (v) (set! id v)))

To compare two variables for equality, we employ the following var=? predicate:

(de�ne var=?

(let ((unique "unique"))

(lambda (var1 var2)

(let ((saved ((car var1))))

((cdr var1) unique)

(let ((val ((car var2))))

((cdr var1) saved)

(eq? val unique))))))

That is, the variable var1 is temporarily assigned a uniquely identi�able value after its

original value is saved. Then the value of the variable var2 is read. If it is the uniquely

identi�able value, the two variables are the same. Otherwise they are not.

We represent a binding by a cons cell. The car is a variable and the cdr serves as its

location. An extent is simulated by a list of bindings. Thus each time the make-empty-

extent procedure is called, it simply returns an empty list. There are two basic extent

operations, namely extend-extent and lookup-extent . The lookup-extent operation uses

var=? to determine if a variable is de�ned in an extent. Besides a variable and an extent,

lookup-extent takes two extra procedures as success and failure continuations. If a binding

is found the success continuation is called with that binding as its argument. Otherwise

the failure continuation is called. The extend-extent operation adds a binding to an extent.

This is done by a side e�ect so that the newly added binding is shared by all program units

that have access to the extent.

Finally to achieve the e�ect that the base extent has a binding for every variable used

in a program, we denote the base extent by a variable called base-extent and de�ne the

get-base-extent procedure as follows:

(set! get-base-extent (lambda () base-extent))

This base-extent variable is initially bound to an empty extent. Then whenever base-extent

is asked for the binding of the variable var for the �rst time, we add to base-extent a new

binding associating var with its current value in the store. In this way base-extent will

always appear to have a binding for every variable.

B.2 E�ective Extents

We translate the semantic functions on e�ective extents employed in the denotational seman-

tics directly into Scheme code. The only di�erence is that extent-locations are replaced by

extents directly, since the indirection furnished by extent-locations has been absorbed into

30

the simulation of extents. Also, we use a variable called e�ective-extent to always denote the

current e�ective extent during a computation. The e�ective extent held by e�ective-extent

is consulted whenever the (previous) current binding of a variable is requested.

B.3 Deep Binding

In embedding FCE into Scheme we must ensure that for every variable its corresponding

location in the store, which is also the base extent, always holds its current binding's value.

Consequently each time a variable's current binding is changed, its value in the store must

be updated accordingly. There are four basic FCE constructs that can change a variable's

current binding: def, use-shadowed, use-extent, and use-e�ective-extent. In all cases

the old current binding's value, which is in the store, is saved. Then the new current

binding' value is written to the store. We name this switching process switch-bnds.

With respect to the shallow binding semantics, the basic Scheme expressions' mean-

ings remain unchanged, whereas the new FCE operations' interpretations require further

explanation. They are described in detail in the following.

B.4 Get-e�ective-extent and Use-e�ective-extent

We de�ne the get-e�ective-extent procedure in Scheme as follows:

(set! get-e�ective-extent (lambda () e�ective-extent))

When invoked, get-e�ective-extent simply returns the value of e�ective-extent .

The use-e�ective-extent procedure is de�ned as follows:

(set! use-e�ective-extent

(lambda (e�-ext)

(install-extent base-extent)

(set! e�ective-extent e�-ext)

(save-extent base-extent)))

Operationally, the base extent is installed as the MRE by (install-extent base-extent). This

is done by switching every new binding of base-extent with its corresponding old current

binding of the current e�ective extent. As a result the current bindings of all variables save

their values from the store. Next the current e�ective extent is set to e�-ext . Finally the

bindings of base-extent are saved by (save-extent base-extent) so that the current bindings

of e�-ext become the new current bindings. The save-extent procedure is the opposite of

install-extent. It switches every old binding of base-extentwith its corresponding new current

binding of e�-ext. This practically switches the values de�ned in the current bindings, with

respect to e�-ext , into the store.

31

B.5 Use-extent

The use-extent procedure is de�ned in Scheme as follows:

(set! use-extent

(lambda (ext)

(install-extent ext)

(set! e�ective-extent <new-e�ective-extent>)))

First, (install-extent ext)makes the bindings of ext the new current bindings. Then e�ective-

extent is updated to the new e�ective extent denoted by the expression <new-e�ective-

extent> in which ext is the MRE.

B.6 Use-shadowed

Here is the Scheme code for interpreting the use-shadowed syntax when var is the variable

to be unshadowed:

(begin (switch-bnds (current-bnd var) (previous-current-bnd var))

(set! e�ective-extent <new-e�ective-extent>))

Briey, the new current binding, the previous current binding obtained by (previous-current-

bnd var), and the old current binding, the current binding obtained by (current-bnd var),

switch values. Then e�ective-extent is updated accordingly.

B.7 Def

We interpret the addition of a binding associating the variable var with the value val to

the MRE ext , whose stack index is n, as follows:

(lookup-extent var ext

(lambda (bnd)

(if (eq? bnd (current-bnd var))

((cdr var) val)

(set-cdr! bnd val)))

(lambda ()

(let ((new-bnd (cons var val))

(regs ((cdddr e�ective-extent) var)))

(when (or (null? regs) (> n (car (car regs))))

(switch-bnds (current-bnd var) new-bnd))

(extend-extent ext new-bnd))))

When var is already de�ned in the MRE, a def is equivalent to a set!. So if the binding

bnd in the MRE is the current binding, the new value val is written to the store by ((cdr

var) val). Otherwise the binding bnd in the MRE is updated to the new value by (set-cdr!

32

bnd val). On the other hand, if var is not de�ned in the MRE, a new binding new-bnd

must be added to ext by (extend-extent ext new-bnd). This newly added binding is the new

current binding, if the MRE is not within any unshadowed region. As such, the old and

new current bindings must switch values.

B.8 Predicates

To distinguish both kinds of extents from other types of Scheme values, they are each

tagged with a uniquely identi�able value. The interpretations of the predicates are then

straightforward and the reader is referred to the program listing at the end of this appendix.

B.9 Robustness

The shallow binding embedding described in this section is complete, but not robust. There

is no guarantee that when an error occurs the values in the current bindings, with respect

to the current e�ective extent, will be the same as those in the store. In fact such incon-

sistency is potentially ever-present during a computation. To solve this problem we need a

mechanism to automatically update the location component of a current binding whenever

its corresponding location in the store is updated. Unfortunately this is not possible in

standard Scheme [4]. Thus the next best solution is to guarantee that whenever the com-

putation stops, either normally or abnormally, consistency is maintained. There are many

reasons a computation can be stopped abnormally. Interrupts, errors, debuggers, to name a

few, can all suspend the computation of a program. Since none of them is part of standard

Scheme, we cannot provide a portable solution to the problem.

Yet on a case by case basis, we can provide a solution if a su�cient hook is available. For

instance in Chez Scheme [3] the current error handling procedure is invoked when an error

is detected. With the provision of such a hook, we can maintain the desired consistency

when an error occurs by extending the de�nition of the error handler as follows:

(let ((old-handler (error-handler)))

(error-handler (lambda args

(use-e�ective-extent (get-e�ective-extent))

(apply old-handler args))))

That is, the original error handler is obtained by the expression (error-handler) and the new

error handler is installed by the expression (error-handler <new-error-handler>). When

the new error handler is invoked, the current e�ective extent is obtained and reinstalled

immediately. Thus the current e�ective extent is not changed; instead only the current

bindings are forced to save their values from the store.

33

B.10 Unbound Identi�er References

The basic FCE constructs having to do with variable reference, namely def, def?, use-

shadowed, and shadowed?, all could reference a \free" identi�er. That is, they could

reference an identi�er that is not bound by any lambda or top-level de�ne . In Chez

Scheme such a reference causes an error because the identi�er is considered \unbound."

In the embedding, to remedy the problem, we provide the following def? syntax that can

detect whether an identi�er is bound.

(def? id) => (let ((old-handler (error-handler)))

(let ((ans (call/cc

(lambda (return)

(error-handler (lambda args (return #f)))

id

#t))))

(error-handler old-handler)

ans))

Operationally, the continuation of the def? expression is obtained and saved in return .

The error handling procedure is temporarily replaced by a procedure that returns to the

program point return with a false value. Thus the def? expression is false if the identi�er id

is unbound. Otherwise the value associated with id is ignored and a true value is returned.

B.11 Program Listing

Below is the source listing of the complete embedding written in Chez Scheme. It uses four

non-standard features, namely the de�ne-top-level-value procedure that is used in def to

create a global variable binding if the identi�er to be bound is free, the above-mentioned

error handling procedure parameter error-handler, the syntactic extension facility extend-

syntax, and the uninterned symbol generator gensym.

34

(de�ne get-base-extent "unspeci�ed")

(de�ne make-empty-extent "unspeci�ed")

(de�ne use-extent "unspeci�ed")

(de�ne extent? "unspeci�ed")

(de�ne empty-extent? "unspeci�ed")

(de�ne get-e�ective-extent "unspeci�ed")

(de�ne use-e�ective-extent "unspeci�ed")

(de�ne e�ective-extent? "unspeci�ed")

(let*

;;; beginning of private declarations

((extent-tag "extent")

(e�ective-extent-tag "e�ective-extent")

(make-e�ective-extent (lambda (index stack blinder)

(cons e�ective-extent-tag

(cons index (cons stack blinder)))))

(base-extent (cons extent-tag '()))

(e�ective-extent (make-e�ective-extent 0

(lambda (n) base-extent)

(lambda (var) '())))

(var=? (let ((unique "unique"))

(lambda (var1 var2)

(let ((saved ((car var1))))

((cdr var1) unique)

(let ((val ((car var2))))

((cdr var1) saved)

(eq? val unique))))))

(extend-extent (lambda (ext bnd) (set-cdr! ext (cons bnd (cdr ext)))))

(extend-stack (lambda (stack n ext)

(lambda (n1)

(if (= n1 n) ext (stack n1)))))

(extend-blinder (lambda (blinder var reg)

(let ((regs (cons reg (blinder var))))

(lambda (var1)

(if (var=? var1 var) regs (blinder var1))))))

35

(lookup-extent (lambda (var ext sk fk)

(letrec ((loop (lambda (bnds)

(cond

((null? bnds)

(if (eq? ext base-extent)

(let ((bnd (cons var ((car var)))))

(extend-extent base-extent bnd)

(sk bnd))

(fk)))

((var=? (car (car bnds)) var) (sk (car bnds)))

(else (loop (cdr bnds)))))))

(loop (cdr ext)))))

(lookup-index (lambda (var n stack regs)

(letrec ((loop (lambda (n regs)

(if (null? regs)

(lookup-extent var (stack n)

(lambda (bnd) n)

(lambda () (loop (� n 1) regs)))

(let ((n1 (car (car regs))))

(cond

((> n n1)

(lookup-extent var (stack n)

(lambda (bnd) n)

(lambda () (loop (� n 1) regs))))

((< n n1) (loop n (cdr regs)))

(else (� (cdr (car regs)) 1))))))))

(loop n regs))))

(current-index (lambda (var)

(lookup-index var

(cadr e�ective-extent)

(caddr e�ective-extent)

((cdddr e�ective-extent) var))))

(previous-current-index (lambda (var)

(lookup-index var

(� (current-index var) 1)

(caddr e�ective-extent)

((cdddr e�ective-extent) var))))

36

(current-bnd (lambda (var)

(lookup-extent var

((caddr e�ective-extent) (current-index var))

(lambda (bnd) bnd)

(lambda () #f))))

(previous-current-bnd (lambda (var)

(lookup-extent var

((caddr e�ective-extent) (previous-current-index var))

(lambda (bnd) bnd)

(lambda () #f))))

(switch-bnds (lambda (old-bnd new-bnd)

(let ((var (car old-bnd)))

(set-cdr! old-bnd ((car var)))

((cdr var) (cdr new-bnd)))))

(install-extent (lambda (ext)

(for-each

(lambda (new-bnd)

(switch-bnds (current-bnd (car new-bnd)) new-bnd))

(cdr ext))))

(save-extent (lambda (ext)

(for-each

(lambda (old-bnd)

(switch-bnds old-bnd (current-bnd (car old-bnd))))

(cdr ext))))

(use-shadowed-proc (lambda (var)

(switch-bnds (current-bnd var) (previous-current-bnd var))

(set! e�ective-extent

(make-e�ective-extent (cadr e�ective-extent)

(caddr e�ective-extent)

(extend-blinder (cdddr e�ective-extent) var

(cons (cadr e�ective-extent)

(+ (previous-current-index var) 1)))))))

(shadowed?-proc (lambda (var) (> (current-index var) 0)))

37

(def?-proc (lambda (var)

(lookup-extent var

((caddr e�ective-extent) (cadr e�ective-extent))

(lambda (bnd) #t)

(lambda () #f))))

(def-proc (lambda (var val)

(let ((n (cadr e�ective-extent)))

(let ((ext ((caddr e�ective-extent) n)))

(lookup-extent var ext

(lambda (bnd)

(if (eq? bnd (current-bnd var))

((cdr var) val)

(set-cdr! bnd val)))

(lambda ()

(let ((new-bnd (cons var val))

(regs ((cdddr e�ective-extent) var)))

(when (or (null? regs) (> n (car (car regs))))

(switch-bnds (current-bnd var) new-bnd))

(extend-extent ext new-bnd)))))))))

;;; end of private declarations

(set! get-base-extent (lambda () base-extent))

(set! make-empty-extent (lambda () (cons extent-tag '())))

(set! get-e�ective-extent (lambda () e�ective-extent))

(set! use-extent (lambda (ext)

(unless (extent? ext) (error 'FCE "Not an extent: ~s" ext))

(install-extent ext)

(set! e�ective-extent

(let ((n (+ (cadr e�ective-extent) 1)))

(make-e�ective-extent n

(extend-stack (caddr e�ective-extent) n ext)

(cdddr e�ective-extent))))))

(set! use-e�ective-extent (lambda (e�-ext)

(install-extent base-extent)

(set! e�ective-extent e�-ext)

(save-extent base-extent)))

38

(set! extent? (lambda (obj) (and (pair? obj) (eq? (car obj) extent-tag))))

(set! empty-extent? (lambda (obj)

(and (not (eq? obj base-extent))

(extent? obj)

(null? (cdr obj)))))

(set! e�ective-extent? (lambda (obj)

(and (pair? obj) (eq? (car obj) e�ective-extent-tag))))

(extend-syntax (id!var)

((id!var id) (with ((val (gensym)))

(cons (lambda () id) (lambda (val) (set! id val))))))

(extend-syntax (def)

((def id exp) (with ((def-proc def-proc) (val (gensym)))

(let ((val exp))

(unless (de�ned? id) (de�ne-top-level-value 'id "unspeci�ed"))

(def-proc (id!var id) val)

"unspeci�ed"))))

(extend-syntax (def?)

((def? id) (with ((def?-proc def?-proc))

(and (de�ned? id) (def?-proc (id!var id))))))

(extend-syntax (use-shadowed)

((use-shadowed id) (with ((use-shadowed-proc use-shadowed-proc))

(if (shadowed? id)

(use-shadowed-proc (id!var id))

(error 'FCE "Not shadowed: ~a" 'id)))))

(extend-syntax (shadowed?)

((shadowed? id) (with ((shadowed?-proc shadowed?-proc))

(and (de�ned? id) (shadowed?-proc (id!var id)))))))

(let ((old-handler (error-handler)))

(error-handler (lambda args

(use-e�ective-extent (get-e�ective-extent))

(apply old-handler args))))

39

(let ((bound (lambda (accessor)

(let ((old-handler (error-handler)))

(let ((ans (call/cc (lambda (return)

(error-handler (lambda x (return #f)))

(accessor)

#t))))

(error-handler old-handler)

ans)))))

(extend-syntax (de�ned?)

((de�ned? id) (with ((bound bound))

(bound (lambda () id))))))

40

