
MERGING INTERACTIVE, MODULAR, AND

OBJECT-ORIENTED PROGRAMMING

Sho-Huan Simon Tung

Submitted to the faculty of the Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

This material is based on work supported by the Sandia National Laboratories under

contract number 75-5466 and by the National Science Foundation under grant number

CCR-8803432 and by the Motorola Inc.

Copyright c1992

Sho-Huan Simon Tung

ALL RIGHTS RESERVED

ii

Abstract

Interactive, modular, and object-oriented programming are three important program-

ming paradigms. Interactive programming encourages experimental programming

and fast prototyping and is most valuable for solving problems that are not well

understood. Modular programming is indispensable for large-scale program develop-

ment and is also useful for smaller programs. Object-oriented programming features

classes, objects, and inheritance and is suitable for many real world applications.

This dissertation describes an approach of merging interactive, modular, and

object-oriented programming by presenting the de�nition, design, and implemen-

tation of the �imp language, the IMP system, and the IMOOP system. The pri-

mary bene�t of merging these three paradigms is that the programmer can use either

paradigm where appropriate.

In order to merge interactive and modular programming, the programmer must

be allowed to modify variable bindings and module interfaces during program de-

velopment. Furthermore, the e�ects of these modi�cations must also propagate to

a�ected modules automatically. The ability to modify one or more modules at a time

is provided with a window-based user interface that strongly relates modules with

�les, edit windows, and a read-eval-print loop with multiple evaluation contexts. The

semantics of these modi�cations is speci�ed with the �imp language which extends �-

calculus to support interactive modular programming. This semantics gives a formal

description of the notion of propagating variable de�nitions and module interfaces.

iii

The �imp language supports recursive modules, that is, it allows the import/export

relation of modules to contain cycles.

The design and implementation of IMP addresses many practical problems of

supporting interactive modular programming for the Scheme programming language.

These problems include e�cient implementation of variable lookup, separate compila-

tion, project compilation, using macros in the context of modules, and programming

environment supports. The dissertation presents solutions to these problems.

IMOOP extends IMP with support for object-oriented programming. It uses

IMP's ability to export variables, to rename imported variables, and to de�ne re-

cursive modules to provide an object system that o�ers many advantages. These

advantages include a exible and e�cient slot-access mechanism with strong encap-

sulation, a simple approach for constructing generic functions, a exible mechanism

for handling conicts resulting from multiple inheritance, and tight integration of

modular programming and object-oriented programming.

iv

Acknowledgements

I would like to thank my advisor, R. Kent Dybvig, for his support, assistance, and

friendship. I am especially grateful for his suggestions on improving my writing skill

as well as on many technical aspects of this research.

I would like to thank the other members in my committee. Chris Haynes encour-

aged me to pursue a Ph.D degree; Dennis Gannon supported me during a critical

stage of my study; Bye Wynne provided advice for career directions.

I would like to thank Dan Friedman for various pieces of advice I have received

from him.

I would like to thank my friends and fellow students in the Department of Com-

puter Science. In particular, I would like to thank Carl Bruggeman, Hsianlin Dzeng,

Robert Hieb, Jenq-Kuen Lee, Shinn-Der Lee, Shing-Shong Bruce Shei, and Chang-

Yaw Wang for many activities shared among us.

I would like to thank my parents and my wife for their constant support through-

out my entire graduate study.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Problems and Paradigms : 1

1.2 Multi-Paradigm Programming : 3

1.3 Overview : 6

2 Related Work 8

2.1 Modules and Name Space Management : : : : : : : : : : : : : : : : : 8

2.2 Object-Oriented Languages : 12

2.3 Integrated Languages and Environments : : : : : : : : : : : : : : : : 15

3 Semantic Foundations 18

3.1 Semantic Requirements : 18

3.2 The �-Calculus and its Semantics : 20

3.3 The �imp Language : 24

3.4 Examples : 31

4 The IMP System 36

vi

4.1 An Overview of Scheme : 37

4.1.1 Syntax : 37

4.1.2 Semantic Properties : 39

4.2 Weaknesses of Scheme : 42

4.2.1 Modular Programming : 42

4.2.2 Interactive Programming : 44

4.3 Requirements : 46

4.4 Design : 48

4.4.1 The Module System : 48

4.4.2 The Programming Environment : : : : : : : : : : : : : : : : : 52

4.5 Implementation : 56

4.5.1 Compiling Developing Modules : : : : : : : : : : : : : : : : : 56

4.5.2 Compiling Developed Modules : : : : : : : : : : : : : : : : : : 58

4.5.3 Project Compilation : 61

4.5.4 User Interface : 62

4.6 Supporting Macros : 64

4.6.1 Background : 64

4.6.2 Design and Implementation : : : : : : : : : : : : : : : : : : : 70

5 Adding The Object System 74

5.1 Background and Overview : 75

5.2 Design : 78

5.2.1 Classes and Instances : 78

5.2.2 User-de�ned Generic Functions : : : : : : : : : : : : : : : : : 83

5.2.3 Automatically Generated Generic Functions : : : : : : : : : : 87

5.3 Implementation : 90

5.3.1 Slot Access : 91

vii

5.3.2 Generic Functions : 95

5.3.3 Compiling Developed Classes : : : : : : : : : : : : : : : : : : 101

5.3.4 Project Compilation : 101

6 Conclusion 105

6.1 Summary of Major Results : 105

6.2 Future Work : 107

A An Interpreter for the �imp Language 109

B The IMOOP System 115

B.1 The Language : 115

B.1.1 Statements : 117

B.1.2 Expressions and Essential Procedures : : : : : : : : : : : : : : 120

B.1.3 Expression Semantics : 121

B.2 The Programming Environment : 122

B.2.1 The Read-Eval-Print Loop : 122

B.2.2 The GNU Emacs Interface : 123

B.2.3 IMOOP Commands : 123

viii

List of Figures

1 A multiple window user interface : 4

2 Syntax and semantics of the �-calculus : : : : : : : : : : : : : : : : : 23

3 Syntax of �imp : 26

4 Semantic domains of �imp : 26

5 Semantic functions of �imp : 28

6 Auxiliary functions : 30

7 Example 1 : 31

8 Example 2 : 32

9 Example 3 : 33

10 Recursive modules : 34

11 Recursive modules in windows : 35

12 Syntax of a Scheme subset : 38

13 Currying : 41

14 The stack module : 43

15 The problem of the read-eval-print loop : : : : : : : : : : : : : : : : : 45

16 Should fun be reevaluated? : 46

17 Syntax of the module system : 49

18 Semantic domains : 50

19 Commands of the IMP system : 52

20 Module linkage : 57

ix

21 Separate compilation : 59

22 User interface : 63

23 The or macro : 65

24 The captured binding problem : 66

25 The captured reference problem : 67

26 Modules and capturing : 69

27 IMP with macros : 70

28 Macros in IMP : 72

29 Syntax of IMOOP : 79

30 A slot access procedure : 81

31 Accessing slots in two objects : 82

32 User-de�ned generic functions : 84

33 Calling a generic function : 85

34 The generic module : 86

35 Generic functions de�ned via method declarations : : : : : : : : : : : 89

36 Mapping tables : 94

37 Chained generic function : 98

38 Unchained generic function : 99

39 Implementation of chained generic functions : : : : : : : : : : : : : : 100

40 The point class : 102

41 Separate compilation for developed class : : : : : : : : : : : : : : : : 103

x

Chapter 1

Introduction

Interactive, modular, and object-oriented programming are three important program-

ming paradigms. These three paradigms have di�erent strengths and weaknesses, and

are suitable for solving problems of di�erent natures. Designing language facilities,

user interfaces, and programming systems that allow an application program to be

developed jointly using these three paradigms is the theme of this dissertation.

1.1 Problems and Paradigms

Computers are problem solving tools. The advance of computer technologies, both

hardware and software, are largely driven by the needs of problem domains and

the needs of problem solving processes. For instance, fast parallel computers are

invented to meet the demands of large and complex scienti�c applications, and CASE

(Computer-Aided Software Engineering) tools are constructed to support the software

development processes.

The advance of programming languages are no exception. Many programming

languages including Cobol, Fortran and Ada are invented primarily for speci�c ap-

plication domains. Many other programming languages are invented, however, to

1

CHAPTER 1. INTRODUCTION 2

support di�erent programming techniques or program development paradigms.

Interactive programming is an important programming technique that is most

suitable for solving problems that are not well understood [80, 75]. An interactive

programming system allows a programmer to enter programs or program fragments

directly into the system and to receive the output from that program or fragment

immediately, reducing the usual compile-link-execute step conceptually to a single

evaluate step. This feature encourages experimental programming and fast proto-

typing which are e�ective approaches to understanding vaguely de�ned problems. In

addition, interactive programming is a valuable debugging technique and can signi�-

cantly improve the productivity of programmers [8].

Modular programming, however, is best suited for problems whose solutions are

understood. Modular programming encourages solving a problem by decomposing

the problem into modules. This process requires an understanding of the problem

and the structure of its solution. Modular programming languages provide facilities

for a module to hide its internal details and to export services to other modules.

Other bene�ts of modular programming include separate compilation and enhanced

reusability.

Object-oriented programming features classes, objects, and inheritance. These

features allow existing code to be extended, specialized, or reused for di�erent situa-

tions. Object-oriented programs are often written not only for providing solutions of

problems but also for adopting the solutions to variants of the problems [12]. Many

real world applications are developed using the object-oriented paradigm. Examples

of these applications include graphical user interfaces, data base systems, visualization

systems, and parallel or distributed computing systems.

Interactive, modular, and object-oriented programming all have features that are

useful for problem solving at di�erent areas in the entire problem space. However,

these areas in the problem space are not disjoint: Many problems can be partly

CHAPTER 1. INTRODUCTION 3

understood, partly not understood. Parts may be best organized with the object-

oriented approach, and other parts not. Neither interactive, modular, nor object-

oriented programming alone is best suited for solving these problems.

1.2 Multi-Paradigm Programming

This dissertation presents the semantics, design, user interfaces, and implementa-

tion techniques that merges interactive, modular, and object-oriented programming

paradigms. The �imp language presents the basic semantic properties of an interac-

tive modular programming system designed for a window-based user interface. The

IMP system (Interactive Modular Programming) is an approach to supporting inter-

active modular programming for the Scheme programming language [58, 35, 20]. The

IMOOP system (Interactive, Modular, and Object-Oriented Programming) extends

IMP with supports for object-oriented programming. The most interesting feature

of the IMOOP system is that it allows joint uses of the three paradigms to solve

problems. Although most of the techniques described here are designed for Scheme,

they should be applicable to other programming languages as well.

Interactive programming and modular programming are two seemingly incompat-

ible programming paradigms. Interactive programming systems provide the ability to

modify a program dynamically. Modular programming, on the other hand, typically

requires a more static model for program development. In either case, a program

must be written with an editor and subsequently saved in a �le. A multi-window

user interface that allows its user to modify modules in edit windows, to test the

modi�cation with module-sensitive read-eval-print loops, and to save the changes in

�les for future references seems to be a natural way of supporting interactive modular

programming (see Figure 1). However, this natural and intuitive programming style

CHAPTER 1. INTRODUCTION 4

(import list)

(private my-q ’())

(public queue-init

 (lambda ()

 (set! my-q ’())))

(public enque

> (enque 7)

> my-q

(7)

Module queue

(import list)

(private my-s ’())

(public stack-init

 (lambda ()

 (set! my-s ’())))

(public push

> my-s

()

Module stack

(import queue stack)

(public init

 (lambda ()

 (queue-init)

 (stack-init)))

>

Module main

T

(import list)

(private my-s ’())

(public stack-init

 (lambda ()

 (set! my-s ’())))

(public push

Figure 1: A multiple window user interface

must also be associated with a well de�ned semantics and an e�cient implementa-

tion. Developing the semantics and implementation techniques for this user-interface

model are two challenging problems of this project.

Modular programming and object-oriented programming have many common ob-

jectives. These common objectives include encapsulation and modularity and should

be supported by common rather than di�erent language facilities. Most modular

CHAPTER 1. INTRODUCTION 5

programming systems already provide facilities that support encapsulation and mod-

ularity. Extending the modular programming system to support object-oriented pro-

gramming in a coherent manner is a third challenge of this project.

One contribution of this dissertation is the formal semantics of the �imp language

that is intended to describe the meaning of various interactions supported by the

window-based user-interface model. The semantics extends lexical scoping and al-

lows modules to be used to determine the meaning of variable references. The most

interesting aspect of the semantics is that it allows interactive modi�cation of variable

de�nitions as well as module interfaces and uses late binding semantics to determine

the meanings of variable references. The late binding semantics is con�ned within

regions de�ned by local de�nitions of a module and its imported modules. While lex-

ically scoped languages allow programmers to use the block structure of a program to

determine the meaning of lexical references in the program, the �imp language allows

programmers to use local de�nitions and imported modules to determine the meaning

of non-lexical references in a module. In addition, the �imp language also supports

recursive modules.

Another contribution is the implementation of the IMP programming system for

Scheme. IMP provides the convenience of interactive programming but does not com-

promise the discipline of modular programming. In addition, IMP supports separate

compilation, delivered mode compilation, syntactic extension, and a simple method

for maintaining the consistency of the state of the IMP system during interactive

programming.

A third contribution of this dissertation is the design, de�nition, and implemen-

tation of the IMOOP programming system. IMOOP extends IMP with supports for

object-oriented programming. IMOOP provides a exible and e�cient slot-access

mechanism with strong encapsulation, permits simpli�ed treatment of generic func-

tions, supports exible handling of conicts resulting from multiple inheritance, and

CHAPTER 1. INTRODUCTION 6

allows tight integration of modular programming and object-oriented programming.

1.3 Overview

Name space management techniques are often designed to facilitate modular or object-

oriented programming. Programming environments are also often designed to facili-

tate interactive, modular, or object-oriented program development. Chapter 2 reviews

previous work in name space management, modular programming languages, object-

oriented programming languages, and language-centered programming environments.

Denotational semantics is an important tool for the design and implementation of

programming language systems [69]. The denotational semantics of a programming

language provides a formal and precise de�nition of the language and is useful for

its users and its implementors [62, 76]. However, complete speci�cations of realistic

programming languages in denotational semantics are often di�cult to read. To over-

come this di�culty, Chapter 3 presents the denotational semantics of a toy language

designed to show the most interesting semantic properties of interactive modular pro-

gramming. The language is text-oriented, however it is designed so that it can be

mapped to the window-based user-interface model. An interpreter implemented by

translating the semantics to Scheme is presented in Appendix A.

In addition to clear and simple semantics, programming environment support

and e�cient implementation strategies are also important aspects of programming

language research. Chapter 4 presents the design and implementation of IMP to

demonstrate that the language features presented in Chapter 3 can be associated with

a multi-window programming environment and implemented e�ciently. In addition,

many practical considerations such as separate compilation and syntactic extension

are also discussed.

Chapter 5 presents the design and implementation of the IMOOP programming

CHAPTER 1. INTRODUCTION 7

system. IMOOP extends the interactive modular programming system to support

object-oriented programming. It provides improvements over existing Lisp-based ob-

ject systems designed without modules. A complete description of IMOOP is pre-

sented in Appendix B.

Chapter 6 presents the conclusion of the dissertation and suggests some areas for

further research.

Chapter 2

Related Work

This dissertation relates to three major areas of research in computer science. One

area concerns name space management and its application on modular programming.

Another area concerns object-oriented programming languages. A third area concerns

language-centered programming environments. This chapter reviews related work in

these areas.

2.1 Modules and Name Space Management

Among many concrete proposals we have looked at, Felleisen and Friedman's mod-

ule proposal is the only module system designed with consideration for interactive

programming [23]. Interactive languages require late binding for exible program de-

velopment. By restricting exported values to procedures, they support various late

binding techniques for de�ning modules and importing items. The ultimate goal is

to allow arbitrary load orders for modules and to permit interactive extension and

rede�nition of bindings in modules. However, this goal is not entirely achieved, since

dynamically extended bindings cannot access lexical variables in a module. This

restriction is too strong to be acceptable.

8

CHAPTER 2. RELATED WORK 9

Some Scheme implementations support �rst class environments [1]. A �rst class

environment captures the current lexical environment at the point when the �rst

class environment is created. When used with eval or access, which allow expressions

or variables to be evaluated dynamically in a �rst class environment, some form of

packaging facilities can be supported. However, �rst class environments su�er at

least three limitations which make them inadequate to support interactive modular

programming:

1. A �rst class environment captures indiscriminately the entire environment at

the point when the �rst class environment is created. This feature makes it

di�cult to use �rst class environments to model export, since a module should

not export all of its bindings.

2. Every �rst class environment shares the same initial environment and possibly

some other common parent environments. These redundant information make it

di�cult to combine �rst class environments to model import, since it is unclear

how the shared portion of di�erent �rst class environment should be combined

when imported in a module.

3. It is unclear how �rst class environments can be used to support recursive

modules or to allow referencing a �rst class environment before it is created.

Common Lisp's [66] package system uses symbol tables to represent modules.

Symbols de�ned as external in a package can be exported. Various mechanisms are

available to access or to import exported symbols. However, packages are low level

implementation concepts and provide much weaker expressive power for name space

management than environments.

Symmetric Lisp [36] is a programming language based on environments. The map

expression constructs an environment containing zero or more regions. Expressions

CHAPTER 2. RELATED WORK 10

associated with the regions are evaluated in parallel. Map evaluation is non-strict,

meaning that the regions of a map may be accessed even while other regions in the

same map continue to be evaluated. Many primitive operations on maps (environ-

ments) are available. The most interesting one is the kappa expression which creates

an environment abstraction. This abstraction, when applied, generates a map with

regions speci�ed by the kappa expression. Symmetric Lisp explores many possible

uses of environments in a parallel programming language.

Instead of the single environment domain used in Symmetric Lisp, Lamping's

model of transparent parameterization [46] uses two environment domains to deter-

mine the meaning of an expression. The essence of his model is that expressions are

parameterized over two kinds of variables: the values of lexical variables in an ex-

pression are determined by the lexical environment at the point of de�nition, and the

values of data variables are determined by the use environment at the point where the

expression is used. The lexical environment is extended with the let expression. The

use environment is extended dynamically with the supply expression, which provides

values for free data variables. Lamping's model is able to express a variety of lan-

guage constructs, including module linkage. However, his model may be too dynamic

to implement e�ciently.

Queinnec and Padget have designed a module system for Lisp [56]. The design

goals of their system are to support separate compilation and to control the visibility

of resources. A module is available for use after it is de�ned and loaded. In the module

de�nition phase, the module's top-level environment is established with imported

bindings and free variables in the module. In the module loading phase, actual

evaluation takes place. A program starts by executing the (start-module module-

name function-name arguments) special form which applies the function-name to

its arguments. In their system, imported identi�ers are bound early in the module

de�nition phase. This requires the module dependency to be acyclic and defeats

CHAPTER 2. RELATED WORK 11

possibilities for exible interaction.

Curtis and Rauen recently proposed a module system designed for large scale

programming in Scheme [14]. In their proposal, a module is an isolated scope which

may be nested inside other modules. Modules are anonymous. They communicate

with each other by sharing items speci�ed in interfaces. Interfaces are named en-

vironments that may contain both syntax bindings and value bindings. They also

proposed a syntactic extension facility in the context of modules based on syntactic

environments [4]. However, they did not address the problem of �tting their system

into Scheme's interactive programming style.

Standard ML is a statically scoped functional programming language with a se-

cure polymorphic type system [29]. However, its type system limits its exibility as

an interactive language. Modifying the value of an existing top-level binding has no

e�ect on other bindings occurring before the modi�cation. As a result, almost all

modi�cations of a program require that the entire program be reloaded. The module

extension to Standard ML associates each module with two environments: a signature

containing the interface of the module, and a structure containing the implementa-

tion of the module [50]. The types and values of a structure can be imported as a

whole structure or as individual items. Functors are parameterized structures. Unlike

Symmetric Lisp's Kappa form, which is parameterized over individual items in an envi-

ronment, functors parameterize an environment (structure) over its sub-environments

(sub-structures).

In addition to module facilities for interactive languages, we also looked at a few

conventional modular languages such as CLU [49], Modula-2 [81], Modula-3 [9], and

Ada [79]. CLU supports parameterized abstract data types. Modula-2 separates the

de�nition of a module from its implementation, and it requires a one-to-one corre-

spondence between the two components. Modula-3 di�ers from Modula-2 by allowing

an implementation module to be associated with several interface speci�cations. This

CHAPTER 2. RELATED WORK 12

facility allows exporting of di�erent levels of detail of an implementation to di�erent

importing modules. Ada supports generic packages. Generic packages, however, can

only be instantiated statically through declarations.

2.2 Object-Oriented Languages

This section reviews a few object-oriented languages. Implementation techniques of

object-oriented languages are reviewed in Chapter 5.

Smalltalk-80 is a programming system integrated with an object-oriented language

and an interactive programming environment [26, 25]. The Smalltalk-80 language

is based on ideas of Simula-67. These ideas describe the basic concepts of object-

oriented programming and are indicated by a few words - object, message, class,

method, and inheritance [15, 26]. An object consists of some private memory and a

set of methods. A message is a request for an object to carry out one of its methods. A

class describes the implementation of a kind of similar objects. Smalltalk-80 supports

single inheritance, meaning that a class can inherit variables and method from at most

one direct super class. A simple denotational de�nition of its inheritance mechanism

based on the concept of closure can be found in [57]. Smalltalk-80 is a uniformly

object-oriented system. Objects are used to represents numbers, character strings,

�le directories, and even computer programs like compilers and text editors. Features

of the Smalltalk-80 programming environment are presented in the next section.

C++ is an object-oriented extension of the C programming language [40, 70, 71].

C++ requires virtual functions to be declared explicitly for messages that have more

than one method and provides a visibility control mechanism for variables and meth-

ods de�ned in a class. Private variables or methods are only accessible to functions

or friend functions of the class. Protected variables or methods may be used by

functions of the class and its subclasses. In addition, C++ supports generic classes

CHAPTER 2. RELATED WORK 13

which are parameterized classes. Like Ada's generic packages, generic classes must

be instantiated statically before used. Recent versions of C++ also support multiple

inheritance.

The Self programming language is an object-oriented language that has no classes

[78]. Object creation and inheritance are facilitated by prototyping. Any object in Self

can be cloned or copied to create new objects, and any object can inherit behaviors

from its parent objects. Self does not distinguish state from behavior and does not

have variables either. Information about an object is stored in slots of the object and

is accessed by passing a message to that object.

CLOS (Common Lisp Object System) [6] and its ancestors Flavors [53] and Com-

monLoops [5] are three object systems designed for Common Lisp. CLOS, Flavors and

CommonLoops all support generic functions and multiple inheritance. A generic func-

tion is de�ned by methods whose de�nitions are distributed over a chain of inherited

classes. A generic function can have di�erent behavior depending on the arguments

supplied to it. Calling a generic function serves the same purpose of sending a mes-

sage to an object. Multiple inheritance allows a class to inherit from more than one

direct super classes. CLOS adopts the concept of meta-classes from CommonLoops.

Meta-classes speci�es the behaviors of classes and allows the user to extend the object

system itself. Both CLOS and Flavors support interactive programming. Methods

can be de�ned independently from their classes. Both classes and methods can be

modi�ed interactively.

CommonObjects is another object system designed for Common Lisp [63]. Com-

monObjects di�ers most signi�cantly from the previous three systems in its emphasis

on encapsulation. Most object systems allow objects to be encapsulated with in-

terfaces that de�ne operations on objects. CommonObjects extends the notion of

encapsulation to class inheritance: The designer of a class can decide whether the

class should be implemented through inheritance or from scratch and change this

CHAPTER 2. RELATED WORK 14

decision later without a�ecting client code.

Several systems have been proposed to support object-oriented programming in

Scheme. These systems are reviewed in the remainder of this section.

Adams and Rees's proposal [2] uses procedures to represent objects that respond to

messages. Instance variables are implemented as lexical variables and can be accessed

only by methods de�ned within an object. Their system does not explicitly support

the notion of classes. Multiple inheritance is supported by delegating unsupported

messages of an object to its parent objects. In addition, they have developed an

e�cient implementation technique for method invocation.

Dresher's Object Scheme [18] uses a generalized uid binding mechanism to rep-

resent objects and to support inheritance. Like Adams and Rees's system, Ob-

ject Scheme does not distinguish between classes and instances. This distinction, if

needed, can be established by convention. Object Scheme concisely supports object-

oriented programming with only four additional primitives. However, it is di�cult to

identify instance variables and methods of an Object Scheme object, since this infor-

mation is not directly speci�ed and must be inferred with bindings in the surrounding

lexical environment and their side e�ects. This drawback makes Object Scheme code

di�cult to read.

Oaklisp [47] supports object-oriented programming by extending Scheme's func-

tion call semantics with support for generic functions and allowing the user to de�ne

�rst-class types. The use of �rst-class types allows programmers to manipulate the

de�nition of Oaklisp itself and provides a tight integration of user-de�ned �rst-class

types with existing data types of Scheme.

CHAPTER 2. RELATED WORK 15

2.3 Integrated Languages and Environments

The Interlisp programming environment developed during the 1970's contains a set

of programming tools for expert programmers [75]. The primary goal of Interlisp

is to support experimental programming and structured growth. Some problems

in computer science are not well understood and cannot be speci�ed in advanced.

The solutions for these problems must evolve through a series of experiments and

enhancements. Interlisp supports this program \evolution" process through a set of

integrated tools.

Symbolics Genera is a Lisp-based programming environment [80]. The goal of

Genera is to support the methodology of evolutionary re�nement for software devel-

opment. Some of the interesting features of Genera are its data-level integration and

its open system approach. Data-level integration allows multiple processes to share

the same virtual address space and communicate with each other through shared ob-

jects in memory. The open system approach does not distinguish between the user

and the system. A user program is able to access any routines available in the system.

The bene�t of the open system approach is enhanced software reusability and exten-

sibility. The drawback of the open system approach is that it violates the information

hiding principle [54]. The designers of Genera admit this:

The system software has been designed with calling interfaces at various

levels of abstraction. Unfortunately, the boundaries between the layers of

abstraction are mostly invisible, with no formal de�nition. Both customers

and system developers have di�culty choosing a level of abstraction for a

problem and staying in its boundaries.

Ei�el is a language and environment for software development [51]. The language

supports static type checking, object-oriented programming, exception handling, and

systematic use of assertions and invariants. The type system is integrated with the

CHAPTER 2. RELATED WORK 16

object system by using the inheritance relation to represent the subtype relation. An

Ei�el variable of one type may be assigned to a variable of another type if the former

is a subtype of the later. Renaming is used to handle name conicts in multiple inher-

ited classes. In addition to inheritance, which allows information sharing, information

hiding is supported by explicitly specifying exported variables of a class. The pro-

gramming environment provides tools for automatic compilation management, class

browsing, document generation, and debugging.

Programming in Smalltalk-80 is supported by a graphical, interactive program-

ming environment. The Smalltalk-80 programming environment supports objects cre-

ation and manipulation, program development, and information storage and retrieval.

Every object accessible by the user can be presented and manipulated in a meaning-

ful way using a graphical user interface. The graphical user interface uses pointing

devices to select objects and invoke messages on the selected objects. Smalltalk-80

supports interactive program development through recompilation. A class can be

modi�ed interactively with its subclass automatically recompiled.

Interactive programming environments have been traditionally based on dynam-

ically typed languages such as Lisp or Smalltalk. However, Cedar is an interactive

programming environment based on a strongly typed, compiler-oriented language

[74, 73]. Cedar uses delayed type binding and a run-time type system to provide the

exibility required by interactive programming. A Cedar user can create multiple

instances of UserExecutive interactively. Each UserExecutive has its own state and

performs its own operations. One of the operations a UserExecutive can perform is

to run an interpreter for interactive programming. Cedar is an open system. Un-

like Genera and Interlisp which do not provide explicit layering, Cedar components

are organized as layers of modules. Although the Cedar language supports mod-

ules, the UserExecutive does not take advantage of the module facility by associating

each UserExecutive with an evaluation context of a module. Cedar also provides a

CHAPTER 2. RELATED WORK 17

sophisticated tree-structured document browsing and preparation tool.

Chapter 3

Semantic Foundations

This chapter describes basic requirements for interactive modular programming and

presents the semantics of the �imp language that satis�es these requirements. The

�imp language extends the �-calculus by allowing modules to be used to determine

the meaning of variable references. The design of �imp is intended to map to the

multi-window user interface model for interactive modular programming.

The �rst section of this chapter describes basic requirements for interactive mod-

ular programming. Section 2 gives an overview of the �-calculus and its denotational

semantics [69, 62]. Sections 3 and 4 illustrate the semantics and present programming

examples demonstrating the exibility of the �imp language.

3.1 Semantic Requirements

Modular programming provides at least two important functionalities. The �rst one

is to support the information hiding principle. The information hiding principle states

that a module should provide to its users all the required information to use the mod-

ule, and nothing more [54]. The second one is to facilitate the design and organization

of programs. A program should be allowed to be decomposed into modules with each

18

CHAPTER 3. SEMANTIC FOUNDATIONS 19

module providing services to and receiving services from other modules.

Most modular programming languages support these two functionalities by allow-

ing a module to be de�ned in terms of three subcomponents: an import speci�cation,

public variables and their values, and private variables and their values. A module

hides details about its implementation using private variables, provides services by

exporting its public variables, and receives services by binding free variable references

within the module to imported variables or variables de�ned in the module.

Interactive programming systems provide exible ways for their users to develop,

test, and modify programs interactively. This exibility is primarily supported by

allowing top-level variables to be rede�ned interactively without requiring separate

steps of recompiling or relinking procedures that use the rede�ned variables. Interac-

tive programming systems also allow forward references to variables as long as their

values are available at run time.

An interactive modular programming system should support both modular pro-

gramming and interactive programming by:

1. permitting and encouraging information hiding,

2. assisting the design and organization of programs, and

3. allowing private variables, public variables, and imports of modules to be mod-

i�ed interactively.

In addition, an interactive modular programming system should also support forward

module references, i.e., allow a module to refer to modules before their de�nitions.

Forward module reference allows recursive module linkage and permits more exible

module structures than the traditional tree-like module structure supported by most

modular programming languages.

CHAPTER 3. SEMANTIC FOUNDATIONS 20

3.2 The �-Calculus and its Semantics

The �-calculus is a language de�ned with notations and conversion rules that allow

the evaluation of lambda expressions denoting �rst-class anonymous functions [69].

The syntax of the �-calculus is presented in Figure 2.

The �-calculus conversion/reduction rules allow �-expressions to be reduced or

\evaluated" to simpler �-expressions. The �-reduction rule corresponds intuitively to

applying a function to its arguments. The �-reduction substitutes bound variables

in the body of a function for the corresponding arguments. The following gives an

example of �-reduction:

((lambda (x) (+ one x)) two)) (+ one two)

The bound variable x in the abstraction is substituted with the variable two after

\evaluating" the application.

Associated with the � rule are the de�nitions of free and bound:

� De�nition of free identi�ers:

1. x occurs free in x but not in any other identi�er;

2. x occurs free in (e0 e1) if it occurs free in e0 or e1 (or both);

3. x occurs free in (lambda (y) e) if x and y are di�erent identi�er and x

occurs free in e.

� De�nition of bound identi�ers:

1. No identi�er occurs bound in an expression consisting just of a single iden-

ti�er;

2. x occurs bound in (e0 e1) if it occurs bound in e0 or e1 (or both);

CHAPTER 3. SEMANTIC FOUNDATIONS 21

3. x occurs bound in (lambda (y) e) if x and y are the same identi�er or if

x occurs bound in e.

For example, consider the following expression:

((lambda (x) (x y)) x)

Both x and y are free in (x y). However, x is bound and y is free in (lambda (x) (x y)).

For the complete expression, x occurs both free (in the rightmost occurrence) and

bound (in the remaining two occurrences) [69]. Note that in an expression an identi-

�er can be both free and bound. However, each occurrence of an identi�er is either

free or bound but not both.

Another important concept behind the � rule is the notion of substituting bound

identi�ers in the body of an abstraction to the argument expression when the ab-

straction is applied. Naive substitution may result in name clashes among existing

bound variables. The following example illustrates an incorrect substitution:

((lambda (x) (lambda (two) (+ x two))) two)

=) (lambda (two) (+ two two))

The �-conversion rule, which corresponds intuitively to consistently renaming the

formal parameters of a function in most programming languages, allows identi�ers to

be renamed to avoid name clashes. The correct substitution of the previous example

requires changing the bound variable two to some other name to avoid name clashes:

((lambda (x) (lambda (two) (+ x two))) two)

�
=) ((lambda (x) (lambda (y) (+ x y))) two)
�

=) (lambda (y) (+ two y))

A �-expression may be reduced using di�erent sequences of reductions. Normal order

reduction reduces the arguments of a function after substituting bound variables

CHAPTER 3. SEMANTIC FOUNDATIONS 22

in the body of the function with the arguments (�-reduction). Applicative order

reduction reduces the arguments of a function before �-reduction. The following

expression does not reduce to normal form with applicative order reduction. However,

it terminates with normal order reduction.

((lambda (x) (lambda (y) y))

((lambda (x) (x x)) (lambda (x) (x x))))

Applicative order reduction closely resembles call-by-value evaluation of many pro-

gramming languages. The Church-Rosser Theorem guarantees that di�erent reduc-

tion sequences produce the same result as long as they terminate [69].

The �-calculus was originally invented to study the behavior of functions. How-

ever, the �-calculus by itself is merely a syntactic system de�ned with transformation

rules and does not de�ne semantics. That is, it is unclear what abstract value a

�-expression denotes [69].

Fortunately, the techniques of denotational semantics allow the semantics of most

programming languages, including the semantics of the �-calculus, to be expressed in

a formal manner. The denotational semantics of a programming language is composed

of the syntax, domains, and semantic functions of the language. The syntax of the

language describes the appearance of syntactic forms and allows their components

to be extracted. Domains are special kinds of sets constructed with certain rules

for mathematical consistency. Semantic functions map syntax to values in semantic

domains. Semantic functions may be de�ned by a set of mutually recursive de�nitions.

Figure 2 presents the semantics of the �-calculus in the style of denotational

semantics. The ! notation is the function domain constructor. The domain of ex-

pressed values contains functions only. The domain of environments maps identi�ers

to expressed values. The purpose of environments is for determining the meaning

of identi�ers in expressions. An environment may be constructed by extending an

CHAPTER 3. SEMANTIC FOUNDATIONS 23

Syntactic Categories:

i 2 Ide identi�ers
e 2 Exp expressions

Abstract Syntax:

e ::= i identi�ers
j (lambda (i) e) abstractions
j (e e) applications

Semantic Domains:

� 2 Env = Ide ! E environments
� 2 E = (E ! E) expressed values

Semantic Functions:

E: Exp ! Env ! E

E [[i]]� = � [[i]]
E [[(lambda (i) e)]]� = ��:E [[e]](�[i �])
E [[(e0 e1)]]� = (E [[e0]]�)(E [[e1]]�)

Figure 2: Syntax and semantics of the �-calculus

CHAPTER 3. SEMANTIC FOUNDATIONS 24

existing environment. The notation �[i �] constructs a new environment. The new

environment is the same as � except that it maps i to �. Environments help capture

the meaning of �-reduction.

The semantic function E is a function that maps expressions to a function that

maps environments to expressed values. The value of an identi�er is obtained by

applying the identi�er to an environment. The value of an abstraction is a function.

The result of applying the function to any argument is obtained by evaluating the

body of the abstraction in an environment constructed by extending the de�nition-

time environment with a binding that associates the bound variable of the abstraction

with the argument value. The value of an application is obtained by applying the

value of its operator to the value of its operand.

3.3 The �imp Language

The �imp language extends the �-calculus with a set of prede�ned constants and facil-

ities for interactive modular programming. The evaluation order of �imp is applicative

order, since it is intended to be used as the semantic foundation for interactive mod-

ular programming with call-by-value programming languages. As a consequence of

the extension, �imp preserves lexical scoping while providing exible interactive capa-

bilities. Unlike the speci�cations of most programming languages, which de�ne the

semantics of complete and syntactically correct programs, the �imp language is de-

signed to describe the semantics of complete or partially complete programs composed

of statements interactively entered during program development.

Figure 3 presents the syntax of the �imp language. The syntax of �imp can be

divided into two groups. The �rst group consists of module, private, public and

with statements. The �rst three statements are used to support interactions that

a user might perform to de�ne bindings in modules and relations among modules.

CHAPTER 3. SEMANTIC FOUNDATIONS 25

The with statement allows a user to test a program by evaluating expressions within

environments associated with a module. The � indicates zero or more occurrences of

the preceding form.

The second group consists of constants, identi�ers, abstractions, and applications.

These expressions are the �-calculus expressions and are used to describe the actual

computation performed in a program.

The syntax of �imp is simple. It can be further simpli�ed in a window-based

programming environment with multiple read-eval-print contexts. In particular, the

module namem is assumed to be the name of the window, and explicit use of thewith

statement is no longer necessary with the help of a module-sensitive read-eval-print

loop.

Figure 4 presents the domains of the �imp language. These domains include en-

vironments, module environments, constant values, and expressed values. Environ-

ments are functions that map identi�ers to expressed values. Module environments

are functions that map identi�ers (module names) to modules. Each module has

three components: a private environment, a public environment, and its imports.

The imports of a module consists of zero or more identi�ers which are the names of

other modules. Expressed values are the union of constant values and function values.

Unlike function values of the �-calculus, which are functions of a single argument,

the function values of the �imp language take a module environment as an additional

implicit argument.

The concept of free and bound identi�ers is essential to the �-calculus. Free

and bound identi�ers help determine meanings of identi�ers occurring in expressions.

Before illustrating the semantics of the �imp language, the de�nition of free and bound

identi�ers for the �imp language is �rst presented as follows:

� De�nition of free and bound identi�ers:

CHAPTER 3. SEMANTIC FOUNDATIONS 26

c 2 Con = funde�ned;+;�; . . . ; 0; 1; . . .g constants
m, i 2 Ide identi�ers

s 2 Stmt statements
e 2 Exp expressions

s ::= (module m import m�)

j (public m i e)

j (private m i e)

j (with m e)

j s s

e ::= c

j i

j (lambda (i) e)

j (e e)

Figure 3: Syntax of �imp

� 2 Env = Ide ! E environments
� 2 MEnv = Ide ! (Env � Env � Ide�) module environments

C constant values
� 2 E = C + (MEnv ! E ! E) expressed values

Figure 4: Semantic domains of �imp

CHAPTER 3. SEMANTIC FOUNDATIONS 27

1. The module statements do not evaluate expressions and have neither free

nor bound identi�ers.

2. If an identi�er occurs free in the expression part of a private, public,

or with statement then it occurs free in the statement as a whole. If an

identi�er occurs bound in the expression part of a private, public, or

with statement then it occurs bound in the statement as a whole. The

identi�er in the second syntactic position of any of these statements is

neither free nor bound, and the identi�er in the third syntactic position of

the public or private statement is neither free nor bound.

3. The rules for determining free and bound occurrences of identi�ers in ex-

pressions is the same as the rules de�ned in the �-calculus.

Figure 5 presents the semantic functions of the �imp language. We assume that an

initial environment (represented by �0) maps every identi�er to the unde�ned value,

and initially a module environment maps every identi�er to a triple consisting of an

initial environment for private bindings, an initial environment for public bindings,

and an empty string indicating no imported modules. The module statement maps

a module name to the module's private bindings, public bindings, and the newly

speci�ed imports. A private or public statement evaluates its expressions and re-

turn a new module environment that contains the new binding in the corresponding

module's private or public environment. These three statements all return a sequence

consisting of a new module environment and the \unde�ned" value.

The with statement evaluates its expression using a module environment, a mod-

ule name, and an initial lexical environment. It returns a sequence consisting of the

unchanged module environment and an expressed value. Consecutive statements are

evaluated by passing the module environment returned from the previous statement

to the next statement.

CHAPTER 3. SEMANTIC FOUNDATIONS 28

Notations:

h. . .i sequence formation
s # k k th member of the sequence s (1 � based)

(�[i x]) i0 (i0 = i)! x; � i0

x in D injection of x into domain D
x j D projection of x to domain D

Semantic functions:

S: Stmt !MEnv ! (MEnv � E)
K: Con ! E
E: Exp !Menv ! Ide ! Env ! E

S [[(module m0 import m�)]]� =
h�[m0 h�m0 # 1; �m0 # 2;m�i]; unde�nedi
S [[(private m i e)]]� =
h�[m h(�m # 1)[i E [[e]]�m�0]; �m # 2; �m # 3i];unde�nedi
S [[(public m i e)]]� =
h�[m h�m # 1; (�m # 2)[i E [[e]]�m�0]; �m # 3i];unde�nedi
S [[(with m e)]]� = h�; E [[e]]�m�0i
S [[s0 s1]]� = S [[s1]] (S [[s0]]�) # 1

E [[c]]�m� = K [[c]]
E [[i]]�m� = lookup � m � i

E [[(lambda (i) e)]]�0m� =
��1:[strict(��:E [[e]]�1m(�[i �]))] in E
E [[(e0 e1)]]�m� =
(E [[e0]]�m� j (MEnv! E! E))�(E [[e1]]�m�)

Figure 5: Semantic functions of �imp

CHAPTER 3. SEMANTIC FOUNDATIONS 29

In addition to modifying a module's private bindings, public bindings, and imports

directly, a few features of the semantics of lambda expressions, applications, and

identi�ers are essential to the semantics of the �imp language:

1. The semantics requires call-by-value evaluation. This is indicated by the use of

the strict function in the semantic function of abstractions.

2. The lexical environment is closed in the closure returned from an abstraction.

3. The name of the module in which the abstraction is evaluated is also closed in

the closure returned from evaluating the abstraction.

4. The module environment is not closed and is dynamically provided as an im-

plicit argument when closures are applied.

5. The value of an identi�er is determined with a lexical environment, a module

name, and a module environment. The module name may be closed previously

and may not be the current module name. The search for an identi�er's value

starts from the lexical environment, followed by the private and public bind-

ings of the module corresponding to the module name, and then by the public

bindings of modules imported by the module.

The essence of the semantics is that bindings of free occurrences of identi�ers in

a function de�ned with statements are determined dynamically using the use-time

module environment. However, the dynamic search is con�ned to the three use-time

components (private environment, public environment, and imports) of the module

corresponding to the module name closed at the time when the function is de�ned.

Since the user can modify the bindings and imports of each module in a program,

free occurrences of identi�ers in a module are sensitive to user's interactions. In ad-

dition, bound occurrences of identi�ers are determined with the lexical environment.

CHAPTER 3. SEMANTIC FOUNDATIONS 30

lookup: MEnv ! Ide ! Env ! Ide ! E
lookupM : MEnv ! Ide� ! Ide ! E

lookup � m � i =
if � i = unde�ned than

if (�m # 1) i = unde�ned then
if (�m # 2) i = unde�ned then

lookupM � (�m # 3) i
else (�m # 2) i

else (�m # 1) i
else � i

lookupM � [[]] i = unde�ned
lookupM � [[first rest�]] i =

if (�first # 2) i = unde�ned then
lookupM � rest� i

else (�first # 2) i

Figure 6: Auxiliary functions

The resulting semantics preserves lexical scoping while providing exible interactive

capabilities.

Figure 6 presents the auxiliary functions lookup and lookupM. Although their

de�nitions seem ine�cient, a technique is presented in Chapter 4 that shows that the

variable lookup semantics of the �imp language can be implemented e�ciently.

One possible way to extend the �imp language is to allow the with statement to be

used as an expression as well. Unfortunately, nesting lambda and with expressions

would not preserve the essence of lexical scoping. However, �imp can be extended by

allowing (with-var m i) as another kind of expressions that allows an identi�er to

be searched in a designated module. Chapter 4 presents the use of this extension to

support hygienic macro expansion in IMP.

CHAPTER 3. SEMANTIC FOUNDATIONS 31

(module A import)
(public A square
(lambda (x) (+ x x)))

(module B import A)
(public B distance
(lambda (x y)
(sqrt (+ (square x) (square y)))))

(with B (distance 3 4)) =) 3.74
(public A square
(lambda (x) (* x x)))

(with B (distance 3 4)) =) 5

Figure 7: Example 1

3.4 Examples

The remainder of this section presents example programs demonstrating interactive

use of the �imp language. These examples have been tested by an interpreter imple-

menting an extended version of the �imp language that supports functions with zero

or more arguments, conditional expressions, and some additional Scheme data types.

The interpreter is presented in Appendix A.

The �rst example is presented in Figure 7. This example involves two modules.

The module A exports the square function. The module B imports module A and

uses the square function to calculate the distance between a point and the origin.

The user can test individual functions using the with statement. Upon realizing that

the de�nition of square is incorrect, the user rede�nes the square function and tests

it immediately. This example demonstrates that a procedure may be rede�ned inter-

actively with its new de�nition bound automatically to free identi�ers in functions

that use the procedure.

CHAPTER 3. SEMANTIC FOUNDATIONS 32

(module triangle import)
(public triangle area
(lambda (x y)
(/ (* x y) 2)))

(module rectangle import)
(public rectangle area
(lambda (x y)
(* x y)))

(module area import triangle)
(private area compute
(lambda (x y)
(area x y)))

(with area (compute 3 4)) =) 6
(module area import rectangle)
(with area (compute 3 4)) =) 12

Figure 8: Example 2

CHAPTER 3. SEMANTIC FOUNDATIONS 33

(module A import)
(public A square
(lambda (x) (* x x)))

(module B import A)
(public B distance
(lambda (x y)
(sqrt (+ (square x) (square y)))))

(module compare import B)
(public compare less-than-4?
(lambda (x y)
(< (distance x y) 4)))

(private compare square
(lambda (x) (+ x x)))

(with compare (less-than-4? 3 4)) =) #f

Figure 9: Example 3

The second example is presented in Figure 8. This example involves three modules.

Both the triangle and the rectangle modules export an area procedure. The area

module can import an area procedure from either the triangle module or the rectangle

module using themodule statement. This example demonstrates that a module may

interactively modify its imports and that the same identi�er may be used as a module

name and as a variable name. It also illustrates a potential problem regarding name

conicts with imported variables: The area module cannot use the two di�erent area

procedures of the triangle module and the rectangle module simultaneously. This

problem must be addressed in a practical interactive modular programming system.

We will return to this point later.

The third example is presented in Figure 9. This example uses the module A

and the module B from Example 1 and adds the compare module that exports the

CHAPTER 3. SEMANTIC FOUNDATIONS 34

(module even import odd)
(public even even?

(lambda (x)
(if (= 0 x)

#t
(odd? (� x 1)))))

(module odd import even)
(public odd odd?

(lambda (x)
(if (= 0 x)

#f
(even? (� x 1)))))

(with even (odd? 3)) =) #t
(with odd (even? 2)) =) #t

Figure 10: Recursive modules

less-than-4? function which computes whether the distance of a point from the origin

is less than 4. The call to the distance function in less-than-4? indirectly calls the

square function de�ned in module A rather than the square function locally de�ned

in the compare module. This example demonstrates the importance of using the

de�nition-time (closed) module name to look up free identi�ers. If the use-time

module name were used to look up free identi�ers in exported functions, the call to

less-than-4? would return #t!

The last example is presented in Figure 10. This example uses two recursively-

de�ned modules that import and export to each other to implement the even? and

odd? functions. Note that the with statement can also refer to imported identi�ers

in addition to identi�ers locally de�ned in a module. This example demonstrates that

recursive modules can be supported by the �imp language.

All the examples presented in this section can be mapped to a window-based

CHAPTER 3. SEMANTIC FOUNDATIONS 35

(import odd)

(public even?

 (lambda (x)

 (if (= 0 x)

 #t

 (odd? (- x 1)))))

> (odd? 3)

#t

>

Module even

(import even)

(public odd?

 (lambda (x)

 (if (= 0 x)

 #f

 (even? (- x 1)))))

> (even? 2)

#t

>

Module odd

T

Figure 11: Recursive modules in windows

user interface. As an example, Figure 11 presents the user interface corresponding to

the even and odd modules. Note that the syntax is further simpli�ed and the with

statement is no longer necessary.

Chapter 4

The IMP System

Chapter 3 discusses semantic foundations for interactive modular programming. This

chapter describes the IMP programming system|a practical system designed for

interactive modular programming in Scheme [58, 35, 20]. IMP is based on Scheme

and the �imp language.

This chapter addresses many practical issues of supporting interactive modular

programming in Scheme. These issues include e�cient implementation of variable

lookup, separate compilation, project compilation (or delivered-mode code genera-

tion), using macros in the context of modules, and programming environment sup-

port. The experiences reported in this chapter are applicable to other languages,

especially other Lisp dialects, as well.

This chapter is organized as follows. Section 1 gives an overview of the Scheme

programming language. Section 2 points out drawbacks of Scheme's modular and

interactive programming facilities. Section 3 proposes practical requirements for in-

teractive modular programming in Scheme. Sections 4 and 5 present the design and

implementation of the IMP system respectively. Section 6 illustrates problems and

presents solutions of incorporating a macro system for IMP.

36

CHAPTER 4. THE IMP SYSTEM 37

4.1 An Overview of Scheme

Scheme, a dialect of Lisp, was designed in 1975 at MIT by Guy Lewis Steel Jr. and

Gerald Jay Sussman [72]. Scheme is a small language that has a simple syntax and

an exceptionally clear semantics [58, 35].

4.1.1 Syntax

Figure 12 presents the syntax of a Scheme subset that is su�cient for our purpose.

The notation . . . denotes zero or more occurrences of the preceding form.

Scheme supports many data types. A few examples of these data types include

booleans, numbers, characters, symbols, lists, vectors, and procedures. Members of

any of these data types are referred to as objects.

The purpose of the quote expression is to allow lists or symbols to be treated as

constants. A list that is not quoted is interpreted as an application and a symbol that

is not quoted is interpreted as a variable reference or keyword. The quote character

can be used to abbreviate a quoted expression. For example, '(x y) is equivalent to

(quote (x y)).

Identi�ers other than those used as keywords are treated as variable references.

Variable references must be bound in the top-level environment or an enclosing

lambda expression.

A lambda expression evaluates to a procedure. Free variables in the procedure

body are found in the de�nition-time environment of the procedure. Bound variables

(formal parameters) of the procedure are bound to the arguments (actual parameters)

of the procedure when invoked. The syntax for invoking a procedure is wrapping the

procedure and its arguments by a pair of parentheses.

An if expression has the obvious meaning. A set! expression changes the value

stored in the location referred to by a variable.

CHAPTER 4. THE IMP SYSTEM 38

c 2 Con constants
i 2 Ide identi�ers
e 2 Exp expressions

e ::= c

j (quote e)

j i

j (lambda (i . . .) e e . . .)

j (e e . . .)

j (if e e e)

j (set! i e)

j (let ([i e] . . .) e e . . .)

j (letrec ([i e] . . .) e e . . .)

j (de�ne i e)

Figure 12: Syntax of a Scheme subset

CHAPTER 4. THE IMP SYSTEM 39

A let expression establishes local variable bindings; a letrec expression estab-

lishes mutually recursive variable bindings. A de�ne de�nition occurring at top level

establishes a top-level variable binding.

4.1.2 Semantic Properties

Scheme features lexical scoping and dynamic typing and is applicative order and

properly tail recursive. Scheme di�ers from most other programming languages in

that it supports �rst-class procedures and �rst-class continuations.

Lexical scoping is a technique for controlling the visibility of variables in a pro-

gram. A scope is a region of program text determinable by syntactic constructs

de�ned in a programming language. Scopes may be properly nested or completely

separated. The primary advantage of lexical scoping is that the visible regions of

variable bindings are determined solely by the static structure of the program text

and not by the dynamic behavior of a computation. The primary scoping construct

of Scheme is the lambda expression.

Applicative order and normal order are terms used for describing whether argu-

ments to procedures are evaluated before or after their invocation. Applicative order

evaluates the arguments to a procedure before invoking the procedure. Normal order

evaluates the arguments to a procedure when they are used by the procedure. Pro-

grams that do not terminate in applicative order evaluation can terminate in normal

order evaluation. However, applicative order is easier to implement e�ciently than

normal order and is more appropriate for languages with side e�ects.

Types help in classifying objects and organizing operations on objects. Statically

typed languages determine the types of objects in a program at compile time. Dynam-

ically typed languages, however, defer type checking until run time. The advantages

of statically typed languages are that they can be implemented more e�ciently and

CHAPTER 4. THE IMP SYSTEM 40

can allow type errors to be discovered before running the program. However, dynam-

ically typed languages are more exible and more expressive than statically typed

languages.

Scheme implementation are required to be properly tail recursive [24]. Proper

tail recursion allows looping constructs of a language to be implemented with tail-

recursive procedures. This feature simpli�es Scheme since looping constructs need

not be prede�ned.

Scheme supports both functional and imperative programming. Imperative pro-

gramming relies on assignments to shared locations to communicate among di�erent

parts of a program. Functional programming, however, does not allow assignments;

functions communicate only by passing values explicitly. Many researchers have ar-

gued that functional programs are more concise and higher level [34]. However, in

many situations, assignments are more intuitive, and forbidding their use can signif-

icantly complicate solutions of many problems.

One of the most important features of Scheme is that it treats procedures as

�rst-class objects. An object is �rst-class if it can be passed to and returned from

procedures and stored in data structures. A �rst-class procedure closes the lexical

bindings of its free variables when it is created. The values of the free variables

may be changed and retained across di�erent invocations of a �rst-class procedure.

This property allows the use of �rst-class procedures to represent objects with local

state that interface with the rest of a program through message passing. First class

procedures also support a programming technique known as currying [65]. Curry-

ing allows a function to be applied in separate steps with each step remembering

the results of previous steps and returning a new �rst-class procedure with the re-

membered information. Figure 13 gives an example of using the currying technique.

First-class procedures also support delayed evaluation, allow the implementation of

data structures that compute values on demand, and permit writing programs in the

CHAPTER 4. THE IMP SYSTEM 41

(de�ne add
(lambda (x)
(lambda (y)
(+ x y))))

(de�ne add3 (add 3))
(de�ne add5 (add 5))

(add3 3) =) 6
(add5 3) =) 8

Figure 13: Currying

continuation passing style [24, 65].

Scheme also supports �rst-class continuations. In most programming languages,

continuations are merely abstract concepts that capture the notion of \the rest of the

computation." At an arbitrary point of the life time of a computation, a continuation

can be associated with the point to represent the rest of the computation after the

point. In Scheme, continuations can be obtained explicitly, stored in data structures,

and later invoked to return to the computation. First-class continuations are partic-

ularly useful for implementing coroutines, processes, exception handling mechanisms,

and nonblind backtracking [32, 22, 31, 30].

The richness of Scheme is supported only by a small number of core syntactic

forms. However, Scheme is not con�ned by the core forms: additional syntactic forms

may be de�ned using syntactic de�nitions. Syntactic de�nitions allow programmers

to de�ne new syntactic forms in terms of existing syntactic forms or procedures. For

example, let may be de�ned with lambda and application:

(let ([x v] . . .) e e...)

=) ((lambda (x . . .) e e . . .) v . . .)

CHAPTER 4. THE IMP SYSTEM 42

Syntactic de�nitions are also convenient in simplifying otherwise more complicated

syntactic patterns.

Most Scheme implementations support interactive programming. Interactive pro-

gramming reduces program development time by reducing the usual compile-link-

execute step, at least conceptually, to a single evaluate step. Interactive program-

ming makes it easier for programmers to experiment with di�erent approaches toward

solving a problem and to try out new ideas.

Overall, Scheme is a well-designed programming language that has a small but

powerful set of abstraction mechanisms. Together with the simplicity of its syntax

and provisions for syntactic extensions, these make Scheme an excellent language for

programmers to create and experiment with new computational models or program-

ming paradigms.

4.2 Weaknesses of Scheme

Scheme is both simple and exible. However, this section illustrates two weaknesses

of Scheme. One is Scheme's lack of support for modular programming, and the other

is a consistency problem associated with interactive program development in Scheme.

4.2.1 Modular Programming

Lexical scoping is the only name-space managementmechanism supported by Scheme.

The advantages of lexical scoping are [28, 77]:

1. The programmer can determine the binding of a variable reference by looking

at the static program text.

2. The compiler can determine variables' run-time locations at compile time.

CHAPTER 4. THE IMP SYSTEM 43

(de�ne init #f)
(de�ne push #f)
(de�ne pop #f)

(let ([stack '()])
(set! init
(lambda ()
(set! stack '())))

(set! push
(lambda (v)
(set! stack (cons v stack))))

(set! pop
(lambda ()
(let ([v (car stack)])
(set! stack (cdr stack))
v))))

Figure 14: The stack module

However, lexical scoping also has a number of limitations [82, 28]. One of them is

that the lexical structure of a program is forced to be tree like, and an other one is

that direct communication among variables in di�erent branches of a program tree is

impossible.

Nevertheless, the combination of lexical scoping, assignment statements, and �rst-

class procedures allow Scheme to support restricted name space control mechanisms

among program modules. Figure 14 presents an example stack module which exports

init, push, and pop procedures while keeping the internal representation of the stack

private. However, this programming style has at least three problems:

1. Exported variables are visible everywhere in a program.

2. Variables exported by di�erent modules may result in name conicts. For ex-

ample, a queue module may also export the init procedure.

CHAPTER 4. THE IMP SYSTEM 44

3. Individual bindings in a module cannot be modi�ed without reloading or re-

compiling the entire module. This is inconvenient for interactive programming.

The IMP system presented later in this chapter solves these problems.

4.2.2 Interactive Programming

Scheme is an expression-oriented language that favors experimental and interactive

program development. Most Scheme systems realize interactive programming through

a program known as the read-eval-print loop. A read-eval-print loop reads one ex-

pression, evaluates it, and prints its value, then loops back for more. Changes to

variables and objects caused by evaluation of one expression are seen by subsequent

expressions. The primary problem with the read-eval-print loop model is that the

meaning of a program may be sensitive to the history of an interactive programming

session because the programmer may enter commands that cause side e�ects, result-

ing in inconsistency between the static program text and the state of the Scheme

system. As a result, the programmer cannot completely rely on the static program

text to understand a program's behavior [59].

The example in Figure 15 illustrates this problem: The call (fun 3 4) right after

the de�nition of fun returns (7 . 7). However, after rede�ning op, (fun 3 4) returns

(�1 . 7) rather than (�1 . �1) which may not be the intention of the programmer,

since the programmer may also want to change the value of op1 as well. The problem

is that a procedure can refer to variables whose values may be changed at conceptually

di�erent stages during interactive program development and that the e�ects of these

changes can be overlooked by the programmer.

Three approaches may be used to solve this problem. The �rst one is to reevaluate

all the de�nitions including those that do not rely on the altered bindings. However,

this is essentially the traditional batch-oriented programming style. The second one is

CHAPTER 4. THE IMP SYSTEM 45

> (de�ne op +)
op
> (de�ne fun

(let ([op1 op])
(lambda (x y)
(cons (op x y) (op1 x y)))))

fun
> (fun 3 4)
(7 . 7)
> (de�ne op �)
op
> (fun 3 4)
(�1 . 7)

Figure 15: The problem of the read-eval-print loop

to require programmers to keep track of the dependencies among top-level de�nitions

and to rede�ne selected ones manually. However, this approach is unreliable and

adds extra burden on the programmer. A third one is to have the system keep

track of the dependencies among top-level de�nitions. After a top-level de�nition is

rede�ned by the user, the system automatically rede�nes those a�ected de�nitions

only. Unfortunately, an appropriate solution to this problem seems to be very di�cult

since the value of a variable can depend on an arbitrary computation. The example

de�nition de�ned in Figure 16 illustrates why: If the invocation of the procedure

proc returns false then fun would be sensitive to future modi�cation of op, otherwise

additional modi�cation to op would be used in the procedure returned from the

lambda expression automatically. Since proc is any arbitrary computation (possibly

including side e�ects), it is undecidable whether modifying op requires fun to be

rede�ned or not. Even assuming the worst case and requiring fun to be rede�ned

whenever op is rede�ned, undoing the e�ect of executing proc and preparing the state

to reevaluate fun could involve a signi�cant amount of overhead. This overhead may

CHAPTER 4. THE IMP SYSTEM 46

(de�ne fun
(if (proc)

(lambda (x y) (op x y)
op)))

Figure 16: Should fun be reevaluated?

even be greater than the cost of reloading the entire program again. Worse yet,

the cost of keeping track of the dependencies and selectively undoing or rede�ning

variable de�nitions and the cost of reloading the entire program may be extremely

di�cult to compare. It is therefore unclear which de�nitions should be reevaluated

after an interactive modi�cation.

The module system presented in this section is designed to allow the state of an

interactive programming session to be reinitialized in a simple but practical manner

(see Sections 4.4.1 and 4.5.4).

4.3 Requirements

Chapter 3 discusses basic requirements for the �imp language and presents its seman-

tics. This section illustrates practical requirements for the IMP system designed for

Scheme.

Interactive programming in Scheme typically involves the following repetitive

steps: entering or modifying the source code of a program with an editor, saving

the source code to a �le, loading the �le into the Scheme system, and testing the code

using Scheme's read-eval-print loop. Some editors and window managers also allow

an expression to be sent to the Scheme system directly from an edit window, thus

avoiding the steps of saving and loading �les.

One of the requirements of the IMP system is to support exible and organized

CHAPTER 4. THE IMP SYSTEM 47

program development. A multi-window user interface that associates modules with

�les and edit windows is useful in organizing a user's activities. This user interface

should allow a user to develop and test one or more modules at a time by directly

modifying modules displayed in di�erent edit windows. The user interface should also

�x the consistency problem associated with traditional implementations of the read-

eval-print loop by providing a command that reinitializes the state of a programming

session as if the entire program were freshly loaded.

In addition to exibility, e�ciency is also an important consideration. The seman-

tics of the �imp language employs late binding to determine values of free identi�ers

dynamically at run time. The IMP system, however, provides more e�cient mecha-

nisms to support interactive modular programming.

Most program development projects are initially unstable and require exible

development tools. However, these projects may still need to use modules that are

fully developed and have �xed interfaces. A \developed" module should be permitted

to compile separately and should run more e�ciently. \Developing" modules and

developed modules should be allowed to coexist in a project, although developed

modules should not be allowed to import from developing modules. Once an entire

project is complete, every module in the project would be developed and the entire

project can be compiled to more e�cient code with the overhead associated with the

developing modules eliminated. The IMP system should therefore provide tools that

allow a programming project to smoothly move from the developing stage toward the

developed stage. During the developing stage, exibility and discipline are important.

At the developed stage, e�ciency should become the highest priority.

Much of the power of Scheme stems from macros. The IMP system designed for

Scheme should allow macros to be used exibly and reliably with modules. Unfortu-

nately, programs that use macros need to be macro-expanded before being evaluated.

This \early" property makes exible use of macros in the IMP system di�cult and

CHAPTER 4. THE IMP SYSTEM 48

would require modules that use a rede�ned macro to be reexpanded and reevaluated.

However, macros are indispensable for Scheme users and allowing macros to be used

reliably with modules is essential for any module system designed for Scheme.

To summarize, an IMP system designed for Scheme should satisfy the following

requirements:

1. The IMP system should provide an interactive multi-window programming in-

terface that supports exible and organized program development. This user-

interface should allow its internal state to be synchronized upon the user's

request.

2. The IMP system should support separate compilation for developed modules,

and project compilation for developed projects. Developed modules and devel-

oping modules should be allowed to coexist in a project.

3. The IMP system should allow macros to be used reliably with modules.

4.4 Design

This section presents an integrated approach towards the design of IMP's module

system and its programming environment. The module system de�nes the syntax

and semantics of primitive operations for interactive modular programming. The

programming environment takes care of translating user interactions into primitive

operations of the module system. In order to simplify the presentation, additional

language facilities that allow existing macro systems to be incorporated reliably into

IMP are presented later in a separate section.

4.4.1 The Module System

CHAPTER 4. THE IMP SYSTEM 49

id, ex-id, local-id, m-all,
m-sel, module, variable 2 Ide Scheme identi�ers

expression 2 Exp Scheme expressions
lambda-expression 2 LExp Scheme lambda expressions

s 2 Stmt statements

s ::= (import module Imports)

j (public module variable lambda-expression)

j (private module variable expression)

j (with module expression)

Imports ::= (fm-all j Selectg . . .)

Select ::= (m-sel fid j (local-id ex-id)g+)

Figure 17: Syntax of the module system

The syntax of the module system is speci�ed in Figure 17. The notation fx j yg

indicates the appearance of either x or y but not both. The + indicates one or

more occurrences of the preceding form. The syntactic categories Ide and Exp are as

de�ned in the Revised4 Report [58]. The LExp are Scheme lambda expressions. This

module system extends �imp by allowing the import statement to specify how name

conicts should be resolved among imported variables. As an example, the following

expression:

(import main (stack (queue (q-init init) enq deq)))

imports all the public bindings of the module stack and only the init, enq, and deq of

the module queue to the module main with init renamed as q-init.

The semantic domains of the module system are given in Figure 18. The di�erence

between these semantic domains and the semantic domains of the �imp language is

the addition of store locations. The domain MEnv associates module names with

modules.

CHAPTER 4. THE IMP SYSTEM 50

L locations
MEnv = Ide!Module module environments
Module = PriEnv � PubEnv � Imports modules
PriEnv = Ide! (L j undefined) private environments
PubEnv = Ide! (L j undefined) public environments

Figure 18: Semantic domains

Although the module system for IMP extends the module system of the �imp

language in a few di�erent ways, the variable lookup mechanisms of the two module

systems are essentially the same. A detailed description of the module system is given

in Appendix B.

In order to satisfy the e�ciency requirement stated in the previous section and

to allow a simple implementation of the refresh-binding command, we employ the

following restrictions on IMP's module system:

1. The expression part of a public de�nition must be a lambda expression.

2. Exported and imported variables cannot be assigned (although they may be

rede�ned interactively at top level during program development).

3. Only import, public, and private statements can be loaded from �les.

4. The load order of public and private variables in a module is unspeci�ed.

5. The importmodule statement should be the �rst statement appearing in a �le.

At �rst glance, it appears that the �rst two restrictions, which �x the value of ex-

ported variables, is too restrictive. However, there is no loss of functionality. Suppose

we wish to export the value of the variable x and to allow x to be assignable by other

modules. We simply export a reference procedure, e.g., (lambda () x) and an assign-

ment procedure, e.g., (lambda (v) (set! x v)). Suppose we wish to export the value

CHAPTER 4. THE IMP SYSTEM 51

(let ([local-x val-x]) (lambda (arg) . . .)) of a variable y. We can make a private def-

inition (private some-module my-y (let ([local-x val-x]) (lambda (arg) . . .)) and a

public de�nition (public some-module y (lambda (arg) (my-y arg))) which exports

my-y indirectly.

The primary bene�t of employing the �rst two restrictions is that they encourage

programmers to write programs that are more easily analyzed by both the compiler

and the programmer, since any code that can assign a variable is insulated within

a single module. The consequence is that the programmer and the compiler can

simply scan a module to determine whether a given variable is assigned, and can

more often determine the types of values assigned to the variable when it is assigned.

Furthermore, these restrictions naturally lead to the use of assignment procedures

that ensure that the new value is in the range of acceptable values. For example, if

a variable must be assigned to positive integers, the assignment procedure could be

written as:

(lambda (v)

(if (and (integer? v) (> v 0))

(set! x v)

(error)))

which results in safer, more readable, and more easily analyzed code.

The implementation of the refresh-binding command is also simpli�ed due to these

restrictions. The �rst restriction does not allow any public de�nition to close over

potentially assignable private state. Together with the second restriction, public de�-

nitions need not be reevaluated at all. Expressions appearing in a �le usually perform

some kind of initialization. This initialization should also be performed during re-

fresh binding. However, maintaining the evaluation order of these expressions is a

complicated task. The third and fourth restrictions force the user to put the ini-

tialization routines in public or private procedures which can be reevaluated by the

CHAPTER 4. THE IMP SYSTEM 52

Project management:

(load-project name)
(save-project)
(save-project-as name)
(compile-project)

Module management:

(set-current-module module)
(load-module module string)
(change-order module after)
(compile-modules module)
(compile-one-module module)
(remove-module module)

Binding management:

(delete-binding module variable)
(refresh-binding)

Figure 19: Commands of the IMP system

refresh-binding command.

The �fth restriction prepares the rest of a �le with an appropriate evaluation

context.

4.4.2 The Programming Environment

The design of the programming environment concentrates on commands for managing

projects, modules, and bindings and on ways that the user can interact between the

read-eval-print loop and modules displayed in edit windows and stored in �les.

Figure 19 presents a list of commands provided by the IMP system for manag-

ing projects, modules, and bindings. An IMP project is composed of zero or more

modules. A project may be saved and subsequently loaded. A saved project records

CHAPTER 4. THE IMP SYSTEM 53

the load order of modules and the directory from which to load the modules. The

save-project command saves the current project. The save-project-as command saves

the current project with a new name. A developed project may be compiled to

generate a delivered application.

The set-current-module command causes expressions subsequently entered in the

read-eval-print loop to be evaluated in the \current" module. This command allows

a single read-eval-print loop to be shared among di�erent modules and saves the

programmer from entering the module name required by the statement syntax of the

module system. An existing module may be included in the current project by using

the load-module command. A new module is added to the current project when it is

�rst set to be the current module. Since Scheme is an imperative language, the system

must keep track of the load order of modules in order to implement the refresh-binding

command properly. The load order of modules is kept in the load order list. By

default, new modules are appended at the end of the load order list. However, the

change-order command allows the user to change the load order of modules. Existing

modules may be located in a speci�c directory by specifying an optional path (a string)

to the load-module command. If the path is not speci�ed, the module is loaded

from the current directory. Modules may be compiled using the compile-modules

command which recursively compiles a module and all of its imported modules, or

the compile-one-module command which compiles a single module. Existing modules

may be removed using the remove-module command.

Any public or private binding in a module may be removed using the delete-binding

command. Invoking the refresh-binding command reinitializes the values of private

variables to the values when the variables were last de�ned. Public bindings need not

be reinitialized, since they do not contain local state and cannot be changed by side

e�ects. The order in which private bindings are reinitialized within a module is not

speci�ed. The order in which the modules of a project are initialized is the same as

CHAPTER 4. THE IMP SYSTEM 54

the load order of modules.

In addition to commands for managing projects, modules, and bindings, the pro-

gramming environment also provides a multi-window user interface that allows the

user to develop programs in a exible but organized manner. The best way to describe

the user interface is with a few examples.

The following shows a simpli�ed user interface for the IMP system with two mod-

ules and a read-eval-print loop:

module B

(import ())

(private i 3)

(public ref-i

(lambda () i))

module C

(import (B))

(public sum

(lambda (n)

(+ (ref-i) n)))

C: (sum 5)

8

C:

The user can create edit windows interactively. After loading the two modules dis-

played in the left and the center edit windows, the user can test the modules by

entering (sum 5) in the read-eval-print loop. Since (sum 5) is evaluated in module

C which imports ref-i from module B, the system returns 8 as the result. The user

interface implicitly supplies the current module name to the read-eval-print loop. The

prompt of the read-eval-print loop, which is the name of a module followed by the

colon character, indicates the current module.

The contents of an edit window can be modi�ed and can be saved in a �le. The

user can also send module statements from edit windows to the read-eval-print loop

directly without �rst changing the current module. For example, the user may want

to use a locally de�ned ref-i rather than the ref-i imported from B. In this case,

the user can enter the private statement that binds ref-i in module C and send the

statement to the the read-eval-print loop directly:

CHAPTER 4. THE IMP SYSTEM 55

module B

(import ())

(private i 3)

(public ref-i

(lambda () i))

module C

(import (B))

(public sum

(lambda (n) (+ (ref-i) n))

(private ref-i (lambda () 1))

B: evaluating ref-i of module C ...

ref-i

C: (sum 5)

6

C:

Note that the current module is changed automatically after sending the statement.

Evaluating (sum 5) now returns 6. New modules can also be added interactively.

For example, the user may prefer the following module structure:

module A

(import ())

(private i 2)

(public ref-i

(lambda () i))

module B

(import ())

(private i 3)

(public ref-i

(lambda () i))

module C

(import (A B))

(public sum

(lambda (n)

(+ (ref-i) n)))

C: (sum 5)

7

C:

Since the ref-i exported from module A have precedence over the ref-i exported from

module B, evaluating (sum 5) in the context of module C returns 7.

An alternative user interface would employ separate read-eval-print windows for

each module. This would eliminate the need for the set-current-module command.

However, separate read-eval-print windows would occupy additional space on the dis-

play screen. Since, in most cases, the user need not explicitly use the set-current-module

command, we adopt the design of having a single read-eval-print window with multi-

ple evaluation contexts.

CHAPTER 4. THE IMP SYSTEM 56

4.5 Implementation

This section describes the implementation of IMP's module system and its user in-

terface. The implementation of the module system requires techniques for compiling

developing modules, developed modules, and developed projects. The implementa-

tion of the refresh-binding command and the user interface are also described.

4.5.1 Compiling Developing Modules

The semantics of our module system requires free-variable bindings to be determined

dynamically at run time. This property provides the necessary exibility for inter-

active programming. However, a naive implementation of the semantics can result

in unacceptable performance. The implementation presented here keeps track of the

import/export relations among modules and uses double indirections with an implicit

incremental link step after each interactive modi�cation to resolve the bindings of free

variables.

The IMP system keeps track of variable bindings for all modules. Each module has

environments for public variables, private variables, and free variables. The public and

private environments associate identi�ers with the locations that contain their values.

The free-variable environments (FVE) associate free variables with locations that

contain pointers to the locations of local variables or public variables imported from

other modules. A binding in the public or private environment of a module is allocated

when a public or private de�nition of the module is evaluated. A binding in the free-

variable environment of a module is allocated when an expression containing the

free variable is compiled. Before evaluating the compiled expression, an implicit link

step is performed that associates bindings in the free-variable environment with the

locations of the variables de�ned in the module or imported from other modules. An

run-time error is signaled if a free variable is used during evaluation but is not bound

CHAPTER 4. THE IMP SYSTEM 57

Module m1:

(import (m2))

(private a 1)
(public set-a!

(lambda (n)
(set! a n)))

(public fun
(lambda () act))

Module m2:

(import (m1))

(private b 2)

(public act
(lambda ()
(fun)
(set-a! 3)))

public private fve public private fve

set-a! fun a a act act b fun set-a!

proc proc proc1 2

Environments of m1: Environments of m2:

Figure 20: Module linkage

CHAPTER 4. THE IMP SYSTEM 58

(indirectly) to a value. Figure 20 depicts the implementation using two modules that

import from and export to each other. Note that the private variable a also appears

in m1 's free-variable environment, since a occurs free in the expression de�ned by

set-a! .

IMP allows interfaces among modules to be modi�ed freely. Possible modi�ca-

tions include removing a module, de�ning a module, changing a module's imports,

deleting a binding, adding a binding, and modifying an existing binding. To sup-

port these modi�cations, the free-variable environments of a�ected modules must be

updated after every user interaction that changes the dependencies among modules.

For example, if m1 imports act from another module m3 , the entry act in m1 's FVE

must be changed to point to the act in the public environment of m3 . In extreme

circumstances, the amount of relinking required could be high. In practice, however,

this does not appear to be a problem.

When a public or a private binding is removed from a module, the free variables

used in the removed binding should be removed from the free-variable environment

if not referenced elsewhere in the module. Referring to Figure 20, if the public

procedure fun is removed from module m1 , the binding act in m1 's FVE should also

be removed. The system uses reference counts to determine whether free variables

should be removed.

4.5.2 Compiling Developed Modules

A separate compilation mechanism for developed modules must satisfy the following

requirements:

1. Developed modules must integrate well with developing modules.

2. In order to support recursive modules, the system must allow loading of a

developed module even though the developed module imports some items that

CHAPTER 4. THE IMP SYSTEM 59

(do-import 'm1 '(m2))

(do-binds 'm1 '((pribind a) (pubind fun) (pubind set-a!)))

(letrec ([a (get-box 'm1 'a)]
[act
(if (value-getable? 'm2 'act)

(get-value 'm2 'act)
(lambda args
(if (value-getable? 'm2 'act)

(begin (set! act (get-value 'm2 'act))
(apply act args))

(error '()
\Variable ~s imported from ~s to ~s is not bound"
'act 'm2 'm1))))])

(do-public 'm1 'fun (lambda () act))
(do-public 'm1 'set-a! (lambda (n) (set-box! a n)))
(do-private 'm1 'a 1))

Figure 21: Separate compilation

may not be available at load time.

3. The compiled code should run without the performance penalty associated with

developing modules.

The �rst requirement can be satis�ed by having the developed module establish the

environments for its public and private variables. The second requirement requires a

\delayed linking" mechanism for bindings that are not available at load time. The

third requirement can be satis�ed by accessing imported procedures in a developed

module without using indirection. Furthermore, once a developed module has been

compiled, information about its implementation can be exposed for use in optimizing

code compiled for other developed modules.

CHAPTER 4. THE IMP SYSTEM 60

Figure 21 shows the code generated for the module m1 in Figure 20. Procedures

do-import, do-binds, do-public, and do-private are provided by the IMP system1.

The procedure do-import checks whether imported modules are also developed. The

procedure do-binds initializes the private and public environments for the module.

The procedures do-public and do-private put the value of a variable de�nition into

the public or the private environment.

The most interesting part of Figure 21 is the letrec expression, which is used to

establish bindings for free variables inm1. The procedure get-box returns a box object

(an indirection cell) [21, 43] associated with an entry of the private environment. The

box is used to reference or to assign free variables that are bound to locally de�ned

private variables. It seems that allocating boxes for private variables is unnecessary,

since they are not visible outside the letrec expression. However, the refresh-binding

command needs to access these private bindings in order to reinitialize them. Allo-

cating boxes for assignable private variables is therefore required to allow both the

IMP system and the module to access the private variables. For private variables

that are not assignable, boxes are not required.

Any free variable that refers to a locally de�ned public variable or an imported

public variable is bound to an if expression that returns the public variable's value

if it is available at load time or a procedure which delays the reference of the free

variable until the procedure is invoked. The set! expression within this procedure

changes the delay procedure to an imported procedure when it is �rst invoked. This

link-by-need mechanism allows recursive modules to be loaded into the system and

provides a more relaxed model for specifying the load order of modules in a project.

The procedure value-getable? checks whether the value of a variable is available. The

procedure get-value returns the value of a variable.

1To aid the presentation, the original names of these procedures are used in the generated code.
In reality, these and other system procedures are bound to unique symbols to avoid being captured
by user-de�ned variables.

CHAPTER 4. THE IMP SYSTEM 61

Except for the cost associated with the link-by-need mechanism and the use of

boxes to access assignable private variables, the code generated for a developed mod-

ule is as e�cient as its corresponding Scheme program. Since many Scheme imple-

mentations introduce boxes for assignable private variables, the typical overhead is

just the cost associated with the link-by-need mechanism.

4.5.3 Project Compilation

The goal of project compilation is to eliminate all of the overhead associated with

developing or developed modules. Because bindings of free variables are available at

compile time and exported variables are not assignable, this goal can be achieved.

The project compiler �rst translates the entire project by consistently renaming

every free variable name, say v1, with a name of the form m-v1 where v1 is de�ned

in module m, or with a name of the form m-v2, if v2 is the original name and is

renamed to v1 in an importing module. The project compiler is free to open-code any

public procedure. The translated code is at least as e�cient as an equivalent Scheme

program written without modules.

For some applications, this project compilation mechanism is not completely sat-

isfactory. A good example is the IMP system itself. The IMP system takes a user

program as input, translates it according to the semantics of the module system, then

evaluates the transformed expression. During the translation process, the IMP sys-

tem generates code that looks like (if (value-getable? 'm 'a) ...), with a subexpression

of the translation program coded as `(if (value-getable? ',module-name ',id-name) ...)

where value-getable? is quoted as datum2. However, value-getable? is the name of

a procedure de�ned in the module link-manager. The variable value-getable would

therefore be renamed to link-manager-value-getable? after project compilation. Since

2The quasiquote (`) and unquote (,) expressions are a convenient way to specify which part of a
subexpression should be quoted or evaluated. `(a ,b) is equivalent to (list 'a b).

CHAPTER 4. THE IMP SYSTEM 62

the compiled program uses quoted symbols that depend on variables de�ned by the

program itself, the generated code no longer works. We have not yet found a sat-

isfactory solution to this problem. For some applications, the programmer may be

required to manually �x the generated code.

4.5.4 User Interface

A prototype IMP user interface has been constructed by interfacing the Epoch editor

(a multi-window variant of the GNU Emacs editor) and the IMP system [38]. The

IMP system runs as an inferior process within Emacs and implements commands for

manipulating modules, �les, and projects. New statements can be added to modules

displayed in Emacs windows and can be sent and evaluated in IMP's read-eval-print-

loop directly. The IMP system also implements the refresh-binding command. Figure

22 presents IMP's user interface.

The implementation of the refresh-binding command is straightforward. Since the

module system does not specify the evaluation order of statements in a module and

does not allow assignments to public variables, the refresh-binding command simply

restores the most recently de�ned values for every private de�nition of every module

in the project.

Two kinds of private de�nitions are possible: the �rst one binds an identi�er to the

value of an immediate lambda expression, and the second one binds an identi�er to

the result of evaluating an expression that may refer to or assign private variables at

load time. To restore the value of the former, an additional box is used that contains

a pointer to the procedure, so that it can be retrieved in case the variable is assigned

to other values. To restore a value of the latter, a preprocessed version of the program

text is saved, so that it can be reevaluated in an order consistent with the load order

of modules in the project.

CHAPTER 4. THE IMP SYSTEM 63

Figure 22: User interface

CHAPTER 4. THE IMP SYSTEM 64

4.6 Supporting Macros

Macros are a convenient way to extend the syntax of programming languages. Unlike

most Scheme systems which employ a global environment to associate macro names

with their de�nitions, this section presents an approach that incorporates a hygienic

macro system in IMP that allows macros to be associated with modules and exported

to other modules. This section also discusses problems of using macros with modules

and presents some additional language facilities that allow existing macro systems to

be incorporated into IMP.

4.6.1 Background

The primary function of a macro system is to allow user-de�ned macros. De�ning a

macro causes the macro name and an expander function to be installed in a macro

environment. The macro environment associates macro names with expanders. A

program known as the macro preprocessor is responsible for expanding the source

code of a program using expanders stored in the macro environment. The macro

preprocessor scans the input program, and upon encountering an expression that

contains a macro call, the expander associated with the macro call is used to expand

the expression. This process continues until all the macro calls are expanded. As an

example, Figure 23 presents a program that de�nes the or macro, uses the or macro

in an expression, and shows the result of expanding the expression. The expander for

or expects a list of three elements as input. The �rst element of the list should be

the name of the or macro. The expander uses the remaining two elements of the list

to produce an output expression that de�nes the meaning of the macro call.

This traditional macro mechanism seems to be simple and exible. However, it

su�ers from two kinds of variable capturing problems which prevents it from being

used reliably [42, 4, 10]:

CHAPTER 4. THE IMP SYSTEM 65

De�ning the or macro:

(de�ne-syntax or
(lambda (e)
`(let ([temp ,(cadr e)])

(if temp temp ,(caddr e)))))

Using the or macro:

(let ([a #t]
[b #f])

(or a b))

Result of expanding the above expression:

(let ([a #t]
[b #f])

(let ([temp a])
(if temp temp b)))

Figure 23: The or macro

CHAPTER 4. THE IMP SYSTEM 66

Using the or macro:

(let ([temp #t])
(or #f temp))

Result of expanding the above expression:

(let ([temp #t])
(let ([temp #f])
(if temp temp temp)))

Figure 24: The captured binding problem

1. A macro de�nition may introduce bindings which can capture references of

variables in the client program.

2. A macro de�nition may contain variable references which can be captured by

lexical bindings of client program that uses the macro.

The program presented in Figure 24 illustrates an example of the �rst kind of

capturing problems. The expanded code is incorrect since the or macro introduces

the binding temp which captures the reference of temp in the code that uses the or

macro.

In addition to using quoted expressions to specify the output of an expander,

pattern language can also be used to allow most macros to be speci�ed conveniently.

Figure 25 presents an example which uses a pattern language to de�ne the push

macro. This example also illustrates the second kind of capturing problems: The

expanded code is again incorrect since the meaning of the cons introduced by the

push macro should not depend on the binding of cons where push is used.

Recently, various techniques have been developed that solve these problems. Kohl-

becker, et al., invented hygienic macro expansion, which uses \time-stamps" to dis-

tinguish between macro-generated identi�ers and program identi�ers [42]. However,

CHAPTER 4. THE IMP SYSTEM 67

De�ning the push macro:

(de�ne-syntax push
(syntax-rules ()
((push v x) (set! x (cons v x)))))

Using the push macro:

(let ([stack '()]
[cons 'a])

(push 'b stack))

Result of expanding the above expression:

(let ([stack '()]
[cons 'a])

(set! stack (cons 'b stack)))

Figure 25: The captured reference problem

Kohlbecker's algorithm runs in quadratic time. Bawden and Rees developed syntac-

tic closures, which uses syntactic environments to keep track of the syntactic roles of

identi�ers [4]. Together with Hanson's \alias" facility, syntactic closures can be used

to support high level macros [27]. Unifying and extending ideas from hygienic macro

expansion and syntactic closures, Clinger and Rees developed an algorithm that runs

in linear time and allows the use of a pattern-based language for writing macros [10].

Hieb and Dybvig have developed a comprehensive macro system that runs with con-

stant overhead, enforces the hygiene condition with a controlled variable capturing

mechanism, and maintains referential transparency for all local macros. [33].

Using macros in the context of modules introduces a similar kind of capturing

problem: A macro de�ned in a module may introduce variable references or macro

calls that can be captured by bindings or macros de�ned in modules that use the

macro. Figure 26 gives an example program illustrating this problem.

CHAPTER 4. THE IMP SYSTEM 68

Modulem de�nes the synmacro and the plusmacro. Module n imports these two

macros using the (import-syntax (m)) statement. Since the syn macro de�ned in

module m refers to the identi�ers plus and minus and both module m and module n

de�ne their own plusmacros and their ownminus procedures, a naive implementation

of a macro system may incorrectly use the use-time environments of a macro call to

lookup variables introduced by expanding the macro call.

To solve this problem, the macro systemmust know during macro expansion which

module to use to lookup the expander to expand a macro call. When a macro intro-

duces a free reference to a variable, the macro system must also generate information

to determine which module to use to determine the binding of the reference. The

correct expansion of (syn 1 2) in Figure 26 uses the (with-var m minus) expression.

This expression instructs the module system to locate the binding of minus using

variables de�ned in or imported by the module m. Note that minus is a private

variable. However it is indirectly exported by a macro. Indirectly exported private

variables may be referenced only and cannot be assigned, since the system does not

provide a syntactic form (say with-var!) to allow a module to change the value

of an indirectly imported variable. The reason behind this restriction is to free the

programmer and the compiler from looking at other modules to determine whether a

given variable is assigned.

Care must be taken when modifying an existing hygienic macro system to sup-

port modules. The modi�cation must include module names as part of the context

information associated with identi�ers in the source code or generated during macro

expansion. This added information can be used to look up expanders in the de�nition-

time module. They can also be used to generate with-var expressions to link the

program.

CHAPTER 4. THE IMP SYSTEM 69

Module m:

(import ())

(de�ne-syntax syn
(syntax-rules ()
((syn x y)
(begin (plus x y) (minus x y)))))

(de�ne-syntax plus
(syntax-rules ()
((plus x y) (+ x y))))

(private minus
(lambda (x y)
(� x y)))

Module n:

(import ())
(import-syntax (m))

(de�ne-syntax plus
(syntax-rules ()
((plus x y) '(+ x y))))

(private minus
(lambda (x y)
(� (+ x y))))

Correct expansion of (syn 1 2) in n:

(begin (+ 1 2) ((with-var m minus) 1 2))

Incorrect expansion of (syn 1 2) in n:

(begin '(+ 1 2) (minus 1 2))

Figure 26: Modules and capturing

CHAPTER 4. THE IMP SYSTEM 70

id, ex-id, local-id, m-all,
m-sel, module, variable 2 Ide Scheme identi�ers

expression, expander 2 Exp expressions
lambda-expression 2 LExp Scheme lambda expressions

s 2 Stmt statements

s ::= (import module Imports)

j (import-syntax module Imports)

j (de�ne-syntax module id expander)

j (public module variable lambda-expression)

j (private module variable expression)

j (begin s s . . .)

j (with module expression)

Imports ::= (fm-all j Selectg . . .)

Select ::= (m-sel fid j (local-id ex-id)g+)

expression ::= (with-var module variable)

j hother Scheme expressionsi

Figure 27: IMP with macros

4.6.2 Design and Implementation

This section presents an example of incorporating Hieb and Dybvig's hygienic macro

system in IMP [33]. The syntax of IMP extended with support for macros is presented

in Figure 27.

The syntactic structure of import and import-syntax are the same. A module

can import all the macros from imported modules or selectively import speci�c macros

and rename them to resolve name conicts. The macros de�ned in the \scheme"

module are automatically imported by every module. Unlike imported variables,

imported macros are not sensitive to interactive modi�cations. The user must load

previously expanded and evaluated expressions again after a macro is modi�ed in

CHAPTER 4. THE IMP SYSTEM 71

order to maintain the consistency of the entire program.

The de�ne-syntax command de�nes a macro in a module by associating the

name of the macro with its expander in the module's macro environment. Since

macros are expanded before being evaluated the expander should not be allowed to

use existing program variables. The expander is therefore evaluated in the default

\scheme" module. Macros de�ned with de�ne-syntax can be exported. A module

does not indirectly export imported macros.

The begin syntactic form allows macro writers to group top-level statements

together. However, the user should not write order-dependent code in the begin

syntactic form.

IMP's macro system uses environments of the de�nition-time module rather than

the use-time module to resolve the meaning of macro calls or references of variables

introduced by expanding imported macros. As a result, expanding an expression

in a module may encounter foreign macro calls, and a transformed expression may

contain foreign references. The expander associated with a foreign macro call can be

found in the module of the macro. Foreign references can be translated to with-var

expressions. Foreign references can refer to other modules' private or public variables.

However, side e�ects to foreign variables are impossible (the system does not provide

a syntactic form to support this mechanism).

Figure 28 presents an example program using macros. The macromac is de�ned

in the module m and imported by the module n. It indirectly calls the syn macro

which is not imported. The syn macro further introduces the private variable op.

Both syn andmac introduced by expanding the macromac in module n are resolved

in the module m rather than n. This example also shows the use of begin to write

a macro which de�nes a private variable and a public procedure that reference the

private variable.

Implementing foreign references with the with-var expressions is straightforward.

CHAPTER 4. THE IMP SYSTEM 72

Module m:

(import ())

(de�ne-syntax mac
(syntax-rules ()
((mac x y) (syn x y))))

(de�ne-syntax syn
(syntax-rules ()
((syn x y) (op x y))))

(de�ne-syntax parameter
(syntax-rules ()
((parameter x ref v)
(begin (private x v)

(public ref
(lambda () x))))))

(private op +)
(parameter a ref-a '())

Module n:

(import ())
(import-syntax ((m mac)))

(private op �)
(private op1 *)
(private x (lambda () (mac 1 2)))

Figure 28: Macros in IMP

CHAPTER 4. THE IMP SYSTEM 73

They are linked to the free-variable environments of the module that should be used

to resolve the foreign references. The foreign reference of op introduced by calling

the mac macro in the module n should therefore be compiled as if it were a free

variable of the module m. Supporting separate compilation and project compilation

with foreign references are also straightforward.

Chapter 5

Adding The Object System

Object-oriented programming o�ers a natural way to model the variable nature of

many real world applications [68]. The most important feature of an object oriented

programming system is that it allows programs to be written in a way that is exible

and extensible. As a result, object-oriented programs are easier to reuse, maintain,

and extend. The functionalities of object-oriented programming has prompted many

language designers to extend existing languages to support object-oriented program-

ming.

This chapter presents the IMOOP programming system. In addition to supporting

interactive modular programming, IMOOP also supports object-oriented program-

ming. The primary bene�t of supporting interactive, modular, and object-oriented

programming in a programming system is that the programmer can use any or all of

these programming styles where appropriate.

IMP provides a exible module system that supports exporting variables, renam-

ing imported variables, and de�ning recursive modules. These features allow the

design of an object system that o�ers many advantages over traditional Lisp-based

object systems. These advantages include a exible and e�cient slot-access mecha-

nism with strong encapsulation, a simple approach for constructing generic functions,

74

CHAPTER 5. ADDING THE OBJECT SYSTEM 75

a exible mechanism for handling conicts resulting from multiple inheritance, and

tight integration of modular programming and object-oriented programming.

This chapter is organized as follows. Section 1 gives background information about

object-oriented programming and outlines major features of the IMOOP program-

ming system. Section 2 presents the design of the IMOOP programming system, and

Section 3 describes its implementation. The term object used in this chapter refers

to objects of some classes rather than Scheme objects.

5.1 Background and Overview

Of fundamental importance to object-oriented programming is the concept of inher-

itance. Inheritance allows existing code to be reused, extended, or specialized for

di�erent situations. Most earlier object-oriented languages support single inheritance

which restricts a class from inheriting more than one direct super class. More ad-

vanced object-oriented languages support multiple inheritance, which allows a class to

inherit several direct super classes. Multiple inheritance provides more opportunities

for code reuse but it is more di�cult to implement e�ciently [7, 45].

The two most common approaches to supporting inheritance in object-oriented

languages are the class/instance approach and the delegation/prototype approach

[48, 67, 68]. The class/instance approach employs class declarations to specify the

behavior of instances. A class may inherit from its superclasses. It may also add new

instance variables or methods to extend or specialize the inherited behaviors. The

delegation/prototype approach, however, does not use explicit classes to describe

inheritance relationships. If an object cannot perform a given operation, it delegates

the operation to a \parent" object.

The bene�ts of the delegation/prototype approach are that it is simple, since it

does not need to support class declarations, and more exible, since an object does

CHAPTER 5. ADDING THE OBJECT SYSTEM 76

not belong to a class and can easily modify its inheritance structure. However, the

cost of this simplicity and exibility is a loss of structure. CLOS, Flavors, Com-

monLoops, CommonObjects, and Oaklisp are examples of Lisp-based object-oriented

languages supporting the class/instance approach [39, 53, 5, 63, 47]. Adams and

Rees's proposal and Drescher's proposal for object-oriented programming in Scheme

adopt the delegation/prototype approach [2, 18].

Another important feature of object-oriented languages is dynamic lookup of ob-

ject operations. Syntactically, dynamic lookup of operations of an object may be

expressed by passing a message to an object or by passing an object to a generic

function. The message-passing protocol perceives an object as a closure with local

state that responds to messages. The generic function protocol perceives an object

as a block of storage containing a type tag and slot values. Most Lisp-based lan-

guages adopt the generic function protocol for two reasons: (1) it conforms to the

Lisp function-call syntax, and (2) Lisp objects are also tagged with type information.

The IMOOP programming system presented in this chapter supports multiple in-

heritance using the class/instance approach, represents objects as blocks of storage,

and uses generic functions to support dynamic lookup of object operations. The pri-

mary di�erence between IMOOP and other Lisp-based object-oriented programming

systems with similar features is that IMOOP's object system is embedded within a

module system. The module system provides utilities that allow a module to de�ne

private bindings, export public bindings, and rename imported bindings to resolve

name conicts, and it supports mutual recursive module de�nitions. These utilities

allow a exible and e�cient slot access mechanism without compromising encapsula-

tion, simplify the treatment of generic functions, support exible handling of conicts

resulting from multiple inheritance, and permit tight integration of modular program-

ming and object-oriented programming.

Encapsulation refers to the degree of independence among di�erent classes [64].

CHAPTER 5. ADDING THE OBJECT SYSTEM 77

Most Lisp-based object-oriented programming systems provide weak encapsulation

by allowing unrestricted access to an object's state. As a result, the object's internal

representation cannot be safely modi�ed without a�ecting other classes. IMOOP's

object system restricts access to slots de�ned in a class to procedures directly asso-

ciated with the class, and IMOOP's module system provides mechanisms to export

these procedures. These two features allow indirect access to an instance's slots from

classes other than the instance's class without compromising encapsulation.

Generic functions are de�ned in terms of methods with the same names across

di�erent classes. Most Lisp-based object-oriented systems disallow direct use of meth-

ods, since a method cannot in general be referenced unambiguously. These systems

provide a default mechanism for combining methods to produce generic functions or

allow the user to specify di�erent ways of combining methods. In IMOOP, the renam-

ing capability of the module system allows programmers to use existing methods to

de�ne new methods, which eliminates the need to specify method combinations and

thus simpli�es the treatment of generic functions. The renaming capability also al-

lows programmers to resolve conicts resulting from multiple inheritance and permits

direct invocation of a speci�c method without going through the generic procedure.

Object-oriented programming and modular programming use di�erent approaches

to provide services to client programs. Object-oriented programming o�ers objects

and inheritance while modular programming o�ers exported interfaces. Some applica-

tions are most suitable for object-oriented programming and some other applications

are most suitable for modular programming. Allowing a module to be de�ned as a

class allows the programmer to use either programming style where appropriate.

CHAPTER 5. ADDING THE OBJECT SYSTEM 78

5.2 Design

Conceptually, the design of IMOOP is composed of two interrelated components. One

component concerns class de�nition, instance creation, and operations on instances.

The other component concerns mechanisms used for supporting generic functions. In

the next subsection, we present the syntactic forms and primitive procedures used for

manipulating classes and objects. In Section 5.2.2 and Section 5.2.3, we present two

approaches to supporting generic functions.

5.2.1 Classes and Instances

In IMOOP, the basic program building blocks are modules. A module may be de�ned

as a class. A class de�nition speci�es classes inherited by the class and instance vari-

ables de�ned by the class. Instance variables locally de�ned in a class and inherited

from super classes specify the number of slots in an instance of the class. Throughout

this chapter, the term slot is used to refer to a storage location in an instance, and the

term instance variable is used to refer to an identi�er appearing in a class de�nition

for naming slots in instances.

IMOOP supports a exible slot-access mechanism with strong encapsulation and

a exible approach for handling conicts among instance variables resulting frommul-

tiple inheritance. Figure 29 presents syntactic forms and primitive procedures de�ned

by IMOOP. The class and make-instance syntactic forms support class de�nitions

and instance creation. Other syntactic forms and the type-of primitive procedures

provide operations for accessing and determining the types of instances. The re-

mainder of this section illustrates these facilities using examples that demonstrate

IMOOP's exibility and strong support for encapsulation. The method syntactic

form is discussed in Section 5.2.3.

The class statement de�nes a class associated with a module. The following class

CHAPTER 5. ADDING THE OBJECT SYSTEM 79

Syntax:

id, ex-id, local-id, m-all,
m-sel, module, variable,
class, instance-variable 2 Ide Scheme identi�ers

expression 2 Exp expressions
lambda-expression 2 LExp Scheme lambda expressions

s 2 Stmt statements

s ::= (import module Imports)

j (public module variable lambda-expression)

j (private module variable expression)

j (class module Inherits Instance-Var . . .)

j (method module variable module lambda-expression)

j (begin s s . . .)

j (with module expression)

Imports ::= (fm-all j Selectg . . .)

Select ::= (m-sel fid j (local-id ex-id)g+)

Inherits ::= (class . . . (instance-variable (class class class . . .)) . . .)

Instance-Vars ::= finstance-variable j (instance-variable expression)g

expression ::= (with-var module variable)

j (make-instance class (instance-variable expression) . . .)

j (slot-ref instance instance-variable)

j (slot-set! instance instance-variable expression)

j (type? instance class)

j hother Scheme expressionsi

Primitives:

(type-of instance)

Figure 29: Syntax of IMOOP

CHAPTER 5. ADDING THE OBJECT SYSTEM 80

declaration occurring in the account module declares an account class1:

(class () owner (balance 0))

The account class inherits no other classes and de�nes two instance variables. The

owner instance variable does not have a default initial value, whereas the default

initial value for the balance instance variable is 0. IMOOP's classes are not �rst-class

objects. The reason behind this restriction is that classes are always associated with

modules and modules are not �rst class. Allowing �rst-class anonymous modules and

classes would completely destroy the static avor of the system.

Instances of a class are created with make-instance. The expression:

(make-instance account (owner \John Doe") (balance 100))

creates an account instance with its owner slot initialized to \John Doe" and its

balance slot initialized to 100, in place of the default initial value. Note that both

class andmake-instance are syntactic forms. The class name and slot names in the

forms are not evaluated.

A class may inherit other classes and add instance variables of its own. The

following declaration in the joint-account module de�nes the joint-account class:

(class (account) second-owner)

An instance of joint-account contains three slots: owner , balance, and second-owner .

Slots may be accessed with slot-ref and modi�ed with slot-set!. As in Smalltalk,

Oaklisp, and CommonObjects, which restrict the access of instance variables of a

class to methods of the class, a procedure de�ned in a class can refer only to instance

variables de�ned by that class. For example, the get-owner public procedure in Figure

30 is legal only if it occurs in the account class.

1Again, the module name account is omitted in the code. We assume that it can be obtained
from the window name or the �le name of the account module.

CHAPTER 5. ADDING THE OBJECT SYSTEM 81

(public get-owner
(lambda (obj)
(if (type? obj account)

(slot-ref obj owner)
(error 'get-owner
\Object ~s is not a sub-type of account" obj))))

Figure 30: A slot access procedure

The restriction of the use of slot-ref and slot-set! supports e�cient slot access

since slot access information can be kept locally in a class and may be sharable by

its subclasses (see Section 5.3.1). This restriction also permits strong encapsulation

since a class can freely change the internal representation of its instances without

a�ecting client code so long as the changes maintain the external interface of the

class [64]. However, slot reference and modi�cation can still be provided via exported

procedures. The ability to export/import procedures increases the exibility of slot

access without compromising encapsulation.

Unlike Oaklisp and CommonObjects, which treat instance variables as implicit

lexical variables, IMOOP requires explicit use of slot-ref and slot-set! to access and

assign slots. The disadvantage of this approach is the apparent syntactic overhead;

however, the bene�t is that procedures or methods can accept several objects as ar-

guments. An example procedure presented in Figure 31, which computes the distance

between two points, illustrating such a situation.

The type? syntactic form asks whether the type of an object is a sub-type of

certain class. The inheritance relation also de�nes the sub-type relation. If class B

inherits class A, then an instance of B is a sub-type of B, A, and any of A's super

classes. The type-of primitive returns the type of an object.

IMOOP supports multiple inheritance by allowing a class to inherit from more

CHAPTER 5. ADDING THE OBJECT SYSTEM 82

(public distance
(lambda (p1 p2)
(let ([x1 (slot-ref p1 x)]

[y1 (slot-ref p1 y)]
[x2 (slot-ref p2 x)]
[y2 (slot-ref p2 y)])

. . .)))

Figure 31: Accessing slots in two objects

than one parent class. One of the problems resulting from multiple inheritance is

that di�erent superclasses may de�ne slots with the same name. Di�erent approaches

have been adopted by object-oriented languages to solve this problem. CLOS and

Flavors always combine slots with the same name into a single slot. In addition to

combining them, CommonLoops can also signal an error for overlapped slot names.

CommonObjects does not combine slots. It allows them to be treated separately

by using them as implicit lexical variables in methods of the de�ning class. These

approaches are not completely satisfactory, since slots with the same name may mean

the same thing sometimes and may mean di�erent things at other times.

Ei�el uses renaming to resolve conicts among inherited features [52]. The utilities

of our module system provide a similar capability. IMOOP treats inherited slots with

the same name as separate slots or allows the slots to be combined to form a single

slot.

Suppose two classes have been de�ned for an application. The teacher class de�nes

two slots: the name slot and the hours slot. The student class also de�nes two slots

with names identical to the slot names of the teacher class. Also suppose that an unex-

pected change in the speci�cation has required the addition of the teaching-assistant

class. The name slots should be uni�ed while the hours slots should be kept separate.

The following declaration for the teaching-assistant class speci�es that the name slots

CHAPTER 5. ADDING THE OBJECT SYSTEM 83

of the two classes are combined and their other slots separated:

(class (teacher student (name (teacher student))))

Although multiple inheritance in cases like this can be di�cult to handle without

modifying existing client code, the ability to rename imported procedures allows the

public procedures in the teacher or the student class to be reused to de�ne new

procedures.

If a class is inherited from more than one path, the class is treated as if it were

inherited only once.

The remainder of this section presents two di�erent ways to support generic func-

tions. First, generic functions may be created manually using recursive modules and

the import/export/renaming capabilities of the module system. Second, themethod

declaration form may be used to de�ne generic functions automatically.

5.2.2 User-de�ned Generic Functions

A generic function is just like an ordinary function except that it is de�ned in terms

of de�nitions distributed across di�erent classes. Upon receiving its arguments, a

generic function decides which one of its de�nitions to apply dynamically depending

on the type of its �rst argument2.

IMOOP's module system supports recursive modules and allows renaming of im-

ported identi�ers. These two features together with the ability to de�ne classes,

create instances, access instances, and determine the types of instances are su�cient

to support user-de�ned generic functions.

Figure 32 presents an example that supports dynamic lookup of object operations

with user-de�ned generic functions. The generic function distance is de�ned in both

2Some other Lisp-based object systems also support generic functions that dispatch on multiple
arguments. However, individual de�nitions in these generic functions cannot be associated with a
class.

CHAPTER 5. ADDING THE OBJECT SYSTEM 84

The point class:

(import ((manpoint (man-distance distance))))
(class () (x 0) (y 0))

(public get-x
(lambda (obj)
(if (type? obj point)

(slot-ref obj x)
(error 'get-x \Object ~s is not a point" obj))))

(public get-y . . .) ; similar to get-x

(public distance
(lambda (obj)
(if (type? obj point)

(let ([x (slot-ref obj x)]
[y (slot-ref obj y)])

(sqrt (+ (* x x) (* y y))))
(error 'distance \Object ~s is not a point" obj))))

(public closer
(lambda (obj p)
(< (man-distance obj) (man-distance p))))

The manpoint class:

(import ((point (point-distance distance) get-x get-y)))
(class (point))

(public distance
(lambda (obj)
(if (type? obj manpoint)

(+ (get-x obj) (get-y obj))
(point-distance obj))))

Figure 32: User-de�ned generic functions

CHAPTER 5. ADDING THE OBJECT SYSTEM 85

(let ([p1 (make-instance point (x 3) (y 4))]
[p2 (make-instance manpoint (x 1) (y 5))])

(closer p1 p2))

Figure 33: Calling a generic function

the point class and the manpoint class using two public procedures [37]. The distance

procedure de�ned in the point class is exported to the manpoint class using the name

point-distance, and the distance procedure de�ned in themanpoint class is exported to

the point class using the name man-distance. The distance procedure of themanpoint

class performs its own distance calculation if its argument is a manpoint. Otherwise,

it calls the point-distance procedure. The two distance procedures form a generic

dispatch chain. It is possible to construct a generic dispatch chain of arbitrary depth.

The de�nition at the end of a generic dispatch chain should always produce an error

upon receiving an invalid argument. The de�nition at the beginning of a generic

dispatch chain can access the rest of the methods by climbing up the generic dispatch

chain. The main idea behind user-de�ned generic functions is to use the bottom

de�nition of a generic dispatch chain whenever the complete de�nition of a generic

function is desirable. For example, the procedure closer uses the complete de�nition

of the distance generic function on its arguments. The expression in Figure 33, which

computes which of p1 or p2 is closer to the origin, returns #t. Note that the ability

to support recursive modules is necessary to allow generic functions to be used freely

in any module.

One of the major bene�ts of object-oriented programming is the ability to add new

classes and to reuse existing classes. The programming style suggested by the point

example does not properly support this desired property. In the point example, the

generic function distance may need to be modi�ed when a new kind of point is added

CHAPTER 5. ADDING THE OBJECT SYSTEM 86

The point class:

(import ((generic (g-distance distance))))
(class () (x 0) (y 0))
. . .
(public distance

(lambda (obj)
(let ([x (slot-ref obj x)]

[y (slot-ref obj y)])
(sqrt (+ (* x x) (* y y))))))

(public closer
(lambda (obj p)
(< (g-distance obj) (g-distance p))))

The manpoint class:

(import ((point get-x get-y)))
(class (point))

(public distance
(lambda (obj)
(+ (get-x obj) (get-y obj))))

The generic module:

(import ((point (point-dist distance)) (manpoint (man-dist distance))))

(public distance
(let ([recent-kind #f]

[recent-method #f])
(lambda (obj)
(if (eq? (type-of obj) recent-kind)

(recent-method obj)
(case (type-of obj)
[point (set! recent-kind 'point)

(set! recent-method point-dist)
(point-dist obj)]

[manpoint (set! recent-kind 'manpoint)
(set! recent-method man-dist)
(man-dist obj)]

[else (error 'distance \Wrong type of argument ~s" obj)])))))

Figure 34: The generic module

CHAPTER 5. ADDING THE OBJECT SYSTEM 87

to the program. This problem might be �xed by adopting a programming convention

that uses an interface module, say generic, to import and export the de�nitions of

all the generic functions. With this convention, a new kind of point can be added to

the class structure without modifying existing classes. Only the generic module must

be modi�ed. Figure 34 presents the point example using the generic module. For

expository purposes, it also shows the use of an explicit cache in the generic function

distance to improve the e�ciency of dynamic lookup.

5.2.3 Automatically Generated Generic Functions

Using the generic module to construct generic functions may be acceptable for pro-

grams with a small number of generic functions. It may also be useful for customizing

the generic dispatch process for improved performance. However, for applications with

a large number of generic functions this approach is unacceptable. So we now extend

the object system to allow the construction of generic functions automatically.

The method statement is used to de�ne a method for a generic function. A

method is also a public procedure. De�ning a method the �rst time automatically

creates a public generic function in a module speci�ed by the user. The user may use

several modules to store generic functions with di�erent purposes. The de�nition of a

generic function may be extended by de�ning additional methods. Generic functions

as well as methods may be imported and renamed as with any other ordinary public

procedures. Unlike CLOS and Flavors which use class precedence lists and method

combination types to specify the order of method invocation and the roles of before,

after, primary, or around methods, the renaming facility gives user the ability to

compose a new method using existing methods, procedures, or generic functions.

This approach is substantially simpler than CLOS and Flavor's approach. IMOOP's

methods cannot be created at run time. The reason behind this is that the module

CHAPTER 5. ADDING THE OBJECT SYSTEM 88

system requires methods, which are also public procedures, to be treated in a more

static manner to provide greater e�ciency and to preserve the avor of lexical scoping.

Figure 35 presents an example of a generic function de�ned in terms of method

declarations. The generic function deposit, which can be imported from bank-generic,

is jointly de�ned by two methods. One of them is de�ned in the regular-account class,

and the other one is de�ned in the now-account class. The deposit method of the

regular-account class is exported to the now-account module which renames it to

regular-deposit. The deposit generic function is exported to the bank module without

renaming. The bank-generic module is automatically created by the system. Unlike

ordinary modules, the bank-generic module is used for exporting generic functions

only. The free variable regular-deposit in the now-account module refers to the deposit

method de�ned in regular-account, and the free variable deposit in the bank module

denotes the deposit generic function exported from the bank-generic module. This

example also shows how modular programming can be integrated with object-oriented

programming, since bank is a module, not a class.

A method de�ned in a superclass is automatically inherited by its subclasses. Just

as object-oriented languages supporting multiple inheritance must resolve conicts

among inherited slots, they must also resolve conicts among inherited operations.

Several approaches may be used to resolve conicts of inherited operations. Ei�el and

Trellis/Owl [61] require the programmer to explicitly resolve the conict by renaming

or rede�ning the operation in the child class. CLOS, Flavors, and CommonLoops

interpret the inheritance graph as a linear chain which can be used with method

combinations to resolve conicts. POOL separates subtyping from inheritance to

allow exible treatment of multiple inheritance for strongly typed languages [3]. A

detailed discussion about resolving conicts of multiple inheritance can be found in

[64]. We adopt a weaker version of the Ei�el and Trellis/Owl's approach. A warning

message is given if a class inherits from more than one direct superclass that de�ne

CHAPTER 5. ADDING THE OBJECT SYSTEM 89

The regular-account class:

(import ())
(class () owner balance)

(method deposit bank-generic
(lambda (obj amount)
(if (> amount 0)

(slot-set! obj balance
(+ (slot-ref obj balance) amount))

(error 'deposit \Cannot deposit negative amount"))))
. . .

The now-account class:

(import ((regular-account (regular-deposit deposit))))
(class (account))

(method deposit bank-generic
(lambda (obj amount)
(if (>= amount 100)

(regular-deposit obj amount)
(error 'deposit \Cannot deposit less than 100 in now account"))))

. . .

The bank module:

(import (bank-generic))

(public new-account
(lambda (kind name amount)
(case kind
[regular
(let ([new-obj (make-instance regular-account (owner name))])
(deposit new-obj amount)
new-obj)]

[now
(let ([new-obj (make-instance now-account (owner name))])
(deposit new-obj amount)
new-obj)]

[else (error 'new-account \Wrong kind of account ~s" kind)])))

Figure 35: Generic functions de�ned via method declarations

CHAPTER 5. ADDING THE OBJECT SYSTEM 90

methods with the same name. This warning message indicates which method is

inherited by the class. However, the user may rede�ne the method in the child class

to resolve the conict.

To summarize, the semantics of method inheritance is described informally as

follows:

� The applicable methods of a class include methods de�ned in the class and the

applicable methods of its direct super classes. Applicable methods of a class

de�ne operations on instances of the class.

� If a class rede�nes an applicable method inherited from one of its direct super

classes, the locally de�ned method shadows the inherited one and is treated as

an applicable method of the class.

� A warning message is given if a class inherits applicable methods with the same

name de�ned in di�erent super classes. The warning message indicates which

method is inherited by the class. The user can rede�ne the method to resolve

the conict.

5.3 Implementation

E�cient implementation of object-oriented programming systems is di�cult and often

involves trade-o�s between time and space. Many fast implementation techniques

introduce intolerable space overhead, and many space-e�cient approaches are often

too slow to be acceptable. A good implementation of an object-oriented programming

system not only allows fast determination of run-time bindings or addresses but also

allows compact storage of information used for the determination process.

IMOOP's object system extends the implementation of its module system with

CHAPTER 5. ADDING THE OBJECT SYSTEM 91

support for instances and generic functions. In this section, we present the implemen-

tation of slot access, automatically generated generic functions, separate compilation,

and project compilation.

5.3.1 Slot Access

The e�ciency of slot access within instances is critical to the performance of object-

oriented languages. For those object-oriented languages that support only single

inheritance, the mechanism of accessing slots can be implemented e�ciently by em-

bedding constant slot o�sets in the code. However, for object-oriented languages

supporting multiple inheritance, e�cient implementation of slot access within an in-

stance is di�cult. Depending on the types of instances, the slot o�sets of the same

instance variable for instances of di�erent classes may be di�erent.

A simple technique for accessing slots within an instance is to store the o�sets

of all the instance variable of all the classes of a program in a mapping table. The

o�set of a slot of an instance can then be found by using the enumerated name of the

instance variable and the enumerated type of the instance as keys to �nd the o�set in

the mapping table. This technique is at least twice as slow as the speed of accessing

an ordinary record �eld. Furthermore, the space overhead of this technique is the

total number of instance variables times the total number of classes in a program.

This is clearly unacceptable. More sophisticated techniques use hash tables together

with caches to reduce the space overhead.

Many researchers have invented various approaches to alleviate the problem. By

relying on IMOOP's strong support of encapsulation, we have developed a fast but

space e�cient technique to access slots. The technique can be used for other object

oriented languages with similar features.

CHAPTER 5. ADDING THE OBJECT SYSTEM 92

Previous Work

Dixon et al. suggested an approach which uses a two dimensional table to store

slot o�sets [17]. Rather than assigning a unique index to each slot name, they use

an algorithm that allows di�erent slot names to share the same index. The indices

are chosen so that no two slots accessible by the same object have the same index.

Since slot indices are not unique, the size of the table is reduced. Pugh and Weddell

developed a two-directional record (instance) layout method that allows a �xed o�set

to be assigned to each �eld (slot) at compile time with low space overhead [55].

However, both of the two methods are global optimization techniques and cannot be

used for interactive program development.

Connor et al. described an object addressing mechanism for statically-typed lan-

guages with multiple inheritance [11]. Unlike traditional object addressing mecha-

nisms which associate address maps to objects, their approach associates mutable

address maps that are associated with variable locations where objects may be as-

signed. However, their method can be applied only to statically-typed languages.

Borning and Ingalls presented a mechanism of accessing instance state in an im-

plementation of Smalltalk-80 supporting multiple inheritance [7]. The mechanism

compiles multiple copies for methods of classes that are involved in multiple inheri-

tance with di�erent o�sets.

Krogdahl describes a slot-access implementation technique for a restricted form

of multiple inheritance that does not allow a class to be inherited more than once by

a common subclass [45]. His technique computes o�sets between \reference points"

of slots of di�erent classes and uses the o�sets to compute slot addresses for instances

of di�erent classes.

Most other object-oriented systems use a combination of table look up and indirec-

tions to determine the addresses of slots. Flavors stores slot o�sets in mapping tables

CHAPTER 5. ADDING THE OBJECT SYSTEM 93

that are associated with each generic functions [53]. Rose gave a detailed analysis

about the trade-o�s on execution speed, program size, and system exibility using

assembly code with di�erent table lookup strategies using static or relocated tables,

large or small table sizes, and larger or small table o�sets [60].

Implementation

An instance is implemented as a tagged vector of slots. The tag determines the

type of the instance, i.e., the encoded class index (see below). The implementation

of instance access uses o�sets stored in mapping tables. The implementation takes

advantage of the restriction that procedures de�ned in a class can access only slots

owned by that class and of the fact that some classes in a mapping table may share

the same mapping information to substantially decrease the size of the mapping table.

Every instance variable of a class and every class in a program are encoded with

integer indices. These indices are assigned at load time and are used to locate slot

o�sets in a mapping table. For each call to slot-ref or slot-set! within a class

de�nition, the compiler implicitly supplies the mapping table of the class as a hidden

argument. The slot index along with an instance's class index can then be used to

locate the o�set in the mapping table. The class index for an instance is also the type

tag for the instance. In general, the class index of an instance will not be the same as

the index of the class that contains the slot-ref or slot-set! form, since the instance

may be a member of a subclass of this class. If a program has a �xed class structure,

and all the subclasses of a class in the program have the same mapping information,

then the o�sets for accessing slots in the class can be compiled directly in the code.

The implementation of project compilation uses this information to produce more

e�cient code.

Figure 36 de�nes four classes with mapping tables and instance structures shown

for each class. Since a slot-ref or slot-set! occurring in class C0 can access only

CHAPTER 5. ADDING THE OBJECT SYSTEM 94

C0: a, b

C1: c, d

C3: f, g

C2: e

C3

a b c d e f g

a b

0 1
c d

2 3

f g

5 6

2

4

e
#f

#f
#f

#f

#f

#f

#f

#f

Class structure: Instance structure:

a b e

a b c d

a b

0

1

2

3

C2

C1C0

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Mapping tables:

Figure 36: Mapping tables

CHAPTER 5. ADDING THE OBJECT SYSTEM 95

slot a or slot b of instances of C0 or instances of its sub-classes, the mapping table

of C0 contains only o�sets for a and b for C0 and each of C0's subclasses. Also, since

instances of C0 and instances of any subclass of C0 all place a and b at the same

o�sets, the mapping information for these slots need not be duplicated.

Class C2 de�nes only one slot, e. However, class C3 inherits both C1 and C2. Two

di�erent o�sets for slot e, one for instances of C2 and the other for instances of C3,

must be stored. If the class structure is �xed, then the o�sets for accessing slots in

class C0, C1, and C3 can be compiled in the code.

The entries marked with #f in the tables are not wasted. They can be used to

implement type?, which checks whether an instance is of some type. For example,

C0 and C2 are not subtypes of C1, thus, the corresponding entries in C1's mapping

table are marked with #f.

Classes may be rede�ned. Rede�ning a class automatically updates data struc-

tures of the class and a�ected classes. However, instances created before the rede�ni-

tion are not modi�ed. The refresh-binding command may have to be used to maintain

the consistency of the system. The system also allows terminal classes to be removed.

5.3.2 Generic Functions

Generic functions and message passing are two di�erent approaches to capture the no-

tion of dynamic lookup of object operations. For pure object-oriented languages such

as Smalltalk, e�cient implementation of dynamic lookup is critical. In IMOOP, the

programmer has the exibility of invoking a method directly without going through

the dynamic lookup process. This section presents a simple approach to implementing

generic functions.

CHAPTER 5. ADDING THE OBJECT SYSTEM 96

Previous Work

The most common approach to implementing dynamic lookup is using method caches

[44]. Method caches store commonly used methods in a program. Existing implemen-

tations of object-oriented programming systems di�er on the data structures used in

implementing method caches and the places where method caches are used.

A global hash table that stores commonly used methods may be shared by all the

generic functions in a program. Hash tables may also be associated with individual

classes or individual generic functions [53, 41]. More advanced implementations uses

special techniques to control the size and density of these hash tables [41]. In [60],

Rose gives a detailed analysis about implementing dynamic lookup on stock hardware

using assembly code.

Hash tables associated with individual generic functions may be referred to as

callee caches. Caches may also be associated with each individual call point of a

generic function. This technique may be referred to as in-line caching or caller caches

[16, 5]. In-line caching of method addresses relies on the observation that the locality

of type usages in a program is usually high [16].

Some Lisp-based object systems allow generic functions to dispatch on multiple

arguments. A common technique for implementing generic functions in these systems

is to use di�erent dispatch mechanisms to implement generic functions with a single

method, with multiple methods, or dispatch on multiple arguments [5, 41, 19].

Implementation

The implementation of generic functions is based on the observation that any generic

function is either chained or unchained:

1. A chained generic function has all of its methods de�ned in classes that form a

class chain.

CHAPTER 5. ADDING THE OBJECT SYSTEM 97

2. An unchained generic function has its methods de�ned in classes that cannot

form a class chain.

A class chain may contain a single class or two or more classes. A group of two or

more classes forms a class chain if their exist a permutation Ci, Ci+1, . . . , such that,

for every i, Ci is a super class of Ci+1. Figure 37 presents an example of a chained

generic function and Figure 38 presents an example of an unchained generic function.

The classes c1 , c3 , and c4 form a class chain since c1 is a super class of c3 and

c3 is a super class of c4 . The generic function m is thus a chained generic function.

The classes b1 , b3 , and b4 do not form a class chain since b1 and b4 do not have an

inheritance relation. The generic function n is therefore unchained.

The implementation of chained generic functions is based on a technique similar to

the binary search. As an example, Figure 39 shows the implementation of the generic

functionm presented in Figure 37. The variables c1-m, c3-m, and c4-m bind to boxes

that contain pointers that point to methods m de�ned in c1 , c3 , and c4 respectively.

The variables c1-map, c3-map, and c4-map bind to the mapping-tables for c1 , c3 ,

and c4 respectively. The values of these variables are computed by a generic function

generator using information about individual methods of the generic function. The

procedure sub-class? checks whether the class of an object is a sub-class of a class.

A class is a sub-class of itself and its super classes.

For a generic function with three methods, this technique takes two comparisons

before method dispatch. The advantage of this technique is that the average compar-

ison required for method dispatch is the logarithmic in the actual number of methods

that de�ne the generic function. Referring to Figure 37, even though the generic

function m is available in �ve di�erent classes, the property of binary search allows

the correct method to be dispatched for objects of each of the �ve di�erent classes.

CHAPTER 5. ADDING THE OBJECT SYSTEM 98

c1
(import ...)

(class () ...)

(method m g

 (lambda (a b c)

 ...))

c2

(import ...)

(class (c1) ...)

...

c3
(import ...)

(class (c2) ...)

(method m g

 (lambda (a b c)

 ...))

c4
(import ...)

(class (c3) ...)

(method m g

 (lambda (a b c)

 ...))

c5

(import ...)

(class (c2))

...

Figure 37: Chained generic function

CHAPTER 5. ADDING THE OBJECT SYSTEM 99

b1
(import ...)

(class () ...)

(method n g

 (lambda (a)

 ...))

b3
(import ...)

(class (b2 b4))

(method n g

 (lambda (a)

 ...))

b2

(import ...)

(class (b1) ...)

...

b4
(import ...)

(class () ...)

(method n g

 (lambda (a)

Figure 38: Unchained generic function

CHAPTER 5. ADDING THE OBJECT SYSTEM 100

(let ([c1-m . . .]
[c3-m . . .]
[c4-m . . .]
[c1-map . . .]
[c3-map . . .]
[c4-map . . .])

(lambda (a1 a2 a3)
(let ([my-class (get-type a1)])
(if (sub-class? my-class c3-map)

(if (sub-class? my-class c4-map)
((unbox c4-m) a1 a2 a3)
((unbox c3-m) a1 a2 a3))

(if (sub-class? my-class c1-map)
((unbox c1-m) a1 a2 a3)
(error))))))

Figure 39: Implementation of chained generic functions

For a generic function with seven methods, three comparisons are need before

method dispatch. Since the cost of sub-class? is small (a memory reference to the

mapping table; see Section 5.3.1) and most caching techniques aim at one to three

comparisons before a cache hit, adding caches seems unnecessary for the majority of

chained generic functions.

The implementation of unchained generic functions and chained generic functions

with a large number (say more than 7) of methods uses a two dimensional table

keyed by the name of classes and the name of those generic functions. This approach

is based on the assumption that the number of generic functions belonging to this

category would be small for most applications. The system can a�ord the memory

overhead associated with the table if the assumption is true in an application.

When a new method is added to a chained generic function, the system checks

whether the chain is maintained or if the number of methods in the generic function

CHAPTER 5. ADDING THE OBJECT SYSTEM 101

exceeds a certain limit. The system then updates the generic function with a new

generic function depending on the number of methods in the generic function and

whether it is chained.

5.3.3 Compiling Developed Classes

In IMOOP, free variables in a developed class or module may refer to three kinds

of variables: locally de�ned private, public, or method variables, imported public or

method variables, and imported generic function variables. Unlike developed modules

in the IMP system which does not allow import of developing modules and modi�-

cation of imported variables, IMOOP allows developed modules to import generic

modules even though they may change their representation of generic functions. This

additional feature requires a di�erent separate compilation strategy for developed

classes or modules.

Figure 41 presents the code generated for the point class displayed in Figure 40.

Since the representation of the generic function distance can change after loading the

manpoint class (which also de�nes the distance method), a box is needed to allow the

point class to observe the changes. The procedure do-class creates data structures

for the new class and returns an integer code assigned to the class. The procedure

get-mapping-table returns the mapping table of a class. This mapping table is used in

the slot-ref and slot-set! procedures. Note that the call to slot-ref in the distance

method uses the integer codes 0 for x and 1 for y.

5.3.4 Project Compilation

The implementation technique for project compilation is based on the technique used

by the IMP system with additional support for class and method declarations.

The IMOOP system provides Scheme code that allows a developed IMOOP project

CHAPTER 5. ADDING THE OBJECT SYSTEM 102

(import ((generic (g-distance distance))))
(class () (x 0) (y 0))

(public get-x . . .)

(public get-y . . .)

(method distance generic
(lambda (obj)
(let ([x (slot-ref obj x)]

[y (slot-ref obj y)])
(sqrt (+ (* x x) (* y y))))))

(method closer generic
(lambda (obj p)
(< (g-distance obj) (g-distance p))))

Figure 40: The point class

to create and use class-related data structures. Generic functions are automatically

generated. The name of a generic function contains a pre�x representing the name

of the module that it is exported from. To allow methods to be used as ordinary

procedures, a method de�nition, say a, de�ned in a class, say c, is translated to the

following Scheme code:

(de�ne c:a (lambda . . .))

If c:a is a method of a chained generic function, it is called directly in the generic

function. If c:a is a method of an unchained generic function or a generic function

with the number of its methods exceeding a certain limit, the following Scheme code is

generated to install the method in the two dimensional table that is used to dispatch

the method.

(install-method 'c 'a c:a))

CHAPTER 5. ADDING THE OBJECT SYSTEM 103

(do-import 'point '((generic (g-distance distance))))

(do-binds 'point '((method closer) (method distance)
(pubind get-y) (pubind get-x)))

(letrec ([+ . . .] . . .
[g-distance
(if (box-getable? 'generic 'distance)

(get-box 'generic 'distance)
(box
(lambda args
(if (box-getable? 'generic 'distance)

(begin (set! g-distance (get-box 'generic 'distance)
(apply (unbox g-distance) args))

(error '()
\Variable ~s imported from ~s to ~s is not bound"
'g-distance 'generic 'point))))))]

[class-index #f]
[mt #f])

(set! class-index (do-class 'point '() `(x ,0) `(y ,0))
(set! mt (get-mapping-table class-index))
(let ([slot-ref

(lambda (obj slot-code)
(vector-ref obj
(vector-ref (vector-ref mt (class-code obj)) slot-code)))]

[slot-set!
(lambda (obj slot-code val)
(vector-set! obj
(vector-ref (vector-ref mt (class-code obj)) slot-code)
val))])

(do-method 'point 'closer 'generic
(lambda (obj p)

(< ((unbox g-distance) obj) ((unbox g-distance) p))))
(do-method 'point 'distance 'generic

(lambda (obj)
((lambda (x y) (sqrt (+ (* x x) (* y y))))
(slot-ref obj 0) (slot-ref obj 1))))

(do-public 'point 'get-y . . .)
(do-public 'point 'get-x . . .))))

Figure 41: Separate compilation for developed class

CHAPTER 5. ADDING THE OBJECT SYSTEM 104

Since the de�nitions of generic functions are �xed in a developed project, the compiler

is free to open code any generic function.

For certain classes, the slot-access information for instances of all of their sub-

classes are the same. The o�sets needed for performing slot-ref or slot-set! in these

classes can be compiled directly in the code.

Chapter 6

Conclusion

Most programming languages are designed to meet the needs of application domains

or to adhere to certain paradigms such as functional programming or logic program-

ming. With the notable exception of Smalltalk, most programming languages are

designed without consideration of the program development environment. This dis-

sertation presents an integrated design of a language and environment that strongly

connects modules with �les, edit windows, and read-eval-print loops to support inter-

active, modular, and object-oriented programming. This chapter summarizes major

results and suggests future research directions.

6.1 Summary of Major Results

A programming system supporting interactive, modular, and object-oriented pro-

gramming o�ers programmers a variety of choices during the design and development

of computer programs. Interactive programming allows programmers to make changes

easily and dynamically. This feature encourages programmers to explore di�erent ap-

proaches toward solving a problem and to experiment with vaguely de�ned problems

in order to better understand the problems.

105

CHAPTER 6. CONCLUSION 106

Modular programming encourages programmers to decompose a program into

modules. These modules communicate with one another via prede�ned interfaces.

Module decomposition allows programmers to concentrate on implementing one mod-

ule at a time. Modules not only increase a program's readability but also make it

easier for several programmers to work jointly to solve a problem.

Object-oriented systems provide language facilities to support many real world ap-

plications directly. These facilities include classes, objects, and inheritance. Together,

they support a programming style that encourages encapsulation, code sharing within

a single program, and code reuse among di�erent applications. Object-oriented pro-

gramming has been proven to be a valuable programming style with many successful

applications.

In previous chapters, we have used a series of semantic descriptions, designs, im-

plementations, example programs, and window-based user interfaces to demonstrate

that interactive, modular, and object-oriented programming can be integrated coher-

ently in a single programming system. The resulting system allows programmers to

use, in the same application, all the facilities for interactive, modular, and object-

oriented programming.

The semantics of the �-calculus always determines the values of free identi�ers in a

�-expression using the lexical environment. The semantics of Scheme uses the lexical

environment augmented with a top-level environment to determine the values of free

identi�ers. The �imp language uses the module environment to serve the purpose

of an organized top-level environment and provides the semantic foundation for a

multi-window user interface that supports interactive modular programming. The

�imp language demonstrates that the e�ects of interactive updates can be propagated

automatically using a late binding semantics together with a novelmethod for creating

closures.

The design and implementation of the IMP system demonstrate that the concept

CHAPTER 6. CONCLUSION 107

of interactive modular programming can be supported in a practical and e�cient

manner. IMP uses double indirections and the import/export relations among mod-

ules to support late binding semantics e�ciently. The notions of developing modules,

developed modules, and developed projects also allow various optimization techniques

to be applied to IMP projects to eliminate the remaining overhead. The provision of

the with-var syntactic form allows hygienic macro systems to be added to IMP.

The design and implementation of the IMOOP system demonstrates that object-

oriented programming can be merged with interactivemodular programming. IMOOP

extends IMP with support for objects, classes, inheritance, and generic functions.

The import/export and renaming capabilities of the IMP system not only simplify

the design of IMOOP but also allow IMOOP to o�er many improvements over ex-

isting Lisp-based object systems. These improvements include a exible and e�cient

slot-access mechanism with strong encapsulation, a simpli�ed treatment of generic

functions, a exible mechanism for handling conicts resulting from multiple inheri-

tance, and a programming style that merges interactive, modular, and object-oriented

programming.

6.2 Future Work

There are several advanced features supported by a few existing Lisp-based object-

oriented programming systems that we have not yet addressed. These features include

dynamically changing an instance's class, automatic reinitialization of instances, and

the ability to customize the object system's behavior with metaclasses. One area

of future work would be to investigate the design and implementation strategies for

supporting these features and to study their impact on performance, separate com-

pilation, project compilation, and the overall IMOOP architecture.

The best way to test the IMOOP system is to actually use it to develop large

CHAPTER 6. CONCLUSION 108

applications. A few good candidates for such applications would be graphical user

interface construction tools, visualization tools, or arti�cial intelligence applications.

Actually constructing these applications would provide important feedback on how

to improve the functionality of the IMOOP system.

The ability to accumulate and reuse existing code is critical to further advances in

software engineering technology [13]. IMOOP supports both modules and classes and

allows them to be mixed in the same program. This feature encourages the construc-

tion of libraries of reusable modules and classes. The resulting libraries would be more

versatile than libraries for languages that support only object-oriented programming

or only modular programming.

Appendix A

An Interpreter for the �imp

Language

This interpreter implements �imp with the following extensions:

1. It supports functions with zero or more arguments.

2. The if expression is added.

3. It supports some primitive functions and Scheme data types.

4. It has a simple read-eval-print loop.

Help procedures:

(de�ne 1st car)

(de�ne 2nd cadr)

(de�ne 3rd caddr)

(de�ne 4th cadddr)

109

APPENDIX A. AN INTERPRETER FOR THE �IMP LANGUAGE 110

(de�ne constants

`((+ ,(lambda (menv . args) (apply + args)))

(� ,(lambda (menv . args) (apply � args)))

(* ,(lambda (menv . args) (apply * args)))

(/ ,(lambda (menv . args) (apply / args)))

(sqrt ,(lambda (menv arg) (sqrt arg)))

(= ,(lambda (menv . args) (apply = args)))

(< ,(lambda (menv . args) (apply < args)))

(car ,(lambda (menv arg) (car arg)))

(cdr ,(lambda (menv arg) (cdr arg)))

(cons ,(lambda (menv arg1 arg2) (cons arg1 arg2)))))

(de�ne constant?

(lambda (e)

(if (or (number? e) (boolean? e))

#t

(assq e constants))))

(de�ne constant-value

(lambda (e)

(if (or (number? e) (boolean? e))

e

(cadr (assq e constants)))))

(de�ne init-menv '())

(de�ne init-lenv '())

(de�ne extend

(lambda (ids vals lenv)

(cond

((null? ids) lenv)

(else (cons (cons (car ids) (car vals))

(extend (cdr ids) (cdr vals) lenv))))))

APPENDIX A. AN INTERPRETER FOR THE �IMP LANGUAGE 111

(de�ne lookup

(lambda (id menv mid lenv)

(let ([pair (assq id lenv)])

(if pair

(cdr pair)

(let ([mid-mentry (assq mid menv)])

(if mid-mentry

(let* ([mentry (2nd mid-mentry)]

[pair (assq id (1st mentry))])

(if pair

(cdr pair)

(let ([pair (assq id (2nd mentry))])

(if pair

(cdr pair)

(let ([imports (3rd mentry)])

((rec loop

(lambda (imports)

(if (null? imports)

(error 'lookup

\variable ~s not bound" id)

(let ([mid-mentry

(assq (car imports) menv)])

(if mid-mentry

(let

([pair (assq id

(2nd (2nd

mid-mentry)))])

(if pair

(cdr pair)

(loop (cdr imports))))

(loop (cdr imports)))))))

imports))))))

(error 'lookup \module ~s unde�nded" mid)))))))

APPENDIX A. AN INTERPRETER FOR THE �IMP LANGUAGE 112

(de�ne imp

(lambda ()

(display \imp: ")

(let ([�rst-result (S (expand (read)) init-menv)])

((rec loop

(lambda (result)

(let ([new-menv (1st result)]

[answer (2nd result)])

(display new-menv) (newline)

(display answer) (newline)

(display \imp: ")

(loop (S (expand (read)) new-menv))))) �rst-result))))

(de�ne S

(lambda (stmt menv)

(cond ((pair? stmt)

(case (car stmt)

[(module) (S-module stmt menv)]

[(private) (S-private stmt menv)]

[(public) (S-public stmt menv)]

[(with) (let ([mid (2nd stmt)]

[exp (3rd stmt)])

(list menv (E exp menv mid init-lenv)))]

[else (error 'S \bad module command ~s" stmt)]))

(else (error 'S \bad module command ~s" stmt)))))

(de�ne S-module

(lambda (stmt menv)

(let* ([mid (2nd stmt)]

[imports (cdddr stmt)]

[mid-mentry (assq mid menv)])

(if mid-mentry

(let* ([mentry (2nd mid-mentry)]

[new-mentry (list (1st mentry) (2nd mentry) imports)]

[new-menv (cons (list mid new-mentry) (remq mid-mentry menv))])

(list new-menv mid))

(let* ([new-mentry (list '() '() imports)]

[new-menv (cons (list mid new-mentry) menv)])

(list new-menv mid))))))

APPENDIX A. AN INTERPRETER FOR THE �IMP LANGUAGE 113

(de�ne S-private

(lambda (stmt menv)

(let* ([mid (2nd stmt)]

[id (3rd stmt)]

[exp (4th stmt)]

[mid-mentry (assq mid menv)])

(if mid-mentry

(let* ([mentry (2nd mid-mentry)]

[e-val (E exp menv mid init-lenv)]

[new-menv

(let ([new-pri (cons (cons id e-val) (1st mentry))])

(cons (list mid (list new-pri (2nd mentry) (3rd mentry)))

(remq mid-mentry menv)))])

(list new-menv e-val))

(let* ([e-val (E exp menv mid init-lenv)]

[new-pri (list (cons id e-val))]

[new-menv (cons (list mid (list new-pri '() '())) menv)])

(list new-menv e-val))))))

(de�ne S-public

(lambda (stmt menv)

(let* ([mid (2nd stmt)]

[id (3rd stmt)]

[exp (4th stmt)]

[mid-mentry (assq mid menv)])

(if mid-mentry

(let* ([mentry (2nd mid-mentry)]

[e-val (E exp menv mid init-lenv)]

[new-menv

(let ([new-pub (cons (cons id e-val) (2nd mentry))])

(cons (list mid (list (1st mentry) new-pub (3rd mentry)))

(remq mid-mentry menv)))])

(list new-menv e-val))

(let* ([e-val (E exp menv mid init-lenv)]

[new-pub (list (cons id e-val))]

[new-menv (cons (list mid (list '() new-pub '())) menv)])

(list new-menv e-val))))))

APPENDIX A. AN INTERPRETER FOR THE �IMP LANGUAGE 114

(de�ne E

(lambda (exp menv mid lenv)

(cond

((constant? exp) (constant-value exp))

((symbol? exp) (lookup exp menv mid lenv))

((pair? exp)

(case (1st exp)

[(lambda) (let ([formals (2nd exp)]

[body (3rd exp)])

(lambda (menv1 . actuals)

(E body menv1 mid

(extend formals actuals lenv))))]

[(if) (if (E (2nd exp) menv mid lenv)

(E (3rd exp) menv mid lenv)

(E (4th exp) menv mid lenv))]

[else (apply (E (car exp) menv mid lenv)

menv

(map (lambda (x) (E x menv mid lenv))

(cdr exp)))]))

(else (error 'E \bad expression ~s" exp)))))

Appendix B

The IMOOP System

IMOOP is a programming system designed for the Scheme programming language.

IMOOP extends Scheme with support for interactive, modular, and object-oriented

programming. The IMOOP system can be described by its language de�nition and

its programming environment.

B.1 The Language

An IMOOP program consists of a sequence of statements. These statements can be

used to de�ne modules, classes, and their components. A module has three com-

ponents: an environment for private variables, an environment for public variables,

and an import speci�cation. The private and public environments map variables to

locations that stores the values of the variables. The import speci�cation speci�es

which modules are imported by the module and which variables of the modules are

imported with which local names in the module. These three components of a mod-

ule together with Scheme's lexical environment are used to determine the locations

of variables in a program. The import speci�cation is interpreted dynamically when

determining the location of a variable in a module.

A module may also be de�ned as a class. A class de�nes instance variables and

methods and inherits instance variables and methods from other classes. IMOOP

supports multiple inheritance. A class can inherit from more than one direct super

class.

115

APPENDIX B. THE IMOOP SYSTEM 116

Instance variables (including inherited instance variables) of a class are used as \tem-

plates" for creating instances of the class. An instance is a tagged vector of slots.

The tag is used to represent the class or the type of the instance. The slots can

be accessed with special language facilities using the instance and the names of the

instance variables.

Methods of a class (including inherited methods) provide operations for instances of

the class. By convention, the �rst argument of a method should receive an instance

object. Methods are public procedures. They can also be used to de�ne generic func-

tions. Generic functions are stored in public environments of user speci�ed generic

modules. Upon receiving its arguments, a generic function selects a method to apply

to its arguments using the tag (class) of its �rst argument.

Classes can be rede�ned. Rede�ning a class automatically updates inherited instance

variables and methods of the class and all of its subclasses. However, existing in-

stances of these classes are not modi�ed.

IMOOP also de�nes expression-level syntax and procedures. These syntax and pro-

cedures allows the creation, accessing, and type operations on instances.

We assume every Scheme identi�er initially de�nes a module that contains an empty

private environment, an empty public environment, an empty import speci�cation

that speci�es no imported modules, and no class de�nition.

Section B.1.1 and B.1.2 are organized into entries. Each entry describes a language

feature which is either a syntactic construct or a built-in procedure. The format of

an entry follows the Revised4 Report with the following modi�cations [58]:

� The header line of an entry starts with a bold-faced syntactic keyword or a

procedure name.

� The rest of the header line is formatted in an italic type style.

� Meta namesmodule, class, variable, slot , and instance-variable represent Scheme

identi�ers, expression indicates IMOOP expressions which also includes any

Scheme expressions, lambda-expression represents a lambda expression, state-

ment represents an IMOOP statement, and instance indicates an instance ob-

ject.

� The notation fform1 j form2g represents an occurrence of either form1 or

form2 but not both. The + represents one or more occurrences of the preceding

form.

APPENDIX B. THE IMOOP SYSTEM 117

B.1.1 Statements

(import module Imports) statement syntax

Syntax: The syntax of Imports is speci�ed as follows:

Imports ::= (fm-all j Selectg ...)

Select ::= (m-sel fid j (local-id ex-id)g+)

where m-all and m-sel are module names and local-id, ex-id, and id are variable

names. These names are Scheme identi�ers.

Semantics: Imports becomes the import speci�cation of the module. A module may

explicitly import zero or more modules. All the public variables of m-alls and only se-

lected public variables of m-sels are imported. The selected variables may be assigned

local names that may be di�erent from their original names. The scheme module is

also imported implicitly. Public variables of the scheme module includes at least all

the essential procedures de�ned in the Revised4 Report [58]. Imports is interpreted

dynamically using the public environments of m-alls and m-sels when determining

locations of variables in the module. Name conicts among variables in imported

modules are resolved from left to right (see Section B.1.3).

Examples:

1. (import m ())

Module m imports all the public variables in the scheme module.

2. (import m (n (o (x y) z)))

Module m imports all the public variables of the module n and scheme and

only the y and z of the module o with y renamed as x.

(public module variable lambda-expression) statement syntax

The public environment of the module is extended with an entry that binds the

variable to a fresh location holding the result of evaluating the lambda-expression

in the module. The semantics of evaluating an expression in a module is de�ned in

Section B.1.3.

If the variable also has a binding in the module's private environment, the binding is

removed from the private environment.

It is an error to assign, i.e., set!, public variables.

APPENDIX B. THE IMOOP SYSTEM 118

(private module variable expression) statement syntax

The private environment of the module is extended with an entry that binds the

variable to a fresh location holding the result of evaluating the expression in the

module.

If the variable also has a binding in the module's public environment, the binding is

removed from the public environment.

(begin statement statement ...) statement syntax

The statements are evaluated in an unspeci�ed order.

(with module expression) statement syntax

Returns the result of evaluating expression in the module.

(class module Inherits Instance-Var ...) statement syntax

Syntax: The syntax of Inherits and Instance-Var are speci�ed as follows:

Inherits ::= (class ::: (instance-variable (class class class :::)) :::)

Instance-Var ::= finstance-variable j (instance-variable expression)g

Semantics: Themodule is also de�ned as a class. The class statement de�nes instance

variables and inherits e�ective instance variables and applicable methods from its

direct super classes. The number of e�ective instance variables of a class determines

the number of slots of an instance of the class. The applicable methods of a class

de�ne operations on instances of the class. Rede�ning existing classes is allowed.

Inherits explicitly specify direct super classes and combined instance variables of the

module. The direct super classes must exist in the system already. A combined in-

stance variable speci�es that the instance variables de�ned in several di�erent classes

with the same names are combined into a single instance variable. The e�ect of com-

bining instance variables is that a single slot is used for all the instances variables

that are combined.

A class may de�ne zero or more instance variables. An instance variable may be

de�ned by a single identi�er with an unspeci�ed default initial value for its slots, or

a two element list. The �rst element of the list must be an identi�er. The second

APPENDIX B. THE IMOOP SYSTEM 119

element of the list is an IMOOP expression. The value of the expression, evaluated

at instance creation time, is the default initial value for slots named by the identi�er.

Only locally de�ned instance variables in a class can be used as arguments to slot-ref

or slot-set! forms occurring in the class (see Section B.1.2).

Semantics of instance variable inheritance:

� The e�ective instance variables of a class include instance variables de�ned in

the class and e�ective instance variables (after combining) inherited from its

direct super classes.

� The default initial values of slots associated with combined instance variables

are unspeci�ed.

� The e�ective instance variables of direct super classes with the same names and

originating from the same classes are automatically combined and inherited.

Semantics of method inheritance:

� The applicable methods of a class include methods de�ned in the class and

applicable methods inherited from its direct super classes.

� If a class rede�nes an applicable method inherited from one of its direct super

classes, the locally de�ned method shadows the inherited one and is treated as

an applicable method of the class.

� A warning message is given if a class inherits applicable methods with the

same name from di�erent super classes. The warning message indicates which

method is inherited by the class. The user can rede�ned the method in the class

to resolve the conict.

Examples:

1. (class w () a)

Module w is de�ned as a class which inherits no other class and de�nes an

instance variable a.

2. (class y () (a 0))

Module y is de�ned as a class which inherits no other class and de�nes an

instance variable a. The default initial value for slots associated with a is 0.

APPENDIX B. THE IMOOP SYSTEM 120

3. (class z (w) b c)

Module z is de�ned as a class which inherits applicable methods and e�ective

instance variables of w and de�nes instance variables b and c.

4. (class x (y z (a (y w))))

Module x is de�ned as a class which inherits applicable methods and e�ective

instance variables of y and z. Class x does not de�ne instance variables. Both

y and w de�nes an instance variable named a, these two instance variable is

combined into a single instance variable which is inherited by x. The initial

value for slots associated with a is unspeci�ed. Note that w is a super class and

not a direct super class of x .

(method module variable g-module lambda-expression) statement syntax

Module must be de�ned as a class. Evaluating a method statement has the e�ect

of evaluating the statement as a public statement, plus the method is inherited

by subclasses of module using the rules of method inheritance, plus the method is

installed in a public generic function named by variable in g-module. Upon receiving

arguments, this generic function invokes the method if the method is an applicable

method of the class of its �rst argument. G-module is automatically created by the

IMOOP system when it is �rst used in a method statement.

B.1.2 Expressions and Essential Procedures

IMOOP expressions include all the Scheme expressions plus the syntactic forms and

procedures de�ned in this section.

(with-var module variable) expression syntax

Returns the value of evaluating the variable in the module. The variable and the

module are treated as symbols.

(make-instance class (instance-variable expression) ...) expression syntax

Creates an instance of the class. The initial values of the slots associated with the

instance-variables are the values of the expressions. The initial values of other slots

are the default initial values of e�ective instance variables of the class or unspeci�ed.

APPENDIX B. THE IMOOP SYSTEM 121

The class and the instance-variables are treated as symbols. The class must be the

name of an existing class. An instance-variable must be the name of one of the

e�ective instance variables of the class.

(slot-ref instance instance-variable) expression syntax

Returns the value of the instance-variable in the instance. Instance-variable is a

symbol (it is not evaluated) and must be the name of an instance variable. The

instance variable must be de�ned in the module where the slot-ref form appears.

(slot-set! instance instance-variable expression) expression syntax

Changes the value of the instance-variable in the instance to the value of the expres-

sion. Instance-variable is a symbol and must be the name of an instance variable.

The instance variable must be de�ned in the module where the slot-ref form appears.

The value returned by the slot-set! form is unspeci�ed.

(type? instance class) expression syntax

Returns #t if the class of the instance is a sub-class of the class, otherwise returns

#f. The class is a symbol which names a class.

(type-of instance) essential procedure

Returns the class of the instance.

B.1.3 Expression Semantics

The only di�erence between the semantics of IMOOP and Scheme is the way in which

locations are associated with variables.

Expressions in a module's public, private, method, class, and with statements

are the module's top-level expressions. Variables appearing in a top-level expression

are either free or bound. A bound variable reference or assignment in a top-level

expression refers to a �xed location of a binding established within the top-level

expression. The value of a free variable reference in a top-level expression of a module

is the value of the location of a private variable, a public variable, or an imported

APPENDIX B. THE IMOOP SYSTEM 122

variable of the module. A free variable assignment in a top-level expression of a

module assigns a value to the location of a private variable of the module.

A free variable access may not always use a �xed location. It uses the location to

which the free variable is currently bound. During the evaluation of an IMOOP

program, a free variable access in a top-level expression of a module uses the location

of one of the module's private, public, method, or imported variables that has the

same name as the free variable when the access is made. The imported variables of

a module is determined dynamically for every free variable access using the import

speci�cation of the module and the public environments of the imported modules. Is

is an error to reference or assign an unbound variable.

Name conicts among private, public, method, or imported variables are resolved

using the following precedence rules:

� Locally de�ned private, public, or method variables has precedence over im-

ported variables.

� The precedence of imported variables exported from di�erent modules depends

on the position of these modules appearing in the module's import speci�cation.

If two or more modules exports a public variable with the same name, the public

variable of the leftmost module in the import speci�cation shadows the public

variables of other imported modules.

� Variables exported from the scheme module have the lowest precedence.

B.2 The Programming Environment

The IMOOP programming environment provides tools to manage the development of

IMOOP projects. These tools consists of a read-eval-print loop, its interface with the

GNU Emacs editor, and commands for managing projects, modules, and bindings.

B.2.1 The Read-Eval-Print Loop

The read-eval-print loop allows the user to enter IMOOP statements and commands

interactively. A statement entered in the read-eval-print loop does not contain the

module name that indicates the module in which the statement should be evaluated.

The statement is evaluated in the \current" module. The current module can be

APPENDIX B. THE IMOOP SYSTEM 123

changed by the user using the set-current-module command. The prompt of the

read-eval-print loop displays the name of the current module. Assuming that the

name of the current module is module, text entered in the read-eval-print loop is

transformed using the following rules before being evaluated (statement) indicates

the result of recursively applying the following rule to statement):

hIMOOP commandsi =) hIMOOP commandsi

(import Imports) =) (import module Imports)

(public variable expression) =) (public module variable expression)

(private variable expression) =) (private module variable expression)

(class Inherits Instance-Vars) =) (class module Inherits Instance-Vars)

(method variable expression) =) (method module variable expression)

(begin statement :::) =) (begin hstatement)i ...)

hexpressioni =) (with module hexpressioni)

B.2.2 The GNU Emacs Interface

The GNU Emacs interface allows modules to be created, edited, and saved in �les. It

also allows statements in a module to be \sent" and evaluated in the read-eval-print

loop directly. This interface can also be used with Epoch. Epoch is a version of GNU

Emacs that supports true multi-window editing under the X window system.

Files associated with IMOOP modules must be named using their names extended

with the .ms extension. Statements in a �le need not specify the name of the module

that the statement belong. The Emacs interface can obtain the module name from

the �le name and inform the read-eval-print loop to change its current module before

sending the statement to evaluate. The programming environment adopts the con-

vention that only statements excluding the with statement can appear in a �le and

can be sent to the read-eval-print loop.

B.2.3 IMOOP Commands

IMOOP provides commands for managing projects, modules, and bindings. These

commands are recognized only by the read-eval-print loop and cannot be used in

program statements.

APPENDIX B. THE IMOOP SYSTEM 124

Project Management

(load-project name)

Removes the current project and loads the project stored in the �le name.ps from

the current working directory. The name of a project �le have the .ps extension and

contains a list of module descriptions that speci�es the load order of modules in the

project. Each module description speci�es the name of a module and the directory

from which to load the module. An error is signaled if name.ps cannot be found in

the current directory. A project named no-name with no modules is initially loaded

into the system.

(save-project)

Saves the current project, say project, in the �le project.ps in the current working

directory.

(save-project-as name)

Saves the current project in name.ps in the current working directory.

(compile-project)

Compile the current project. The object code is put in name.ss in the current working

directory. Name is the name of the current project.

Module Management

(set-current-module module)

Set the current module of the project to the module. When a module is set to be the

current module for the �rst time, it is automatically added to the current project.

APPENDIX B. THE IMOOP SYSTEM 125

(load-module module string)

Module is set to be the current module and is loaded from module.so, if it exists;

otherwisemodule is loaded frommodule.ms. The import and class statements should

appear at the beginning of module.ms and are loaded �rst. Other statements are

loaded in an unspeci�ed order. The load order of modules is kept in the load order

list. By default, the module is appended at the end of the load order list. When a

module is set as the current module for the �rst time, the module is appended at the

end of the load order list.

String is an optional argument. It speci�es a directory path name. If string is

provided, the module is loaded from the directory, otherwise the module is loaded

from the current working directory. An error is signaled if the �le is not found.

(change-order module after)

This command removes module from the load order list and reinserts it right after

module after in the load order list. If after is not present, then the module is inserted

at the end of the load order list. An error is signaled if module or after cannot be

found in the load order list.

(remove-module module)

Removes the module from the current project. Module scheme becomes the current

module. An error is signaled if the module is not in the current project or a class is

de�ned in the module.

(remove-class module)

Removes the class de�nition from the module. The class must not be a super class of

any other class.

(compile-one-module module)

Compiles module and stores the output in the �le module.so. This �le is put in the

directory where module is loaded. An error is signaled if module is not in the current

project. Components of compiled modules cannot be changed interactively in the

read-eval-print loop. Every imported module of a compiled module must also be a

compiled module.

APPENDIX B. THE IMOOP SYSTEM 126

(compile-modules module)

Recursively compiles the module and all the directly or indirectly imported modules

of the module. An error is signaled if any one of the modules is not in the project.

Binding Management

(delete-binding module variable)

Deletes the binding of the variable from the module. An error is signaled if the module

is not a developing module or if the variable is not a public, private, or method variable

in the module.

(refresh-binding)

Reinitializes the values of private variables in every module to the values when the

variables were last de�ned. The modules are initialized according to the order speci-

�ed by the load order list.

Bibliography

[1] Abelson, H., Sussman, G. J., and Sussman, J. Structure and Interpretation

of Computer Programs. MIT Press, 1984.

[2] Adams, N., and Rees, J. Object-oriented programming in Scheme. In 1988

ACM Conference on Lisp and Functional Programming (1988), pp. 277{288.

[3] America, P. A parallel object-oriented language with inheritance and sub-

typing. In Proceedings of OOPSLA EOOOP '90, Object-Oriented Programming

Systems, Languages, and Applications (October 1990), pp. 161{168. printed as

SIGPLAN Notices, 25(10).

[4] Bawden, A., and Rees, J. Syntactic closures. In Proceedings of the 1988

ACM Conference on LISP and Functional Programming (Salt Lake City, Utah.,

July 1988).

[5] Bobrow, D., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and

Zdybel, F. CommonLoops: Merging Lisp and object-oriented programming. In

Proceedings of OOPSLA'86, Object-Oriented Programming Systems, Languages,

and Applications (November 1986), pp. 17{29. printed as SIGPLAN Notices,

21(11).

[6] Bobrow, D. G., DeMichiel, L. G., Gabriel, R. P., Keene, S. E.,

Kiczales, G., and Moon, D. A. Common Lisp Object System Speci�ca-

tion. SIGPLAN NOTICES 23, 9 (September 1988), 1{48.

[7] Borning, A. H., and Ingalls, D. H. H. Multiple inheritance in Smalltalk-

80. In Proceedings of 1982 AAAI National Conference on Arti�cial Intelligence

(1985), pp. 234{238.

[8] Brooks Jr, F. P. The Mythical Man-Month. Addison-Wesley, 1982.

127

BIBLIOGRAPHY 128

[9] Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B.,

and Nelson, G. Modula-3 report. Tech. Rep. 31, DEC Systems Research

Center, 1988.

[10] Clinger, W., and Rees, J. Macros that work. In Conference Record of the

Eighteenth Annual ACM Symposium on Principles of Programming Languages

(January 1991), pp. 155{162.

[11] Connor, R. C. H., Dearle, A., Morrison, R., and Brown, A. L. An

object addressing mechanism for statically typed languages with multiple inher-

itance. In Proceedings of OOPSLA '89, Object-Oriented Programming Systems,

Languages, and Applications (October 1989), pp. 279{286. printed as SIGPLAN

Notices, 24(10).

[12] Cox, B. Object-Oriented Programming, An Evolutionary Approach. Addison

Wesley, 1987.

[13] Cox, B. J. There is a silver bullet. Byte (October 1990), 209{218.

[14] Curtis, P., and Rauen, J. A module system for Scheme. In Conference

Record of the 1990 ACM Lisp and Functional Programming (1990).

[15] Dahl, O., Myhrhaug, B., and Nygaard, K. Simula67 Common Base

Language, second ed. Norwegian Computing Center, 1970.

[16] Deutsch, L. P., and Schiffman, A. M. E�cient implementation of the

Smalltalk-80 system. In Conference Record of the Tenth Annual ACM Symposium

on Principles of Programming Languages (1983), pp. 297{302.

[17] Dixon, R., Mckee, T., Vaughan, M., and Schweizer, P. A fast method

dispatcher for compiled languages with multiple inheritance. In Proceedings of

OOPSLA '89, Object-Oriented Programming Systems, Languages, and Applica-

tions (October 1989), pp. 211{214. printed as SIGPLAN Notices, 24(10).

[18] Drescher, G. L. Object Scheme: Object inheritance as uid binding. Thinking

Machines Corporation, 1990.

[19] Dussud, P. H. TICLOS: An implementation of CLOS for the explorer family. In

Proceedings of OOPSLA '89, Object-Oriented Programming Systems, Languages,

and Applications (October 1989), pp. 215{220. printed as SIGPLAN Notices,

24(10).

BIBLIOGRAPHY 129

[20] Dybvig, R. K. The Scheme Programming Language. Prentice-Hall, 1987.

[21] Dybvig, R. K. Three Implementation Models for Scheme. PhD thesis, Univer-

sity of North Carolina, Chapel Hill, 1987.

[22] Dybvig, R. K., and Hieb, R. Engines from continuations. Journal of Com-

puter Languages 14, 2 (1989), 109{123.

[23] Friedman, D. P., and Felleisen, M. A closer look at export and import

statements. Computer Language 11, 1 (1986), 29{37.

[24] Friedman, D. P., Wand, M., and Haynes, C. T. Essentials of Programming

Languages. MIT Press and McGraw-Hill, 1991.

[25] Goldberg, A. Smalltalk-80 The Interactive Programming Environment.

Addison-Wesley, 1983.

[26] Goldberg, A., and Robson, D. Smalltalk-80 The Language and Its Imple-

mentation. Addison-Wesley, 1983.

[27] Hanson, C. A syntactic closures mocro facility. unpublished manuscript.

[28] Hanson, D. R. Is block structure necessary? Software Practice and Experience

11 (1981), 853{866.

[29] Harper, R., Milner, R., and Tofte, M. The de�nition of Standard ML.

Tech. Rep. ECS-LFCS-89-81, Department of Computer Science, University of

Edinburgh, 1989.

[30] Haynes, C. T. Logic continuations. In Proceedings of the Third International

Conference on Logic Programming (July 1986), Springer-Verlag, pp. 671{685.

[31] Haynes, C. T., and Friedman, D. P. Abstracting timed preemption with

engines. Journal of Computer Languages 12, 2 (1987), 109{121.

[32] Haynes, C. T., and Friedman, D. P. Embedding continuations in procedural

objects. ACM Transactions on Programming Languages and Systems 9, 4 (Oct.

1987), 582{598.

[33] Hieb, R., and Dybvig, R. K. Syntactic abstraction in Scheme. unpublished

manuscript.

BIBLIOGRAPHY 130

[34] Hudak, P. Conception, evolution, and application of functional programming

languages. ACM Computing Surveys 21, 3 (September 1989), 359{411.

[35] IEEE. IEEE Standard for the Scheme Programming Language. Institute of

Electrical and Electronic Engineers, Inc., New York, NY, 1991. IEEE Std 1178-

1990.

[36] Jagannathan, S. A Programming Language Supporting First-Class Parallel

Environments. PhD thesis, Massachusetts Institute of Technology, January 1989.

[37] Kamin, S. Inheritance in Smalltalk-80: a denatational de�nition. In ACM

Symposium on Principles of Programming Languages (1988), pp. 80{87.

[38] Kaplan, S., Carroll, A. M., Love, C., and LaLiberte, D. M. Epoch

- GNU Emacs for the X Window System. Department of Computer Science,

University of Illinois at Urbana-Champaign, 1990.

[39] Keene, S. E. Object-Oriented Programming in Common Lisp. Addison Wesley,

1989.

[40] Kernighan, B. W., and Ritchie, D. M. The C Programming Language.

Prentice Hall, Englewood, New Jersey, 1988. The second edition.

[41] Kiczales, G., and Rodriguez, L. E�cient method dispatch in PCL. In

Proceedings of the 1990 ACM Conference on Lisp and Functional Programming

(1990), pp. 99{105.

[42] Kohlbecker, E. E., Friedman, D. P., Felleisen, M., and Duba, B.

Hygienic macro expansion. In Proceedings of the 1986 ACM Symposium on

LISP and Functional Programming (Aug. 1986), pp. 151{161.

[43] Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., and Adams,

N. Orbit: An optimizing compiler for Scheme. Proceedings of the SIGPLAN '86

Symposium on Compiler Construction (1986), 219{233. published as SIGPLAN

Notices 21, 7 (July 1986).

[44] Krasner, G., Ed. Smalltalk-80: Bits of History, Words of Advice. Addison-

Wesley, Reading, MA., 1983.

[45] Krogdahl, S. Multiple inheritance in Simula-like languages. BIT 25 (1985),

318{326.

BIBLIOGRAPHY 131

[46] Lamping, J. O. A uni�ed system of parameterization for programming lan-

guages. In 1988 ACM Conference On Lisp and Functional Programming (July

1988), pp. 316{326.

[47] Lang, K. J., and Pearlmutter, B. A. Oaklisp: An object-oriented Scheme

with �rst class types. In Proceedings of OOPSLA '86, Object-Oriented Program-

ming Systems, Languages, and Applications (November 1986), pp. 30{37. printed

as SIGPLAN Notices, 21(11).

[48] Lieberman, H. Using prototypical objects to implement shared behavior in

object-oriented systems. In Proceedings of OOPSLA '86, Object-Oriented Pro-

gramming Systems, Languages, and Applications (November 1986), pp. 214{223.

printed as SIGPLAN Notices, 21(11).

[49] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C. Abstraction

mechanisms in CLU. Communications of the ACM 20, 8 (1977), 564{576.

[50] MacQueen, D. Modules for Standard ML. In Conference Record of the 1984

ACM Symposium on Lisp and Functional Programming (1984), pp. 198{207.

[51] Meyer, B. Ei�el: A language and environment for software engineering. The

Journal of Systems and Software (1988).

[52] Meyer, B. Ei�el: The language. Tech. rep., Interactive Software Engineering

Inc., 1989.

[53] Moon, D. A. Object-oriented programming with Flavors. In Proceedings of

OOPSLA '86, Object-Oriented Programming Systems, Languages, and Applica-

tions (November 1986), pp. 1{8. printed as SIGPLAN Notices, 21(11).

[54] Parnas, D. L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM (December 1972), 1053{1058.

[55] Pugh, W., and Weddell, G. Two-directional record layout for multiple

inheritance. In ACM SIGPLAN '90 Conference on Programming Language De-

sign and Implementation (June 1990), pp. 85{91. printed as SIGPLAN Notices,

25(6).

[56] Queinnec, C., and Padget, J. A detailed summary of a deterministic model

of modules and macros for Lisp. Tech. Rep. LIX/RR/90/01, Ecole Polytechnique,

BIBLIOGRAPHY 132

Laboratoire d'Informatique, 91128 Palaiseau Cedex (France), July-December

1989.

[57] Reddy, U. Objects as closures: Abstract semantics of object-oriented languages.

In 1988 ACM Conference on Lisp and Functional Programming (July 1988),

pp. 289{297.

[58] Rees, J., and Clinger, W. (Editors), Revised4 report on the algorithmic

language Scheme. Lisp Pointers 4, 3 (1991), 1{55.

[59] Rodr�iguez, R. G., Duba, B. F., and Felleisen, M. Can you trust your

read-eval-print loop? unpublished manuscript.

[60] Rose, J. R. Fast dispatch mechanisms for stock hardware. In Proceedings of

OOPSLA '88, Object-Oriented Programming Systems, Languages, and Applica-

tions (November 1988), pp. 27{35. printed as SIGPLAN Notices, 23(11).

[61] Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C.

An introduction to Trellis/Owl. In Proceedings of OOPSLA '86, Object-Oriented

Programming Systems, Languages, and Applications (November 1986), pp. 9{16.

printed as SIGPLAN Notices, 21(11).

[62] Schmidt, D. A. Denotational Semantics. Allyn and Bacon, Inc., Boston, MA,

1986.

[63] Snyder, A. CommonObjects: An overview. SIGPLAN Notices 21, 10 (October

1986), 19{28.

[64] Snyder, A. Encapsulation and inheritance in object-oriented programming lan-

guages. In Proceedings of OOPSLA '86, Object-Oriented Programming Systems,

Languages, and Applications (November 1986), pp. 38{45. printed as SIGPLAN

Notices, 21(11).

[65] Springer, G., and Friedman, D. P. Scheme and the Art of Programming.

MIT Press and McGraw-Hill, 1989.

[66] Steele Jr, G. L. Common Lisp. Digital Press, 1990. Second Edition.

[67] Stein, L. A. Delegation is inheritance. In Proceedings of OOPSLA '87, Object-

Oriented Programming Systems, Languages, and Applications (December 1987),

pp. 138{146. printed as SIGPLAN Notices, 22(12).

BIBLIOGRAPHY 133

[68] Stein, L. A., Liberman, H., and Ungar, D. A shared view of sharing: The

Treaty of Orlando. In Object-Oriented Concepts, Databases, and Applications,

W. Kim and F. H. Lochovsky, Eds. ACM Press, 1989, ch. 3, pp. 31{48.

[69] Stoy, J. E. Denotational Semantics: The Scott-Strachey Approach to Program-

ming Language Theory. MIT Press, Cambridge, Mass., 1977.

[70] Stroustrup, B. The C++ Programming Language. Addison-Wesley, 1986.

[71] Stroustrup, B. An overview of C++. SIGPLAN Notices 21, 10 (October

1986), 7{18.

[72] Sussman, G. J., and Steel Jr, G. L. Scheme: an interpreter for extended

lambda calculus. Tech. rep., Massachusetts Institute of Technology Arti�cial

Intelligence Memo 349, 1975.

[73] Swinehart, D., Zellweger, P., Beach, R., and Hagmann, R. A struc-

tural view of the Cedar programming environment. ACM Transactions on Pro-

gramming Languages and Systems 8, 4 (October 1986), 419{490.

[74] Teitelman, W. A tour through Cedar. IEEE Software (April 1984), 44{73.

[75] Teitelman, W., and Masinter, L. The Interlisp programming environment.

IEEE Computer 14, 4 (1981), 25{34.

[76] Tennent, R. D. The denotational semantics of programming languages. Com-

munications of the ACM 19, 8 (August 1976), 437{453.

[77] Tennent, R. D. Two examples of block structure. Software Practice and

Experience 12 (1982), 385{392.

[78] Ungar, D., and Smith, R. B. Self: The power of simpicity. In Proceedings

of OOPSLA '87, Object-Oriented Programming Systems, Languages, and Appli-

cations (December 1987), pp. 227{242. printed as SIGPLAN Notices, 22(12).

[79] US Government - Department of Defense. The programming language

ADA - reference manual. Lecture Notes in Computer Science, Vol. 106 (1981).

[80] Walker, J. H., Moon, D. A., Weinreb, D. L., and McMahon, M. The

Symbolics Genera programming environment. IEEE Software 4, 6 (November

1987), 36{45.

BIBLIOGRAPHY 134

[81] Wirth, N. Programming in Modula-2. Springer Verlag, 1983.

[82] Wulf, W., and Shaw, M. Global variable considered harmful. ACM SIG-

PLAN Notices (Februry 1973), 28{34.

